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Abstract

The optimal bit-width for achieving the best trade-off between quantized model
size and accuracy has been a subject of ongoing debate. While some advocate for
4-bit quantization, others propose that 1.58-bit offers superior results. However,
the lack of a cohesive framework for different bits has left such conclusions
relatively tenuous. We present ParetoQ, the first unified framework that facilitates
rigorous comparisons across 1-bit, 1.58-bit, 2-bit, 3-bit, and 4-bit quantization
settings. Our findings reveal a notable learning transition between 2 and 3 bits:
For 3-bits and above, the fine-tuned models stay close to their original pre-trained
distributions, whereas for learning 2-bit networks or below, the representations
change drastically. By optimizing training schemes and refining quantization
functions, ParetoQ surpasses all previous methods tailored to specific bit widths.
Remarkably, our ParetoQ ternary 600M-parameter model even outperforms the
previous SoTA ternary 3B-parameter model in accuracy, using only one-fifth of
the parameters. Extensive experimentation shows that ternary, 2-bit, and 3-bit
quantization maintains comparable performance in the size-accuracy trade-off and
generally exceeds 4-bit and binary quantization. Considering hardware constraints,
2-bit quantization offers promising potential for memory reduction and speedup.

1 Introduction

As deep learning continues to scale toward larger models and datasets, significant attention has
been devoted to studying the scaling laws that trade-off between model and dataset size to optimize
performance and computational efficiency [Hoffmann et al., 2022, [Kumar et al.| |2024] |[Dettmers
and Zettlemoyer, [2023]]. In the meantime, the field is shifting toward lower-precision computation,
particularly in large language models, driven by the substantial benefits of memory savings and
computational efficiency [Liu et al.,2023al Ma et al.| 2024]]. This shift necessitates a rethinking of
scaling laws to account for the effects of quantization on resulting quantized model performance.

When allowing for lower-bit quantization, we can freely trade off the bit-width and the number of
parameters. Keeping the amount of memory used the same, we could have an 8-bit model, or a 4-bit
model twice the size. This begs the question: What is the optimal trade-off between bit-width and
model size? Recent papers [Dettmers and Zettlemoyer, 2023} |[Kumar et al.,|2024] on scaling laws
for low-precision conclude that 4 or 6-bit quantization often resides on the Pareto frontier to balance
accuracy and efficiency. Other studies [Ma et al.,[2024, [Kaushal et al.l 2024]] suggest that bit-widths
as low as 1.58-bit per parameter hold significant promise for the optimal scaling law trade-off. These
opposing conclusions highlight the challenges of studying scaling laws in the low-precision domain.
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Figure 1: Pareto curves of accuracy-size trade-offs.

In this paper, we demonstrate that previous conclusions on the low-bit scaling laws can be significantly
sharpened by better quantization scheme design and training improvements. While previous works
define the search space of the QAT scaling laws solely as a function of model parameters (), token
count (D), and quantization precision (P), we emphasize the critical role that the training scheme
(Strain) and the bit-specific quantization function (F) play in the equation. We formalize the
search space as L(N, D, P, Siain, F ), comprising five dimensions.

To disentangle these complexities, we first identify the optimal training strategy for plausible quanti-
zation functions in each bit width, L(N, D, Syuin | P, F). Subsequently, with the optimal training
strategy (S;,;,) and the token count (D*) required for saturation, we determine the best quantiza-

tion function for each bit, L(N, F | P,D*, Si,i)- Results highlight that quantization grids and

ranges are pivotal in the sub-4-bit regime, with a sharp learning behavior transition between
1-bit/1.58-bit/2-bit and 3-bit/4-bit.

Based on the findings, we derive ParetoQ, the first framework that unifies the training and quanti-
zation scheme in sub 4-bit regime. Rather than fitting hypothetical scaling laws for quantization,
ParetoQ demonstrate its robustness by yielding state-of-the-art (SOTA) models at all bit widths,
surpassing prior works tailored for individual bit levels.

These SOTA points in the Pareto chart ensure that our scaling law comparisons are both reliable and
consistent, as they derive from homogeneous settings. Leveraging ParetoQ, we identify the optimal
bit-width for minimizing loss within the effective quantized model size, L(N, P|F*, D*, S;:..). Our
scaling laws reveal that binary quantization significantly compromises accuracy, while ternary, 2-bit
and 3-bit quantization are tied in performance, often surpassing 4-bit. The tiebreaker lies in the kernel
implementation, which drives real memory savings and speedups. 1.58-bit and 3-bit quantization are
in general less hardware-friendly than 2-bit. We implemented an optimized 2-bit CPU kernel and our
results indicate that 2-bit quantization achieves higher speed at the same accuracy compared to 4-bit.

The key contributions of this study are as follows:

e We present a comprehensive study on the intertwined effects of QAT budget allocation and specific
choices of quantization functions across 8 models (125M to 3B) and 5 quantization strategies. Our
study highlights the unique characteristics and challenges of binary, ternary, and 2/3/4-bit quantization,
offering actionable insights and best practices for achieving optimal accuracy-efficiency trade-offs.

e We introduce ParetoQ, the first systematic, apples-to-apples comparison of quantization functions
at extreme low-bit settings. Each point in the Pareto chart outperforms prior methods optimized for
specific bit widths. Specifically, the 1.58-bit ParetoQ LLaMA-3 8B model reduces the performance
gap to full precision by relatively 37.8% compared to the 1-bit Era’s LLaMA-3 8B model [Ma et al.,
2024], while using only 30% of the training tokens.

e Our research highlights the potential of 2-bit quantization as a prospective alternative to the
traditional 4-bit approach, offering improved accuracy-size trade-off, as underlined in Figure
Preliminary speed benchmarks also demonstrate promising efficiency gains with 2-bit quantization.
Nevertheless, widespread adoption will require community-wide efforts, such as INT2 support in
NVIDIA tensor cores, to unlock the full benefits of 2-bit quantization.

2 A Better QAT Scheduling Strategy for Extreme Low-Bit LLMs

In this work, we systematically investigate trade-offs involving bit precision (P), quantization func-
tions (F), model size (N), training strategies (Syqir) and training token (D): L(P, F, N, Sirain, D).
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Figure 2: With a fixed total training budget of 100B tokens (Biin), Where Bep + Boar = Birain, We explore optimal
allocation between full-precision pretraining (Brp) and QAT fine-tuning (Bgar). “0.0” represents QAT from scratch,
while “1.0” indicates full-precision pretraining followed by PTQ. Results on MobileLLM-125M show peak accuracy
with ~90% of the budget for full-precision pretraining and ~10% for QAT fine-tuning.
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Figure 3: Analysis of training token requirements for quantization-aware fine-tuning and training from scratch across
1-bit, 1.58-bit, 2-bit, 3-bit, and 4-bit settings. Fine-tuning typically saturates at 10B tokens for 3-bit and 4-bit, and at
30B tokens for 1-bit, 1.58-bit, and 2-bit. Fine-tuning consistently outperforms training from scratch in both accuracy
and token efficiency across all bit configurations.

Given the vast search space defined by these variables, we first fix the quantization method (F) and
explore the dimensions of bit precision (P), training strategies (S¢-qin) and training tokens (D) in
this section.

2.1 Training Budget Allocation

Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) are two primary quanti-
zation approaches. PTQ applies quantization after full-precision training, simplifying deployment but
often leads to significant performance loss at bit widths below 4 bits. In contrast, QAT incorporates
quantization during training to optimize model performance for low-bit-width representations.

