

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VOWELPROMPT: HEARING SPEECH EMOTIONS FROM TEXT VIA VOWEL-LEVEL PROSODIC AUGMENTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Emotion recognition in speech presents a complex multimodal challenge, requiring comprehension of both linguistic content and vocal expressivity, particularly prosodic features such as fundamental frequency, intensity, and temporal dynamics. Although large language models (LLMs) have shown promise in reasoning over textual transcriptions for emotion recognition, they typically neglect fine-grained prosodic information, limiting their effectiveness and interpretability. In this work, we propose VowelPrompt, a linguistically grounded framework that augments LLM-based emotion recognition with interpretable, fine-grained vowel-level prosodic cues. Drawing on phonetic evidence that vowels serve as primary carriers of affective prosody, VowelPrompt extracts pitch-, energy-, and duration-based descriptors from time-aligned vowel segments, and converts these features into natural language descriptions for better interpretability. Such a design enables LLMs to jointly reason over lexical semantics and fine-grained prosodic variation. Moreover, we adopt a two-stage adaptation procedure comprising supervised fine-tuning (SFT) followed by Reinforcement Learning with Verifiable Reward (RLVR), implemented via Group Relative Policy Optimization (GRPO), to enhance reasoning capability, enforce structured output adherence, and improve generalization across domains and speaker variations. Extensive evaluations across diverse benchmark datasets demonstrate that VowelPrompt consistently outperforms state-of-the-art emotion recognition methods under zero-shot, fine-tuned, cross-domain, and cross-linguistic conditions, while enabling the generation of interpretable explanations that are jointly grounded in contextual semantics and fine-grained prosodic structure.

1 INTRODUCTION

Paralinguistic speech understanding requires modeling not only what is said but how it is said with prosodic patterns in fundamental frequency (F_0), intensity (RMS energy), timing (duration, rhythm, pause), and voice quality. Speech emotion recognition (SER) is commonly framed either with discrete categories, such as, angry, sad, happy, neutral, or with dimensional labels in the valence–arousal–dominance space, and evaluated on acted and naturalistic corpora (Busso et al., 2008; Poria et al., 2019; Cao et al., 2014; Livingstone & Russo, 2018; Russell, 1980; Bradley & Lang, 1994). Classic SER pipelines extract engineered low-level descriptors (LLDs) and functionals via OPENSMILE (Eyben et al., 2010) and standardized sets (GeMAPS/eGeMAPS) (Eyben et al., 2015), chosen specifically for interpretability in paralinguistics. Recent advances (Pepino et al., 2021; Yang et al., 2021) are driven by self-supervised speech representation learning methods, such as wav2vec 2.0 (Chen et al., 2022), HuBERT (Hsu et al., 2021), and WavLM (Chen et al., 2022), which provide robust utterance representations and often set strong baselines on SER and SUPERB-style evaluations. While effective, these embeddings are opaque and require an audio encoder at inference time, which complicates interpretability and deployment in text-only settings.

Large language models (LLMs) have introduced two complementary paths for spoken affect. Audio language LLMs such as AudioPaLM (Rubenstein et al., 2023), SALMONN (Tang et al., 2024), Qwen2-Audio (Chu et al., 2024), and task-specific Emotion-LLaMA (Cheng et al., 2024), integrate continuous acoustic encoders with LLM backbones to reason directly over speech (Rubenstein et al., 2023). In parallel, text-only prompting augments ASR transcripts with natural-language descriptions of prosody (e.g., “spoken loudly with rising intonation”), enabling LLMs to exploit affective cues

054 without consuming raw audio (Wu et al., 2025). The latter is lightweight and interpretable but
 055 typically uses coarse, utterance-level descriptors that can blur fine-grained cues.
 056

057 Phonetic evidence suggests that phoneme classes contribute unequally to affective cues. Vowels,
 058 voiced nuclei with relatively stable F_0 and energy, often carry salient intonation patterns; syllable
 059 nuclei have also been used to localize prosodic variation (Ringeval & Chetouani, 2008). At the
 060 same time, class-aggregated analyses indicate that consonantal regions can encode complementary
 061 or even stronger spectral evidence for emotion in some settings (Bitouk et al., 2010). This moti-
 062 vates a segment-centric representation that emphasizes vowel nuclei to capture fine-grained prosodic
 063 structure, while preserving the full lexical context.
 064

065 We propose VowelPrompt, a simple yet effective interpretable augmentation method for LLM-based
 066 speech emotion recognition. Given an utterance and its transcript, the method first obtains time-
 067 aligned vowel segments through a standard forced-alignment pipeline. It then extracts vowel-level
 068 low-level descriptors, including F_0 level and slope, F_0 variability, intensity level and variability,
 069 and segment duration, applying both speaker and vowel-type normalization. These values are dis-
 070 cretized via quantile binning and converted into concise natural-language prosodic descriptors such
 071 as “high F_0 , rising, loud, lengthened.” The resulting descriptors are appended to the transcript so that
 072 a text-only LLM can jointly reason over lexical content and segment-level prosody. Model adapta-
 073 tion follows a two-stage regimen, beginning with supervised fine-tuning (SFT) and continuing with
 074 Reinforcement Learning with Verifiable Reward (RLVR) using Group Relative Policy Optimization
 075 (GRPO) to improve reasoning quality, output-format adherence, and robustness while maintaining
 076 proximity to the SFT reference (McAuliffe et al., 2017; DeepSeek-AI et al., 2025).
 077

Contributions. The contributions of this paper are summarized as follows.

078 First, leveraging well-established phonetic evidence, VowelPrompt extracts vowel-level prosodic
 079 descriptors, including pitch level and contour, intensity, and temporal duration, from time-aligned
 080 segments obtained via forced alignment, applies both speaker- and vowel-type normalization, and
 081 discretizes these features into natural language descriptions. These interpretable descriptors are ap-
 082 pended to transcripts, enabling LLMs to jointly reason over lexical semantics and localized prosodic
 083 variation, in contrast to opaque acoustic embeddings.
 084

085 Second, to adapt LLMs to this enriched input, we design a two-stage training pipeline that begins
 086 with supervised fine-tuning (SFT) for cold-start alignment and continues with Reinforcement Learn-
 087 ing with Verifiable Rewards (RLVR) using Group Relative Policy Optimization (GRPO), which
 088 improves structural adherence, robustness, and reasoning quality.
 089

090 Third, extensive experiments on five benchmark datasets, including IEMOCAP (Busso et al., 2008),
 091 MELD (Poria et al., 2019), CaFE (Gournay et al., 2018), EmoDB (Burkhardt et al., 2005), and
 092 ASVP-ESD (Tientcheu Touko et al., 2021), demonstrate that VowelPrompt consistently surpasses
 093 competitive baselines across zero-shot, few-shot, fine-tuned, cross-domain, and multilingual con-
 094 ditions, while enabling interpretable and verifiable emotion reasoning grounded in both linguistic and
 095 prosodic information.
 096

097 2 RELATED WORKS

098 **Speech Emotion Recognition and Paralinguistic Analysis.** Speech emotion recognition (SER)
 099 aims to infer a speaker’s affective state from acoustic signals, often leveraging prosodic, spectral, and
 100 linguistic features. Early SER systems relied heavily on low-level descriptors such as fundamental
 101 frequency (F0), energy, and temporal statistics, extracted via toolkits like openSMILE (Eyben et al.,
 102 2010). The INTERSPEECH Computational Paralinguistics Challenge series established standard-
 103 ized feature sets such as the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) (Eyben et al.,
 104 2015), which provide interpretable descriptors covering pitch, loudness, and voice quality. Deep
 105 learning methods have since outperformed handcrafted features in performance, with wav2vec 2.0-
 106 based embeddings (Pepino et al., 2021) and contextualized transformer encoders such as EmoBERTa
 107 (Kim & Provost, 2021) achieving state-of-the-art results. However, these high-dimensional repre-
 108 sentations are difficult to interpret, making it challenging to explain or control model predictions in
 109 sensitive applications.
 110

111 Recent advances integrate language models with acoustic or visual modalities to improve emotion
 112 reasoning. Prompt-based augmentation has been explored, where prosodic descriptions (e.g., “spo-
 113

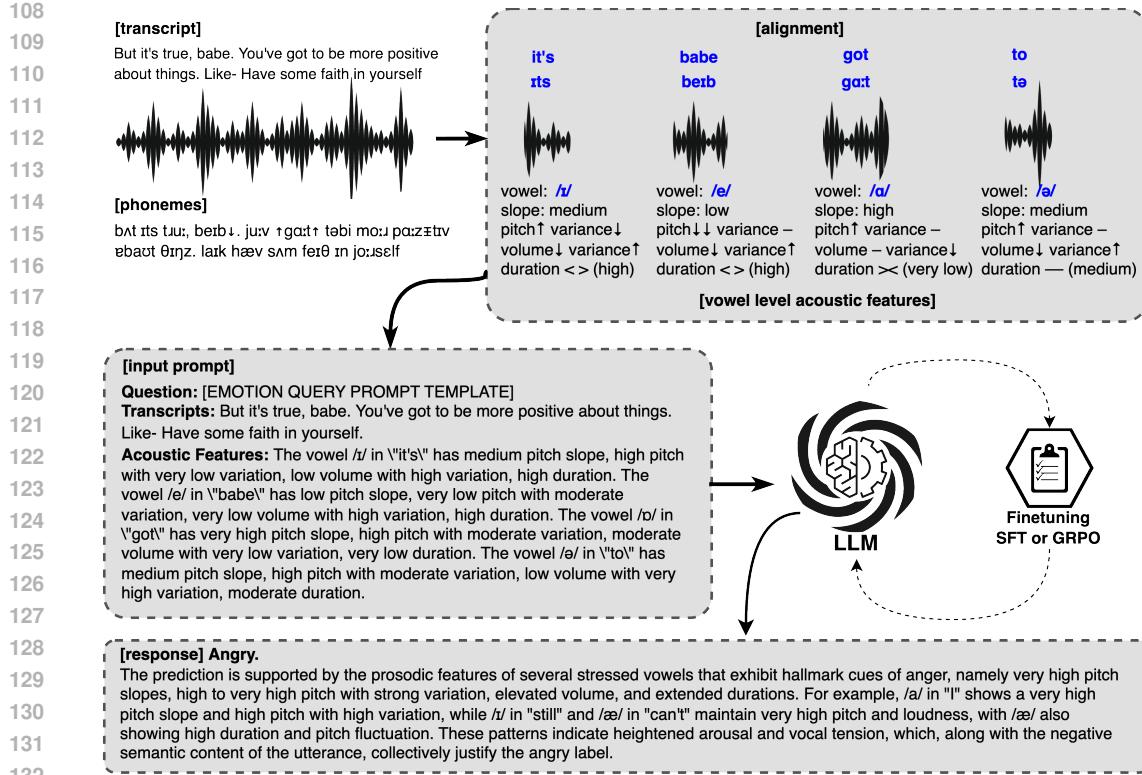


Figure 1: An example of the proposed VowelPrompt framework for the emotion recognition task.

