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Abstract

In this work, we are interested in automated001
methods for knowledge graph creation (KGC)002
from input text. Progress on large language003
models (LLMs) has prompted a series of re-004
cent works applying them to KGC, e.g., via005
zero/few-shot prompting. Despite successes on006
small domain-specific datasets, these models007
face difficulties scaling up to text common in008
many real-world applications. A principal is-009
sue is that, in prior methods, the KG schema010
has to be included in the LLM prompt to gen-011
erate valid triplets; larger and more complex012
schema easily exceed the LLMs’ context win-013
dow length. Furthermore, there are scenarios014
where a fixed pre-defined schema is not avail-015
able and we would like the method to construct016
an intrinsically high-quality KG with accu-017
rate information and a succinct self-generated018
schema. To address these problems, we pro-019
pose a three-phase framework named Extract-020
Define-Canonicalize (EDC): open information021
extraction followed by schema definition and022
post-hoc canonicalization. EDC is flexible in023
that it can be applied to settings where a pre-024
defined target schema is available and when it025
is not; in the latter case, it constructs a schema026
automatically and applies self-canonicalization.027
To further improve performance, we introduce028
a trained component that retrieves schema el-029
ements relevant to the input text; this im-030
proves the LLMs’ extraction performance in031
a retrieval-augmented generation-like manner.032
We demonstrate on three KGC benchmarks033
that EDC is able to extract high-quality triplets034
without any parameter tuning and with signifi-035
cantly larger schemas compared to prior works.036

1 Introduction037

Knowledge graphs (KGs) (Ji et al., 2021) are a038

structured representation of knowledge that orga-039

nizes interconnected information through graph040

structures, where entities and relations are rep-041

resented as nodes and edges. They are broadly042

Extract relational triplets from the text: ‘Alan Shepard 
participated in the Apollo 14 mission’

EDC: Extract-Define-Canonicalize
Phase 1: Open Information Extraction

Phase 2: Schema Definition

Phase 3: Schema Canonicalization

[Alan Shepard, participatedIn, Apollo 14]

Write a definition for the relation ‘participatedIn’ in the 
current context

The subject entity took part in the mission specified 
by the object entity

The most semantically similar relation in the schema 
is ‘mission’

Can the relation ‘participatedIn’ be replaced by 
‘mission’ given the current context?

Yes! The converted relational triplet is 
[Alan Shepard, mission, Apollo 14]

Figure 1: A high-level illustration of Extract-Define-
Canonicalize (EDC) for Knowledge Graph Construc-
tion.

used in a variety of downstream tasks such as 043

decision-making (Guo et al., 2021; Lan et al., 044

2020), question-answering (Huang et al., 2019; Ya- 045

sunaga et al., 2021), and recommendation (Guo 046

et al., 2020; Wang et al., 2019). However, knowl- 047

edge graph construction (KGC) is inherently chal- 048

lenging: the task requires competence in under- 049

standing syntax and semantics to generate a con- 050

sistent, concise, and meaningful knowledge graph. 051

As such, KGC predominantly relies on intensive 052

human labor (Ye et al., 2022). 053

Recent attempts to automate KGC (Zhong et al., 054

2023; Ye et al., 2022) have employed large lan- 055

guage models (LLMs) in view of their remark- 056
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able natural language understanding and generation057

capabilities. LLM-based KGC methods employ058

various innovative prompt-based techniques, such059

as multi-turn conversation (Wei et al., 2023) and060

code generation (Bi et al., 2024), to generate entity-061

relation triplets that represent the knowledge graph.062

However, these methods are currently limited to063

small and domain-specific scenarios — to ensure064

the validity of generated triplets, schema informa-065

tion (e.g., possible entity and relation types) has to066

be included in the prompt. Complex datasets (e.g.,067

Wikipedia) typically require large schemas that068

exceed the context window length or can be ig-069

nored by the LLMs (Wadhwa et al., 2023). Further-070

more, pre-defined schemas are not always avail-071

able — the users might not have pre-determined072

or fixed intentions about what information is of073

interest in advance but still would like to extract074

intrinsically high-quality KGs in a more flexible075

manner. It is unclear how existing methods will076

work in such situations.077

To address these problems, we propose Ex-078

tract-Define-Canonicalize (EDC), a structured079

approach for KGC: the key idea is to decompose080

KGC into three primary phases corresponding to081

three subtasks (Fig. 1):082

1. Open Information Extraction: extract a list083

of entity-relation triplets from the input text084

freely.085

2. Schema Definition: generate a definition for086

each component of the schema, e.g. entity087

type and relation type, induced by triplets ob-088

tained in the extraction phase.089

3. Schema Canonicalization: use the schema090

definitions to standardize the triplets such091

that semantically-equivalent entities/relations092

types have the same noun/relation phrase.093

Each phase exploits the strengths of LLMs:094

the Extract subtask leverages recent findings that095

LLMs are effective open information extractors (Li096

et al., 2023; Han et al., 2023) — they can extract097

semantically correct and meaningful triplets. How-098

ever, the resulting triplets typically contain redun-099

dant and ambiguous information, e.g., multiple100

semantically equivalent relation phrases such as101

‘profession’, ‘job’, and ‘occupation’ (Kamp et al.,102

2023; Putri et al., 2019; Vashishth et al., 2018).103

Phases 2 and 3 (Define and Canonicalize) stan-104

dardize the triplets to make them useful for down-105

stream tasks. We designed EDC to be flexible: it106

can either discover triplets consistent with a pre- 107

existing schema of potentially large size (Target 108

Alignment) or self-generate a schema (Self Canon- 109

icalization). To achieve this, we use LLMs to de- 110

fine the schema components by exploiting their ex- 111

planation generation capabilities — LLMs can jus- 112

tify their extractions via explanations that are agree- 113

able to human experts (Li et al., 2023). The defini- 114

tions are used to find the closest entity/relation type 115

candidates (via a vector similarity search) that the 116

LLM can then reference to canonicalize a compo- 117

nent. In the case there is no equivalent counterpart 118

in the existing schema, we can choose to add it to 119

enrich the schema. 120

To further improve performance, the three steps 121

above can be followed by an additional Refine- 122

ment phase: we repeat EDC but provide the pre- 123

viously extracted triplets and a relevant part of the 124

schema in the prompt during the initial extraction. 125

We propose a trained Schema Retriever that re- 126

trieves schema components relevant to the input 127

text (akin to retrieval-augmented generation (Lewis 128

et al., 2020)), which we find improves the gener- 129

ated triplets. 130

Experiments on three KGC datasets in both Tar- 131

get Alignment and Self Canonicalization settings 132

show that EDC is able to extract higher-quality 133

KGs compared to state-of-the-art methods through 134

both automatic and manual evaluation. Further- 135

more, the use of the Schema Retriever is shown 136

to significantly and consistently improve EDC’s 137

performance. 138

In summary, the paper makes the following con- 139

tributions: 140

• EDC, a flexible and performant LLM-based 141

framework for knowledge graph construc- 142

tion that is able to extract high-quality KGs 143

with schema of large size or without any pre- 144

defined schema. 145

• Schema Retriever, a trained model to extract 146

schema components relevant to input text in 147

the same vein as information retrieval. 148

• Empirical evidence that demonstrate the effec- 149

tiveness of EDC and the Schema Retriever. 150

2 Background 151

In this section, we provide relevant background on 152

knowledge graph construction (KGC), open infor- 153

mation extraction (OIE), and canonicalization. 154
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Knowledge Graph Construction. Tradi-155