Here we start by answering a key question:

Given a fixed training budget (in #tokens) Biain = Brpr + Boar, how should the budget
be optimally allocated between full-precision training (SBgpr) and quantization-aware train-
ing/finetuning (Bgar) to maximize the accuracy of the quantized model?

This question is both technically intriguing and practically significant. Our approach begins with
analyzing the pretraining phase to determine the optimal switching point from FPT to QAT, aiming
to minimize the loss:

B;PT» BEAT = arg min E(BFPT, BQAT‘N, P) (1)
Brpr+Boar=Buain
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Figure 4: L1 norm difference between QAT-finetuned weights and full-precision initialization (||Wiinetune — Winit| |11
/1|Winic|11)- Models quantized to 1, 1.58, and 2 bits show larger weight changes, indicating distinct ‘compensation’
behavior in higher-bit quantization and ‘reconstruction’ in lower-bit settings.

where Bypr and B r describe the optimal allocation of a computational budget Byin. We utilize
Birain to incorporate training tokens utilization (D) into the training strategy (S). Specifically, we
evaluate various allocation ratios of Brpr and Bgar on MobileLLM-125M across four bit-widths (
1.58-bit, 2-bit, 3-bit, and 4-bit). The FP models undergo a complete learning rate scheduling cycle for
Bepr tokens, followed by another cycle for QAT for Bgar tokens. Detailed experimental settings are
provided in the appendix.

Figure ] reveals a distinct upward trend in the full-precision pre-training proportion versus accuracy
curve. Notably, accuracy peaks at ~ 90% FPT allocation for almost every bit-width choice, then
decline sharply when FPT exceeds 90%, likely because this leaves insufficient tokens and training
capacity for QAT. This leads to our first key finding:

Finding-1 QAT finetuning consistently surpasses both PTQ with Brpr = Birin and QAT from scratch with
Boar = Birin. Optimal performance is nearly achieved by dedicating the majority of the training budget to full
precision (FP) training and approximately 10% to QAT.

2.2 Finetuning Characteristics

Then we investigate the impact of finetuning tokens across various bit choices, spanning 7 architec-
tures and 5 bit levels. Results in Figure |3| offer several key insights:

1. finetuning benefits across all bit-widths: This observation challenges recent methodologies
that trains ternary LL.Ms from scratch [Kaushal et al., 2024, |[Ma et al., 2024]). Instead, we suggest
leveraging pre-trained full-precision models for initialization is a more effective approach for training
quantized networks, including binary and ternary.

2. Optimal finetuning budget and bit width: Lower bit quantization (binary, ternary, 2-bit) requires
more finetuning than higher bit quantization (3-bit, 4-bit). 3-bit and 4-bit reach near full precision
accuracy after 10B tokens, while lower-bit quantization saturates around 30B tokens.

3. QAT behavior transition between bit-widths: Networks quantized to 3-bit/4-bit recover near
full-precision accuracy after finetuning, while binary, ternary, and 2-bit saturate before achieving full
accuracy. We hypothesize that QAT acts as “compensation” for bit-widths above 2-bit, adjusting
weights within adjacent quantization levels, and as “reconstruction” below 2-bit, where weights
adapt beyond nearby grids to form new representations. This is supported by weight change analysis
in Figure f] showing smaller adjustments in 3-bit/4-bit (10-20%) and larger shifts in lower-bit
quantization (~40%), indicating substantial value reconstruction.

Finding-2 While finetuning enhances performance across all bit-widths, even binary and ternary, optimal
finetuning effort inversely correlates with bit-width. For 3- and 4-bit weights, finetuning adjusts within a nearby
grid to mitigate accuracy loss, and requires less finetuning tokens. In contrast, binary and ternary weights break
the grid, creating new semantic representations to maintain performance, requiring longer finetuning.
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Figure 5: Impact of quantization grid choice across bit widths. Binary quantization uses a sign function; Ternary and
2-bit prefer more balanced output levels and range coverage; For 3-bit and higher, including “0” in quantization levels
is more favorable.

3 A Hitchhiker’s Guide to Quantization Method Choices

We have examined the impact of training strategy and budget allocations (Byin, Boar) on scaling
laws. Building on the optimal training practices outlined in Section 2] we focus on a critical yet often
overlooked factor: the choice of quantization functions (F).

Fr = argminﬁ(f|73,86AT) )
F

The significance of this choice has been largely underestimated in prior scaling law studies [[Kumar
et al., 2024]. Our results show that, especially at sub-4-bit quantization, the choice of function is
highly sensitive and can drastically alter scaling law outcomes. An improper selection can distort
performance and lead to entirely different conclusions, underscoring the need for careful design of F.

3.1 Preliminary

In general, a uniform quantization function is expressed as W¢, = aLW] + 3, where Wq
represents quantized weights, Wgr denotes their real-valued counterparts [Nagel et al., [2021} | Krish{
namoorthi, 2018]]. Key design choices focus on scale « and bias 8. For symmetric min-max quantiza-

% and 3 = 0. In asymmetric min-max quantization, o = max(wl;)f“fm(wm and

8 = min(Wg). Symmetric min-max quantization is prevalent for weights > 4 bits, while sub-4-bit
quantization requires distinct functions.

tion, o =

For binary quantization, assigning the sign of full-precision weights (Wr) to binary weights (Wg) is

a commonly used approach [Rastegari et al.l[2016, [Liu et al.l|2018]: W = «a-Sign(Wg ), where a =

”?ﬂ. In ternary quantization, ternary weights are often given by Wir = a-Sign(W§)-1 (Wi [>A

—— B2 [Zhang et al., 2020, [Liu et al., 2023a]. Besides
i Wh>A

binary and ternary quantization, there is less work targeting 2-bit or 3-bit integer quantization function
design. Directly using min-max quantization for them will lead to performance collapse.

. 0.7-[|W.
with A = 2T1Wrlln 5ng o =
nwg

3.2 Introducing ParetoQ

In sub-4-bit quantization, design requirements vary significantly across bit levels. Equal attention to
each bit choice is crucial for accurate, reliable comparisons.

3.2.1 Trade-offs

We identify two key trade-offs in low-bit quantization for LLMs: (1) Outlier precision vs. intermediate
value precision and (2) Symmetry vs. inclusion of “0” at the output level.

(1) Range clipping Outliers challenge LLM quantization [Lin et al., 2023| LLiu et al., [2024al,
especially when using min-max ranges for weight quantization for extremely low-bit quantization. As
seen in Figure [f] (b)-(e), min-max quantization works at 4 bits but loses accuracy at lower bit-widths.
On the other hand, range clipping improves lower-bit quantization but harms 4-bit accuracy. We refer
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Figure 6: Comparison of quantization methods across different bit-widths. Extreme low-bit quantization is highly
sensitive to quantization function selection. (b)-(e) show that the learnable policy with range clipping updated via final
loss consistently outperforms stats-based methods with fixed range clipping. From (f)-(i), the SEQ works better for
ternary and 2-bit quantization, while 3 and 4-bits favor LSQ.

to range-setting methods based on weight statistics as “stats-based” approaches. The effectiveness of
these quantization functions varies with different bit choices.

Learnable scales, however, optimize quantization ranges as network parameters, balancing outlier
suppression and precision. Solutions like LSQ [Esser et al.||2019] and its binary [Liu et al., 2022]
and ternary [Liu et al., 2023a] extensions exist. While prior work favored learnable policies for
activations but used statistics-based quantization for weights [Liu et al.| 2023b]], we find that, with
appropriate gradient scaling, learnable scales yield stable, superior performance for weights. As
shown in Figure ] (b)-(e), learnable policies consistently outperform stats-based methods across all
bit widths.

