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Abstract—Information extraction from clinical text is needed
to comprehend patient conditions and determine anticancer
treatment. Existing NLP systems, such as Amazon Comprehend
Medical, Clamp, and DeepPhe, are proprietary and suboptimal
due to the shift in the textual distribution and expression of
cancer phenotypes. We introduce OncoNLP, a natural language
processing toolkit that comprises deep neural network BERT
models designed to extract cancer phenotype and related biomed-
ical information. Currently, the toolkit contains two primary
components: a Biomedical BERT(BiomedBERT) model to ex-
tract general medical information and a Cancer Bert(CaBERT)
model to identify the primary tumor site and histology. We
evaluate the performance of BiomedBERT on Informatics for
Integrating Biology & the Bedside (i2b2) dataset against Amazon
Comprehend Medical and Clamp. BiomedBERT outperforms
all other methods with an exact matching F1-score of 88.5%.
Next, we evaluate CaBERT on a Moffitt dataset with over 2000
clinical notes against DeepPhe, which shows a 50% improvement
in both tumor site and histology tasks. Lastly, we introduce
a knowledge prompt with OncoNLP and engineer it for large
language models. We name it OncoNLP-Assist, a chatbot system
powered by OncoNLP and Llama2 that could extract information
from electrical health records and interact with physicians.

Index Terms—Oncology extraction, pathology report informat-
ics

I. INTRODUCTION

Pathology reports provide comprehensive documentation
of biological samples, which is crucial for advancing can-
cer research through large-scale data analysis. These reports
are vital in clinical trial screening, case identification, prog-
nostication, surveillance, treatment selection, and numerous
other applications [1]. For extracting clinical information from
pathology reports, Natural language processing (NLP) enables
the detection and examination of critical data points, facili-
tating better understanding and utilization of the information
contained within these records. These advancements in NLP
have significantly improved the efficiency and accuracy of
data extraction from clinical documents, thereby enhancing the
overall quality of healthcare delivery and research. However,
automated extraction of information from pathology reports
can prove challenging because of the wide-ranging diversity in
language usage and documentation formats [2]. The challenges
include a range of issues, such as the complex organization
of pathology ontology, the presence of clinical diagnoses
accompanied by detailed explanations, varying terminology

used to describe the same cancer, as well as synonymous and
unclear terms, and the occurrence of multiple diagnoses within
a single report.

Several popular NLP systems have been developed to pro-
cess pathology text, including text analysis and knowledge
extraction systems such as Amazon Comprehend Medical [3],
Clamp [4], and DeepPhe [5]. These systems can extract diverse
cancer phenotypes and have been successfully applied to
numerous information extraction tasks, including identifying
tumor characteristics, staging information, and treatment out-
comes. By leveraging advanced NLP techniques, these tools
facilitate a more efficient and accurate analysis of pathology
reports, ultimately enhancing research and clinical decision-
making in oncology. Despite their success, these NLP systems
each have weaknesses preventing them from effectively and
safely applying to cancer treatment. For instance, DeepPhe
is a rule-based system that can struggle with the flexibility
required for diverse clinical narratives. Next, Clamp utilizes
Conditional Random Fields (CRF) [6]and dictionary-based
methods, which may lack the adaptability to handle the
nuances and complexities of varying clinical terminologies and
contexts. Lastly, Amazon Comprehend Medical is limited to
online access, raising significant security concerns as it is not
designed to handle Protected Health Information (PHI) safely.
Therefore, these limitations highlight the necessity for robust
and secure NLP solutions designed specifically for oncology
data’s complex and sensitive nature.

Recently, attention-based Encoder-Decoder architectures in
pathology text mining have been proposed to overcome some
of the limitations of rule-based techniques [7]. These archi-
tectures utilize the latest developments in NLP techniques
to enhance the comprehension of contextual relationships,
providing a more flexible and accurate approach to analyzing
clinical text. For example, the BERT model [8] is a language
representation model that provides contextualized word em-
beddings. It relies on a multi-layer bidirectional encoder, and
instead of employing sequential recurrence, it utilizes parallel
attention layers in the transformer neural network. Hence, the
BERT model can depict words or sequences in a manner that
captures contextual details, resulting in distinct representations
of the same sequence of words when encountered in diverse
contexts.