ken loudly with rising intonation”) are prepended to transcripts to guide large language models (Wu et al., 2025). This approach yields measurable improvements in zero-shot emotion recognition, particularly in clean speech settings. At the architectural level, multimodal models such as AudioPaLM (Rubenstein et al., 2023) and Emotion-LLaMA (Cheng et al., 2024) fuse audio embeddings directly into transformer-based LLMs, enabling joint reasoning over text and audio inputs. While effective, these systems typically rely on audio embeddings learned through black-box models, which limit their interpretability. Our work bridges this gap by combining interpretable vowel-level acoustic features with textual prompting, enabling accuracy gains while preserving human-readable intermediate representations.

Vowel-Centric Prosody in Emotional Speech. Phonetic studies consistently highlight vowels as primary carriers of emotional prosody. Vowels, being voiced and acoustically stable, exhibit clear correlates of affect such as pitch level, contour, intensity, and duration (Ringeval & Chetouani, 2008). Ringeval & Chetouani (2008) have demonstrated that vowel-based acoustic features improve emotion classification compared to utterance-level statistics, while Schuller et al. (2009) have found that class-level spectral features for vowels and consonants can capture complementary emotional cues. Subsequent work in articulatory phonetics found that emotional states systematically shift vowel articulation and formant positions, influencing both perceived tone and loudness (Shah & Busso, 2019). Despite these findings, most modern SER pipelines extract features uniformly across all phonemes, potentially diluting the discriminative power of vowel-specific prosodic cues.

Vowels, as voiced phonemes characterized by a relatively open vocal tract configuration, dominate both the acoustic energy and temporal duration of spoken utterances. They convey a substantial portion of prosodic information, including pitch (fundamental frequency), intensity (perceived loudness), and temporal patterns (duration and rhythm), which are critical to paralinguistic expression and emotional communication (Crystal, 1969; Mozziconacci, 2002). Extensive phonetic research has shown that vowels function as primary carriers of intonation contours and emotional coloration, owing to their sustained voicing and spectral stability. Building on these insights, we construct a structured, interpretable intermediate representation that focuses on vowel-centric acoustic features as a bridge between raw audio signals and downstream language models.

162 **3 METHODS**

164 We propose VowelPrompt, a unified framework that enriches LLMs with interpretable vowel-level
 165 prosodic cues for enhanced speech emotion recognition. The central premise is that vowels, which
 166 carry the majority of the energy and prosodic variation of the speech signal, serve as fine-grained
 167 indicators. To exploit this property, VowelPrompt first derives discrete, human-interpretable descrip-
 168 tors of pitch, intensity, and temporal dynamics from individual vowel segments, isolating localized
 169 acoustic events that often correspond to emotionally salient moments in speech. These descriptors
 170 are converted into natural language and integrated directly into the input prompts alongside the tex-
 171 tual transcript, enabling the LLM to reason jointly over lexical semantics and prosodic structure.
 172 The model is then adapted to the emotion recognition task via a two-phase training regime. The su-
 173 pervised fine-tuning phase aligns the LLM’s generation behavior to produce accurate, well-reasoned
 174 emotion predictions conditioned on both textual and prosodic information, while the reinforcement
 175 learning phase refines the LLM’s reasoning quality, adherence to output format, and robustness
 176 to speaker and context variability. This design bridges the interpretability of phonetic-level anal-
 177 ysis with the reasoning capabilities of modern LLMs, yielding a system that can explicitly link
 178 acoustic–prosodic patterns to emotion categories in an interpretable manner. Figure 1 illustrates an
 179 example of the proposed VowelPrompt for the emotion recognition task.

180 **3.1 VOWEL-LEVEL ACOUSTIC FEATURE EXTRACTION**

181 **Forced Alignment and Vowel Selection.** Given an utterance and its orthographic transcript, we
 182 employ phoneme-level forced alignment to obtain precise temporal boundaries for each phoneme.
 183 Vowel segments are then extracted based on a predefined inventory derived from the International
 184 Phonetic Alphabet (IPA), encompassing both monophthongs and diphthongs. This selective filtering
 185 excludes consonantal segments, isolating the voiced, resonance-rich nuclei that are most informa-
 186 tive for prosodic and affective analysis. By anchoring our vowel selection to IPA standards, we
 187 ensure cross-linguistic consistency and compatibility with multilingual phonetic analysis pipelines
 188 for languages including English, German, and French.

189 **Low-Level Descriptor Extraction.** For each vowel segment, we compute a compact set of low-level
 190 descriptors (LLDs) that are both human-interpretable and suitable for integration into large language
 191 models, as presented in Table 1. The LLDs used as the acoustic features include (1) **average pitch**
 192 (F_0) and **pitch slope**, which jointly capture the segment’s intonation level and rising/falling trends;
 193 (2) **pitch variation**, defined as the within-segment standard deviation of F_0 , indicating the degree
 194 of dynamic modulation; (3) **average intensity** and **intensity variation**, which reflect loudness and
 195 its fluctuation; and (4) **duration**, representing the temporal extent of the vowel and conveying infor-
 196 mation about speech rate and emphasis. Pitch and intensity features are computed using Praat-style
 197 signal processing algorithms (Boersma & Weenink, 2001), configured with speaker-adaptive floor
 198 and ceiling parameters to account for individual vocal characteristics, while segment durations are
 199 derived directly from the phoneme-level forced alignment boundaries.

200 Table 1: Vowel-level low-level descriptors (LLDs) used in VowelPrompt for prosodic augmentation.

Category	Feature	Interpretation
Pitch	Pitch Level (Mean F_0)	Average fundamental frequency of the vowel
	Pitch Slope	Rising or falling trend in pitch across the segment
	Pitch Variation	Standard deviation of F_0 , indicating dynamic range
Intensity	Intensity Level	Average loudness (RMS energy) of the vowel
	Intensity Variation	Fluctuation in loudness during the vowel segment
Temporal	Duration	Length of the vowel segment in seconds

201 To ensure comparability across speakers and vowel categories, we employ a two-stage normal-
 202 ization. First, we apply speaker-level z -normalization to control for individual voice characteris-
 203 tics. Second, vowel-type normalization is applied to mitigate systematic differences among vowel
 204 classes. The normalized continuous values are then discretized via quantile-based binning into K
 205 ordinal categories (e.g., “very low,” “low,” “moderate,” “high,” “very high”), with K selected to
 206 balance interpretability and resolution.

207 **Natural Language Conversion.** The discretized features are deterministically mapped into concise
 208 textual descriptors for each vowel segment. This process is parameter-free, ensuring transparency

216

217 **Transcripts:** Speaker_0: "You started complaining about not being able to find a job the first day you went out and didn't find
 218 a job. I'm not saying like and not trying to you know put you down or anything, it's just that-\\"t Speaker_1: \"That's really hard
 219 to hear.\\"t Speaker_0: \"But it's true, babe. You've got to be more positive about things. Like- Have some faith in yourself.\\"

220

221 **Acoustic Features:** The vowel /i/ in "it's" has medium pitch slope, high pitch with very low variation, low volume with high
 222 variation, high duration. The vowel /e/ in "babe" has low pitch slope, very low pitch with moderate variation, very low
 223 volume with high variation, high duration. The vowel /o/ in "got" has very high pitch slope, high pitch with moderate
 224 variation, moderate volume with very low variation, very low duration. The vowel /ə/ in "to" has medium pitch slope, high
 225 pitch with moderate variation, low volume with very high variation, moderate duration.

226

227 **Question:** Please select the emotional label of <Speaker_0:>"But it's true, babe. You've got to be more positive about things.
 228 Like- Have some faith in yourself.\>" based on both the conversation transcript and the acoustic features. Please output ONLY
 229 ONE label from <happy, sad, neutral, angry, excited, frustrated>. Return the reasoning process in <think> </think> and final
 230 emotion in <answer></answer> tags

231

232 **Response:** <think>The repeated urging to "be more positive" and "have some faith" implies an emotional buildup and
 233 suggests that Speaker_0 is not simply offering support, but is also reacting to prolonged negativity with a degree of emotional
 234 strain. This is mirrored in the acoustic features: vowels such as /o/ in "got" and /ə/ in "some" exhibit very high pitch slopes
 235 and variation, signaling emotional intensity and urgency; the vowel /i/ in "positive" shows high pitch variation and very long
 236 duration, suggesting a strong, emotionally charged emphasis. The overall vocal pattern, marked by intensity, uneven
 237 dynamics, and deliberate stress on emotionally salient words, aligns with a frustrated emotional state.</think>
 238 <answer>frustrated</answer>

239

240 Figure 2: Example of a prompt of VowelPrompt combining conversational context, target utterance,
 241 and vowel-level prosodic descriptors. The transcript provides lexical content, while each vowel in
 242 the target utterance is annotated with interpretable acoustic features, including pitch slope, pitch
 243 level and variation, intensity level and variation, and duration. These features are expressed in
 244 natural language and integrated into the input to guide the emotion inference by LLM. The example
 245 illustrates a frustration-labeled case from IEMOCAP, where prosodic patterns such as high pitch
 246 slope and extended vowel duration convey heightened emotional intensity.