tional methods typically addressed KGC using156

“pipelines”, comprising subtasks like entity157

discovery (Žukov-Gregorič et al., 2018; Martins158

et al., 2019), entity typing (Choi et al., 2018; Onoe159

and Durrett, 2020), and relation classification160

(Zeng et al., 2014, 2015). Thanks to advances161

in pre-trained generative language models (e.g.,162

T5 (Raffel et al., 2020) and BERT(Lewis et al.,163

2019)), more recent works instead frame KGC164

as a sequence-to-sequence problem and generate165

relational triplets in an end-to-end manner by166

fine-tuning these moderately-sized language167

models (Ye et al., 2022). The success of large168

language models (LLMs) has pushed this paradigm169

further: current methods directly prompt the170

LLMs to generate triplets in a zero/few-shot171

manner. For example, ChatIE (Wei et al., 2023)172

extracts triplets by framing the task as a multi-turn173

question-answering problem and CodeKGC (Bi174

et al., 2024) approaches the task as a code175

generation problem. As previously mentioned,176

these models face difficulties scaling up to general177

text common in many real-world applications as178

the KG schema has to be included in the LLM179

prompt. Our EDC framework circumvents this180

problem by using post-hoc canonicalization (and181

without requiring fine-tuning of the base LLMs).182

Open Information Extraction and Canonical-183

ization. Standard (closed) information extraction184

requires the output triplets to follow a pre-defined185

schema, e.g. a list of relation or entity types to186

be extracted from. In contrast, open information187

extraction (OIE) does not have such a requirement.188

OIE has a long history and we refer readers who189

want comprehensive coverage to the excellent sur-190

veys (Liu et al., 2022; Zhou et al., 2022; Kamp191

et al., 2023). Recent studies have found LLMs192

to exhibit excellent performance on OIE tasks (Li193

et al., 2023). However, the relational triplets ex-194

tracted from OIE systems are not canonicalized,195

e.g. multiple semantically equivalent relations can196

coexist without being unified to a canonical form,197

causing redundancy and ambiguity in the induced198

open knowledge graph. An extra canonicalization199

step is required to standardize the triplets to make200

the KGs useful for downstream applications.201

Canonicalization methods differ depending on202

whether a target schema is available. In case a203

target schema is present, the task is sometimes re-204

ferred to as “alignment” (Putri et al., 2019). For205

example, (Putri et al., 2019) uses WordNet (Miller, 206

1995) as side information to obtain definitions for 207

the OIE-extracted relation phrases and a Siamese 208

network to compare an OIE relation definition and 209

a pre-defined relation in the target schema. In case 210

no target schema is available, state-of-the-art meth- 211

ods are commonly based on clustering (Vashishth 212

et al., 2018; Dash et al., 2020). CESI (Vashishth 213

et al., 2018) creates embeddings for the OIE rela- 214

tions using side information from external sources 215

like PPDB (Ganitkevitch et al., 2013) and WordNet. 216

However, clustering-based methods are prone to 217

over-generalization (Kamp et al., 2023; Putri et al., 218

2019), e.g., CESI may put “is brother of," “is son 219

of," “is main villain of," and “was professor of" 220

into the same relation cluster. 221

Compared to the existing canonicalization meth- 222

ods, EDC is more general; it works whether a 223

target schema is provided or not. Instead of using 224

static external sources like WordNet, EDC utilizes 225

contextual and semantically-rich side information 226

generated by LLMs. Furthermore, by allowing 227

the LLMs to verify if a transformation can be per- 228

formed (instead of solely relying on the embedding 229

similarity), EDC alleviates the over-generalization 230

issue faced by previous methods. 231

3 Method: EDC for KGC 232

This section outlines our primary contribution: an 233

approach to constructing knowledge graphs that 234

leverages LLMs in a structured manner. We first 235

detail the EDC framework followed by a descrip- 236

tion of refinement (EDC+R). Given input text, our 237

goal is to extract relational triplets in a canonical 238

form such that the resulting KGs will have minimal 239

ambiguity and redundancy. When there is a pre- 240

defined target schema, all generated triplets should 241

conform to it. In the scenario where there is not 242

one, the system should dynamically create one and 243

canonicalize the triplets with respect to it. 244

3.1 EDC: Extract-Define-Canonicalize 245

At a high level, EDC decomposes KGC into three 246

connected subtasks. To ground our discussion, we 247

will use a specific input text example: “Alan Shep- 248

ard was born on Nov 18, 1923 and selected by 249

NASA in 1959. He was a member of the Apollo 14 250

crew” and walk through each of the phases: 251

Phase 1: Open Information Extraction: we first 252

leverage Large Language Models (LLMs) for open 253

information extraction. Through few-shot prompt- 254
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ing, LLMs identify and extract relational triplets255

([Subject, Relation, Object]) from input texts, inde-256

pendent of any specific schema. Using our example257

above, the prompt is:258

Given a piece of text, extract relational triplets in
the form of [Subject, Relation, Object] from it.
Here are some examples:
Example 1:
Text: The 17068.8 millimeter long ALCO RS-3
has a diesel-electric transmission.
Triplets: [[‘ALCO RS-3’, ‘powerType’, ‘Diesel-
electric transmission’], [‘ALCO RS-3’, ‘length’,
‘17068.8 (millimetres)’]] ...
Now please extract triplets from the following
text: Alan Shepard was born on Nov 18, 1923
and selected by NASA in 1959. He was a mem-
ber of the Apollo 14 crew.

259

The resultant triplets (in this case, [‘Alan Shep-260

ard’, ‘bornOn’, ‘Nov 18, 1923’], [‘Alan Shep-261

ard’, ‘participatedIn’, ‘Apollo 14’]) form an open262

KG, which is forwarded to subsequent phases.263

Phase 2: Schema Definition: Next, we prompt264

the LLMs to provide a natural language definition265

for each component of the schema induced by the266

open KG:267

Given a piece of text and a list of relational triplets
extracted from it, write a definition for each rela-
tion present.
Example 1:
Text: The 17068.8 millimeter long ALCO RS-3
has a diesel-electric transmission.
Triplets: [[‘ALCO RS-3’, ‘powerType’, ‘Diesel-
electric transmission’], [‘ALCO RS-3’, ‘length’,
‘17068.8 (millimetres)’]]
Definitions:
powerType: The subject entity uses the type of
power or energy source specified by the object
entity.
...
Now write a definition for each relation present
in the triplets extracted from the following text:
Text: Alan Shepard was an American who was
born on Nov 18, 1923 in New Hampshire, was
selected by NASA in 1959, was a member of the
Apollo 14 crew and died in California
Triplets: [[‘Alan Shepard’, ‘bornOn’, ‘Nov 18,
1923’], [‘Alan Shepard’, ‘participatedIn’, ‘Apollo
14’]]

268

This example prompt results in the definitions269

for (bornOn: The subject entity was born on270

the date specified by the object entity.) and271

(participatedIn: The subject entity took part in272

the event or mission specified by the object273

entity.), which are then passed to the next stage as274

side information used for canonicalization.275

Phase 3: Schema Canonicalization: The third 276

phase aims to refine the open KG into a canoni- 277

cal form, eliminating redundancies and ambigui- 278

ties. We start by vectorizing the definitions of each 279

schema component using a sentence transformer to 280

create embeddings. Canonicalization then proceeds 281

in one of two ways, depending on the availability 282

of a target schema: 283

• Target Alignment: With an existing target 284

schema, we identify the most closely related 285

components within the target schema for each 286

element, considering them for canonicaliza- 287

tion. To prevent issues of over-generalization, 288

LLMs assess the feasibility of each potential 289

transformation. If a transformation is deemed 290

unreasonable, indicating no semantic equiva- 291

lent in the target schema, the component, and 292

its related triplets are excluded. 293

• Self Canonicalization: Absent a target 294

schema, the goal is to consolidate semanti- 295

cally similar schema components, standardiz- 296

ing them to a singular representation to stream- 297

line the KG. Starting with an empty canonical 298

schema, we examine the open KG triplets, 299

searching for potential consolidation candi- 300

dates through vector similarity and LLM veri- 301

fication. Unlike target alignment, components 302

deemed non-transformable are added to the 303

canonical schema, thereby expanding it. 304

Using our example, the prompt is: 305

Given a piece of text, a relational triplet extracted
from it, and the definition of the relation in it,
choose the most appropriate relation to replace it
in this context if there is any.
Text: Alan Shepard was born on Nov 18, 1923
and selected by NASA in 1959. He was a member
of the Apollo 14 crew.
Triplets: [‘Alan Shepard’, ‘participatedIn’,
‘Apollo 14’]
Definition of ‘participatedIn’: The subject entity
took part in the event or mission specified by the
object entity.
Choices:
A. ‘mission’: The subject entity participated in
the event or operation specified by the object en-
tity.
B. ‘season’: The subject entity participated in the
season of a series specified by the object entity.
...
F. None of the above

