Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

ENVISION HUMAN-AI PERCEPTUAL ALIGNMENT
FROM A MULTIMODAL INTERACTION PERSPECTIVE

Shu Zhong & Marianna Obrist

Department of Computer Science

University College University

United Kingdom

{shu.zhong.21, m.obrist}Qucl.ac.uk

ABSTRACT

Aligning AI with human intent has seen progress, yet perceptual alignment—how
Al interprets what we see, hear, feel, or smell—remains underexplored. This pa-
per advocates for expanding perceptual alignment efforts across multimodal sen-
sory modalities, such as touch and olfaction, which are critical for how humans
perceive and interpret their environment. We envision Al systems enabling natu-
ral, multimodal interactions in everyday contexts, such as selecting clothing that
aligns with temperature and texture preferences or rich sensory ambiences that
evoke specific sights, sounds, and smells. By advancing multimodal representa-
tion learning and perceptual alignment, this work aims to inspire the computer
science and human-computer interaction (HCI) communities to design inclusive,
human-centred Al systems for everyday, multisensory experiences.

1 INTRODUCTION

Artificial intelligence (AI) has become increasingly embedded in daily life. Aligning Al systems
with human values, goals, and intentions has emerged as a key research focus (Hendrycks et al.,
2020; [Ouyang et al., |2022). Such alignment ensures that Al respects ethical principles, promotes
safety, and enhances human well-being(Askell et al., 2021} [Dafoe et al., 2021)). Although significant
advances have been made in aligning Al in areas such as robustness, interpretability, and ethicality
(Hendrycks et al.|[2020; |Pan et al.|[2023)), a fundamental yet underexplored challenge lies in aligning
Al with human sensory understanding—what we term perceptual alignment.

Perceptual alignment focuses on AI’s ability to process and reason about sensory experiences—such
as vision, touch, and smell—in ways that align with human perception (Velasco & Obrist, [2020;
Sucholutsky et al., 2023 Zhong et al., [2024b). Sensory modalities are fundamental to how humans
experience the world (Pink} 2015} |Obrist & Velasco), whether through the aroma and taste of coffee,
the rigidity of a steel table, or the flash and rumble of lightning. Most research focuses on vision
and auditory processing, leaving underexplored perceptual domains such as touch and olfaction.

Unlike humans, who rely on sensory experiences to navigate the world, Al processes digitalised
inputs via mathematical algorithms. This mode of computation has naturally shown a preference to
modality that is easy to digitalise such as vision (e.g. RGB pixels for image recognition (Deng et al.}
2009)), or auditory signals (e.g. audio waveforms for speech recognition (Radford et al., 2023)).
However, Al struggles with sensory modalities where input is more complex to measure or explicitly
define to digitise to a universal unit, such as physical tactile sensations or the olfactory (scent) stimuli
(Keller & Vosshall, 2016; |[Lynott & Connell, 2013). However, sensory domains such as tactile
sensations and olfactory present unique challenges—there are no standardized methods to represent
these inputs digitally (Keller & Vosshalll 20165 |Lynott & Connell, |2013)). For instance, scents and
lack a universal classification language akin to colour names or hex codes, making digitalise them
and alignment inherently complex.

The rapid advancements in Al, particularly in recent years, have sparked discussions around Artifi-
cial General Intelligence (AGI). Large Language Models (LLMs) have showcased impressive capa-
bilities in diverse downstream tasks (Devlin et al.| 2018} Brown et al., 2020; |Ouyang et al., [2022),
and serve as foundation models for agentic Al systems (Bommasani et al., 2021 |Shavit et al., | 2023).
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We envision Al seamlessly integrating into our day-to-day activities, enabling natural interactions.
For example, imagine asking your Al assistant for clothing suggestions suitable for a 16-degree day
from your closet. Current systems, like ChatGPT, might recommend a wool sweater—potentially
too warm and coarse for your preference (Zhong et al. 2024a). Ideally, a perceptually aligned
Al could intuitively adjust its recommendations based on tactile sensations, suggesting something
cooler, smoother, yet still comfortably warm. Such an AI might also dynamically shape an im-
mersive ambient environment, effortlessly recreating the sights, sounds, and smells with a simple
prompt: “Set up a focused environment like a coffee shop.”