(2) Quantization grids Level symmetry in quantization grids is crucial for lower-bit quantization,
yet it is rarely discussed. The “0” in quantization output levels is essential for nullifying irrelevant in-
formation, but in even-level quantization (e.g., 2-bit, 3-bit, 4-bit), including “0” results in imbalanced
levels. For example, in 2-bit quantization, options like (—2,—1,0,1) and (—1.5,—0.5,0.5,1.5)
exist. The former limits representation with only one positive level, while the latter offers a balanced
distribution. Inspired by this, we propose Stretched Elastic Quant (SEQ), an amendment to LSQ for

lower-bit scenarios: W}Q = (LClip g‘, -1, 1) X g —-0.5] + 0.5) /k x 2. Here, k denotes the
e

«
number of quantization levels. Figure [5|visualizes quantization grids, showing that SEQ not only
balances output quantized levels but also evenly divides the full-precision weight span to quantization
levels, which turns out to be crucial for extremely low-bit quantization. Figure[6] (f)-(i) demonstrate
SEQ’s superiority in ternary and 2-bit quantization, while LSQ with “0” in output level slightly
outperforms in 3 and 4-bit cases.

Finding-3 Extreme low-bit quantization is highly sensitive to quantization function selection, with no single
optimal function for all bit widths. Learnable range settings outperform statistics-based methods due to their
flexibility in optimizing range parameters with respect to the final loss. Ternary and 2-bit quantization favor
symmetric levels and balanced range coverage in quantization grid configuration, while imbalance levels with
“0” in output levels are more effective for 3 and 4-bit quantization.

3.2.2 Quantization Function

Based on our analysis, we integrate the optimal quantization functions identified for each bit-width
into one formula, denoted as ParetoQ. This includes Elastic Binarization [Liu et al., [2022] for 1-bit
quantization, LSQ [Esser et al.,|2019] for 3 and 4-bit quantization, and the proposed SEQ for 1.58
and 2-bit quantization:

orSign(VViR)7 if Npie =1
Wi, = aWih = { a([Clip(W¥R, —1,1) x k/2 — 0.5] +0.5)/k x 2, if Ny = 1.58,2 3)
aLClip(wT%‘,n,p)], if Nyt = 3,4
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Figure 7: (a) (b) In sub-4-bit regime, 1.58-bit, 2-bit, and 3-bit quantization outperform 4-bit in terms of the accuracy-
model size trade-off. (c) Under hardware constraints, 2-bit quantization demonstrates superior accuracy-speed trade-offs
compared to higher-bit schemes.

Here k equals 3 in the ternary case and 2™Vbit otherwise; n = —2Mvit=1 and p = 2Meit=1 — 1 In
the backward pass, the gradients to the weights and scaling factor can be easily calculated using
straight-through estimator:

. Sign(Wg), if Npiz=1
8Wb SZJE ].leii:{‘<1, if Nbit:171.5872 aWb SZJE W;%_ WTﬁ -1 Wﬁ s if Nbit:1-5812
OWg | 1wy i Neir=34 a Lo e

n< =R <p YR 1 e, i Ny =3,4
) R Te MR
TP [Wrl| . . . (5)
For the initialization of «, we use o = -~ for the binary case, since the scaling factor has
Wr
the closed-form solution to minimizing quantization error: £ = ||[oWq — WRg||;2. For the other

cases, we simply initialize o as the maximum absolute value of the weights. For ternary and 2-

bit quantization, & = max(|Wr|), associated with SEQ quantizer, and for 3-bit and 4-bit cases,
= 7‘“3"(':‘[“‘) , associated with LSQ quantizer.

With ParetoQ, we present a robust comparison framework across five bit-widths (1-bit, 1.58-bit,

2-bit, 3-bit, 4-bit), each achieving state-of-the-art accuracy. This facilitates direct, apple-to-apple

comparisons to identify the most effective bit-width selection.

4 Pareto-Optimality of Extremely Low-Bit LLM

To ensure a consistent apples-to-apples performance comparison across different bit-width config-
urations, we first determined the optimal training setup (B},.,;,,) in Section 2 and the quantization
function (F*) for each bit in Section[3] Using this unified framework for all bit widths, we examine
the trade-off between model size and quantization bit: L(P, N |F*, B}..in)-

4.1 Accuracy-compression Trade-off

In on-device deployment scenarios, such as wearables and portables, storage constraints often limit
the capacity of large language models (LLMs). To optimize performance within these constraints,
quantization is essential. A common dilemma is whether to train a larger model and quantize it to a
lower bit-width or to train a smaller model and quantize it to a higher bit-width.

4-bit quantization-aware training (QAT) achieves near-lossless compression in many scenarios,
making it widely adopted. However, the landscape below 4-bit remains unclear, with limited
comparative analysis. Previous claims about ternary models matching 16-bit performance [Ma et al.,
2024] were based on lower FP16 baselines than current standards. Spectra’s comparisons between
ternary QAT and 4-bit PTQ fall short of a fair evaluation due to inconsistencies in the training schemes
used [Kaushal et al., [2024].

With ParetoQ, we are able to improve the analysis. Figure[7](a) demonstrates that sub-4-bit quanti-
zation, including binary, ternary, 2-bit, and 3-bit, often surpasses 4-bit. Notably, 2-bit and ternary
models reside on the Pareto frontier. For instance, a 2-bit MobileLLM-1B model achieves 1.8 points
higher accuracy than a 4-bit MobileLLM-600M model, with even smaller model sizes. This trend
persists across larger LLaMA models, as shown in Figure [/] (b), demonstrating the potential of
lower-bit quantization for achieving both higher accuracy and compression. We calculate the effective



quantized model size as (#weights x weight-bits + #embedding-weights x embedding-bits)/8.
More comprehensive analysis is provided in the Appendix.

4.2 Hardware Implementation Constraints

In practical deployment, both memory limitations and hardware constraints must be considered.
While 2-bit and ternary quantization sit on the accuracy-size Pareto frontier, 2-bit quantization is
generally more feasible due to practical challenges. Ternary quantization, using a 1.58-bit format
with values {—1, 0, 1}, appears more storage-efficient but is inefficient in implementation. Storing
ternary values with sparsity exploitation is effective only when sparsity exceeds 90%, due to high
indexing costs. Packing ternary values into an Int32 offers limited compression but complicates
GEMM. Some approaches [[Yang et al., 2024] even store ternary values as 2-bit signed integers,
negating the expected storage benefits. In contrast, 2-bit quantization directly maps bit pairs to values,
reducing unpacking and conversion overhead, which can be more efficient for custom GEMM kernels.
As aresult, 2-bit quantization is often a more practical choice for deployment.

4.3 Accuracy-speed Trade-off

To evaluate potential speedup benefits beyond memory reduction, we implemented 2-bit quantization
kernels on the CPU and compared them with 4-bit quantization. The curves in Figure[7](c) demonstrate
that, within our experimental range, 2-bit quantized models consistently outperform 4-bit models
in terms of accuracy-speed performance, positioning 2-bit quantization as a superior choice for
on-device applications where both latency and storage are critical. See appendix for detailed settings.