306

Note that the choices above are obtained by us- 307

ing vector similarity search. After the LLM makes 308

its choice, the relations are transformed to yield: 309
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[‘Alan Shepard’, ‘birthDate’, ‘Nov 18, 1923’],310

[‘Alan Shepard’, ‘mission’, ‘Apollo 14’], which311

forms our canonicalized KG.312

3.2 EDC+R: iteratively refine EDC with313

Schema Retriever314

The refinement process leverages the data gener-315

ated by EDC to enhance the quality of the extracted316

triplets. Inspired by retrieval-augmented genera-317

tion and prior work (Bi et al., 2024), we construct318

a “hint” for the extraction phase (details in Ap-319

pendix A.4), which comprises two main elements:320

• Candidate Entities: The entities extracted by321

EDC from the previous iteration, and entities322

extracted from the text using the LLM;323

• Candidate Relations: The relations extracted324

by EDC from the previous cycle and relations325

retrieved from the pre-defined/canonicalized326

schema by using a trained Schema Retriever.327

The inclusion of entities and relations from both328

the LLM and the schema retriever provides a richer329

pool of candidates for the LLM, which addresses330

issues where the absence of entities or relations im-331

pairs the LLM’s effectiveness. By merging the en-332

tities and relations extracted in earlier phases with333

new findings from entity extraction and schema334

retrieval, the hint serves to aid the OIE by boot-335

strapping from the previous round.336

To scale EDC to large schemas, we employ a337

trained Schema Retriever which allows us to ef-338

ficiently search schemas. The Schema Retriever339

works in a similar fashion to information retrieval340

methods based on vector spaces (Ganguly et al.,341

2015; Lewis et al., 2020); it projects the schema342

components and the input text to a vector space343

such that cosine similarity captures the relevance344

between the two, i.e., how likely a schema compo-345

nent to be present in the input text. Note that in346

our setting, the similarity space is different from347

the standard sentence embedding models where348

cosine similarity in the vector space captures se-349

mantic equivalence. Our Schema Retriever is a350

fine-tuned variant of the sentence embedding model351

E5-mistral-7b-instruct (Wang et al., 2023). We fol-352

low the original training methodology detailed in353

the paper, which involves utilizing pairs of text354

and their corresponding defined relations. For de-355

tails, please refer to the Appendix A.3. For a given356

positive text-relation pair (t+, r+), we employ an357

instruction template on t+ to generate a new text358

t+inst = “Instruct: retrieve relations that are present 359

in the given text \n Query: {t+}”. 360

We then finetune the embedding model to distin- 361

guish between the correct relation associated with 362

a given text and other non-relevant relations using 363

the InfoNCE loss. 364

Back to our example, refinement with the 365

schema retriever adds the following relation to the 366

previous set: [‘Alan Shepard’, ‘selectedByNasa’, 367

‘1959’]. The relation ‘selectedByNasa’ is rather 368

obscure but was specified in the target schema. 369

4 Experiments 370

In this section, we describe experiments designed 371

to evaluate the performance of EDC and EDC+R. 372

Briefly, our results demonstrate that EDC signif- 373

icantly outperforms the state-of-the-art methods 374

in both Target Alignment and Self Canonicaliza- 375

tion settings. Refinement further improves EDC. 376

Source code for EDC and to replicate our experi- 377

ments are available in the supplementary materials, 378

with full tables in the Appendix C. 379

4.1 Experimental Setup 380

Datasets. We evaluate EDC using three KGC 381

datasets: 382

• WebNLG (Ferreira et al., 2020): We use the 383

test split from the semantic parsing task of 384

WebNLG+2020 (v3.0). It contains 1165 pairs 385

of text and triplets. The schema derived 386

from these reference triplets encompasses 159 387

unique relation types. 388

• REBEL (Cabot and Navigli, 2021): The 389

original test partition of REBEL comprises 390

105,516 entries. To manage costs, we select a 391

random sample of 1000 text-triplet pairs. This 392

subset induces a schema with 200 distinct re- 393

lation types. 394

• Wiki-NRE (Distiawan et al., 2019): From 395

Wiki-NRE’s test split (29,619 entries), we 396

sample 1000 text-triplet pairs, resulting in a 397

schema with 45 unique relation types. 398

These datasets were chosen over alternatives like 399

ADE (Gurulingappa et al., 2012) (1 relation type), 400

SciERC (Luan et al., 2018) (7 relation types), and 401

CoNLL04 (Roth and Yih, 2004) (4 relation types) 402

used to evaluate previous LLM-based methods (Bi 403

et al., 2024; Wadhwa et al., 2023) used in prior 404

LLM-based studies, due to their richer variety of 405
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relation types. This diversity better mimics real-406

world complexities. In our experiments, we focus407

on extracting relations as the only schema compo-408

nent available across all datasets. Relations, being409

a foundational element of KGs, are prioritized over410

other components like entity or event types. How-411

ever, note that EDC can be readily extended to412

other schema components.413

EDC Models. EDC contains multiple modules414

that are powered by LLMs. Since the OIE mod-415

ule is the key upstream module that determines the416

semantic content captured in the KG, we tested417

different LLMs of different sizes including GPT-418

4 (Achiam et al., 2023), GPT-3.5-turbo (Brown419

et al., 2020), and Mistral-7b (Jiang et al., 2023).420

Mistral-7b was deployed on a local workstation,421

whereas the GPT models were accessed via the422

OpenAI API. For the framework’s remaining com-423

ponents which required prompting, we used GPT-424

3.5-turbo. In the canonicalization phase, the E5-425

Mistral-7b model was utilized for vector similarity426

searches without modifications.427

4.1.1 Evaluation Criteria and Baselines428

We evaluate our methods differently under Target429

Alignment (when a schema is provided) and Self430

Canonicalization (no schema) due to the inherently431

different objectives: the former aims to recover the432

ground-truth annotated triplets consistent with the433

target schema while the latter is to extract seman-434

tically correct and meaningful triplets that induce435

a succinct and non-redundant KG without a pre-436

defined target to compare against. For the datasets437

above, the preivous LLM-based KGC methods438

(ChatIE and CodeKGC) could not be used due to439

the schema size. Although EDC is not intended for440

small domain-specific datasets, we include the re-441

sults on SciERC and CoNLL04 in the Appendix E442

for the comprehensiveness of the evaluation.443

Target Alignment. We compare EDC and444

EDC+R against the specialized trained models for445

each of the datasets:446

• REGEN (Dognin et al., 2021) is the SOTA447

model for WebNLG. It is a sequence-to-448

sequence model that leverages pre-trained449

T5 (Raffel et al., 2020) and Reinforcement450

Learning (RL) for bidirectional text-to-graph451

and graph-to-text generation.452

• GenIE (Josifoski et al., 2022), a sequence-453

to-sequence model that leverages pre-trained454

BART (Lewis et al., 2019) and a constrained 455

generation strategy to constrain the output 456

triplets to be consistent with the pre-defined 457

schema. GenIE is the state-of-the-art model 458

for REBEL and Wiki-NRE. 459

Following previous work (Dognin et al., 2021; Mel- 460

nyk et al., 2022), we use the WEBNLG evalua- 461

tion script (Ferreira et al., 2020) which computes 462

the Precision, Recall, and F1 scores for the output 463

triplets against the ground truth in a token-based 464

manner. Metrics based on Named Entity Evalua- 465

tion were used to measure the Precision, Recall, 466

and F1 score in three different ways. 467

• Exact: Requires a complete match between 468

the candidate and reference triple, disregard- 469

ing the type (subject, relation, object). 470

• Partial: Allows for at least a partial match 471

between the candidate and reference triple, 472

disregarding the type. 473

• Strict: Demands an exact match between the 474

candidate and reference triplet, including the 475

element types. 476

Self Canonicalization. For evaluating self- 477

canonicalization performance, comparisons are 478

made with: 479

• Baseline Open KG, which is the initial open 480

KG output from the OIE (Open Information 481

Extraction) phase. This serves as a reference 482

point to illustrate the changes in precision and 483

schema conciseness resulting from the canon- 484

icalization process. 485

• CESI (Vashishth et al., 2018), recognized as 486

a leading clustering-based approach for open 487

KG canonicalization. By applying CESI to the 488

open KG, we aim to contrast its performance 489

against canonicalization by EDC. 490

Given that canonicalized triplets may use relations 491

phrased differently from the reference triplets or en- 492

tirely out-of-schema relations, a token-based evalu- 493

ation becomes unsuitable. Thus, we resort to man- 494

ual evaluation, focusing on three key aspects that 495

reflect the intrinsic quality of an extracted KG: 496

• Precision: The canonicalized triplets remain 497

correct and meaningful with respect to the text 498

compared to the OIE triplets. 499
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Figure 2: Performance of EDC and EDC+R on WebNLG, REBEL, and Wiki-NRE datasets against the respective
baselines in the Target Alignment setting (F1 scores with ‘Partial’ criteria). EDC+R only performs 1 iteration of
refinement as we found the improvement diminishes significantly afterward.