Fig. 1. The architecture of OncoNLP-Assist integrates insights from both the OncoNLP pipeline and the Llama2 model for enhancing its knowledge base.

In this work, we propose OncoNLP and OncoNLP-Assist,
a natural language processing toolkit that comprises deep
neural network Transformers models designed to extract can-
cer phenotype and related biomedical information. In the
OncoNLP pipeline, we design each component model as a
module that could easily be upgraded or substituted with
a higher-performing model. In our experiment, we propose
BiomedBERT - a pre-trained masked language model trained
on the MIMIC-III dataset and 349,544 pathology cancer
reports. We train it using the same structure as clinicalBERT
[9] and then fine-tune it for downstream tasks with the i2b2
[10] dataset to extract name tag entities, including Problem,
Test, and Treatment. OncoNLP also contains several modules
such as CaBERT [11] for extracting site and histology code,
Metamap [12] for extracting body location, and Negex [13]
for extracting negation relation. Next, we introduce OncoNLP-
Assist, a pathology assistant that integrates the comprehensive
knowledge of OncoNLP with the Llama2 [14] model. This
combination enables the extraction of essential information
from health records and facilitates interaction with physicians.
The Llama2 model is fine-tuned with Low-Rank Adaptation
(LoRa) on the pathology cancer reports and serves as a
physician’s assistant for answering any question according
to the health report. The architecture of OncoNLP-Assist is
shown in Figure 1.

II. RELATED WORK

Several notable NLP systems have been developed for
processing pathology text, including text analysis and knowl-
edge extraction tools like Amazon Comprehend Medical [3],
Clamp [4], and DeepPhe [5]. These systems are proficient in
extracting a wide range of cancer phenotypes and have been
effectively utilized in various information extraction tasks such
as identifying tumor characteristics, staging information, and
treatment outcomes. These tools enable more efficient and

accurate analysis of pathology reports by leveraging advanced
NLP techniques, thus enhancing research and clinical decision-
making in oncology.

However, each of these NLP systems has limitations that
restrict their effective and safe application in cancer treatment.
For instance, DeepPhe is a rule-based system that lacks the
flexibility needed to handle diverse clinical narratives. Rule-
based systems like DeepPhe rely on predefined sets of rules
and patterns to extract information. These systems can be
effective for specific tasks but often fail to generalize to
the varied and complex language used in clinical texts. This
rigidity means that any deviation from the expected format can
lead to missed or incorrect information extraction, limiting the
system’s overall applicability and accuracy. Similarly, Clamp
employs Conditional Random Fields (CRF) and dictionary-
based methods to perform information extraction. While CRF
models can capture sequential dependencies in text, they
often struggle with the intricate and context-dependent nature
of clinical terminologies. Dictionary-based methods, although
useful for identifying specific terms, cannot adapt to new or
evolving medical language and fail to understand the broader
context in which terms are used. This limitation can result in
inaccurate information extraction, particularly in cases where
nuanced understanding is crucial for clinical decision-making.
Additionally, Amazon Comprehend Medical’s requirement for
online access poses significant security concerns. As a cloud-
based service, it requires transmitting potentially sensitive
health information over the internet. This raises issues related
to data privacy and compliance with regulations such as the
Health Insurance Portability and Accountability Act (HIPAA).
The service is not specifically designed to handle Protected
Health Information (PHI) securely, which increases the risk
of data breaches and unauthorized access. These security
concerns make it unsuitable for applications that demand



stringent data protection measures, particularly in healthcare
settings.

Recently, attention-based Encoder-Decoder architectures
have been introduced in pathology text mining to overcome
some of the shortcomings of rule-based techniques. These
architectures leverage the latest advancements in NLP to
enhance the understanding of contextual relationships, offering
a more flexible and accurate method for analyzing clinical
texts. For example, the BERT model generates contextualized
word embeddings using a multi-layer bidirectional encoder
and parallel attention layers in the transformer neural network,
rather than sequential recurrence. This allows BERT to capture
contextual nuances, resulting in unique representations of the
same sequence of words in different contexts.