This position paper advocates for advancing AI’s representation learning across all sensory modal-
ities, particularly beyond vision and hearing. We highlight examples from recent work, discuss
challenges, and propose opportunities for inclusive, everyday multisensory design. Our call to ac-
tion targets the computer science and human-computer interaction (HCI) communities to explore
perceptual alignment as a pathway to make Al more human-centred in a day-to-day scenario.

2 BACKGROUND AND MOTIVATIONS

Advances in human-Al perceptual alignment are mostly limited to vision or sound (Lee et al.,[2023bj;
Peter et al., 2023). Here we discuss the underexplored modalities of touch and olfaction.

2.1 HOW WE UNDERSTAND AND DIGITALISE TOUCH

Touch is fundamental to how humans perceive and interact with objects in their surroundings
(Klatzky et al., [1987; [1985). It is a complex, multifaceted sensory modality influenced by fac-
tors such as force, texture, and temperature. The sense of touch allows us to differentiate tactile
sensations—such as roughness, smoothness, pressure, and warmth—and facilitates day-to-day ac-
tivities like opening a door or using tools (Lederman & Klatzky} |2009; Tiest, 2010). Additionally,
tactile perception plays a central role in object recognition and manipulation. In the HCI community,
research has delved into using the “textile hand”—a term referring to the feel, texture, and overall
tactile qualities of textiles when touched against the skin (Kawabata & Niwa, 1991} Behery, 2005;
Obrist et al., |2013)—as a means to convey touch experiences (Petreca et al.l 201320155 |(Olugbade
et al.| [2023). Previous studies highlight the advantages of using actual textile samples, including
precise control over textural properties, ecological validity, and a gentler presentation. This makes
them particularly suitable for tactile evaluation (Guest & Spencel [2003). However, translating tactile
experiences into language remains a significant challenge due to inherent ambiguities in semantic
descriptions (Rosenkranz & Altinsoyl [2020; |Atkinson et al., [2016).

Tactile sensing is critical to understand the environment and facilitate human-robot interaction
(HRI). Recent advances in tactile technologies have led to sensors that utilize various transduc-
tion methods to convert mechanical stimuli into electrical signals, such as piezoresistive (Chen
et al., [2019), capacitive (Mittendorfer & Cheng, 2011)), and optical (Piacenza et al., 2020) ap-
proaches. Vision-based tactile sensors, such as GelSight, have also emerged, leveraging computer
vision to capture high-resolution tactile data (Agarwal et al., 2021). Moreover, there is growing
interest in integrating tactile sensing into Al systems to build comprehensive world models, en-
hancing robots’ ability to interpret and interact with their environments (Gao et al., [2023). Touch-
Vision-Language dataset was developed containing paired tactile sensor and visual images, along-
side human-annotated and model-generated tactile-semantic labels (Fu et al.l 2024). Despite this
progress, the lack of standardised measurement frameworks for touch research limits its interoper-
ability and alignment with human perception.

2.2 HOW WE UNDERSTAND AND DIGITALISE SMELL

Olfaction, or the sense of smell, plays a crucial role in perception and behaviour, influencing our
interaction with the environment and overall well-being, often in subtle ways that go unnoticed
(Wilson & Stevenson, 2006} Besevli et al.| [2024; (Carter et al. 2024). Odours descriptors do not
have a tangible physical reference as colours. Scientists can measure the wavelength to distinguish
colour, as well as the chemical structures of a scent (Ohloff et al. [2022). However, for the general
public without professional training in chemistry-related fields, it is impossible for them to know
its odour based on the chemical name. This task is challenging even when individuals sniff the



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

odour with their noses. From a human perspective, unlike colours, which benefit from a universally
recognized vocabulary of names (e.g. red) and hex codes, scents lack a standardized language for
straightforward and precise identification. People tend to identify the source of the smell, pointing
to a tangible physical entity so that others can have a baseline reference of the olfactory experience
(Drake & Civillel 2003} [Zarzo, 2008). Efforts like the DREAM challenge have attempted to build
predictive models for scents based on molecular structures and descriptive languages (Keller et al.,
2017), and classification systems like the Fragrance Wheel attempt to categorize scents (Edwards,
2011).