• Conciseness: The schema’s brevity is mea-500

sured by the number of relations types.501

• Redundancy: We employ a redundancy score502

— the average cosine similarity among each503

canonicalized relation and its nearest coun-504

terpart — where low scores indicate that the505

schema’s relations are semantically distinct.506

4.2 Results and Analysis507

In the following, we focus on conveying our main508

findings and results. For full results and tables,509

please refer to the Appendix.510

4.2.1 Target Alignment511

The bar charts in Figure 2 summarize the Partial F1512

scores obtained by EDC and EDC+R on all three513

datasets with different LLMs for OIE compared514

against the respective baselines. EDC demon-515

strates performance that is superior to or on516

par with the state-of-the-art baselines for all517

evaluated datasets. Comparing the LLMs, GPT-4518

emerges as the top performer, with Mistral-7b and519

GPT-3.5-turbo exhibiting comparable results. The520

disparity between our methods and the baselines is521

more pronounced on the REBEL and Wiki-NRE522

datasets; this is primarily due to the GenIE’s con-523

strained generation approach, which falls short in524

extracting triplets that include literals, such as num-525

bers and dates.526

Refinement (EDC+R) consistently and signif-527

icantly enhances performance. Post-refinement,528

the difference in performance between GPT-3.5-529

turbo and Mistral-7b is larger, suggesting Mistral-530

7b’s was not as able to leverage the provided hints.531

Nevertheless, a single refinement iteration with the532

hint improved performance for all the tested LLMs.533

From the scores, it appears that EDC perfor- 534

mance is significantly better on WebNLG com- 535

pared to REBEL and Wiki-NRE. However, we ob- 536

served that EDC was penalized despite producing 537

valid triplets on the latter datasets. A reason for 538

this is that the reference triplets in these datasets 539

are non-exhaustive. For example, given the text 540

in the REBEL dataset, ‘Romany Love is a 1931 541

British musical film directed by Fred Paul and star- 542

ring Esmond Knight, Florence McHugh and Roy 543

Travers.’, EDC extracts: [‘Romany Love’, ‘cast 544

member’, ‘Esmond Knight’], [‘Romany Love’, 545

‘cast member’, ‘Florence McHugh’], [‘Romany 546

Love’, ‘cast member’, ‘Roy Travers’], which are 547

all semantically correct, but only the first triplet is 548

present in the reference set. The datasets also con- 549

tain reference triplets based on information extra- 550

neous to the text, e.g., ‘Daniel is an Ethiopian foot- 551

baller, who currently plays for Hawassa City S.C.’ 552

has a corresponding reference triplet [‘Hawassa 553

City S.C.’, ‘country’, ‘Ethiopia’]. 554

These issues can be attributed to the distinct 555

methodologies employed in the creation of these 556

datasets. For WebNLG, annotators were asked to 557

compose text solely from the triplets. Thus, the text 558

and the triplets have a direct correspondence, and 559

the text typically does not include information other 560

than what is apparent from the triplets. In contrast, 561

REBEL and Wiki-NRE are created by aligning text 562

and triplets using distant supervision (Smirnova 563

and Cudré-Mauroux, 2018). This method can lead 564

to less straightforward triplets to extract and incom- 565

plete reference sets, which can lead to pessimistic 566

evaluations for methods such as EDC that produce 567

correct triplets not in the dataset (Han et al., 2023; 568

Wadhwa et al., 2023). On average, EDC extracts 569

1 more triplet per sentence compared to the refer- 570
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ence set on REBEL and Wiki-NRE, compared to571

WebNLG where EDC extracts a similar number of572

triplets to the reference.573

Table 1: Ablation study results (F1 scores with all cri-
teria) on schema retriever, the LLM used for OIE is
GPT-3.5-turbo. S.R. stands for Schema Retriever.

Dataset Method Partial Strict Exact
EDC+R 0.794 0.753 0.772

WebNLG EDC+R w/o S.R. 0.752 0.701 0.721
EDC 0.746 0.688 0.713
EDC+R 0.559 0.516 0.529

REBEL EDC+R w/o S.R. 0.517 0.466 0.482
EDC 0.506 0.449 0.473
EDC+R 0.693 0.685 0.657

Wiki-NRE EDC+R w/o S.R. 0.653 0.645 0.641
EDC 0.647 0.638 0.640

Ablation study on schema retriever. To eval-574

uate the impact of the relations provided by the575

schema retriever during refinement, we conducted576

an ablation study with GPT-3.5-turbo by removing577

the relations retrieved using the schema retriever578

from the hint. The results in Table 1 show that579

ablating the Schema Retriever leads to a no-580

table decline in performance. Qualitatively, we581

find that the schema retriever helps to find rele-582

vant relations that are challenging for the LLMs to583

identify during the OIE stage. For example, given584

the text ‘The University of Burgundy in Dijon has585

16,800 undergraduate students’, the LLMs extract586

[‘University of Burgundy’, ‘location’, ‘Dijon’] dur-587

ing OIE. Although semantically correct, this rela-588

tion overlooks the more specific relation present in589

the target schema, namely ‘campus’, for denoting590

university’s location. The schema retriever suc-591

cessfully identifies this finer relation, enabling the592

LLMs to adjust their extraction to [‘University of593

Burgundy’, ‘campus’, ‘Dijon’]. This experiment594

highlights the schema retriever’s value in facili-595

tating the extraction of precise and contextually596

appropriate relations.597

4.2.2 Self Canonicalization598

Here, we focus on evaluating EDC’s self-599

canonicalization performance (utilizing GPT-3.5-600

turbo for OIE). We omit refinement in Self Canon-601

icalization setting as it has already been stud-602

ied above and in subsequent iterations, the self-603

constructed canonicalized schema becomes the tar-604

get schema. Following prior work (Wadhwa et al.,605

2023; Kolluru et al., 2020), we conducted a tar-606

geted human evaluation of knowledge graphs. This607

evaluation involved two independent annotators608

assessing the reasonableness of triplet extractions609

Table 2: Performance of EDC in the Self Canonical-
ization setting (human-evaluated precision and schema
metrics). The best result for each dataset and metric is
bolded. Prec. stands for precision, No. Rel. stands for
the number of relations and Red. stands for redundancy
score

Dataset Method Prec.(↑) No. Rel.(↓) Red.(↓)
EDC 0.956 200 0.833

WebNLG CESI 0.724 280 0.893
Open KG 0.982 529 0.927
EDC 0.867 225 0.831

REBEL CESI 0.504 307 0.854
Open KG 0.903 667 0.895
EDC 0.898 106 0.833

Wiki-NRE CESI 0.753 114 0.849
Open KG 0.909 204 0.881

from given text without prior knowledge of the sys- 610

tem’s details. We observed a high inter-annotator 611

agreement score of 0.94. 612

The evaluation results and schema metrics are 613

summarized in Table 2. These findings reveal that 614

while the open KG generated by the OIE stage con- 615

tains semantically valid triplets (which affirms the 616

previous findings that LLMs are competent open 617

information extractors (Li et al., 2023)), it suffers 618

from a significant degree of redundancy within the 619

resultant schema. EDC accurately canonicalizes 620

the open KG and yields a schema that is both 621

more concise and less redundant compared to 622

CESI. EDC avoids CESI’s tendency toward over- 623

generalization — in line with prior work (Putri 624

et al., 2019), we observed CESI inappropriately 625

clusters diverse relations such as ‘place of death’, 626

‘place of birth’, ‘date of death’, ‘date of birth’, 627

and ‘cause of death’ into a single ‘date of death’ 628

category. 629

5 Conclusion 630

In this work, we presented EDC, an LLM-based 631

three-phase framework that addresses the problem 632

of KGC by open information extraction followed 633

by post-hoc canonicalization. Experiments show 634

that EDC and EDC+R are able to extract better 635

KGs than specialized trained models when a tar- 636

get schema is available and dynamically create a 637

schema when none is provided. The scalability and 638

versatility of EDC opens up many opportunities 639

for applications: it allows us to automatically ex- 640

tract high-quality KGs from general text using large 641

schemas like Wikidata (Vrandečić and Krötzsch, 642

2014) and even enrich these schemas with newly 643

discovered relations. 644
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6 Limitations645