In this work, we propose OncoNLP and OncoNLP-Assist,
a natural language processing toolkit comprising deep neural
network Transformer models designed to extract cancer phe-
notypes and related biomedical information. OncoNLP-Assist
builds upon the flexibility of Transformer models, allowing
it to handle diverse clinical text with high accuracy. In our
experiments, we utilized BiomedBERT and a chat model based
on Llama2. BiomedBERT is tailored for medical applications
and excels in extracting essential information from health
records, while the Llama2-based chat model facilitates in-
teractions with physicians by providing contextually relevant
and reasoning-based answers to their queries. OncoNLP-Assist
not only captures the complexity and diversity of clinical
language but also provides a robust mechanism for reasoning
and answering questions posed by healthcare professionals.
This dual capability makes it an invaluable tool in clinical
settings, where understanding and responding to nuanced
medical queries is crucial. By integrating these advanced NLP
techniques, OncoNLP-Assist enhances the efficiency and accu-
racy of information extraction and decision support, ultimately
contributing to improved clinical outcomes and streamlined
workflows in oncology treatment care.

III. DATA COLLECTION AND METHODS

This section presents the clinical text datasets utilized for
training our language models and downstream tasks, outlines
the BiomedBERT and Llama2 [14] training procedures, and
describes the prompt setup for OncoNLP-Assist.

A. Data

This study uses two sets of free-text reports: the Medical
Information Mart for Intensive Care III (MIMIC-III) dataset
[15] and a collection of pathology reports from Moffitt Cancer
Center. The MIMIC-III dataset is a comprehensive repository
of de-identified health data. It includes records from over
forty thousand patients admitted to critical care units at Beth
Israel Deaconess Medical Center between 2001 and 2012.
This dataset is instrumental for training language models due
to its extensive coverage of clinical scenarios [15]. Next,
the pathology Reports dataset comprises 349,544 pathology
reports collected from the Moffitt Cancer Center. These re-
ports span a broad range of cancer diagnoses and treatments,

providing rich, domain-specific information crucial for refining
language models to understand oncology-specific contexts. For
the masked language model training, each dataset is partitioned
into training and evaluation subsets, with 80% of the data
allocated for training and 20% for evaluation. Initially, we
trained BiomedBERT on the MIMIC-III dataset to familiarize
the model with general clinical text. After that, we continue
to train the model using the pathology report collection to
enhance its understanding of oncology-specific terminologies
and treatment protocols. This step-wise training approach
ensures that the model gains a robust foundation in the gen-
eral clinical language before specializing in cancer treatment
narratives. Next, we use the i2b2 dataset for downstream
tasks to train a named entity recognition model that extracts
problems, tests, and treatments. Lastly, for evaluation, we use
the Oncology dataset from CaBERT [11], which includes site
and histology labels across 2050 patient reports, and compare
our results with other available methods.

B. Bert Training

First, we train a tokenizer from scratch using the WordPiece
[16] method, specifically tailored to our pathology report data,
resulting in a vocabulary of 32,000 tokens. Next, we start
training BiomedBERT from scratch with random initialization
and 3 epochs on the MIMIC-III dataset, followed by 3 epochs
on the pathology report dataset. The training is distributed
across two 40GB Tesla A100 GPUs, with a batch size of 32,
a maximum sequence length of 512, and a learning rate set to
5e-05. The entire pre-training process took approximately one
day.

After pre-training, the BiomedBERT model is fine-tuned
on annotated data to address specific downstream tasks. Our
training utilizes the i2b2 dataset for clinical concept extraction,
framed as a Named Entity Recognition (NER) task. NER
is crucial for information extraction, as it classifies each
token in the text into predefined entity classes. This model
empowers clinical information retrieval and decision support
by extracting and classifying clinical concepts like problems,
tests, and treatments.