S Experiments

In this section, we compare each point on our Pareto chart with prior methods in the literature. As
the first approach to unify training and quantization schemes in the sub-4-bit regime, we evaluate
our method against specialized techniques for each bit setting. This includes binary quantization
methods: BiLLM [Huang et al.|[2024], ARB-LLM |[Li et al.| 2024], PB-LLM [Shang et al.| 2023]],
and DB-LLM [[Chen et al., 2024a]; ternary quantization methods: TernaryLLM [Chen et al., 2024c],
1-bit Era [Ma et al., 2024]]; and lower-bit QAT methods: LLM-QAT [Liu et al.,[2023c] and Efficien-
tQAT [Chen et al.} 2024b]|| as well as PTQ methods like GPTQ [Frantar et al.,[2022]], OmniQ [Shao
et al., [2023]], SpinQuant [Liu et al.} 2024a], QuIP [[Chee et al., 2024]] and AWQ [Lin et al., 2023]]. We
also compare with a post-training vector quantization method AQLM [Egiazarian et al., 2024].

We demonstrate that ParetoQ, with a unified scheme spanning five distinct bit settings (1, 1.58, 2, 3,
and 4 bits), consistently outperforms previous methods specialized for each bit level, including both
PTQ and QAT approaches. The performance gains are particularly pronounced in the 1, 1.58, and
2-bit settings, underscoring the robustness and reliability of our conclusions regarding scaling laws.

5.1 Experimental Settings

We conduct experiments on eight models including MobileLLM [Liu et al) [2024b|
125M/350M/600M/1B/1.5B and LLaMA-3 [Al@Meta, [2024]] 1B/3B/8B. Our evaluation was carried
out on eight zero-shot commonsense reasoning tasks and Wiki2 [Merity et al., 2016] test set.

During the quantized network training process, we initialized the models with pre-trained weights.
Following the common practice [Frantar et al., [2022] [Liu et al., [2023c]], all weights except for the
embedding and output layers are quantized. We employed the AdamW [Loshchilov and Hutter, 2017]]
optimizer with zero weight decay for optimization. The training was distributed across 16 GPUs,
with each GPU handling a batch size of 8. For binary, ternary, and 2-bit quantization settings, the
optimization process spanned 120,000 iterations with initial learning rate of 2 x 10~°. For 3-bit
and 4-bit settings, the process involved 40,000 iterations with initial learning rate of 1 x 10~5. The
learning rate decayed to zero following cosine learning rate decay.

5.2 Main Results

1/1.58/2-bit Comparison on 8B Model Let’s first examine the comparison on 8B parameter models.
As depicted in Table[T] in the 2-bit quantization setting, previous methods, including both PTQ and
QAT, experience a significant drop in accuracy. Among PTQ methods, the vector quantization method



Table 1: Comparison of 1-bit, 1.58-bit and 2-bit quantization methods on LLaMA-3 8B model. Results for
LLM-QAT, EfficientQAT, GPTQ, AWQ, SpinQuant, OmniQ, AQLM, 1-bit era and BiLLM were obtained using
their publicly released models and codebase. The results of DB-LLM, PB-LLM, QuIP and TernaryLLM are
quoted from the TernaryLLM paper. The results of ARB-LLM is sourced from their paper. All methods employ
integer quantization, except AQLM, which uses vector quantization with a vector dimension of 16.

Group ARC-e ARC-c PIQA HellaS WinoG Avg. Wiki2

Method 8IS Size i (b D ) (DD
FP | 16, - | 81.0 577 810 795 739 746, 6.15
RTN ' 2 ichannell 272 25.1 497 26.1 505 35.711.2¢6
GPTQ |, 2 |channel, 27.4 246 510 259 50.6 359 1.6e2
OmniQ | 2 ichannell 27.3 22.8 495 253 494 3481 -
SpinQuant | 2 channel; 324 21.8 534 319 509 381,312
AWQ 1 2 ichannell 260 27.1 514 261 498 36.11 -
QulP : 2 :channel: - - - - - - :85.1
AQLM 12271 1x16 1 755 518 788 753 69.8 7021 —
DB-LLM (2.12, 128 | - - - - - - 136
PB-LLM 12121 128 1 - - - - - - 1247
LLM-QAT | 2 |channel, 548 359 680 580 547 543,295
EfficientQATI 2.121 128 1 69.3 468 764 69.0 663 6551 9.6
ParetoQ | 2 |channel, 78.5 545 79.2 738 700 712 8.0
PB-LLM | 1.7, 128 |, - - - - - - 418
I-bitera 11.58 ichannell 72.8 454 81.0 706 58 65.61 11.7
TernaryLLMll.SS :channel: - - - - - - :11,2
ParetoQ 11.58 1channell 763 514 777 719 67.7 69.01 8.6
BiLLM 1.06' 128 ' 332 256 546 327 505 39.3'385
ARB-LLM | 1.06 ,channel] — - - - -~ 274
ParetoQ ' 1 Ichannel' 75.5 519 76.6 694 65.6 67.8] 9.5
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Figure 8: Accuracy comparison on eight models. ParetoQ outperforms all state-of-the-art PTQ and QAT methods.

MobileLLM MobileLLM

AQLM |[Egiazarian et al.| 2024] effectively mitigates some of the quantization loss, achieving 64.1
points, it falls 10.5 points short of full precision. The best quantization-aware training method,
EfficientQAT [Chen et al.l [2024b], still suffers a 9.1-point decline in average accuracy. ParetoQ
dramatically narrows the 2-bit quantization gap to full precision to just 3.4 points, outperforming the
best QAT method by 5.7 points and the vector quantization method by 7.1 points.

In ternary cases, the accuracy drop is more pronounced, highlighting the effectiveness of different
quantization methods. A follow-up work of the 1-bit Era [Mekkouri et al., 2024], which trains 1-bit
LLaMA-3 8B models using 100B tokens and complex techniques like binary relax with sigmoid
schedulers, still experiences a 9.0-point accuracy drop. In contrast, ParetoQ requiring only 30B
tokens and utilizing standard AdamW optimization with cosine learning rate decay, narrows the gap
to just 5.6 points. This underscores the robustness of our quantization function design.

Furthermore, ParetoQ significantly outperforms previous binary quantization techniques, such as
BiLLM and ARB-LLM, reducing WikiText perplexity from 27.4 to 9.5.

1.58-bit Comparison on Sub-8B Models Figure[J]illustrates that ParetoQ also excels in sub-8B
models, consistently outperforming previous methods targeting at ternary quantization aware training
such as 1-bit Era [Ma et al.| 2024]]. Given that a full-precision LLaMA-3 3B model achieves 65.2
accuracy, it’s remarkable that ParetoQ ternary 3B-parameter model narrows the gap to just 3.3 points,
while previous methods experience drops exceeding 7.4 points. Additionally, our 600M-parameter
ternary model achieves 58.7 accuracy, even surpassing 1-bit era ternary 3B model with only 1/5
parameters.
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Figure 9: Ternary quantization accuracy averaged across eight zero-shot commonsense reasoning tasks. ParetoQ
consistently outperforms all prior methods in ternary quantization-aware training.

2-bit / 3-bit / 4-bit Comparisons As evidenced by Figure[§] compared to previous state-of-the-art
PTQ and QAT methods on 2, 3 or 4-bit quantization settings, our approach consistently resides on
the Pareto front, with a particularly pronounced advantage in lower-bit quantization settings. These
results confirm that our bit-accuracy trade-off conclusions are benchmarked against SOTA results
across all bit settings, ensuring its reliability.

6 Related Work

The quantization of Large Language Models (LLMs) has emerged as a pivotal research area, driven by
the imperative to reduce computational and memory demands while preserving model performance
[Liu et al., 2023cl |IDettmers et al.,|2022} | X1ao et al., 2022]]. A notable trend is the quantization of
LLMs to lower bit-widths [Ma et al., [2024, [Kaushal et al., [2024].