247

248 and reproducibility. The resulting descriptors can be appended to transcripts. Compared to sentence-
 249 level acoustic summaries, vowel-level descriptors capture fine-grained, localized prosodic variation
 250 that often aligns with emotionally salient or emphasized words. This representation provides higher
 251 temporal resolution, direct interpretability for human analysts, and flexibility to serve as controllable
 252 units in expressive speech generation or style transfer.

253

254 3.2 FINE-TUNING LLM FOR EMOTION RECOGNITION WITH VOWEL-LEVEL ACOUSTIC 255 FEATURES

256

257 We adopt a two-stage fine-tuning pipeline to adapt a Large Language Model (LLM) for emotion
 258 recognition using the extracted vowel-level acoustic features described in Section 3.1. The first
 259 stage, supervised fine-tuning (SFT), serves as a cold-start adaptation, while the second stage, rein-
 260 forcement learning with verifiable rewards (RLVR), further refines reasoning accuracy and output
 261 structure. Figure 2 illustrates an example of VowelPrompt fine-tuned by SFT and RL for better
 262 reasoning over the context and acoustic features for emotion recognition.

263

264 **Supervised Fine-Tuning (SFT).** In the SFT stage, we augment each utterance's textual transcript
 265 with its corresponding vowel-level prosodic descriptors in natural language form, following a fixed
 266 prompt template. This augmentation explicitly grounds the LLM in acoustic cues, enabling it to
 267 reason over both lexical semantics and prosodic dynamics. To establish a cold-start alignment with
 268 the target task, we use only a small portion of the available training data, paired with gold reasoning
 269 traces automatically generated by a high-capacity text-only LLM such as GPT-4o (Hurst et al.,
 270 2024). These reasoning traces serve as reference outputs, allowing the target LLM to learn both
 271 the correct label and an interpretable reasoning process. We initialize from a pretrained instruction-
 272 tuned LLM and fine-tune with cross-entropy loss to maximize the likelihood of generating the
 273 reference reasoning and correct emotion label.

274

275 **Reinforcement Learning with Verifiable Reward (RLVR).** Following SFT, we finetune the LLM
 276 using Reinforcement Learning with Verifiable Reward (RLVR) (DeepSeek-AI et al., 2025), which
 277 jointly optimizes reasoning accuracy and adherence to a prescribed output format. Given an in-
 278 put prompt q containing both the transcript and its aligned prosodic feature descriptions, the policy
 279 model π_θ produces an output o consisting of two distinct components, including an explicit rea-
 280 soning trace enclosed within <think></think> tags, and a final predicted emotion enclosed

270 within `<answer></answer>` tags. Such an explicit separation enables independent, rule-based
 271 verification of both the reasoning process and the final prediction.
 272

273 To perform RLVR, we define a composite reward that integrates an accuracy-based term R_{acc} and a
 274 format-based term R_{format} :

$$275 \quad R(o, y) = R_{\text{acc}}(o, y) + R_{\text{format}}(o), \quad (1)$$

277 where y denotes the ground-truth emotion label. The accuracy reward R_{acc} is assigned a
 278 value of 1 if the predicted emotion in o exactly matches y , and 0 otherwise. The format re-
 279 ward R_{format} is assigned a value of 1 if o contains both a syntactically valid reasoning block
 280 (`<think>...</think>`) and a final answer block (`<answer>...</answer>`); otherwise,
 281 it is set to 0. Both components are deterministic and require no learned parameters, ensuring the
 282 verifiability of the reward signal.
 283

284 **Group Relative Policy Optimization.** We optimize the response generation policy using Group
 285 Relative Policy Optimization (GRPO), which encourages each candidate response to outperform the
 286 group average while maintaining diversity (DeepSeek-AI et al., 2025). To stabilize training and
 287 prevent drift from the supervised initialization, we add a KL penalty that constrains updates relative
 288 to the SFT reference model. This lightweight formulation enables verifiable reward optimization
 289 without requiring complex learned reward models.
 290

3.3 MULTILINGUAL EXTENSION WITH IPA-BASED VOWEL MAPPING

291 To extend VowelPrompt to multilingual SER, we adopt a language-agnostic framework grounded
 292 in the International Phonetic Alphabet (IPA) to unify vowel representations across languages. Such
 293 adaptation enables consistent extraction of vowel-level prosodic descriptors regardless of language-
 294 specific phoneme inventories or orthographic conventions.
 295

296 **Phoneme Alignment and IPA Normalization.** For each language, we employ a phoneme-level
 297 forced alignment tool capable of aligning speech to phonemic transcriptions in the target language.
 298 In our experiments, we use Montreal Forced Aligner (MFA) (McAuliffe et al., 2017), which sup-
 299 ports over 20 languages with pretrained acoustic and grapheme-to-phoneme (G2P) models. Aligned
 300 phonemes are then mapped into a shared set of IPA symbols to ensure phonetic comparability across
 301 languages. To control for cross-lingual variation in prosodic realization, we further perform normal-
 302 ization at the language level. For each of the languages considered in this paper, including English,
 303 German, and French, we compute global means and standard deviations for each prosodic feature
 304 and apply z -score normalization within that language.
 305

306 **Prompt Construction and Adaptation.** Once normalized and discretized, the resulting vowel-
 307 level descriptors are converted into natural language descriptions in English. The generated acoustic
 308 features are appended to the transcript. We use multilingual LLMs, such as GPT-4o (Hurst et al.,
 309 2024) and Qwen2-7B-Instruct (Yang et al., 2024), that natively support the input language. For SFT,
 310 we finetune these models using multilingual emotion datasets, preserving the same prompt structure
 311 and training objectives as described in Section 3.2.
 312

4 EXPERIMENTS

313 This section presents a rigorous empirical evaluation of VowelPrompt across five widely-used speech
 314 emotion recognition benchmarks under a range of experimental configurations. The dataset charac-
 315 teristics are summarized in Section 4.1. Section 4.2 examines zero-shot emotion recognition per-
 316 formance relative to existing prompting-based baselines, while Section 4.3 investigates the effec-
 317 tiveness of SFT and GRPO. The generalizability of VowelPrompt under domain shift is assessed in
 318 Section 4.4, and its applicability to multilingual emotion recognition is explored in Section 4.5. In
 319 the appendix, Section A.1 presents a feature-level ablation study to assess the individual contribu-
 320 tions of vowel-level prosodic descriptors, and Section A.2 analyzes the comparative performance of
 321 zero-shot and few-shot prompting. Section A.3 provides a direct comparison between VowelPrompt
 322 and a projection-based baseline incorporating the audio embeddings for emotion recognition with
 323 LLMs. In Section A.4, we perform a study on the number of quantization bins K used for dis-
 324 cretizing continuous vowel-level acoustic features. Section A.5 analyzes the influence of utterance
 325 duration on zero-shot recognition performance in MELD.
 326

324 4.1 DATASETS
325

326 We evaluate our method on five widely used speech emotion recognition (SER) benchmarks that
327 span acted, semi-acted, and naturalistic speech across multiple languages. The IEMOCAP cor-
328 pus (Busso et al., 2008) contains dyadic interactions between ten actors (five male, five female),
329 with utterances annotated for emotions including angry, happy, sad, neutral, and excited. The
330 MELD dataset (Poria et al., 2019) is derived from the TV series Friends, consisting of multi-
331 party conversations annotated with seven emotion categories in a multimodal setting. To assess
332 cross-lingual generalization, we further include three public benchmarks, including CaFE (Gournay
333 et al., 2018) in French, EmoDB (Burkhardt et al., 2005) in German, and the multilingual ASVP-
334 ESD (Tientcheu Touko et al., 2021), which covers 12 emotions across diverse speakers and recording
335 conditions. The statistics of all the datasets used are summarized in Table 2.

336 Table 2: Summary of emotion recognition datasets used in our experiments.

Dataset	Source	Language	#Emotions	#Speakers	#Utterances	#Hours
IEMOCAP (Busso et al., 2008)	Act	English	5	10	5531	7.0
MELD (Poria et al., 2019)	TV	English	7	304	13706	12.1
CaFE (Gournay et al., 2018)	Act	French	7	12	936	1.2
EmoDB (Burkhardt et al., 2005)	Act	German	7	10	535	0.5
ASVP-ESD (Tientcheu Touko et al., 2021)	Media	Mix	12	131	13964	18.0

344 4.2 ZERO-SHOT EMOTION RECOGNITION
345

346 We evaluate the proposed VowelPrompt approach in a zero-shot setting on the IEMOCAP and
347 MELD datasets, comparing it against two baselines, including a vanilla zero-shot prompt using only
348 transcripts, denoted as Zero-Shot Baseline, and SpeechCueLLM (Wu et al., 2025), which augments
349 transcripts with sentence-level prosodic descriptions. For each method, we evaluate two input con-
350 figurations: (i) Transcript, which utilizes solely the target utterance, and (ii) Transcript & Context,
351 which additionally incorporates preceding conversational turns to provide discourse-level informa-
352 tion. Performance is assessed using Unweighted Accuracy (UACC) and Weighted F1 (WF1), which
353 respectively quantify class-balanced recognition capability and overall classification effectiveness.

354 Table 3: Zero-shot performance on IEMOCAP and MELD. Results are reported as Unweighted
355 Accuracy / Weighted F1 (%). “Context” indicates inclusion of preceding conversational turns.