C. Chatbot training

Fig. 2. OncoNLP-Assist report prompt example



Method F1 score dataset
BiomedBERT 88.5 2010 i2b2
Clamp 88.1 2010 i2b2
Amazon Comprehend

Medical
85.5 2010 i2b2

CaBERT 73.2 Moffitt site
DeepPhe 28.1 Moffitt site
CaBERT 85.3 Moffitt hist
DeepPhe 22.4 Moffitt hist

TABLE I
EXACT MATCH F1 SCORE OF BIOMEDBERT, CLAMP, AND AMAZON

COMPREHEND MEDICAL ON THE NER TASK ACROSS I2B2 2010
CORPORA; CABERT AND DEEPPHE ON THE PREDICTED TUMOR SITE

AND HISTOLOGY ACROSS MOFFITT DATASET.

In this study, we fine-tune the Llama2-7B [14] model using
low-rank adaptation (LoRA) [17] to enhance its performance
as a chatbot. Starting with the Llama2-7B chat model, we
leverage its extensive understanding of natural language to
provide a robust foundation. The LoRA technique enables
us to fine-tune the model efficiently by introducing low-rank
updates to the model’s weights, significantly reducing the
number of trainable parameters and computational resources
required. We utilize a pathology report dataset to enhance
the model’s knowledge in the cancer treatment domain. The
training is distributed across two 40GB Tesla A100 GPUs,
with 5 epochs, a batch size of 32, an AdamW optimizer [18],
and a 5e-05 learning rate.

During inference, we incorporate prompt engineering to
provide sufficient context for the model to answer physi-
cians’ questions accurately. Figure 2 shows an example report
prompt.

IV. EVALUATION

In this section, we present a comprehensive evaluation of
our models for general clinical information extraction using
the 2010 i2b2 dataset. We then assess their performance on
oncology-related tasks utilizing the Moffitt site and Moffitt
hist datasets. Table I compares the performance of our models
against notable benchmarks such as Clamp, Amazon Compre-
hend Medical, and DeepPhe. The evaluation results underscore
the efficacy of our BiomedBERT and CaBERT models in
extracting and processing clinical information.

For general Clinical Information Extraction, our Biomed-
BERT model achieved an F1 score of 88.5 on the 2010
i2b2 dataset, outperforming other models and demonstrating
its superior ability to handle clinical information extraction
tasks. The Clamp model followed closely with an F1 score
of 88.1, and Amazon Comprehend Medical attained an F1
score of 85.5. These results affirm the high effectiveness of our
BiomedBERT model in extracting general clinical information.
For oncology-related tasks, our models were tested on the
Moffitt site and Moffitt hist datasets. The CaBERT model
showcased robust performance, achieving an F1 score of 73.2
on the Moffitt site dataset. This indicates its strong capability
to extract relevant clinical information from oncology-related
data sources. Additionally, CaBERT achieved an F1 score
of 85.3 on the Moffitt hist dataset, further validating its

adaptability and precision in handling histopathology-related
information. In contrast, the DeepPhe model’s performance
was notably lower, with F1 scores of 28.1 on the Moffitt
site dataset and 22.4 on the Moffitt hist dataset. These results
highlight the substantial improvements our models bring to
clinical information extraction tasks, particularly in oncology
contexts.

Next, we evaluate OncoNLP-Assist using the Moffitt site
and hist datasets, focusing on oncology-related questions de-
rived from the provided knowledge base. Given the constraints
associated with protected datasets, we are unable to benchmark
our chatbot against other advanced models, such as GPT-4
[19] or Gemini [20]. Instead, we compare the performance
enhancement imparted by OncoNLP’s specialized knowledge
to OncoNLP-Assist over the baseline Llama2 chat model.
For this evaluation, we employ BERTScore [21], a metric
known for its effectiveness in evaluating semantic similarity
by leveraging pre-trained BERT models to match words in
candidate and reference sentences through cosine similarity.
We selected BERTScore due to its robust ability to measure
semantic similarity, which is crucial in the medical domain,
where information accuracy is paramount.