Initial efforts, such as LLM.int8() [Dettmers et al.,[2022]] and SmoothQuant [Xiao et al., [2022], con-
centrated on quantizing LLMs to 8-bit weights and 8-bit activations. Subsequently, numerous studies
have demonstrated the feasibility of quantizing LL.Ms to 4-bit with minimal accuracy degradation,
employing both post-training quantization (PTQ) methods [Kim et al.,|2023} [Frantar et al., 2022} Liu
et al.;,|2024a, |2023b]] and quantization-aware training (QAT) [Liu et al.,|2023c| (Chen et al.,|2024b|
Bondarenko et al., 2021].

Recently, research has shifted towards sub-4-bit quantization. Some PTQ methods target 3-bit or
2-bit integer quantization [Shao et al.,[2023| Zhao et al., 2023] |Chee et al., 2024} |Ashkboos et al.,
2023} [Lin et al.} 2023 [Frantar et al., [2022]], or employ vector quantization [Egiazarian et al., 2024}
Tseng et al.| 2024, [van Baalen et al.| 2023]]. Other PTQ approaches even achieve binary weight
quantization [Huang et al.|[2024} [Shang et al.,2023|/Chen et al.,|2024a} |Li et al.|[2024]]. Most recently,
two QAT studies have claimed that ternary quantized models, trained from scratch, can match the
accuracy of full-precision models with equivalent training [Ma et al., [2024} [Kaushal et al., |2024]. It
generated heated debate within the field, with many practitioners expressing reservations about this
conclusion. To our knowledge, no existing work unifies sub-4-bit quantization schemes to derive a
solid conclusion on which bit-width achieves the Pareto optimal in the efficiency-accuracy trade-off.
This work presents ParetoQ to fill that gap.

7 Conclusions

In this study, we have performed an in-depth analysis of the intricate relationships among model
parameters (/V), training data volume (D), quantization training schemes (By.in), quantization
precision (P), and the selection of quantization functions (F) in relation to the model’s final loss,
expressed as £ = f(N, D, P, Byain, F). To address these multifaceted challenges, we propose
ParetoQ, an advanced quantization framework that achieves state-of-the-art performance across all
bit-width levels. This framework uniquely enables a direct, consistent comparison across different
bit-widths, ensuring an equitable evaluation of performance metrics. Our empirical analysis indicates
that quantization at 1.58-bit, 2-bit, and 3-bit offers a superior trade-off between accuracy and effective
quantized model size compared to 4-bit, highlighting their potential for optimized model deployment.
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A Appendix / supplemental material

A.1 Complete Results of Figure [J]

Table 2] presents the numerical results of Figure[9] We evaluate accuracy across eight zero-shot com-
monsense reasoning tasks: ARC-easy, ARC-challenge [Clark et al.|[2018]], BoolQ [Clark et al.l 2019],
PIQA [Bisk et al.[[2020]], SIQA [Sap et al.,|2019]], HellaSwag [Zellers et al., 2019], OBQA [Mihaylov:
et al.,[2018]], and WinoGrande [Sakaguchi et al., 2021]], along with perplexity on the WikiText2 test
set [Merity et al.,|2016]. Our results are compared against prior state-of-the-art ternary quantization-
aware training works, such as 1-bit era [Ma et al. [2024]. We also include the comparison to
LLM-QAT [Liu et al., 2023c]. Consistent with previous methodologies [Ma et al., 2024, we quantize
all weights to low-bit, excluding the embedding and output layers. The ParetoQ 3B ternary model
is quantized from LLaMA3 [AI@Meta, 2024]] 3B model, while other models are quantized from
MobileLLM [Liu et al., 2024b|.

Table 2: Comparison of ParetoQ ternary quantization with QAT methods, including general LLM-QAT [Liu
et al.| [2023c|| and ternary-specific QAT methods such as 1-bit Era [Ma et al.|[2024].

ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.|Wiki2

Method [ #Params "™ ey "o ). D )@ DERGIRG!
RTN 125M | 255 265 378 496 363 263 277 493 34.914.0e5

LLM-QAT| 125M | 349 204 590 546 390  29.1 30.2 509 398/ 87.3
ParetoQ | 125M | 493 309 61.0 62.1 410 343 40.4 529 465 198
RTN 350M | 266 25.1 378 487 367 265 275 502 34.9]3.7e5

LLM-QAT| 350M | 39.1 241 61.6 555 399 304 32.1 506 417|686
ParetoQ | 350M | 56.8 363 622 67.1 435 440 463 552 514 144
RTN 600M | 262 246 622 495 363  26.1 27.1 488 37.6 | 6.6e5

LLM-QAT| 600M | 340 23.0 594 53.6 389 287 323 514 402 71.7
I-bitera | 700M | 495 29.0 592 675 43.6 432 38.9 535 480 17.3
ParetoQ | 600M | 655 438 623 70.6 447 513 471 588 555|114
RTN 1B 257 248 378 493 371 262 252 502 34.5]| 1.4e5

LLM-QAT| IB 360 262 477 551 397 313 335 496 399 56.9
I-bitera | 1.3B | 524 341 619 69.1 447 474 411 55.3 50.8 | 236
ParetoQ B 685 476 628 721 453 574 529 613 585 10.0
RTN 15B | 255 268 37.8 490 376  26.0 30.5 502 35.49.7¢4

LLM-QAT| 15B | 41.1 261 605 57.6 395 350 31.9 498 42717397
ParetoQ | 1.5B | 70.2 480 658 734 473 618 553 624 605 9.0
RTN 3B 269 236 622 513 376 264 27.0 493 38.0 | 4.4e5

LLM-QAT| 3B 445 307 621 627 41.0 434 35.0 506 463 6.5¢2
1-bit era 3B 587 372 613 713 452  56.0 45.8 60.3 545 |265.6
ParetoQ | 3B 715 486 682 1755 464 619 543 63.1 61.9] 9.9

A.2 Complete Results of Figure

In Tables[3] @] and [5] we provide detailed results corresponding to Figure[§] We compare ParetoQ
against LLM-QAT [Liu et al., 2023c|], GPTQ [Frantar et al., 2022[], AWQ [Lin et al.} 2023]], Omni-
Quant [Shao et al., 2023]], and SpinQuant [Liu et al.,|20244]. Following the common practice [Frantar
et al., 2022} Liu et al., |2023c]], we apply low-bit quantization to all weights, except for the embedding
and output layers.

A.3 CPU Latency Experimental Setup

We measure the CPU latency of five MobileLLM models on an Apple M1 MacBook Pro (32GB
RAM) using 6 threads. Each evaluation uses 5 prompt tokens and generates 122 tokens. For the
quantized models, embedding and output layers are quantized to 8-bit precision using channel-
wise quantization, while weights in fully connected layers are quantized to 2-bit or 4-bit precision.
Accuracy and decoding speed (in tokens/s) were measured under identical settings.

A4 GPU Latency Experimental Setup and Results

We measured the latency of LLaMA 3.2 models (1B, 3B, 8B) on an H100 NVL GPU (94GB memory).
The W4A16 kernel used the Machete kernel from vLLM [Kwon et al.,2023| |Wilkinsonl 2024], while
the W2A16 kernel was implemented based on the CUTLASS mixed precision backbone kernel. All
tests were performed on a single GPU with a context length of 2048 tokens. For kernel-level latency,
we compared the 2-bit kernel to the 4-bit Machete kernel across three weight shapes: (4096 x 4096),
(8192 x 8192), and (16384 x 16384).
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Table 3: Complete results of 2-bit quantization on WikiText2 and Zero-shot Common Sense Reasoning tasks.

ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.|Wiki2
ModelName | Methed | "cy™ ™ "™ ") " D D D D W
|__FP 1560 345 563 655 420 401 = 422 513 485|149
GPTo | 2890 262 442 311 1 8y 332 io mal%ue
MobileLLM-125M |  AwQ 258 242 442 507 388 26.2 29.2 51.6 36.3 | 6.5¢3
OmniQ | 324 227 381 534 394 282 30.9 49.9 36.9 | 1.2¢2
LLM-QAT| 349 233 618 538 393 29.1 274 51.3 40.1| 66.8
SpinQuant| 31.6 233 403 522 405 28.6 289 50.1 36.9| 68.7
,,,,,,,,,,,, ParetoQ | 507 327 598 633 410 363 406 527 __47.1]251
| __FP__ 1 655 423 574 710 435 533 473 583 548 104
GPTo | 26 213 05 %04 s 26 293 Wi 33 ke
MobileLLM-350M | AwWQ 270 235 476 494 382 26.4 26.2 495 36.0 | 7.2¢4
OomniQ | 339 234 396 549 384 286 29.4 49.7 372 80.8
LLM-QAT| 40.6 259 620 556 400  31.8 31.1 52,6 425 | 8.2¢4
SpinQuant| 324 250 37.8 54.6 40.1 29.2 27.5 48.9 36.9 | 67.5
,,,,,,,,,,,, ParetoQ | 59.0 394 635 688 431 473 441 575 = 528| 17.7
|__FP | 685 476 605 725 444 595 = 514 614 582] 9.0
GPTO | 279 365 s> 495 30 239 208 394 306|340
. B B €
MobileLLM-600M | AW 264 252 406 507 387 26.5 23.6 493 35.18.9¢3
Omni 390 245 558 559 402 301 3211 51.3 41.11| 68.3
LLM-QAT| 427 256 621 560 388 337 29.6 515 425 4.7¢2
SpinQuant| 282 224 39.8 520 380 279 22.1 49.1 349|272
,,,,,,,,,,,, ParetoQ | 677 433 630 72.1 448 539 = 498 = 584 = 56.6] 154
|__FP ] 734 508 676 741 467 647 566 627 _ 62.1] 80
RTN 263 265 622 492 369 26.0 25.8 488 37.7| 6.0e4
. GPTQ | 297 254 387 503 389 26.1 26.4 49.6 35.6 | 4.7¢2
MobileLLM-1B | AWQ | 266 268 59.1 502 37.1 26.0 24.0 50.4 37.5| 1.5¢5
OmniQ | 38.0 26.1 417 546 40.1 31.1 333 51.4 39.5| 46.3
LLM-QAT| 42.6 267 497 577 404 349 314 492 41.6 | 1.9¢5
SpinQuant| 353 239 428 533 40.5 303 29.7 49.8 3821 357
,,,,,,,,,,,, ParetoQ | 733 493 657 742 459 603 574 616 610 134
|__FP | 739 514 700 748 466 664 551 632  627| 7.8
RTN 252 253 378 493 360 264 25.0 485 342 1.7e2
. GPTQ | 29.8 223 453 534 393 27.0 25.8 51.4 36.8 | 1.7¢2
MobileLLM-1.5B | AwQ 2809 26.1 437 511 3717 26.6 24.4 49.8 36.0| 7.1e3
OomniQ | 50.6 306 546 597 40.6 389 32.1 522 4491 313
LLM-QAT| 453 265 61.6 586 40.1 375 33.1 50.6 4421 339
SpinQuant| 34.0 21.6 523 541 394 295 29.9 50.5 389 | 37.4
,,,,,,,,,,,, ParetoQ | 733 475 70.1 741 468 = 646 555 625 618 IL7
|__FP | 648 425 648 748 448 644 = 502 615 585] 9.6
RTN 265 268 622 510 368 259 28.5 50.2 38.5| 1.5¢6
GPTQ | 293 276 378 515 386 265 32.0 50.8 36.8 | 3.3e2
LLaMA-1B AWQ 274 260 489 502 37.0 25.7 24.4 51.5 36.4 | 2.0e5
OomniQ | 27.9 247 390 51.1 404 260 262 50.0 35.6 | 3.3¢3
LLM-QAT| 492 333 620 639 41.1 415 375 54.4 47.9 | 13¢5
SpinQuant | 25.6 246 624 51.6 36.1 25.8 29.1 50.8 383 46.7
,,,,,,,,,,,, ParetoQ | 648 417 628 73.1 440 566 520 585 567 12.5
|__FP | 726 507 746 782 485 743 = 537 692  652| 7.7
RTN 269 251 378 501 379 257 26.6 496 35.0 | 7.8¢5
GPTQ | 286 229 464 500 384  27.1 30.1 50.1 36.7|2.7e2
LLaMA-3B AW 273 275 382 511 383 26.1 25.4 50.7 35.6| 6.2¢5
Omni 283 246 37.8 505 380 253 26.6 50.2 35.2 | 6.5¢3
LLM-QAT| 493 333 635 652 417 489 342 522 485 | 2.9¢5
SpinQuant| 283 237 532 51.1 388 26.1 25.8 49.0 37.0| 574
,,,,,,,,,,,, ParetoQ | 739 490 688 764 470 692 = 566 = 644 _ 632] 9.1
|__FP | 810 577 86 810 493 795 557 __ 739 _ _702| 62
RTN 272 251 378 497 374 261 26.2 505 35.0| 1.2¢6
GPTQ | 27.0 261 616 505 374 260 275 49.7 382 | 1.6e2
LLaMA-8B AWQ 260 271 583 514 380 26.1 23.8 498 37.6 | 1.1e6
OomniQ | 273 228 379 495 387 253 23.4 49.4 343 | 7.6e4
LLM-QAT| 548 359 648 680 418 58.0 35.7 54.7 5171 29.5
SpinQuant| 324 220 59.0 532 384 319 28.0 499 3931 31.2
ParetoQ | 78.5 545 764 792 489 73.8 54.5 70.0 67.0| 8.0

For smaller models (1B, 3B, 8B), the performance speed-up from reducing weight precision from
4-bit to 2-bit is minimal. This is due to the impact of conversion overhead, which becomes more
pronounced when the weight size is small. Since the in-kernel conversion latency ratio is higher for
smaller models, the benefits of 2-bit quantization are outweighed by the overhead. Consequently,
4-bit quantization achieves a more favorable speed-accuracy trade-off in these settings, offering better
overall performance. In comparison, for larger weight shapes (16384 x 16384), the 2-bit kernel
provides a substantial speedup, achieving 4.14 x faster performance than FP16 and 1.24 x faster than
the Machete 4-bit kernel.

A.5 QAT Scheduling Experimental Setup

The total training budget (Byin) is set to 100B tokens. We vary the proportion of tokens allocated for
full-precision training versus quantization-aware training (QAT) finetuning, sweeping the ratio across
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Table 4: Complete results of 3-bit quantization on WikiText2 and Zero-shot Common Sense Reasoning tasks.

ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.|Wiki2
ModelName | Method |7y ™ "cty " "th- D D @D D G DD

|__FP 1560 345 563 655 420 401 422 513 485|149
OSBRI R R
MobileLLM-125M |  AWQ | 485 278 527 623 40.1 35.6 353 50.4 4411 271
OmniQ | 502 294 539 615 416 364 432 50.2 458 205
LLM-QAT| 447 287 537 606 4l.1 34.6 349 50.2 435|375
SpinQuant| 50.9 30.8 46.7 62.1 41,5 373 39.1 489 447 17.6
,,,,,,,,,,,, ParetoQ | 53.5 337 _56.1 656 417 400 412 513 479216
| __FP__ 1 655 423 574 710 435 533 473 583 548 104
GPTO | 3985 330 06 013 a1 483 %7 35 304|140
MobileLLM-350M |  AWQ | 595 357 575 669 42.1 470 23 53.8 50.6| 145
OmniQ | 580 362 612 672 424 461 421 52,0 50.7| 13.5
LLM-QAT| 546 354 605 659 422 426 419 534 495 22,6
SpinQuant| 57.9 353 593 67.0 414 475 432 543 50.7 | 121
,,,,,,,,,,,, ParetoQ | 639 40.5 614 706 432 514 = 500 566 547|149
|__FP | 685 476 605 725 444 595 = 514 614 582] 9.0
ENIEUR @ RN B aE
MobileLLM-600M | Aw 636 395 556 700 431 530 450 380 335|129
Omni 649 416 634 698 42.1 53.0 454 582 548| 11.3
LLM-QAT| 61.8 380 62.1 685 436 489 442 54.6 527| 19.0
SpinQuant| 634 429 609 687 424 520 445 574 54.0| 10.5
,,,,,,,,,,,, ParetoQ | 682 474 642 73.1 442 581 502 624 585|132
| __FP | 734 508 676 741 467 647 566 627 _ 62.1] 80
RTN 597 7366 589 672 40.8 450 443 534 50.7] 19.1
. GPTQ | 66.7 430 635 723 429 578 492 59.4 56.8| 10.2
MobileLLM-1B AWQ 68.8 435 629 71.1 437 57.9 492 57.0 56.8| 10.8
OmniQ | 69.5 447 648 72.1 435 573 47.0 57.7 57.1] 9.8
LLM-QAT| 653 426 612 704 440 543 48.8 56.8 555| 17.4
SpinQuant| 682 440 635 71.1 439 572 457 59.0 56.6| 8.9
,,,,,,,,,,,, ParetoQ | 723 514 670 745 457 634 537 621 _ 613|124
|__FP | 739 514 700 748 466 664 551 632  627| 7.8
RTN 632 380 585 672 436 479 459 56.0 525]710.2
. GPTQ | 706 437 645 719 450 592 50.8 589 581] 99
MobileLLM-1.5B | AwQ 72.6 468 66.0 717 44.6 61.7 52.0 62.4 59.7| 9.6
OomniQ | 71.8 464 674 729 462 609 50.2 61.9 59.7| 9.1
LLM-QAT| 68.6 444 624 718 454  57.3 492 572 57.1| 15.4
SpinQuant| 71.5 45.1 67.8 719 448 613 50.2 61.6 593| 8.5
,,,,,,,,,,,, ParetoQ | 72.6 499 706 757 477 = 660 562 645 = 62.9] 114
|__FP | 648 425 648 748 448 644 = 502 615 585] 96
RTN 289 7250 559 533 37.8  30.1 289 50.6 38.87] 30.9
GPTQ | 374 273 431 584 392 371 324 5338 41.1| 68.6
LLaMA-1B AWQ 415 267 492 580 414 34.9 31.8 52.8 42,0 1.5¢2
OmniQ | 39.0 288 61.3 588 400 363 329 527 437 63.4
LLM-QAT| 527 324 605 666 440 432 402 538 492 207
SpinQuant| 56.9 349 61.0 693 420 534 412 56.2 519| 12.6
,,,,,,,,,,,, ParetoQ | 653 419 642 738 439 613 477 595 572|109
|__FP | 726 507 746 782 485 743 = 537 692 = 652| 7.7
RTN 404 7297 601 606 413 434 334 529 452 24.9
GPTQ | 504 346 651 666 441 538 35.7 58.8 511 11.4
LLaMA-3B AW 585 365 654 708 43.1 54.8 44.6 59.3 54.1| 37.7
Omni 597 386 476 735 459 624 49.8 61.8 549 12.7
LLM-QAT| 644 40.1 620 71.7 450 582 447 59.9 558 13.4
SpinQuant| 664 43.8 708 739 477 676 51.0 67.1 61.0| 9.2
,,,,,,,,,,,, ParetoQ | 723 498 733 767 488 719 562 673 645| 84
|__FP | 810 577 86 810 493 795 557 _ 739 _ _702| 62
RTN 4247 294 430 616 410 373 342 539 429|126
GPTQ | 60.8 355 69.0 703 449 613 387 64.9 557| 9.1
LLaMA-8B AWQ 723 461 749 759 482 70.8 52.0 66.8 63.4| 16.6
OmniQ | 68.0 454 683 739 460 687 50.4 62.3 60.4| 12.1
LLM-QAT| 68.8 488 71.1 759 468  67.8 482 65.1 61.6| 10.5
SpinQuant| 75.5 520 81.0 787 492 743 53.6 70.5 669| 7.4
ParetoQ | 782 557 80.6 80.2 50.1 76.5 55.1 70.9 68.4| 7.0

[0,0.01,0.05,0.1,0.2,0.4,0.6,0.8,0.9,0.95,0.99, 1]. Here, a ratio of 0 corresponds to QAT from
scratch, while a ratio of 1 represents full-precision training followed by post-training quantization

(PTQ).

For full-precision training, we use 8x8 GPUs, a batch size of 16, a weight decay of 0.1, an initial
learning rate of 2.5 x 1073, and a linear learning rate decay to zero. For quantized network training,
we also use 8x8 GPUs but with a batch size of 8, no weight decay, an initial learning rate of 1 x 1074,
and a linear learning rate decay to zero.

A.6 Embedding Bit Precision vs. Accuracy Trade-off

Despite the prevalent practice of not quantizing embedding and output layers, as noted in prior works
such as Frantar et al. [Frantar et al., |2022]] and Ma et al. [Ma et al., 2024]], our study extends the
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Table 5: Complete results of 4-bit quantization on WikiText2 and Zero-shot Common Sense Reasoning tasks.

ARC-e ARC-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg.|Wiki2

ModelName | Methed | "cy™ ™ "™ ") " D D D D W
|__FP ] 560 345 563 655 420 401 = 422 513 485|149

BRI R B Al e B m W we

MobileLLM-125M| AWQ | 542 335 566 650 419 395 41.1 512 479 16.0

OmniQ | 528 335 3561 634 414 392 39.7 50.8 47.1| 16.1

LLM-QAT| 542 334 522 647 424 390 427 51.7 475 52.1

SpinQuant| 55.2 337 581 650 425 397 40.6 498 4811 | 15.4
,,,,,,,,,,,, ParetoQ | 554 352 541 662 417 408 = 440 521 487 204
| __FP__ 1 655 423 574 710 435 533 473 583 548 104

SO O IO R R R

MobileLLM-350M | AWQ | 63.0 385 57.1 707 43.6 516 458 55.2 532 112

OomniQ | 639 374 562 69.8 424 509 46.6 542 527 11.1

LLM-QAT| 634 420 598 70.1 436 515 47.0 575 544 17.1

SpinQuant| 625 37.8 56.1 69.6 43.1 515 438 55.7 525| 10.6
,,,,,,,,,,,, ParetoQ | 649 41.6 578 713 444 535 = 482 579  550] 142
|__FP | 685 476 605 725 444 595 = 514 614 582] 9.0