Method	Input	LLM	IEMOCAP		MELD	
			UACC	WF1	UACC	WF1
Zero-Shot Baseline	Transcript		43.38	41.03	61.15	60.92
SpeechCueLLM (Wu et al., 2025)	Transcript	GPT-4o	49.97	48.54	52.44	53.59
VowelPrompt (Ours)	Transcript		51.18	50.15	63.61	61.76
Zero-Shot Baseline	Transcript & Context		55.51	53.63	62.76	63.57
SpeechCueLLM (Wu et al., 2025)	Transcript & Context	GPT-4o	60.07	58.52	56.74	57.90
VowelPrompt (Ours)	Transcript & Context		62.26	60.74	64.34	64.17
Zero-Shot Baseline	Transcript		40.60	40.44	47.55	48.74
SpeechCueLLM (Wu et al., 2025)	Transcript	LLaMA-3-8B-Instruct	44.18	43.88	44.41	44.62
VowelPrompt (Ours)	Transcript		46.57	44.96	49.21	49.99
Zero-Shot Baseline	Transcript & Context		50.40	49.47	42.30	42.09
SpeechCueLLM (Wu et al., 2025)	Transcript & Context	LLaMA-3-8B-Instruct	52.63	53.85	43.49	42.59
VowelPrompt (Ours)	Transcript & Context		53.82	54.10	46.45	46.26

369 As shown in Table 3, VowelPrompt consistently outperforms both baselines across models and
370 datasets. On GPT-4o, VowelPrompt improves over the Zero-Shot Baseline by up to 7.80% UACC
371 and 7.11% WF1 on IEMOCAP, and by up to 2.19% UACC and 3.25% WF1 on MELD. Compared to
372 SpeechCueLLM, our method achieves gains in all settings, indicating that fine-grained vowel-level
373 prosodic cues are more effective than coarse sentence-level descriptions for emotion recognition
374 in large language models. The trend holds for LLaMA-3-8B-Instruct, despite its weaker overall
375 performance compared to GPT-4o. Even in this resource-constrained LLM, VowelPrompt yields
376 consistent improvements over both baselines, with gains of up to 3.64% UACC and 3.63% WF1.
377 These results demonstrate that VowelPrompt is a portable, model-agnostic prompting strategy that
378 can enhance zero-shot emotion recognition without task-specific fine-tuning.

378 4.3 LLM FINE-TUNING FOR EMOTION RECOGNITION
379

380 We further evaluate VowelPrompt in a supervised adaptation setting to examine whether vowel-level
381 prosodic augmentation yields benefits beyond zero-shot prompting. Experiments are conducted
382 on IEMOCAP and MELD with two instruction-tuned LLM backbones, which are LLaMA-3-8B-
383 Instruct (Dubey et al., 2024) and LLaMA-4-Scout-17B-16E-Instruct (Meta AI, 2025). For the SFT
384 setting, the reasoning is not incorporated into the training and inference processes for VowelPrompt
385 and the baseline methdos. For the SFT & GRPO setting, both models are adapted using LoRA-
386 based parameter-efficient fine-tuning on 20% of the training data, followed by GRPO as described
387 in Section 3.2. We use the official train/validation/test splits for each dataset, and all methods are
388 trained and evaluated on identical utterance–label pairs to ensure fair comparison. Similar to the set-
389 ings for the zero-shot experiments, we conduct comparisons across multiple input configurations.
390 The *Baseline* leverages only the transcript and preceding conversational turns without incorpo-
391 rating any prosodic information. InstructERC (Lei et al., 2023) applies instruction tuning to enhance
392 context-sensitive emotion recognition. SALMONN (Tang et al., 2024) integrates speech and lan-
393 guage modalities through multimodal alignment. SpeechCueLLM (Wu et al., 2025) augments the
394 transcript with sentence-level prosodic summaries. Finally, VowelPrompt enriches the input with
395 fine-grained, interpretable prosodic descriptors for each vowel segment, as described in Section 3.1.
396 Each method is evaluated under both SFT and SFT & GRPO regimes, enabling a systematic as-
397 sessment of the benefits of prosodic granularity, multimodal integration, and reinforcement-based
398 refinement.

399 Table 4: Weighted F1 (%) on IEMOCAP and MELD under SFT and SFT & GRPO settings with
400 different LLMs.

401 402 403 Method	404 405 406 407 LLaMA-3-8B-Instruct				408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 LLaMA-4-Scout-17B-16E-Instruct			
	420 421 SFT		422 423 424 425 426 427 428 429 430 431 SFT & GRPO		432 433 434 435 436 437 438 439 440 SFT		441 442 443 444 445 446 447 448 449 450 SFT & GRPO	
	IEMOCAP	MELD	IEMOCAP	MELD	IEMOCAP	MELD	IEMOCAP	MELD
Baseline	70.32	67.44	–	–	70.82	67.90	–	–
InstructERC (Lei et al., 2023)	71.65	67.25	71.32	66.96	71.75	68.15	71.52	67.35
SALMONN (Tang et al., 2024)	71.36	67.25	71.02	66.85	71.48	67.96	71.85	67.10
SpeechCueLLM (Wu et al., 2025)	71.74	67.07	71.55	67.10	72.02	68.02	72.18	67.96
VowelPrompt (Ours)	73.46	69.61	73.02	68.98	73.85	70.12	74.02	69.79

452 As shown in Table 4, VowelPrompt consistently outperforms all competing baselines across both
453 datasets and model scales. Under SFT, vowel-level augmentation yields absolute Weighted F1
454 improvements of up to 3.14% on IEMOCAP and 2.17% on MELD with LLaMA-3-8B-Instruct,
455 with comparable gains observed for the larger LLaMA-4-Scout model. The advantage remains af-
456 ter RLVR refinement, where VowelPrompt outperforms sentence-level prosodic descriptions by as
457 much as 1.47% on IEMOCAP and 1.88% on MELD. These results demonstrate that fine-grained,
458 interpretable vowel-centric features encode richer emotional cues than coarse prosodic summaries,
459 and that RLVR refinement can further capitalize on these cues to improve classification performance.

460 4.4 CROSS-DOMAIN EMOTION RECOGNITION

461 We further assess the robustness of VowelPrompt under domain shift through cross-domain eval-
462 uations, where models are trained on one dataset and directly tested on another without additional
463 adaptation. Specifically, we examine two transfer scenarios, which are from IEMOCAP to MELD,
464 and from MELD to IEMOCAP. The study evaluates whether VowelPrompt can capture emotional
465 cues that generalize across variations in speaker identity, conversational style, and recording con-
466 ditions. Following the protocol in Section 4.3, we compare VowelPrompt against SpeechCueLLM (Wu
467 et al., 2025), which augments transcripts with sentence-level prosodic descriptions. Both methods
468 are tested under three regimes: zero-shot prompting, supervised fine-tuning (SFT), and SFT fol-
469 lowed by GRPO (SFT & GRPO). All experiments employ the LLaMA-3-8B-Instruct backbone,
470 with training performed on the full source-domain dataset.

471 As shown in Table 5, VowelPrompt consistently outperforms all baselines across transfer settings.
472 Gains are modest in the zero-shot condition but increase substantially with supervised adaptation.
473 Under SFT & GRPO, VowelPrompt improves by 5.12% in the IEMOCAP → MELD transfer and
474 by 6.96% in the MELD → IEMOCAP transfer compared to SpeechCueLLM. These findings indi-
475 cate that fine-grained vowel-level acoustic features provide more domain-invariant emotional cues

432
433 Table 5: Cross-domain results for IEMOCAP → MELD and MELD → IEMOCAP. Models are
434 trained on the source dataset and evaluated on the target dataset without adaptation.

435 436 Method	437 IEMOCAP → MELD			438 MELD → IEMOCAP		
	439 Zero-Shot	SFT	SFT & GRPO	440 Zero-Shot	SFT	SFT & GRPO
SALMONN (Tang et al., 2024)	-	40.25	51.48	-	23.65	40.85
InstructERC (Lei et al., 2023)	51.42	43.15	50.18	42.68	25.49	43.36
SpeechCueLLM (Wu et al., 2025)	53.85	42.36	55.16	42.59	25.10	44.79
VowelPrompt (Ours)	54.10	46.26	60.28	46.26	28.71	51.75

441
442 than coarse sentence-level summaries, and that RL-based refinement further enhances cross-domain
443 generalization.

444 4.5 EXTRACTING VOWEL-LEVEL ACOUSTIC FEATURES FROM MULTILINGUAL SPEECH

446 To evaluate cross-lingual generalization, we extend VowelPrompt to three additional benchmarks:
447 the French CaFE corpus (Gournay et al., 2018), the German EmoDB corpus (Burkhardt et al.,
448 2005), and the mixed-lingual ASVP-ESD corpus (Tientcheu Touko et al., 2021). Phoneme-level
449 forced alignment is performed using the Montreal Forced Aligner (MFA), after which vowel seg-
450 ments are mapped into a shared IPA-based inventory. Prosodic features, including pitch, intensity,
451 and duration, are normalized at both the speaker and language level before being converted into
452 natural-language descriptors. Moreover, we conduct zero-shot evaluations on CaFE and EmoDB
453 with GPT-4o, comparing against transcript-only baselines, InstructERC (Lei et al., 2023), and
454 SpeechCueLLM (Wu et al., 2025). For ASVP-ESD, which is inherently multilingual, we perform
455 supervised adaptation using Qwen2-7B-Instruct, chosen for its stronger multilingual capabilities.
456 The evaluation compares VowelPrompt against InstructERC, SALMONN (Tang et al., 2024), and
457 SpeechCueLLM under both SFT and SFT & GRPO training regimes.

458 Table 6: Zero-shot results on CaFE (French) and
459 EmoDB (German) using GPT-4o. Performance is
460 reported as Weighted F1 (%).

462 Method	463 CaFE (Fr)	464 EmoDB (De)
Transcript Only	45.10	64.86
InstructERC (Lei et al., 2023)	48.35	66.74
SpeechCueLLM (Wu et al., 2025)	49.16	67.32
VowelPrompt (Ours)	51.42	69.85

466 Table 7: Fine-tuning results on ASVP-ESD
467 (Mixlingual) using Qwen2-7B-Instruct. Per-
468 formance is reported as Weighted F1 (%).