There are several limitations that we would like to646

address in future works. First, we only considered647

schema canonicalization within the scope of this648

paper, it is of great interest to incorporate an entity649

de-duplication mechanism in the future to reduce650

the redundancy in the constructed KGs further, e.g.651

via coreference resolution (Sukthanker et al., 2020).652

Moreover, EDC’s components can be further im-653

proved to boost the performance, e.g. the schema654

retriever may benefit from training on more diverse655

and higher-quality data. Finally, due to time and re-656

source constraints, we only tested different LLMs657

for OIE while all the other modules of EDC rely658

on GPT-3.5-turbo, it will be beneficial to test the659

smaller open-source models’ performance on the660

other tasks as well.661

7 Ethical Considerations662

Artifact usage. The datasets we used in the pa-663

per are only leveraged for research purposes and664

we strictly follow the corresponding licenses (e.g.665

WebNLG uses cc-by-nc-sa-4.0). It is to be noted666

that, due to the nature of the task, the datasets may667

inherently contain information about individuals668

(especially celebrities). We project to make the669

software and code for this paper publicly available670

under the MIT license.671

Human annotators. The two annotators (1 male672

and 1 female) are recruited university students. The673

annotators are compensated fairly and given abun-674

dant and flexible time to complete the tasks. The675

collection protocol is determined exempt by an IRB676

board.677

Potential Risks. It needs to be noted that the use678

of current LLMs may bring risks such as halluci-679

nations (Xu et al., 2024) and privacy issues (Yao680

et al., 2024).681

References682

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama683
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,684
Diogo Almeida, Janko Altenschmidt, Sam Altman,685
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.686
arXiv preprint arXiv:2303.08774.687

Oshin Agarwal, Heming Ge, Siamak Shakeri, and688
Rami Al-Rfou. 2020. Knowledge graph based syn-689
thetic corpus generation for knowledge-enhanced690
language model pre-training. arXiv preprint691
arXiv:2010.12688.692

Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo, 693
Huajun Chen, and Ningyu Zhang. 2024. Codekgc: 694
Code language model for generative knowledge 695
graph construction. ACM Transactions on Asian and 696
Low-Resource Language Information Processing, 697
23(3):1–16. 698

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 699
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 700
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 701
Askell, et al. 2020. Language models are few-shot 702
learners. Advances in neural information processing 703
systems, 33:1877–1901. 704

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021. 705
Rebel: Relation extraction by end-to-end language 706
generation. In Findings of the Association for 707
Computational Linguistics: EMNLP 2021, pages 708
2370–2381. 709

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle- 710
moyer. 2018. Ultra-fine entity typing. arXiv preprint 711
arXiv:1807.04905. 712

Sarthak Dash, Gaetano Rossiello, Nandana Mihin- 713
dukulasooriya, Sugato Bagchi, and Alfio Gliozzo. 714
2020. Open knowledge graphs canonicalization 715
using variational autoencoders. arXiv preprint 716
arXiv:2012.04780. 717

Bayu Distiawan, Gerhard Weikum, Jianzhong Qi, and 718
Rui Zhang. 2019. Neural relation extraction for 719
knowledge base enrichment. In Proceedings of 720
the 57th Annual Meeting of the Association for 721
Computational Linguistics, pages 229–240. 722

Pierre L Dognin, Inkit Padhi, Igor Melnyk, and Payel 723
Das. 2021. Regen: Reinforcement learning for text 724
and knowledge base generation using pretrained lan- 725
guage models. arXiv preprint arXiv:2108.12472. 726

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, 727
Chris Van Der Lee, Simon Mille, Diego Moussallem, 728
and Anastasia Shimorina. 2020. The 2020 bilingual, 729
bi-directional webnlg+ shared task overview and eval- 730
uation results (webnlg+ 2020). In Proceedings of the 731
3rd International Workshop on Natural Language 732
Generation from the Semantic Web (WebNLG+). 733

Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and 734
Gareth JF Jones. 2015. Word embedding based gen- 735
eralized language model for information retrieval. 736
In Proceedings of the 38th international ACM 737
SIGIR conference on research and development in 738
information retrieval, pages 795–798. 739

Juri Ganitkevitch, Benjamin Van Durme, and Chris 740
Callison-Burch. 2013. Ppdb: The paraphrase 741
database. In Proceedings of the 2013 conference 742
of the north american chapter of the association 743
for computational linguistics: Human language 744
technologies, pages 758–764. 745

Liang Guo, Fu Yan, Yuqian Lu, Ming Zhou, and 746
Tao Yang. 2021. An automatic machining pro- 747
cess decision-making system based on knowledge 748

9



graph. International journal of computer integrated749
manufacturing, 34(12):1348–1369.750

Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu751
Zhu, Xing Xie, Hui Xiong, and Qing He. 2020. A752
survey on knowledge graph-based recommender sys-753
tems. IEEE Transactions on Knowledge and Data754
Engineering, 34(8):3549–3568.755

Harsha Gurulingappa, Abdul Mateen Rajput, Angus756
Roberts, Juliane Fluck, Martin Hofmann-Apitius, and757
Luca Toldo. 2012. Development of a benchmark758
corpus to support the automatic extraction of drug-759
related adverse effects from medical case reports.760
Journal of biomedical informatics, 45(5):885–892.761

Ridong Han, Tao Peng, Chaohao Yang, Benyou Wang,762
Lu Liu, and Xiang Wan. 2023. Is information extrac-763
tion solved by chatgpt? an analysis of performance,764
evaluation criteria, robustness and errors. arXiv765
preprint arXiv:2305.14450.766

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping767
Li. 2019. Knowledge graph embedding based ques-768
tion answering. In Proceedings of the twelfth ACM769
international conference on web search and data770
mining, pages 105–113.771

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-772
nen, and S Yu Philip. 2021. A survey on knowledge773
graphs: Representation, acquisition, and applications.774
IEEE transactions on neural networks and learning775
systems, 33(2):494–514.776

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-777
sch, Chris Bamford, Devendra Singh Chaplot, Diego778
de las Casas, Florian Bressand, Gianna Lengyel, Guil-779
laume Lample, Lucile Saulnier, et al. 2023. Mistral780
7b. arXiv preprint arXiv:2310.06825.781

Martin Josifoski, Nicola De Cao, Maxime Peyrard,782
Fabio Petroni, and Robert West. 2022. GenIE: Gen-783
erative information extraction. In Proceedings of784
the 2022 Conference of the North American Chapter785
of the Association for Computational Linguistics:786
Human Language Technologies, pages 4626–4643,787
Seattle, United States. Association for Computational788
Linguistics.789

Serafina Kamp, Morteza Fayazi, Zineb Benameur-El,790
Shuyan Yu, and Ronald Dreslinski. 2023. Open791
information extraction: A review of baseline tech-792
niques, approaches, and applications. arXiv preprint793
arXiv:2310.11644.794

Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal,795
Soumen Chakrabarti, et al. 2020. Openie6: Iterative796
grid labeling and coordination analysis for open infor-797
mation extraction. arXiv preprint arXiv:2010.03147.798