Building on the challenges of scent categorization, recent linguistic and Al research has explored
the connection between molecular structures and odour perception or multimodal representation
(Lee et al.l 2023a; Keller et al., 2017} [Lisena et al., [2022; lodel, [2020; Ravia et al., 2020). Studies
like the DREAM Olfaction Prediction Challenge have aimed to understand how humans perceive
different molecules as scents (Keller et al., 2017). Similarly, the Odeuropa project (ode, 2020) has
significantly contributed to digital heritage by creating a smell-linguistic odour dataset (Lisena et al.,
2022) and launching a multimodal data challenge that integrates vision and text to categorize sniff
behaviours in digital heritage (Zinnen et al., 2022)). Graph Neural Network (GNN) has also been
applied to predict olfactory descriptors from molecular structures (Lee et al.,|2023a). Additionally,
mainstream Al in this field often uses electronic noses (e-nose) with interdigitated electrode struc-
tures and molecular imprinted polymer sensors for detecting specific chemicals such as limonene
(Hawari et al., |2012). These developments indicate that with sufficient data, AI models have the
potential to match or even exceed human capabilities in olfactory perception.

3 PERCEPTUAL ALIGNMENT IN TOUCH AND SMELL

3.1 CURRENT STUDIES IN ALIGNMENT IN TOUCH

Touch has long posed challenges in robotics. Tactile understanding is critical in robotic manipu-
lation, HRI, and assistive technologies. Yet, the field still lacks universally recognised metrics for
evaluating tactile alignment with the diverse sensors used in HRI tasks.

In human-centred studies, tactile tasks are often performed without visual stimuli to prevent vi-
sual cues from influencing touch perception (Biocca et al., [2001). Recent research evaluated the
agreement between humans and six vision-based Multimodal Large Language Models (MLLMs) in
describing the tactile properties of textiles (Zhong et al., 2024b). Findings indicated that the models’
descriptions often differed from human descriptions in sentiment and word choice, highlighting a
misalignment between how tactile experiences are perceived and expressed by Al versus humans.
Further studies looked at how well LLMs encode and interpret human touch in relation to real-world
objects like textiles (Zhong et al., [2024a)). These investigations revealed limited perceptual align-
ment exists, with significant variability across different samples and strong output biases present in
the models.

The study also revealed biases in the training datasets. A keyword analysis of common datasets, such
as WikiText-103 (Merity et al., [2016) and BookCorpus (Zhu et al., |2015)), indicated that textiles-
related keywords were much less frequent than visual descriptors like colour. This imbalance likely
contributes to the misaligned tactile predictions observed in the models. Participants mentioned that
their tactile experiences with textiles were poorly reflected in the models’ outputs, emphasizing the
gap between Al’s interpretation of touch and everyday human experiences.

Recent work in Visual-Tactile has begun to address these challenges. For instance, the Touch-Vision-
Language (TVL) dataset was introduced, pairing tactile sensor images with corresponding visual
imagery and including both human-annotated and model-generated tactile-semantic labels (Fu et al.,
2024]). This dataset enabled the development of a vision-language-aligned tactile encoder and a TVL
model, which generates text descriptions of tactile sensations. The proposed model outperformed
existing models, achieving a top-1 tactile-language accuracy of 36.7% and a tactile-vision accuracy
of 79.5%. These results indicate that vision mainly contributes to the overall accuracy, the tactile-
language mapping remains in its early stages, echoing previous findings (Zhong et al., | 2024ab).