469 Method	470 SFT	471 SFT & GRPO
InstructERC (Lei et al., 2023)	67.25	67.96
SALMONN (Tang et al., 2024)	67.10	67.85
SpeechCueLLM (Wu et al., 2025)	67.85	68.12
VowelPrompt (Ours)	70.54	71.36

473 As shown in Tables 6 and 7, VowelPrompt achieves consistent improvements over all baselines
474 across languages and evaluation settings. In the zero-shot scenario, it delivers the best F1 scores on
475 both CaFE and EmoDB, outperforming transcript-only prompts, InstructERC, and SpeechCueLLM,
476 thereby demonstrating effective transferability without language-specific supervision. On the
477 mixed-lingual ASVP-ESD corpus, supervised adaptation with SFT & GRPO further improves per-
478 formance, where VowelPrompt outperforms InstructERC, SALMONN, and SpeechCueLLM, un-
479 derscoring the effectiveness of vowel-level prosodic augmentation in multilingual contexts.

480 5 CONCLUSION

481 In this work, we introduced VowelPrompt, a unified and interpretable framework that augments
482 large language models with fine-grained, vowel-level prosodic cues for speech emotion recognition.
483 Grounded in phonetic theory, VowelPrompt extracts prosodic descriptors of pitch, intensity, and
484 duration from time-aligned vowel segments, discretizes them through quantile-based binning, and
485 converts them into natural language descriptions appended to transcripts. This design enables language
486 models to reason jointly over lexical and prosodic information without requiring direct access to raw
487 audio at inference. To enhance task adaptation, we developed a two-stage training pipeline com-
488 bining supervised fine-tuning with Reinforcement Learning using Verifiable Reward (RLVR) via
489 Group Relative Policy Optimization (GRPO), which improves predictive accuracy, structural con-
490 sistency, and robustness. Comprehensive experiments across zero-shot, fine-tuned, cross-domain,
491 and multilingual settings demonstrate that VowelPrompt consistently outperforms transcript-only

486 and sentence-level prosody baselines. Beyond improved performance, the framework offers interpretable
 487 intermediate representations that explicitly connect acoustic–prosodic patterns to emotional
 488 categories, providing both practical effectiveness and scientific transparency for prosody-aware emotion
 489 recognition with language models.
 490

491 **REFERENCES**
 492

493 Dmitry Bitouk, Ragini Verma, and Ani Nenkova. Class-level spectral features for emotion recogni-
 494 tion. *Speech Communication*, 52(7–8):613–625, 2010. doi: 10.1016/j.specom.2010.02.010.

495 Paul Boersma and David Weenink. Praat, a system for doing phonetics by computer. *Glot Interna-
 496 tional*, 5(9/10):341–345, 2001.

497 Margaret M. Bradley and Peter J. Lang. Measuring emotion: The self-assessment manikin and the
 498 semantic differential. *Journal of Behavior Therapy and Experimental Psychiatry*, 25(1):49–59,
 499 1994. doi: 10.1016/0005-7916(94)90063-9.

500 Felix Burkhardt, Astrid Paeschke, Miriam Rolfes, Walter F Sendlmeier, Benjamin Weiss, et al. A
 501 database of german emotional speech. In *Interspeech*, volume 5, pp. 1517–1520, 2005.

502 Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
 503 nette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional dyadic
 504 motion capture database. In *Language resources and evaluation*, volume 42, pp. 335–359, 2008.

505 Huan Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova, and Ragini Verma.
 506 Crema-d: Crowd-sourced emotional multimodal actors dataset. In *IEEE Transactions on Affective
 507 Computing*, volume 5, pp. 377–390, 2014.

508 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
 509 Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian,
 510 Jian Wu, Michael Zeng, Xiangzhan Yu, and Furu Wei. WavLM: Large-scale self-supervised pre-
 511 training for full stack speech processing, 2022.

512 Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang, Yuxiang Lin, Zheng Lian, Xiao-
 513 jiang Peng, and Alexander G. Hauptmann. Emotion-llama: Multimodal emotion recogni-
 514 tion and reasoning with instruction tuning. In Amir Globersons, Lester Mackey, Danielle
 515 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-
 516 vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 517 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 518 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/c7f43ada17acc234f568dc66da527418-Abstract-Conference.html.

519 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
 520 Jinzheng He, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen2-Audio technical report, 2024.

521 David Crystal. *Prosodic Systems and Intonation in English*. Cambridge University Press, Cam-
 522 bridge, UK, 1969.

523 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 524 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 525 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 526 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 527 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 528 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 529 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 530 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 531 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 532 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 533 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 534 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 535 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
 536 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing

540 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.
 541 48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.
 542

543 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 544 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
 545 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
 546 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
 547 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
 548 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
 549 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
 550 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
 551 Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
 552 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
 553 son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
 554 revar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
 555 Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 556 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
 557 Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
 558 Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
 559 wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
 560 llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
 561 <https://doi.org/10.48550/arXiv.2407.21783>.
 562

563 Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: The munich versatile and fast
 564 open-source audio feature extractor. In *Proc. ACM Multimedia*, pp. 1459–1462, 2010.
 565

566 Florian Eyben, Klaus R Scherer, Björn W Schuller, Johan Sundberg, Elisabeth Andre, Carlos Busso,
 567 Laurence Y Devillers, Julien Epps, Petri Laukka, Shrikanth S Narayanan, and Khiet P Truong.
 568 The geneva minimalistic acoustic parameter set (gemaps) for voice research and affective com-
 569 puting. *IEEE Transactions on Affective Computing*, 7(2):190–202, 2015.
 570

571 Philippe Gournay, Olivier Lahaie, and Roch Lefebvre. A canadian french emotional speech dataset.
 572 In *Proceedings of the 9th ACM multimedia systems conference*, pp. 399–402, 2018.
 573

574 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
 575 and Abdelrahman Mohamed. HuBERT: Self-supervised speech representation learning by
 576 masked prediction of hidden units, 2021.
 577

578 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 579 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
 580 Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
 581 Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Ka-
 582 mali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
 583 Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codis-
 584 poti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, An-
 585 gela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano,
 586 Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
 587 Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
 588 Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian
 589 Guaraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaressi, Carroll L. Wainwright,
 590 Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Con-
 591 ger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont,
 592 Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey,
 593 Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei,
 594 Constantin Koumouzelis, and Dane Sherburn. Gpt-4o system card. *CoRR*, abs/2410.21276, 2024.
 595

596 Youngjae Kim and Emily M. Provost. Emoberta: Speaker-aware emotion recognition in conversa-
 597 tion with roberta. In *Proc. Interspeech*, pp. 897–901, 2021.
 598

599 Shanglin Lei, Guanting Dong, Xiaoping Wang, Keheng Wang, and Sirui Wang. Instructerc: Re-
 600 forming emotion recognition in conversation with a retrieval multi-task llms framework. *CoRR*,
 601 abs/2309.11911, 2023.

594 Steven R Livingstone and Frank A Russo. The ryerson audio-visual database of emotional speech
 595 and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american
 596 english. *PLoS one*, 13(5):e0196391, 2018.

597

598 Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan Sonderegger.
 599 Montreal forced aligner: Trainable text-speech alignment using kald. In *Proc. Interspeech*, 2017.

600 Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal ai in-
 601 novation. <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>,
 602 April 2025. Blog post.

603

604 Sylvie Mozziconacci. Prosody and emotions. In *Proceedings of Speech Prosody 2002*, pp. 1–9,
 605 Aix-en-Provence, France, 2002. International Speech Communication Association (ISCA).

606 Leonardo Pepino, Paula Riera, and Lucia Ferrer. Emotion recognition from speech using wav2vec
 607 2.0 embeddings. In *Proc. Interspeech*, pp. 3400–3404, 2021.

608

609 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 610 Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations. In
 611 *Proc. ACL*, pp. 527–536, 2019.

612 Fabien Ringeval and Mohamed Chetouani. A vowel based approach for acted emotion recognition.
 613 In *Proc. Interspeech*, pp. 276–279, 2008.

614

615 Paul K. Rubenstein, Chulayuth Asawaroengchai, Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,
 616 Félix de Chaumont Quitry, Peter Chen, Dalia El Badawy, Wei Han, Eugene Kharitonov, Hannah
 617 Muckenheim, Dirk Padfield, James Qin, Danny Rozenberg, Tara N. Sainath, Johan Schalkwyk,
 618 Matthew Sharifi, Michelle Tadmor Ramanovich, Marco Tagliasacchi, Alexandru Tudor, Miha-
 619 jlo Velimirovic, Damien Vincent, Jiahui Yu, Yongqiang Wang, Vicky Zayats, Neil Zeghidour,
 620 Yu Zhang, Zhishuai Zhang, Lukas Zilka, and Christian Havnø Frank. Audiopalm: A large lan-
 621 guage model that can speak and listen. *CoRR*, abs/2306.12925, 2023.

622

623 James A. Russell. A circumplex model of affect. *Journal of Personality and Social Psychology*, 39
 (6):1161–1178, 1980. doi: 10.1037/h0077714.

624

625 Björn Schuller, Stefan Steidl, Anton Batliner, Felix Burkhardt, Laurence Devillers, Christian Müller,
 626 and Shrikanth Narayanan. The interspeech 2009 emotion challenge. In *Proc. Interspeech*, pp.
 627 312–315, 2009.

628

629 Saurabh Shah and Carlos Busso. Articulation constrained learning with application to speech emo-
 630 tion recognition. In *EURASIP Journal on Audio, Speech, and Music Processing*, volume 2019,
 631 pp. 1–15, 2019.

632

633 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA,
 634 and Chao Zhang. SALMONN: Towards generic hearing abilities for large language models.
 635 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=14rn7HpKVk>.