Luong Thi Hong Lan, Tran Manh Tuan, Tran Thi Ngan,799
Nguyen Long Giang, Vo Truong Nhu Ngoc, Pham800
Van Hai, et al. 2020. A new complex fuzzy inference801
system with fuzzy knowledge graph and extensions802
in decision making. Ieee Access, 8:164899–164921.803

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 804
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 805
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De- 806
noising sequence-to-sequence pre-training for natural 807
language generation, translation, and comprehension. 808
arXiv preprint arXiv:1910.13461. 809

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 810
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 811
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 812
täschel, et al. 2020. Retrieval-augmented genera- 813
tion for knowledge-intensive nlp tasks. Advances 814
in Neural Information Processing Systems, 33:9459– 815
9474. 816

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei 817
Ye, Wen Zhao, and Shikun Zhang. 2023. Evaluating 818
chatgpt’s information extraction capabilities: An as- 819
sessment of performance, explainability, calibration, 820
and faithfulness. arXiv preprint arXiv:2304.11633. 821

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran- 822
jape, Michele Bevilacqua, Fabio Petroni, and Percy 823
Liang. 2024. Lost in the middle: How language 824
models use long contexts. Transactions of the 825
Association for Computational Linguistics, 12:157– 826
173. 827

Pai Liu, Wenyang Gao, Wenjie Dong, Songfang Huang, 828
and Yue Zhang. 2022. Open information extrac- 829
tion from 2007 to 2022–a survey. arXiv preprint 830
arXiv:2208.08690. 831

Yi Luan, Luheng He, Mari Ostendorf, and Han- 832
naneh Hajishirzi. 2018. Multi-task identification 833
of entities, relations, and coreference for scien- 834
tific knowledge graph construction. arXiv preprint 835
arXiv:1808.09602. 836

Pedro Henrique Martins, Zita Marinho, and André FT 837
Martins. 2019. Joint learning of named entity 838
recognition and entity linking. arXiv preprint 839
arXiv:1907.08243. 840

Igor Melnyk, Pierre Dognin, and Payel Das. 2022. 841
Knowledge graph generation from text. arXiv 842
preprint arXiv:2211.10511. 843

George A Miller. 1995. Wordnet: a lexical database for 844
english. Communications of the ACM, 38(11):39– 845
41. 846

Yasumasa Onoe and Greg Durrett. 2020. Fine-grained 847
entity typing for domain independent entity linking. 848
In Proceedings of the AAAI Conference on Artificial 849
Intelligence, volume 34, pages 8576–8583. 850

Rifki Afina Putri, Giwon Hong, and Sung-Hyon 851
Myaeng. 2019. Aligning open ie relations 852
and kb relations using a siamese network based 853
on word embedding. In Proceedings of the 854
13th International Conference on Computational 855
Semantics-Long Papers, pages 142–153. 856

10

https://doi.org/10.18653/v1/2022.naacl-main.342
https://doi.org/10.18653/v1/2022.naacl-main.342
https://doi.org/10.18653/v1/2022.naacl-main.342


Colin Raffel, Noam Shazeer, Adam Roberts, Katherine857
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,858
Wei Li, and Peter J Liu. 2020. Exploring the lim-859
its of transfer learning with a unified text-to-text860
transformer. Journal of machine learning research,861
21(140):1–67.862

Dan Roth and Wen-tau Yih. 2004. A linear863
programming formulation for global inference864
in natural language tasks. In Proceedings of865
the eighth conference on computational natural866
language learning (CoNLL-2004) at HLT-NAACL867
2004, pages 1–8.868

Alisa Smirnova and Philippe Cudré-Mauroux. 2018. Re-869
lation extraction using distant supervision: A survey.870
ACM Computing Surveys (CSUR), 51(5):1–35.871

Rhea Sukthanker, Soujanya Poria, Erik Cambria, and872
Ramkumar Thirunavukarasu. 2020. Anaphora and873
coreference resolution: A review. Information874
Fusion, 59:139–162.875

Shikhar Vashishth, Prince Jain, and Partha Taluk-876
dar. 2018. Cesi: Canonicalizing open knowl-877
edge bases using embeddings and side informa-878
tion. In Proceedings of the 2018 World Wide Web879
Conference, pages 1317–1327.880
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A Implementation Details946

A.1 Models and Infrastructures Details947

We use two OpenAI models, GPT-3.5-turbo and948

GPT-4 (sizes currently unknown), and an open-949

source model, Mistral-7b (7 billion parameters).950

The training and inference of open-source mod-951

els are done with a single machine with an AMD952

EPYC 7543P 32-Core Processor and 252GB of953

RAM, equipped with 4 NVIDIA RTX A6000954

(48GB) GPUs. We accessed GPT-3.5-turbo and955

GPT-4 via the OpenAI API.956

A.2 Prompting-related hyperparameters957

We use few-shot prompting for all modules of958

EDC, we empirically choose 6-shot examples from959

the respective datasets. For the MCQ used in the960

Schema Canonicalization phase, we retrieve top-5961

semantically similar relations from the schema as962

candidates. For refinement, the schema retriever963

retrieves top-10 most relevant relations from the964

schema as candidate relations. These hyperparame-965

ters are empirically chosen to balance performance966

and inference costs.967

A.3 Schema Retriever Training968

We follow the original training methodology de-969

tailed in the original paper (Wang et al., 2023),970

which involves utilizing pairs of text and their cor-971

responding defined relations. For a given positive972

text-relation pair (t+, r+), we employ an instruc-973

tion template on t+ to generate a new text t+inst =974

“Instruct: retrieve relations that are present in the975

given text \n Query: {t+}”.976

We then finetune the embedding model to distin-977

guish between the correct relation associated with978

a given text and other non-relevant relations using979

the InfoNCE loss,980

minL = − log
ϕ(t+inst, r

+)

ϕ(t+inst, r
+) +

∑
ni∈N ϕ(t+inst, ni)

981

Here, N denotes the set of negative samples, and982

ϕ represents the cosine similarity function. Please983

see the appendix for additional training details.984

For training, we synthesized a dataset of text-985

relation pairs using the TEKGEN dataset (Agarwal986

et al., 2020), a large-scale text-triplets dataset cre-987

ated by aligning Wikidata triplets to Wikipedia text.988

The training dataset comprised 37,500 pairs, evenly989

divided between positive and negative samples. We990

adopted an online open-source implementation and 991

hyperparameter configurations for training. 992

The performance of the fine-tuned schema re- 993

triever was assessed on the test splits of WebNLG, 994

REBEL, and Wiki-NRE datasets. The recall@10 995

scores on these datasets were 0.823, 0.663, and 996

0.818, respectively, indicating the effectiveness of 997

the retriever across different knowledge graph con- 998

texts. 999

A.4 Details of Refinement Hint 1000

The refinement hint consists of candidate entities 1001

and candidate relations. This section details the 1002

obtainment of them and how they are used to im- 1003

prove the OIE performance. We will carry on using 1004

the example used in Section 3: “Alan Shepard was 1005

born on Nov 18, 1923 and selected by NASA in 1006

1959. He was a member of the Apollo 14 crew” 1007

and the triplets extracted by EDC in the first iter- 1008

ation are [’Alan Shepard’, ‘birthDate’, ‘Nov 18, 1009

1923’], [’Alan Shepard’, ’mission’, ’Apollo 14’]. 1010

A.4.1 Obtaining Candidate Entities 1011

The candidate entities come from two sources: 1012

• Entities extracted by EDC from the previous 1013

iteration, i.e. [‘Alan Shepard’, ‘Nov 18, 1014

1923’, ‘Apollo 14’] 1015

• Entities extracted from the text by prompting 1016

the LLM to perform an entity extraction task, 1017

similar to the triplet extraction task. 1018

Given a piece of text, extract a list of enti-
ties from it.
Here are some examples:
Example 1:
Text: The 17068.8 millimeter long ALCO
RS-3 has a diesel-electric transmission.
Entities: [’ALCO RS-3’, ’Diesel-electric
transmission’, ’17068.8 (millimetres)’]
...
Now please extract entities from the follow-
ing text: Alan Shepard was born on Nov 18,
1923 and selected by NASA in 1959. He
was a member of the Apollo 14 crew.