ENUE R m AU B Ry R ml

MobileLLM-600M | AW 688 450 605 723 440 583 482 59.8 57.1| 9.7

Omni 684 450 595 715 437 581 49.0 59.0 56.8| 9.5

LLM-QAT| 672 474 652 71.8 438 578 50.6 59.8 57.9| 11.0

SpinQuant| 69.1 447 643 715 430 574 49.0 57.1 57.0| 9.2
,,,,,,,,,,,, ParetoQ | 693 489 648 732 442 595 512 621 592|132
|__FP | 734 508 676 741 467 647 566 627 _ 62.1| 80

RTN 731 477 635 750 457 628 56.2 612 60.6] 11.2

. GPTQ | 726 507 655 748 459  63.7 56.6 623 615| 8.4

MobileLLM-1B AWQ 737 486 653 735 456 62.5 49.4 60.6 59.9| 8.5

OomniQ | 725 493 660 743 450 625 522 62.1 605 8.4

LLM-QAT| 72.1 495 661 739 462  63.0 554 63.7 612 10.0

SpinQuant| 70.5 470 66.6 741 442 624 51.6 61.6 59.8| 8.2
,,,,,,,,,,,, ParetoQ | 747 521 679 748 469 648 562 621 _ 625 11.7
|__FP | 739 514 700 748 466 664 551 632 = 627| 7.8

RTN 737 495 660 745 464 655 527 62.0 613] 94

. GPTQ | 739 499 689 737 466 649 545 62.0 618| 82

MobileLLM-1.5B | AwQ 749 492 68.1 734 463 65.0 522 63.8 61.6| 82

OomniQ | 753 502 67.6 742 458  64.6 538 62.7 61.8| 8.2

LLM-QAT| 723 495 70.1 735 47.1 64.5 532 63.4 61.7| 13.9

SpinQuant| 73.8 489 68.6 739 458  64.8 523 63.9 615| 7.9
,,,,,,,,,,,, ParetoQ | 744 517 718 753 473 = 672 576 630 _ 63.6| 11.0
|__FP | 648 425 648 748 448 644 = 502 615 585] 96

RTN 557 363 619 704 430 569 39.3 555 5241713.9

GPTQ | 552 388 579 705 435 554 432 58.0 52.8| 13.4

LLaMA-1B AWQ 63.4 400 635 734 445 60.5 45.8 60.3 56.4 | 12.2

OmniQ | 60.0 380 594 706 435 575 448 574 539 134

LLM-QAT| 61.3 381 623 73.0 442  59.0 418 58.7 548| 8.6

SpinQuant | 62.2 403 641 723 440 616 479 59.8 56.5| 10.3
,,,,,,,,,,,, ParetoQ | 674 434 644 748 444 = 635 = 504 614 587103
|__FP | 726 507 746 782 485 743 = 537 692 = 652| 7.7

RTN 590 4027 575 745 465 655 449 64.9 56.6| 13.1

GPTQ | 647 467 665 753 470  64.7 50.0 66.7 60.2| 11.1

LLaMA-3B AW 69.9 476 729 772 499 72.8 51.4 67.5 63.6| 8.7

Omni 706 475 739 770 469 720 532 67.1 635| 8.6

LLM-QAT| 71.8 481 746 766 48.1 714 523 67.4 63.8| 82

SpinQuant| 702 479 738 764 478 719 543 68.0 63.8| 8.0
,,,,,,,,,,,, ParetoQ | 738 503 754 772 485 733 570 677 _ 654 80
|__FP | 810 577 86 810 493 795 557 _ 739 _ _702| 62

RTN 758 507 77.8 785 48.1 747 53.9 716 664 79

GPTQ | 777 519 806 794 508 767 518 716 67.6| 7.0

LLaMA-8B AWQ 785 518 81.8 80.7 492 78.3 52.8 72.6 68.2| 7.0

OomniQ | 773 513 792 79.6 480 712 548 704 672| 7.1

LLM-QAT| 77.4 540 829 79.1 492 776 543 72.0 683 13.4

SpinQuant| 78.8 560 825 79.7 495 785 54.6 715 689| 6.5

ParetoQ | 78.6 556 802 804 51.5 77.8 55.7 71.8 69.0| 6.8

scaling law analysis by examining the impact of quantizing these layers. As illustrated in Figure [T}
utilizing 4-bit embeddings or matching the bit precision of embeddings to that of weights positions
these configurations on the Pareto front, in contrast to employing 8-bit or 16-bit embeddings.

A.7 Weight Bit Precision vs. Accuracy Trade-off

For the trade-off between weight-bit precision and model accuracy, we consider two configurations:
4-bit embeddings and embeddings with the same bit precision as weights. In both scenarios, lower-bit
quantization, such as 1.58-bit, 2-bit, and 3-bit, consistently outperforms 4-bit quantization, as depicted

in Figure
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(a) Pareto optimal GPU Latency

(b) GPU kernel decoding speed comparison
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Figure 10: (a) Accuracy versus end-to-end GPU latency trade-off analysis. (b) Speedup in GPU kernel latency
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Figure 11: Trade-off between model size and accuracy for the optimal embedding bit width. “WxEy” indicates

quantized weights into z-bits and embeddings into y-bits
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Figure 12: Trade-off between model size and accuracy for the optimal weight bit width. “WzEy” indicates

quantized weights into z-bits and embeddings into y-bits

A.8 Pareto Curve in More Tasks

Furthermore, we present results from a question-answering task, TriviaQA (TQA) [Joshi et al., 2017],
and a reading comprehension benchmark, RACE [Lai et al.| 2017]], in Figures[I3| The findings are
consistent across these tasks: 1-bit quantization yields the lowest performance, whereas 1.58-bit, 2-bit,
and 3-bit quantization are comparable and generally surpass the performance of 4-bit quantization.
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Additionally, for context-based word prediction (LAMBADA [Paperno et al.,[2016]) and multiple-
choice science questions (SciQ [Welbl et al.| 2017]) in Figrue[I4] the results also shows a clear trend
of 2-bit residing on the Pareto optimal frontier, outperforming 4-bit.

A.9 Limitations

This paper explores the Pareto frontier that characterizes the trade-off between model accuracy
and size under quantization. Our findings indicate that lower-bit quantization performance is more
sensitive to the fine-tuning data compared to higher-bit quantization. While our model’s performance
was evaluated in an academic setting, real-world applications may involve diverse training data
and weight distributions. Consequently, the optimal bit-width may vary across use cases. ParetoQ
provides a tool to assess a model’s performance across different quantization levels. Although
we identify 2-bit quantization as a promising alternative to 4-bit, the generalizability of bit-width
selection should be evaluated on a case-by-case basis in practical scenarios.

A.10 Broader Impacts

This work presents low-bit quantization for Large Language Models (LLMs). By lowering the
precision required for inference, this technique can help reduce energy usage, making it a promising
strategy for cutting down the computational costs of deploying LLM:s.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ” ”, it is perfectly acceptable to answer ”
provided a proper justification is given (e.g., error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”’ ” or ’[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

I

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist”,
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: See Section[A.9]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: See the Sections 2 and 3.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See the experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will open-source our code and models.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the Neur[PS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See the experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See the experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See the experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section [A.10]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have safeguards for responsible release of models that have a high risk for
misuse
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Data and models used in experiments are porperly cited in the experiment
section.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release the code and models.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification: We didn’t use any human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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