636

637 Landry Dejoli Tientcheu Touko, Qianhua He, and Wei Xie. Audio, speech and vision processing lab
 638 emotional sound database (asvp-esd). Dataset, May 2021. Audio, Speech and Vision Processing
 639 Lab.

640

641 Zehui Wu, Ziwei Gong, Lin Ai, Pengyuan Shi, Kaan Donbekci, and Julia Hirschberg. Beyond silent
 642 letters: Amplifying llms in emotion recognition with vocal nuances. In Luis Chiruzzo, Alan
 643 Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL
 644 2025, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 2202–2218. Association
 645 for Computational Linguistics, 2025. doi: 10.18653/V1/2025.FINDINGS-NAACL.117. URL
 646 <https://doi.org/10.18653/v1/2025.findings-naacl.117>.

647

648 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 649 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 650 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
 651 Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,

648 Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
 649 Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
 650 Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
 651 Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
 652 Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. *CoRR*, abs/2407.10671, 2024.
 653 doi: 10.48550/ARXIV.2407.10671. URL <https://doi.org/10.48550/arXiv.2407.10671>.
 654

655 Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhota, Yist Y. Lin,
 656 Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-Hsien Huang, Wei-Cheng Tseng,
 657 Ko-tik Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang-Wen Li, Shinji Watanabe, Abdelrahman
 658 Mohamed, and Hung-yi Lee. SUPERB: Speech processing universal PERformance bench-
 659 mark. In *Proc. Interspeech*, pp. 3161–3165, 2021.

661 A ADDITIONAL EXPERIMENT RESULTS

664 A.1 ABLATION STUDY ON INDIVIDUAL ACOUSTIC FEATURES

666 To disentangle the contributions of each vowel-level descriptor, we perform a fine-grained ablation
 667 study by selectively removing one feature at a time from the six categories listed in Table 1. In
 668 particular, we evaluate the impact of excluding pitch level, pitch slope, pitch variation, intensity
 669 level, intensity variation, and duration while keeping all other descriptors intact. Each ablation
 670 model is trained under the same supervised fine-tuning (SFT) protocol with LLaMA-3-8B-Instruct
 671 on IEMOCAP and MELD to ensure comparability. This design allows us to assess the relative
 672 importance of each feature type for emotion recognition. As shown in Table 8, the removal of
 673 any single descriptor results in modest but consistent decreases in performance relative to the full
 674 model. All ablation settings preserve competitive results, with scores above 72.5% on IEMOCAP
 675 and 69.05% on MELD, confirming that VowelPrompt does not rely disproportionately on a single
 676 cue. Among the six descriptors, pitch-related features (level, slope, variation) exhibit the most
 677 noticeable impact, reflecting their well-established role as primary carriers of prosodic information.
 678 Intensity and duration features also contribute measurable improvements, as their exclusion reduces
 679 recognition accuracy despite more subtle effects. Taken together, these findings demonstrate that
 680 each vowel-level descriptor contributes complementary information to the framework, and that the
 681 integration of all six is necessary to achieve optimal performance.

682 Table 8: Ablation of individual vowel-level features under SFT with LLaMA-3-8B-Instruct.

683 Model Variant	IEMOCAP	MELD
685 Full VowelPrompt (all features)	73.46	69.61
686 w/o Pitch Level	72.91	69.18
687 w/o Pitch Slope	73.02	69.27
688 w/o Pitch Variation	72.87	69.12
689 w/o Intensity Level	73.15	69.25
690 w/o Intensity Variation	72.94	69.09
691 w/o Duration	73.25	69.22

693 A.2 FEW-SHOT EMOTION RECOGNITION

695 We assess the performance of VowelPrompt in both zero-shot and few-shot scenarios on the IEMOCAP
 696 and MELD datasets, focusing on the Transcript & Context configuration. In the few-shot
 697 setting, each prompt is augmented with three labeled in-context exemplars drawn from the training
 698 data, enabling the models to leverage limited supervision in addition to their inherent zero-shot
 699 reasoning capability. All results are reported in terms of Weighted F1 (WF1), which provides a
 700 balanced measure of classification performance under label imbalance.

701 The results in Table 9 show that all methods obtain consistent improvements in the few-shot regime,
 702 with WF1 gains ranging from approximately 0.8% to 1.2% relative to zero-shot performance.

702 Across both model backbones, VowelPrompt achieves the best results, outperforming the baseline
 703 and SpeechCueLLM in both evaluation settings. These findings indicate that vowel-level prosodic
 704 descriptors not only strengthen zero-shot emotion recognition but also enhance few-shot general-
 705 ization, demonstrating their effectiveness as interpretable and transferable cues for prosody-aware
 706 large language models.

707
 708 Table 9: Zero-shot vs. few-shot performance on IEMOCAP and MELD with Transcript & Context
 709 inputs.

Method	IEMOCAP			MELD		
	Zero-Shot	Few-Shot	Δ	Zero-Shot	Few-Shot	Δ
GPT-4o						
Baseline	53.63	54.42	+0.79	63.57	64.51	+0.94
SpeechCueLLM (Wu et al., 2025)	58.52	59.41	+0.89	57.90	58.95	+1.05
VowelPrompt (Ours)	60.74	61.72	+0.98	64.17	65.20	+1.03
LLaMA-3-8B-Instruct						
Baseline	49.47	50.26	+0.79	42.09	43.05	+0.96
SpeechCueLLM (Wu et al., 2025)	53.85	54.71	+0.86	42.59	43.66	+1.07
VowelPrompt (Ours)	54.10	55.12	+1.02	46.26	47.42	+1.16

722 A.3 COMPARISON WITH PROJECTION-BASED AUDIO INCORPORATION METHOD

724 To further assess the impact of vowel-level augmentation, we compare VowelPrompt with two ab-
 725 lation models, including a transcript-only baseline, where the LLM is fine-tuned on textual tran-
 726 scripts and conversational context without any prosodic cues, and a projection-based audio encoder
 727 baseline, where continuous acoustic embeddings from Whisper are temporally pooled and passed
 728 through a learned projection module into the LLaMA token space. Both approaches are evaluated
 729 under supervised fine-tuning (SFT) on IEMOCAP and MELD, using LLaMA-3-8B-Instruct and
 730 LLaMA-4-Scout-17B-16E-Instruct backbones. This comparison highlights the trade-offs between
 731 purely textual inputs, continuous projection-based augmentation, and discrete interpretable vowel-
 732 level descriptors.

733 Table 10: Comparison of transcript-only, projection-based audio encoders (Whisper + projec-
 734 tor), and VowelPrompt (VowelPrompt) under supervised fine-tuning (SFT). Results are reported
 735 as Weighted F1 (%).

Model	IEMOCAP			MELD		
	Transcript-Only	Projection	VowelPrompt	Transcript-Only	Projection	VowelPrompt
LLaMA-3-8B-Instruct	70.32	72.65	73.46	67.44	68.85	69.61
LLaMA-4-Scout-17B	70.82	73.05	73.85	67.90	69.32	70.12

741 As shown in Table 10, both projection-based augmentation and VowelPrompt yield clear gains over
 742 the transcript-only baseline, underscoring the value of incorporating prosodic information. Among
 743 the augmentation strategies, VowelPrompt achieves the best results across all settings, outperforming
 744 the projection-based baseline method on both IEMOCAP and MELD, and across both LLaMA-3 and
 745 LLaMA-4 backbones.

747 A.4 ABLATION STUDY ON THE NUMBER OF BINS K

749 The number of quantization bins K used for discretizing continuous vowel-level acoustic features
 750 determines the balance between interpretability and granularity. With very small K (e.g., $K = 2$),
 751 the descriptors are overly coarse and fail to capture fine prosodic variation. Increasing K improves
 752 resolution, but excessively large values, such as $K \geq 7$, introduce sparsity and noisy distinctions,
 753 reducing model generalization. To assess this effect, we perform an ablation study on IEMOCAP
 754 and MELD under both zero-shot prompting and supervised fine-tuning (SFT). Results are presented
 755 in Table 11. Performance improves steadily as K increases from 2 to 5, with $K = 5$ consistently
 achieving the best results across all datasets and training regimes. Beyond this point, performance

756
 757 Table 11: Ablation on the number of bins K for quantile-based discretization of vowel-level features.
 758 Results are reported as Weighted F1 (%).

K	Zero-Shot		SFT	
	IEMOCAP	MELD	IEMOCAP	MELD
2	57.45	61.32	71.12	67.28
3	58.72	62.18	72.04	68.01
4	59.86	63.47	73.02	69.05
5	60.74	64.17	73.46	69.61
6	60.22	63.89	73.12	69.18
7	59.74	63.41	72.78	68.92
8	59.15	62.95	72.33	68.40

769 declines slightly, indicating that excessive discretization is detrimental. These findings support $K =$
 770 5 as the optimal setting, striking a balance between interpretability and discriminative power in
 771 VowelPrompt.

773 A.5 ANALYSIS BY UTTERANCE DURATION ON MELD

774 To further examine how utterance duration influences model performance, we analyze zero-
 775 shot results on the MELD dataset by grouping test utterances into short (<1s), medium (1s-
 776 3s), and long (>3s) categories. Table 12 reports both Unweighted Accuracy (UACC) and
 777 Weighted F1 (WF1) scores for GPT-4o and LLaMA-3-8B-Instruct under transcript-only prompt-
 778 ing, SpeechCueLLM (Wu et al., 2025), and VowelPrompt. As shown in Table 12, performance
 779 declines as utterances grow longer, reflecting the increased variability and contextual complexity of
 780 extended speech. Despite this trend, VowelPrompt consistently provides improvements over both
 781 baselines across all duration categories. The gains are especially pronounced for short and long
 782 utterances, where vowel-level cues help disambiguate emotions that may otherwise be blurred by
 783 brevity or diluted in extended discourse. This demonstrates that VowelPrompt remains robust across
 784 diverse temporal scales of spoken dialogue.

785 Table 12: Zero-shot performance on MELD under different utterance durations. Results are reported
 786 as Unweighted Accuracy / Weighted F1 (%).