These findings highlight the need for improved datasets, a greater focus on tactile descriptors during
model training, and further development of Al that better matches human tactile experiences.
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3.2 CURRENT STUDIES IN ALIGNMENT IN SMELL

Efforts to align Al systems with human olfactory perception have primarily focused on understand-
ing the relationship between molecular structures and odour perception or developing multimodal
representations (Lee et al.,[2023a; Keller et al., [2017} |Lisena et al., 2022} |ode}, |2020).

Recent research investigated whether transformer pre-trained on general chemical structures, MoL-
Former (Ross et al., [2022), can encode representations that align with human olfactory perception
(Taleb et al., |2025). The model was evaluated using multiple datasets, including expert odour labels
(Luebke, 2019} Leffingwell, 2005)), continuous perceptual ratings (Sagar et al.| 2023}, Keller et al.,
2017), and similarity judgments (Snitz et al., 2013 [Ravia et al., [2020). MoLFormer can predict
expert labels and similarity judgements. However, none of the models showed a high correlation
with continuous perceptual ratings. This suggests that traditional odour descriptors, like “grassy”,
may not fully capture the complexity of odour relationships. The findings suggest that pre-trained
transformers can capture aspects of human olfactory perception from chemical structures alone,
highlighting both their potential and the limitations of current descriptive labels.

In a novel research direction that diverges from the traditional focus on molecular structure, recent
studies have explored everyday users’ olfactory experiences by analysing narrative scent descrip-
tions rather than word labels (Zhong et al) 2024c)). These investigations assess how well LLMs
capture scent-related semantics within their high-dimensional embedding spaces. Findings suggest
that the models encode certain scent-related features (e.g. fresh), but their accuracy remains limited
and shows biases toward certain odours such as lemon and peppermint. Moreover, comparisons
between participant-generated narrative scent descriptions and those generated by generative Al
(e.g. GPT-4) have revealed significant discrepancies. Al-generated descriptions often diverge from
everyday expressions, relying heavily on professional terminology like “undertone”.

Current findings highlight both the potential and limitations of Al in aligning with human olfactory
perception through chemical profiles or narrative descriptions. Integrating diverse data types and
richer descriptive expressions may enhance the naturalness and accuracy of Al olfaction.

3.3 CHALLENGES AND OPPORTUNITIES IN ALIGNMENT

Touch and smell face unique yet overlapping challenges in achieving perceptual alignment with Al
Unlike vision or hearing, which benefit from established metrics and abundant datasets, these senses
are underrepresented in current research. The primary obstacles include the absence of standardised
digital representations, scarcity of data, and limited descriptive language.

Data scarcity remains a major barrier. Tactile datasets, for instance, are far less developed than their
visual or linguistic counterparts. Although vibration libraries have been introduced to convey tactile
feedback (Seifi et al., 2015)), comprehensive tactile databases are still lacking. Similarly, existing
olfactory datasets, such as molecular odour databases (Keller et al., 2017; Luebke, |2019; [Lisena
et al.| 2022} [Lee et al.| 2023a)), primarily rely on chemical data that often disconnect from everyday
olfactory experiences, failing to fully capture the diversity profile of scents. Furthermore, narrative
descriptions of tactile and olfactory sensations are rarely documented, despite these experiences
being deeply rooted in shared human understanding (common sense).

Advances in foundation models, e.g. LLMs, offer a promising starting point for exploring perceptual
alignment. The emergence of haptic (Fleck et al.,[2025)) and olfactory devices (Hopper et al.,[2024) is
beginning to integrate these sensory modalities into the predominantly audiovisual digital ecosystem
(Cornelio et al.,[2023)), opening new avenues for digital representation. Future research could further
explore how these sensory modalities are understood, measured, and represented.

4 CONCLUSION

Perceptual alignment in Al remains a critical and underexplored area, particularly for sensory modal-
ities like touch and smell. These senses are fundamental to how humans experience and interpret the
world but remain challenging to digitise, standardise, and align with Al systems. This paper calls
on the computer science and HCI communities to prioritise advancing multimodal representation
learning, fostering perceptual alignment for natural multimodal human-AlI interactions.
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