1019

and the resultant entities are [‘Alan Shepard’, 1020

‘Nov 18, 1923’, ‘NASA’, ‘1959’, ‘Apollo 1021

14’] 1022

The entities are then merged together as the can- 1023

didate entities. 1024
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A.4.2 Obtaining Candidate Relations1025

The candidate relations also come from two1026

sources:1027

• Relations extracted by EDC from the previous1028

iteration, i.e. [‘birthDate’, ‘mission’]1029

• Relations extracted by the schema retriever,1030

by calculating the relevance score between1031

the input text and the relations in the schema.1032

The top 5 retrieved relations in this case are1033

[‘birthDate’, , ‘selectedByNasa’, ‘mission’,1034

‘draftPick’, ‘occupation’].1035

The relations and their corresponding definitions1036

are then merged together as the candidate relations.1037

It is to be noted that, similar to other RAG-based1038

methods, there is a chance that the retriever may1039

retrieve irrelevant information. In this case, the re-1040

lation definitions can come in handy as it provides1041

more information for the LLMs to decide whether1042

the relation is a valid one with respect to the text or1043

not.1044

A.4.3 Usage of Hint for Refined OIE1045

The refinement hint is then included in the prompt1046

appropriately to instruct the LLMs to consider (but1047

is not limited to) the candidate entities and candi-1048

date relations:1049

Given a piece of text, extract relational triplets in
the form of [Subject, Relation, Object] from it.
Here are some examples:
Example 1:
Text: The 17068.8 millimeter long ALCO RS-3
has a diesel-electric transmission.
Entities: [’ALCO RS-3’, ’Diesel-electric transmis-
sion’, ’17068.8 (millimetres)’]
Triplets: [[’ALCO RS-3’, ’powerType’, ’Diesel-
electric transmission’], [’ALCO RS-3’, ’length’,
’17068.8 (millimetres)’]]
...
Now please extract triplets from the following
text: Alan Shepard was born on Nov 18, 1923
and selected by NASA in 1959. He was a member
of the Apollo 14 crew. Entities: [‘Alan Shepard’,
‘Nov 18, 1923’, ‘NASA’, ‘1959’, ‘Apollo 14’]
Here are some potential relations and their de-
scriptions you may look out for during extraction:
1. birthDate: The subject entity was born on the
date specified by the object entity.
2. mission: The subject entity participated in the
event or operation specified by the object entity.
3. selectedByNasa: The subject entity was se-
lected by NASA in the year specified by the object
entity.
...

1050

The extracted triplets by the refined OIE1051

are:[’Alan Shepard’, ‘birthDate’, ‘Nov 18,1052

Figure 3: An example screenshot of the questionnaire
including the instructions given to the annotators.

1923’], [’Alan Shepard’, ’mission’, ’Apollo 14’], 1053

[’Alan Shepard’, ’selectedByNasa’, ’1959’]. It 1054

successfully recovers the subtle and fine-grained 1055

relation ‘selectedByNasa’ that would have been 1056

missed without using the hint. Also, the semanti- 1057

cally rich descriptions help the LLM avoid exces- 1058

sively extracting noisy relations retrieved by the 1059

schema retriever. 1060

We found it important to include the entities 1061

from both sources, i.e. extractions from the last 1062

round and discovered by a separate module (entity 1063

extraction or schema retriever). The significance 1064

of the schema retriever is already shown in the 1065

ablation study in Sec 4.2.1. 1066

B Annotation Instruction 1067

An example screenshot is provided in Figure 3 1068

to illustrate the format of questionnaires and in- 1069

structions the annotators are given. The purpose 1070

of collection of the data was communicated to the 1071

annotators verbally. 1072

C Detailed Results of Target Alignment 1073

C.1 Complete Results 1074

The complete results of EDC and EDC+R on 1075

WebNLG, REBEL and Wiki-NRE are summarized 1076

in Table 3, Table 4 and Table 5 respectively. EDC 1077

performs better than or comparable to state-of-the- 1078

art baseline models in terms of all metrics (Preci- 1079

sion, Recall, and F1) in all criteria (Partial, Strict, 1080

and Exact) and EDC+R is able to consistently im- 1081

prove upon this in all aspects as well. These re- 1082
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sults more comprehensively demonstrate the per-1083

formance of EDC and EDC+R.1084

C.2 Effect of More Refinement Iterations1085

Table 6 shows the result of an extra iteration of1086

refinement with EDC on all datasets. Although1087

further refinement improves the results in a stable1088

manner, we observe diminishing returns and hence,1089

only report one iteration in the main results.1090

C.3 Ablation Study on Last-Round1091

Extractions1092

Table 7 shows the result of ablating the relations1093

and entities from the last round’s extractions from1094

the refinement hint. It shows the importance of1095

incorporating them, i.e., the importance of perform-1096

ing the refinement in an iterative manner. Merging1097

the two sources led to better coverage of the enti-1098

ties and relations in the text, resulting in better and1099

more stable improvement KGC.1100

C.4 Discussion on KGC Dataset Annotations1101

As stated in Section 4.2, we observe that EDC1102

is penalized by the scorer on Rebel and Wiki-1103

NRE datasets due to incomplete annotations. This1104

echoes the previous finding in (Wadhwa et al.,1105

2023; Han et al., 2023) that LLMs can often extract1106

correct results that are missing in the annotations,1107

which results in overly pessimistic evaluations. As1108

shown by Table 8, EDC tends to extract signif-1109

icantly more triplets compared to the reference1110

annotations and the baseline GenIE. Furthermore,1111

as shown from the manual evaluation in Table 2,1112

many of these triplets are indeed meaningful and1113

correct with respect to the input text. Regardless,1114

despite the automatic evaluation result on EDC1115

being overly pessimistic, it still exceeds the base-1116

line by a large margin and the actual performance1117

may be even larger considering the difference in1118

the number of triplets extracted.1119

D Additional Experiments on Novel1120

Fictional Dataset1121

Since the tested datasets are already from several1122

years ago and the training set of the LLMs used1123

are not known, there is a risk the LLMs have al-1124

ready been trained on the datasets. To address this1125

concern, we create a novel small-scale dataset (501126

entries) of fictional entities and information, e.g.1127

“Evergreen University was where Emily Johnson re-1128

ceived her degree in Biology” and annotated them1129

using the schema of Wiki-NRE. As illustrated by1130

the results in Table 9, EDC and EDC+R still obtain 1131

very strong performance superior to the baseline 1132

GenIE model, showing that the performance cannot 1133

be trivially explained by data leakage. 1134

E Comparison against previous 1135

LLM-based approaches 1136

Although this is not the intended use scenario for 1137

EDC, we include these experimental results for a 1138

more comprehensive evaluation to compare against 1139

existing LLM-based methods. We conduct exper- 1140

iments on three datasets, CoNLL04 (4 relation 1141

types) (Roth and Yih, 2004), SciERC (7 relation 1142

types) (Luan et al., 2018) and our sub-sampled ver- 1143

sion of Wiki-NRE (45 relation types), which is 1144

the only dataset we use in our main experiments 1145

that can fit in the context window. To ensure com- 1146

parison fairness, we use GPT-3.5-turbo for all the 1147

compared methods. 1148

As illustrated by the results in Table 10, when the 1149

relation number is small (CONLL and SciERC), 1150

EDC alone may not be superior to the baseline 1151

methods due to not incorporating the schema in 1152

the prompt. However, through refinement, EDC+R 1153

is able to achieve significantly better results. This 1154

may be attributed to the usage of the semantically 1155

rich relation descriptions in the refinement step. 1156

Specifically, it helps correct two types of errors 1157

that may occur during extraction: 1. the Definition 1158

step helps disambiguate homonyms, e.g., the word 1159

"follows" has two different meanings for "John 1160

follows Taoism" v.s. "John follows Mary". EDC 1161

changes the "follows" in "John follows Taoism" to 1162

"adheres to". 2. Using the relation definitions, we 1163

find the Refinement step corrects head-tail relation 1164

errors, e.g., for a relation "father", it is unclear if the 1165

subject or the object is the father, and the definition 1166

prevents inconsistent use. This error-correcting 1167

effect was not possible in previous methods. 1168

When tested on Wiki-NRE, which has a 1169

moderately-sized schema, EDC already signifi- 1170

cantly outperforms the baseline methods, poten- 1171

tially due to the confusion of the LLMs when deal- 1172

ing with long context (Liu et al., 2024). Further- 1173

more, we observe that ChatIE and CodeKGC may 1174

still output out-of-schema relation words although 1175

the entire schema is provided in the prompt, echo- 1176

ing the previous findings (Wadhwa et al., 2023). 1177
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Table 3: Complete results of EDC and EDC+R on WebNLG dataset against the baseline REGEN (Precision, Recall,
F1 with ‘Partial’, ‘Strict’ and ‘Exact’ criteria). EDC+R only performs 1 iteration of refinement. The best results are
bolded.