788 Method	789 LLM	790 Target Utterance Duration		
		791 <1s	792 1s-3s	793 >3s
Transcript Only		67.03 / 66.92	65.17 / 64.28	54.34 / 55.20
SpeechCueLLM (Wu et al., 2025)	GPT-4o	59.50 / 60.39	55.11 / 55.96	47.04 / 48.84
VowelPrompt (Ours)		69.53 / 68.26	65.62 / 63.04	59.37 / 58.46
Transcript Only		59.50 / 60.47	49.77 / 51.43	41.32 / 41.58
SpeechCueLLM (Wu et al., 2025)	LLaMA-3-8B-Instruct	53.41 / 54.41	47.10 / 47.77	38.46 / 37.69
VowelPrompt (Ours)		59.14 / 59.67	52.29 / 53.49	42.50 / 42.64

798 A.6 ABLATION STUDY ON THE PROSODY-DRIVEN EMOTION PREDICTION IN 799 VOWELPROMPT

800 To demonstrate that VowelPrompt relies on vowel-level prosodic descriptors instead of spurious lex-
 801 ical or formatting heuristics inherited from the oracle reasoning traces, we conducted a series of ab-
 802 lation studies on transcript shuffle control, prosody permutation control, matched-marginal placebo,
 803 and cross-swap. The ablation study is performed on MELD using LLaMA-3-8B-Instruct trained
 804 with GRPO. In the study on transcript shuffle control, we randomly permute the word order while
 805 keeping the vowel-level prosodic descriptors intact. It is observed in Table 13 that the performance
 806 of VowelPrompt only marginally decreases under this perturbation, indicating that lexical ordering
 807 or content identity is not the dominant predictive signal, and the prediction of VowelPrompt heavily
 808 relies on the vowel-level prosodic information coupled with the lexical information of the vowels.
 809 In the study on prosody permutation control, we permute the vowel-prosody descriptors across
 utterances within each training mini-batch while leaving transcripts unchanged. It is observed in

810
 811 Table 13 that the prosody permutation leads to a significant performance degradation, which demon-
 812 strates that VowelPrompt significantly depends on the alignment between vowel-level prosodic cues
 813 and the corresponding utterances, instead of relying on the transcript alone. We further perform a
 814 matched-marginal placebo experiment, where prosody tokens are replaced with random draws from
 815 their empirical per-vowel distributions. This preserves the marginal statistics, token frequencies,
 816 and style patterns but destroys semantic grounding. It is observed in Table 13 that the performance
 817 of the ablation model decreases significantly, which demonstrates that VowelPrompt does not rely
 818 on superficial token regularities and instead requires aligned prosodic descriptors to make accurate
 819 predictions.

820
 821 Table 13: Ablation study on the prosody-driven emotion prediction in VowelPrompt. The study is
 822 performed on MELD using LLaMA-3-8B-Instruct trained with GRPO.

Methods	Weighted F1 (%)
VowelPrompt (Prosody Permutation)	41.72
VowelPrompt (Matched-Marginal Placebo)	44.10
VowelPrompt (Transcript Shuffle)	67.00
VowelPrompt	68.90

823
 824 Finally, we perform a cross-swap counterfactual consistency experiment, where we preserve the
 825 transcript but attach prosodic descriptors extracted from utterances belonging to a different emotion
 826 category. The study is performed on the happy and the sad emotions in IEMOCAP. It is observed
 827 that the predicted emotion systematically follows the swapped prosodic profile rather than the lexical
 828 content. As shown in Table 14, when happy utterances are paired with sad prosody, the proportion
 829 of predictions labeled as sad increases from 18.7% to 45.8%, while retaining the original transcript.
 830 Conversely, when sad utterances are paired with happy prosody, the proportion of happy predictions
 831 increases from 27.5% to 51.0%. The above results demonstrate that VowelPrompt does not merely
 832 memorize lexical patterns but actively attributes emotional prediction to vowel-level prosodic cues,
 833 which provides direct causal evidence that the prosodic descriptors, rather than text alone, drive the
 834 model’s decision-making.

835
 836 Table 14: Counterfactual cross-swap analysis on the happy and the sad emotions.

Ground-Truth Emotion	Prosody Source	Predicted Happy (%)	Predicted Sad (%)
Happy	Happy	81.3	18.7
Happy	Sad	54.2	45.8
Sad	Sad	27.5	72.5
Sad	Happy	51.0	49.0

840 841 A.7 STUDY ON THE IMPACT OF THE TOKENIZATION OF THE LABEL VERBALIZER

842
 843 To study the impact of the tokenization behavior of the labels, we first perform a study on the tok-
 844 enization behavior of the IEMOCAP verbalizers, including angry, excited, happy, neutral, and sad,
 845 under both the LLaMA-3-8B and Qwen-2-7B tokenizers. In both models, happy, neutral, and sad
 846 are each encoded as single-token verbalizers, while angry ([‘ang’, ‘ry’]) and excited ([‘exc’, ‘ited’])
 847 are consistently split into two subword units. To study the impact of the decoding bias arising from
 848 such variation, we replaced all emotion labels with synthetic two-letter tokens (happy→ha, sad→sa,
 849 angry→an, neutral→ne, excited→ex) that are uniformly represented as single tokens across both
 850 tokenizers. We then randomly permuted the emotion verbalizer mapping 10 times, thereby elim-
 851 inating any lexical or semantic prior that the tokenizer could exploit. It is observed in Table 15 that
 852 replacing the original emotion verbalizers with synthetic two-letter tokens leads to only a marginal
 853 performance drop on VowelPrompt, which demonstrates that VowelPrompt is marginally impacted
 854 by the decoding bias. Notably, the impact is significantly smaller for VowelPrompt compared to
 855 SpeechCueLLM, which demonstrates that VowelPrompt is significantly more robust to label per-
 856 turbations because the predictions are grounded in detailed vowel-level prosodic cues rather than
 857 lexical or tokenization-based priors associated with the verbalizers.

864
 865 Table 15: Impact of label tokenization and permutation on emotion recognition performance of
 866 VowelPrompt.

Methods	Weighted F1 (%)
VowelPrompt	73.0
SpeechCueLLM	71.5
VowelPrompt (Two-Letter)	71.7
SpeechCueLLM (Two-Letter)	67.8
VowelPrompt (Two-Letter Permutated)	71.0
SpeechCueLLM (Two-Letter Permutated)	65.2

874
 875 A.8 COMPARISON BETWEEN VOWEL-LEVEL WITH CONSONANT-LEVEL PROSODIC
 876 DESCRIPTORS
 877

878 To demonstrate the effectiveness of the vowel-level prosodic descriptors, we perform an ablation
 879 study replacing vowel-level descriptors with consonant-level descriptors, including segment dura-
 880 tion, voice onset time (VOT), frication energy, and nasal intensity. We have also tested the per-
 881 formance of a variant of VowelPrompt, which incorporates both the vowel-level descriptors and
 882 the consonant-level descriptors. It is observed in Table 16 that vowel-level descriptors consistently
 883 achieve the highest performance across all three corpora, while consonant-level descriptors alone
 884 yield significantly worse performance. Incorporating both vowel- and consonant-level cues im-
 885 proves the performance of VowelPrompt on German, which is attributed to the richer stop and fric-
 886 tive contrasts in its phonological system, but does not surpass the vowel-only setting on French or
 887 English. These results indicate that consonantal information does not provide universally comple-
 888 mentary emotional cues and further substantiate the sufficiency of vowel-level descriptors for the
 889 languages evaluated in this study.

890
 891 Table 16: Comparison between vowel-level with consonant-level prosodic descriptors.

Methods	CaFE (French)	EmoDB (German)	MELD (English)
VowelPrompt (Vowel-Level Cues)	51.42	69.85	64.17
VowelPrompt (Consonant-Level Cues)	48.73	67.80	62.95
VowelPrompt (Vowel + Consonant Cues)	51.04	70.21	64.08

892
 893 A.9 COMPARISON WITH NON-LLM ACOUSTIC BASELINE METHODS
 894

895 To demonstrate the advantages of VowelPrompt over existing non-LLM deep learning models, we
 896 have compared VowelPrompt with strong non-LLM speech emotion recognition baselines using
 897 state-of-the-art self-supervised speech models, including HuBERT-large and wav2vec-large. In par-
 898 ticular, we extract HuBERT-large and wav2vec-large embeddings and train MLP classifiers on top of
 899 the embeddings. The results below include both in-domain and cross-domain evaluations on IEMO-
 900 CAP and MELD. It is observed in Table 17 that VowelPrompt consistently outperforms HuBERT-
 901 large and wav2vec-large across all settings.

902
 903 Table 17: Comparison of VowelPrompt with strong non-LLM acoustic baselines using self-
 904 supervised speech representations calculated from HuBERT-large and wav2vec-large.

Datasets	HuBERT-large	wav2vec-large	VowelPrompt
In-Domain Evaluations			
IEMOCAP	67.6	65.6	73.4
MELD	56.8	55.1	69.6
Cross-Domain Evaluations			
IEMOCAP → MELD	45.0	43.5	60.2
MELD → IEMOCAP	44.2	41.7	51.7

918 A.10 HUMAN EVALUATION ON THE REASONING TRACES BY VOWELPROMPT
919

920 To evaluate the quality of the reasoning traces of VowelPrompt trained with GRPO, we conducted a
921 human evaluation study with four annotators who rated 200 randomly sampled reasoning traces from
922 each of the models trained on IEMOCAP and MELD. Each trace was evaluated on prosodic ground-
923 ing, causal coherence, and internal consistency using a 1–5 Likert scale. It is observed in Table 18
924 that VowelPrompt demonstrates significantly higher reasoning faithfulness than SpeechCueLLM
925 across all four annotators. SpeechCueLLM receives an average score of 3.14, while VowelPrompt
926 receives an average score of 3.77, reflecting more accurate grounding in prosodic cues and greater
927 internal coherence. These results confirm that VowelPrompt’s reasoning traces are not only more
928 interpretable but also more consistently aligned with the prosodic evidence that drives its final pre-
929 dictions.