The results in Table II demonstrate that OncoNLP-Assist
consistently outperforms the Llama2 chat model across all
evaluated metrics, achieving higher scores in Precision (0.90
±0.0178 vs. 0.86 ±0.0167), Recall (0.90 ±0.0221 vs. 0.85
±0.0181), and F1 Score (0.90 ±0.0190 vs. 0.86 ±0.0161).
OncoNLP-Assist’s higher Precision indicates it retrieves more
relevant oncology-related information, reducing the risk of
misinformation. Its improved Recall shows it captures a
comprehensive set of relevant information crucial for clinical
decision-making. The high F1 Score reflects its balanced
performance, maintaining both high quantity and quality of
relevant clinical data. The consistent improvement across
all metrics indicates that OncoNLP-Assist not only captures
a wide range of relevant clinical data but also maintains
high accuracy in its responses. This enhanced performance
is particularly important in medical settings where precision
and comprehensiveness are critical for effective decision-
making. By outperforming the Llama2 chat model, OncoNLP-
Assist proves to be a more reliable tool for oncology-related
information retrieval.

Lastly, we evaluate our chatbot’s performance against GPT-
4 [19], GPT-3.5-turbo [22], and FLAN-UL2 [23], using
BLEU [24], ROUGE [25], and Exact Match F1 scores on
CORAL dataset [26]. CORAL dataset is a newly developed,
fine-grained, expert-labeled dataset of 40 de-identified breast
and pancreatic cancer progress notes at the University of
California, San Francisco. It includes 20 breast cancer and
20 pancreatic cancer progress notes, featuring 9028 entities,
9986 modifiers, and 5312 relationships. Table III presents
the results of zero-shot extraction of detailed oncological
information with BLEU-4, ROUGE-1, and exact match (EM)
F1-score metrics. Our chatbot outperforms both GPT-3.5-turbo
and FLAN-UL2 across all three metrics and demonstrates
comparable performance to GPT-4. While GPT-4 slightly



OncoNLP-Assist Llama2 chat
Precision 0.90±0.0178 0.86±0.0167
Recall 0.90±0.0221 0.85±0.0181
F1 Score 0.90±0.0190 0.86±0.0161

TABLE II
QUANTITATIVE COMPARISON WITH BERTSCORE BETWEEN

ONCONLP-ASSIST AND LLAMA2 CHAT.

GPT-4 GPT-3.5-turbo FLAN-UL2 OncoNLP
avg BLEU 0.73 0.61 0.53 0.69
avg ROUGE 0.72 0.58 0.27 0.59
avg EM-F1 0.51 0.29 0.06 0.54

TABLE III
COMPREHENSIVE EVALUATION OF ONCONLP-ASSIST, GPT-4,
GPT-3.5-TURBO, AND FLAN-UL2 ON THE CORAL DATASET: A
COMPARATIVE ANALYSIS OF AVERAGE BLEU, ROUGE, AND

EXACT-MATCH F1 SCORES.

outperforms OncoNLP-Assist in BLEU (0.73 vs. 0.69) and
ROUGE (0.72 vs. 0.59), OncoNLP-Assist excels in exact
match, achieving an EM F1 score of 0.54 compared to GPT-
4’s 0.51. This highlights OncoNLP-Assist’s superior accuracy
in precisely matching oncological information, reinforcing its
effectiveness as a domain-specific model when compared to
general-purpose systems.

V. DISCUSSION AND FUTURE WORK

In this study, OncoNLP and OncoNLP-Assist have demon-
strated significant promise as tools for processing and inter-
acting with oncology data. By fine-tuning these models on
specialized oncology datasets and real-world patient pathology
reports, we have enhanced their ability to interpret and respond
to complex medical information accurately. This approach
broadens their application from preliminary patient assess-
ments to automated case adjudication and proactive healthcare
measurement, mitigating the risks associated with potential
inaccuracies and hallucinations. By employing the OncoNLP
pipeline, we aim to enhance OncoNLP-Assist’s reliability as
a trusted PA, providing it with a well-rounded understanding
of patient health conditions and reducing errors and halluci-
nations.

The modular design of OncoNLP enables upgrades and
the integration of new features, ensuring the system remains
adaptable and keeps up with the latest medical knowledge.
This adaptability is crucial in a rapidly evolving field like
oncology, where new research findings and clinical practices
continuously emerge. The flexibility of OncoNLP allows for
seamless incorporation of these updates, maintaining the tool’s
relevance and accuracy.