Partial Strict Exact
Method LLM for OIE Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4 0.776 0.796 0.783 0.729 0.741 0.733 0.751 0.765 0.756
EDC GPT-3.5 0.739 0.760 0.746 0.684 0.697 0.688 0.708 0.722 0.713

Mistral-7b 0.723 0.739 0.728 0.668 0.679 0.672 0.692 0.703 0.696
GPT-4 0.814 0.831 0.820 0.782 0.794 0.786 0.796 0.808 0.800

EDC+R GPT-3.5 0.788 0.806 0.794 0.749 0.761 0.753 0.768 0.781 0.772
Mistral-7b 0.756 0.775 0.762 0.716 0.727 0.720 0.735 0.747 0.739

Baseline REGEN 0.755 0.788 0.767 0.713 0.735 0.720 0.714 0.738 0.723

Table 4: Complete results of EDC and EDC+R on REBEL dataset against the baseline REGEN (Precision, Recall,
F1 with ‘Partial’, ‘Strict’, and ‘Exact’ criteria). EDC+R only performs 1 iteration of refinement. The best results are
bolded.

Partial Strict Exact
Method LLM for OIE Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4 0.543 0.552 0.546 0.498 0.503 0.500 0.511 0.517 0.514
EDC GPT-3.5 0.503 0.512 0.506 0.448 0.453 0.449 0.471 0.476 0.473

Mistral-7b 0.512 0.523 0.516 0.450 0.457 0.453 0.481 0.488 0.483
GPT-4 0.599 0.606 0.601 0.557 0.561 0.559 0.572 0.576 0.574

EDC+R GPT-3.5 0.556 0.565 0.559 0.513 0.519 0.516 0.527 0.533 0.529
Mistral-7b 0.525 0.550 0.531 0.461 0.462 0.462 0.506 0.511 0.505

Baseline GENIE 0.381 0.391 0.385 0.353 0.361 0.356 0.362 0.369 0.364

Table 5: Complete results of EDC and EDC+R on Wiki-NRE dataset against the baseline REGEN (Precision, Recall,
F1 with ‘Partial’, ‘Strict’, and ‘Exact’ criteria). EDC+R only performs 1 iteration of refinement. The best results are
bolded.

Partial Strict Exact
Method LLM for OIE Precision Recall F1 Precision Recall F1 Precision Recall F1

GPT-4 0.682 0.686 0.683 0.675 0.679 0.677 0.676 0.680 0.678
EDC GPT-3.5 0.645 0.651 0.647 0.636 0.640 0.638 0.638 0.643 0.640

Mistral-7b 0.644 0.650 0.647 0.636 0.640 0.637 0.637 0.641 0.639
GPT-4 0.712 0.715 0.713 0.708 0.710 0.709 0.708 0.711 0.709

EDC+R GPT-3.5 0.691 0.696 0.693 0.684 0.688 0.685 0.685 0.689 0.687
Mistral-7b 0.661 0.667 0.663 0.647 0.652 0.649 0.656 0.661 0.658

Baseline GENIE 0.482 0.486 0.484 0.462 0.464 0.463 0.477 0.479 0.478

Table 6: Results (F1 scores with all criteria) of further iterative refinement, the LLM used for OIE is GPT-3.5-turbo.
EDC+2xR is EDC with 2 iterations of refinement.

WebNLG REBEL Wiki-NRE
Method Partial Strict Exact Partial Strict Exact Partial Strict Exact
EDC+2xR 0.797 0.761 0.775 0.564 0.521 0.535 0.697 0.689 0.660
EDC+R 0.794 0.753 0.772 0.559 0.516 0.529 0.693 0.685 0.657
EDC 0.746 0.688 0.713 0.506 0.449 0.473 0.644 0.634 0.637

Table 7: Results (F1 scores with all criteria) of ablating the entities and relations extracted from the last round from
the refinement hint, the LLM used for OIE is GPT-3.5-turbo. EDC+R-lastround is EDC with refinement but entities
and relations extracted from the last round are removed from the refinement hint.

WebNLG REBEL Wiki-NRE
Method Partial Strict Exact Partial Strict Exact Partial Strict Exact
EDC+R 0.794 0.753 0.772 0.559 0.516 0.529 0.693 0.685 0.657
EDC+R-lastround 0.748 0.698 0.720 0.534 0.485 0.505 0.634 0.622 0.625
EDC 0.746 0.688 0.713 0.506 0.449 0.473 0.644 0.634 0.637
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Table 8: The average number of triplets extracted per sentence on all three datasets. The baseline model for WebNLG
is REGEN while the baseline for Rebel and Wiki-NRE is GENIE. Numbers in the brackets are the difference from
the reference annotations.

LLM for OIE WebNLG REBEL Wiki-NRE
GPT-4 3.47(+0.04) 5.11(+1.11) 3.49(+0.63)
GPT-3.5 3.44(+0.01) 5.01(+1.01) 3.49(+0.63)
Mistral7b 3.45+(0.02) 4.68(+0.68) 3.75(+0.89)
Baseline - 2.20(-1.80) 3.08(+0.22)
Reference 3.43 4.00 2.86

Table 9: Complete results of EDC and EDC+R on the novel fictional dataset against the baseline GenIE (Precision,
Recall, F1 with ‘Partial’, ‘Strict’ and ‘Exact’ criteria). EDC+R only performs 1 iteration of refinement. The best
results are bolded. The LLM used for OIE is GPT-3.5-turbo.

Partial Strict Exact
Method Precision Recall F1 Precision Recall F1 Precision Recall F1
EDC 0.731 0.771 0.751 0.687 0.704 0.691 0.702 0.720 0.707
EDC+R 0.761 0.782 0.767 0.733 0.750 0.738 0.733 0.750 0.738
GenIE 0.521 0.547 0.530 0.426 0.443 0.432 0.467 0.483 0.472

Table 10: Complete results of EDC, EDC+R on CONLL, SciERC and Wiki-NRE datasets against the previous
LLM-based approaches, CodeKGC and ChatIE. The LLMs used here are GPT-3.5-turbo to ensure comparison
fairness. The best results are bolded.

Partial Strict Exact
Dataset Method Precision Recall F1 Precision Recall F1 Precision Recall F1

EDC 0.536 0.552 0.543 0.481 0.491 0.485 0.503 0.515 0.509
CONLL EDC+R 0.580 0.593 0.585 0.514 0.522 0.517 0.549 0.558 0.552

CodeKGC 0.542 0.55 0.545 0.503 0.506 0.504 0.542 0.546 0.543
ChatIE 0.463 0.477 0.468 0.360 0.366 0.363 0.418 0.427 0.421
EDC 0.389 0.408 0.395 0.288 0.301 0.292 0.352 0.365 0.357

SciERC EDC+R 0.447 0.461 0.451 0.340 0.349 0.343 0.406 0.416 0.410
CodeKGC 0.389 0.398 0.392 0.277 0.283 0.279 0.346 0.353 0.349
ChatIE 0.351 0.367 0.357 0.212 0.221 0.215 0.294 0.302 0.297
EDC 0.645 0.651 0.647 0.636 0.640 0.638 0.638 0.643 0.640

Wiki-NRE EDC+R 0.691 0.696 0.693 0.684 0.688 0.685 0.685 0.689 0.687
CodeKGC 0.611 0.614 0.612 0.605 0.607 0.606 0.607 0.609 0.608
ChatIE 0.569 0.574 0.571 0.541 0.545 0.543 0.553 0.557 0.555
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