930
931 **Table 18: Human evaluation results across four evaluators.**

Methods	Evaluator 1	Evaluator 2	Evaluator 3	Evaluator 4	Average
SpeechCueLLM	3.12	3.55	2.82	3.08	3.14
VowelPrompt (Ours)	4.05	3.96	3.42	3.65	3.77

935
936 A.11 STUDY ON THE BALANCE BETWEEN THE IN-DOMAIN PERFORMANCE AND THE
937 CROSS-DOMAIN PERFORMANCE
938

939 The Knowledge Distillation (KL) weight in GRPO controls how strongly the policy is regularized
940 toward the supervised SFT model, which effectively limits how far reinforcement learning can devi-
941 ate from the source-domain distribution. To better understand the trade-off between the in-domain
942 performance and the cross-domain performance, we conducted a sensitivity analysis by varying the
943 KL weight and measuring both in-domain and cross-domain performance. As shown in Table 19,
944 decreasing the KL weight relaxes the constraint on the policy, resulting in slightly improved cross-
945 domain robustness, indicating that the model relies less on dataset-specific lexical patterns and more
946 on domain-invariant prosodic cues. On the other hand, increasing the KL weight leads to higher in-
947 domain performance. Notably, both the in-domain and cross-domain performance of VowelPrompt
948 vary only marginally across different values of the KL weight, which demonstrates that the GRPO-
949 trained model is largely insensitive to the value of the KL weight. In addition, in the cross-domain
950 setting, the GRPO data is from the source domain alone.

951
952 **Table 19: Effect of KL weight on VowelPrompt performance under GRPO for both in-domain and**
953 **cross-domain evaluation.**

KL Weight	IEMOCAP	MELD	IEMOCAP→MELD	MELD→IEMOCAP
0.1	71.9	68.1	60.5	51.3
0.25	73.4	69.6	60.2	51.7
0.5	73.4	69.9	58.9	49.6
1.0	73.6	70.0	58.4	49.2

959
960 A.12 COMPARISON WITH CLASSIFIERS TRAINED DIRECTLY ON THE VOWEL-LEVEL
961 PROSODIC FEATURES
962

963 To demonstrate the necessity of an LLM-based architecture, we have conducted an ablation study
964 comparing VowelPrompt against classifiers trained directly on the vowel-level prosodic features. In
965 particular, the classifiers are a multilayer perceptron (MLP), a random forest (RF), and a transformer.
966 In the transformer baseline, each phoneme is treated as a token, and its corresponding prosodic fea-
967 tures are treated as the features of the token. It is observed in Table 20 that VowelPrompt significantly
968 outperforms all baseline classifiers, which demonstrates that access to the same attributes alone is
969 insufficient. Vanilla classifiers fail to capture the contextual and linguistic dependencies that govern
970 how vowel-level prosody conveys affect. In contrast, VowelPrompt leverages the LLM’s pretrained
971 linguistic priors to integrate prosodic cues with lexical semantics, discourse context, and phonotactic
972 patterns.

972
 973 Table 20: Comparison with traditional classifiers trained directly on the vowel-level prosodic fea-
 974 tures.

Datasets	XGBoost	MLP	Transformer	VowelPrompt
IEMOCAP	40.2	39.6	48.5	73.4
MELD	45.1	44.5	51.2	69.6

978
 979 **A.13 STUDY ON THE IMPACT OF THE INCORRECT VOWEL ALIGNMENT**
 980

981 To study the impact of incorrect vowel alignment, we have performed an ablation study that per-
 982 turbed 5%, 10%, and 15% of the boundaries of the vowels in the alignment results. The study
 983 is performed on MELD using LLaMA-3-8B-Instruct. In particular, for each selected vowel
 984 segment, we randomly shifted its start or end times by 50% of its original duration. It is observed in
 985 Table 21 that the performance of VowelPrompt is robust to the perturbation of the boundaries of
 986 the vowels in the alignment results and consistently achieves significantly better performance than
 987 SpeechCueLLM. For example, even with 15% of the vowel boundaries perturbed, VowelPrompt still
 988 achieves a Weighted F1 of 69.11%, which outperforms SpeechCueLLM by 2.04%.

990 Table 21: Robustness of VowelPrompt under phonem alignment perturbations.

Method	Perturbation Ratio	Weighted F1 (%)
SpeechCueLLM	0	67.07
VowelPrompt	0	69.61
VowelPrompt	5%	69.50
VowelPrompt	10%	69.23
VowelPrompt	15%	69.11

991
 992 **A.14 STUDY ON THE IMPACT OF SPEECH RATE ON THE PERFORMANCE OF VOWELPROMPT.**
 993

994 To study the impact of speech rate on the performance of VowelPrompt, we conducted an ablation
 995 study on the MELD dataset by categorizing testing utterances according to their phone-per-second
 996 (PPS) rate. In particular, we segmented the test set into three categories based on PPS statistics
 997 computed from Montreal Forced Aligner alignments, including slow ($PPS \leq 6.0$), normal ($6.0 < PPS \leq 8.5$), and fast ($PPS > 8.5$). It is observed in Table 22 that although the performance of Vow-
 998 elPrompt and the baseline method SpeechCueLLM degrade as speech rate increases, VowelPrompt
 999 consistently outperforms SpeechCueLLM across all PPS ranges.

1000 Table 22: Impact of speech rate (phones-per-second, PPS) on the performance of VowelPrompt.

Method	PPS ≤ 6.0	6.0 < PPS ≤ 8.5	PPS > 8.5	Overall
SpeechCueLLM	68.21	67.44	64.19	67.07
VowelPrompt	71.08	69.61	67.25	69.61

1013
 1014 **A.15 ABLATION STUDY ON INCORPORATING THE REASONING IN SFT AND SFT COMBINED
 1015 WITH GRPO**

1016 In this section, we perform an ablation study by enabling and disabling reasoning/thinking in both
 1017 the SFT and the SFT & GRPO settings. The study is performed on MELD using LLaMA-3-8B-
 1018 Instruct. It is observed in Table 23 that our VowelPrompt consistently outperforms the baseline
 1019 methods under different settings.

1021
 1022 **B PROMPT TEMPLATES**

1023 We present representative prompt templates used in our experiments across zero-shot, few-shot, and
 1024 fine-tuning regimes. Each prompt includes three main components: the conversational context, the
 1025 target utterance, and the prosodic descriptors (either sentence-level or vowel-level). Descriptors are

1026

1027

Table 23: Comparison of different training strategies with and without reasoning.

1028

1029

1030

1031

Method	SFT (w/o Reasoning)	SFT (with Reasoning)	SFT & GRPO (w/o Reasoning)	SFT & GRPO (with Reasoning)
InstructERC	67.25	67.02	67.51	66.96
SALMONN	67.25	67.25	67.43	66.85
SpeechCueLLM	67.07	67.15	67.29	67.10
VowelPrompt (Ours)	69.61	69.82	69.88	68.98

1032

1033

1034

1035

expressed in natural language and inserted into prompts using a consistent format to guide emotion reasoning.

1036

1037

Zero-Shot Prompt (Transcript Only):

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

Now you are an expert in sentiment and emotional analysis.
The following conversation noted between '### ###' involves several speakers.

Speaker_0:...

...

Speaker_1:<target_speech> ###

Please select the emotional label of Speaker_1:<target_speech> based on the context.

Please output ONLY ONE label from <available_emotion_labels> as the first word, and then explain your choice.

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

Zero-Shot Prompt (Transcript + Vowel-Level Prosody):

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

Now you are an expert in sentiment and emotional analysis.
The following conversation noted between '### ###' involves several speakers.

Speaker_0:...

...

Speaker_1:<target_speech> ###

Vowel-level Speech Descriptions of Speaker_1:<target_speech>:

<vowel_descriptions>

Please select the emotional label of Speaker_1:<target_speech> based on the context and the vowel-level acoustic features.

Please output ONLY ONE label from <available_emotion_labels> as the first word, and then explain your choice.

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Few-Shot Prompt (3 Examples + Target Query):

Now you are an expert in sentiment and emotional analysis.

<Example_1>

<Example_2>

<Example_3>

The following conversation noted between '### ###' involves several speakers.

Speaker_0:...

...

Speaker_1:<target_speech> ###

Vowel-level Speech Descriptions of Speaker_1:<target_speech>:

<vowel_descriptions>

Please select the emotional label of Speaker_1:<target_speech> based on the context and the vowel-level acoustic features.

Please output ONLY ONE label from <available_emotion_labels> as the first word, and then explain your choice.

Supervised Fine-Tuning Prompt (with Reasoning):

```

1080
1081 Now you are an expert in sentiment and emotional analysis.
1082 The following conversation noted between '### ###' involves several speakers.
1083 ### Speaker_0:...
1084 ...
1085 Speaker_1:<target_speech> ###
1086 Vowel-level Speech Descriptions of Speaker_1:<target_speech>:
1087 <vowel_descriptions>
1088 Please select the emotional label of Speaker_1:<target_speech> based on the context and the
1089 vowel-level acoustic features.
1090 Output the thinking process in <think> </think> and emotion label prediction in <answer>
1091 </answer> tags.
1092
1093

```

Supervised Fine-Tuning Prompt (without Reasoning):

```

1094
1095 Now you are an expert in sentiment and emotional analysis.
1096 The following conversation noted between '### ###' involves several speakers.
1097 ### Speaker_0:...
1098 ...
1099 Speaker_1:<target_speech> ###
1100 Vowel-level Speech Descriptions of Speaker_1:<target_speech>:
1101 <vowel_descriptions>
1102 Please select the emotional label of Speaker_1:<target_speech> based on the context and the
1103 vowel-level acoustic features.
1104 Output the emotion label prediction in <answer> </answer> tags.
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

```