Our future work will focus on expanding the dataset to
include more detailed oncology information, further improving
the models’ performance and utility. By incorporating compre-
hensive oncology data, including laterality, grade, stage, and
lymph node metastasis, we aim to provide a more detailed
and nuanced understanding of cancer-related information. This
expansion will enable OncoNLP-Assist to deliver more pre-
cise and comprehensive insights, supporting a wide range
of clinical decision-making processes. Moreover, we plan to

enhance OncoNLP-Assist’s interaction capabilities, making
it more adept at understanding and responding to complex
queries from healthcare professionals. By leveraging advanced
natural language processing techniques, we aim to create a
chatbot that can engage in meaningful, contextually relevant
conversations, providing valuable support to clinicians.

VI. CONCLUSION

In conclusion, the development of OncoNLP and OncoNLP-
Assist represents significant advancements in the application
of large language models in the medical field, particularly in
oncology. This innovative pipeline has demonstrated its poten-
tial to assist in various medical tasks, from patient assessment
to case adjudication, by leveraging extensive training on real-
world medical data. These models’ flexibility and accuracy
enable them to handle diverse clinical texts and provide con-
textually relevant responses, enhancing the decision-making
process for healthcare professionals. Moreover, OncoNLP’s
modular design ensures that the system can continuously
improve and update with new medical knowledge, keeping
it relevant and effective in an ever-evolving field. This adapt-
ability is crucial for maintaining high standards of care and
integrating the latest medical advancements. The incorporation
of advanced NLP techniques allows OncoNLP-Assist to not
only extract essential information from health records but also
engage in meaningful interactions with physicians, addressing
their queries with precision and depth. Ultimately, OncoNLP
and OncoNLP-Assist have the potential to become invaluable
tools in healthcare, aiding medical professionals in delivering
more accurate diagnoses and treatments. These tools improve
the efficiency and accuracy of clinical information extraction
and decision support, contributing to better patient outcomes
and streamlined healthcare workflows. As the technology
continues to evolve, its impact on oncology and other medical
specialties is expected to grow, setting the stage for more
intelligent and responsive healthcare solutions.

REFERENCES

[1] D. Demner-Fushman, W. W. Chapman, and C. J. McDonald, “What can
natural language processing do for clinical decision support?” Journal
of biomedical informatics, vol. 42, no. 5, pp. 760–772, 2009.

[2] W. W. Chapman, P. M. Nadkarni, L. Hirschman, L. W. D’avolio, G. K.
Savova, and O. Uzuner, “Overcoming barriers to nlp for clinical text:
the role of shared tasks and the need for additional creative solutions,”
pp. 540–543, 2011.

[3] P. Bhatia, B. Celikkaya, M. Khalilia, and S. Senthivel, “Comprehend
medical: a named entity recognition and relationship extraction web
service,” in 2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA). IEEE, 2019, pp. 1844–1851.

[4] E. Soysal, J. Wang, M. Jiang, Y. Wu, S. Pakhomov, H. Liu, and
H. Xu, “Clamp–a toolkit for efficiently building customized clinical
natural language processing pipelines,” Journal of the American Medical
Informatics Association, vol. 25, no. 3, pp. 331–336, 2018.

[5] G. K. Savova, E. Tseytlin, S. Finan, M. Castine, T. Miller,
O. Medvedeva, D. Harris, H. Hochheiser, C. Lin, G. Chavan et al.,
“Deepphe: a natural language processing system for extracting cancer
phenotypes from clinical records,” Cancer research, vol. 77, no. 21, pp.
e115–e118, 2017.

[6] J. Lafferty, A. McCallum, F. Pereira et al., “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in Icml,
vol. 1, no. 2. Williamstown, MA, 2001, p. 3.



[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[9] E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jin,
T. Naumann, and M. McDermott, “Publicly available clinical BERT
embeddings,” in Proceedings of the 2nd Clinical Natural Language
Processing Workshop. Minneapolis, Minnesota, USA: Association for
Computational Linguistics, Jun. 2019, pp. 72–78. [Online]. Available:
https://www.aclweb.org/anthology/W19-1909
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