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Abstract—Visual Object Goal Navigation (ObjectNav) requires
a robot to locate and navigate to a target object using egocentric
observations. However, generalizing policy behavior to new set-
tings—unseen environments and novel target objects—remains
a significant challenge. Traditional end-to-end learning methods
exacerbate this issue, relying on memorized latent patterns
rather than structured reasoning, which limits their ability to
generalize effectively. While some recent approaches leverage
foundation models for enhanced reasoning, they often overlook
the inherent uncertainty and potential errors in vision-language
model (VLM) outputs, lacking mechanisms to detect and correct
mistakes during navigation. In this work, we introduce Closed-
Loop Hierarchical Chain-of-Thought Navigation (CL-HCoTNav),
a VLM-driven ObjectNav framework that integrates structured
reasoning and closed-loop feedback into navigation policy learn-
ing. To improve generalization, we fine-tune a small-scale pre-
trained VLM using multi-turn question-answering (QA) data
derived from human demonstration trajectories. This structured
dataset enables hierarchical Chain-of-Thought (H-CoT) prompt-
ing, systematically extracting compositional knowledge following
the human cognitive process of locating a target object through
iterative reasoning steps. In addition, we propose a Closed-
Loop H-CoT mechanism that incorporates quantifiable detection
and reasoning confidence scores into the training loss. Our
adaptive weighting strategy guides the model to prioritize high-
confidence data pairs during navigation, reducing noise from
observations and improving robustness against hallucinated or
incorrect reasoning. Extensive experiments in the AI Habitat
demonstrate that CL-HCoTNav achieves superior generalization
to unseen scenes and novel object categories, outperforming state-
of-the-art approaches in ObjectNav success rate (SR) and success
weighted by path length (SPL) by 22.4%.

I. INTRODUCTION

Humans efficiently navigate unfamiliar environments to
find target objects by reasoning about semantic relationships
[30]—for instance, recognizing that kitchens are typically
adjacent to living rooms, or that exit signs indicate pathways to
an exit. This structured reasoning enables humans to infer the
probable locations of objects without exhaustive exploration or
explicit SLAM-based mapping. Replicating this capability in
robots is fundamental to ObjectNav task, where a robot must
locate a specified object category in an unseen environment
using only egocentric observations [26]. However, achieving
reasoning-driven navigation remains an open challenge, par-
ticularly under zero-shot generalization settings, where a robot
must navigate to previously unseen object categories or adapt
to novel scene layouts without retraining. This makes Zero-
Shot Object Navigation (ZSON) a critical yet largely unsolved
problem [18], as illustrated in Fig. 1.

Fig. 1. Overview of the Zero-Shot Object Navigation (ZSON) problem. The
left side illustrates the training phase, where a robot learns to navigate to target
objects within a set of seen scenes and object categories. The right side depicts
the zero-shot generalization phase, where the learned policy is evaluated in
novel scenes and with unseen target objects without additional training. The
figure also highlights the proposed H-CoT reasoning process, where the agent
infers likely object locations based on object-room relationships.

The ZSON problem presents two primary challenges [35].
First, unseen object generalization requires a robot to infer
the probable location of novel target objects based on learned
semantic relationships, rather than memorizing specific object
instances. For example, if a robot learned to find a “chair”, it
should infer the likely placement of a “stool” based on shared
spatial and functional attributes, without requiring explicit
training. Second, unseen scene generalization demands that
a robot recognize high-level layout patterns rather than mem-
orizing room arrangements. While real-world indoor spaces
exhibit variations in layouts, they often share similar organiza-
tional structures. Effective generalization thus requires reason-
ing about spatial relationships—for instance, recognizing that
a kitchen is typically adjacent to a dining area—rather than re-
lying on rigid spatial distributions encountered during training.
Addressing these challenges necessitates structured semantic
reasoning beyond conventional feature-based learning. In this
work, we explicitly model object-object and object-scene co-
occurrence relationships to generalize across unseen objects
and scenes while maintaining efficient navigation.

Existing approaches to ZSON based on end-to-end rein-
forcement learning (RL) directly optimize navigation policies
from egocentric visual inputs [22]. While capable of captur-



ing complex visual-action associations, these methods require
extensive interaction data for training and often struggle to
generalize beyond the training distribution. Critically, they lack
principled mechanisms for integrating semantic reasoning and
uncertainty estimation into the navigation loop, limiting their
ability to generalize to novel objects and environments. Recent
advances in VLMs offer new opportunities to inject com-
monsense reasoning into navigation [24, 32]. These models
excel at object recognition and relational reasoning, making
them valuable for introducing semantic priors and inferring
object-scene relationships [33, 28]. However, directly applying
VLMs to ObjectNav remains challenging [12]. While language
models can generate high-level narratives about navigation
strategies, they often lack grounding in real-world sensory
observations and may produce hallucinated or semantically in-
correct reasoning. Moreover, their lack structured intermediate
reasoning steps or fail to account for incorrect or uncertain
reasoning, leading to unreliable performance.

To address these limitations, we propose a VLM-driven
navigation framework that introduces a hierarchical chain-of-
thought (H-CoT) reasoning process. Rather than directly pre-
dicting actions, our method decomposes ObjectNav into struc-
tured multi-turn question-answering (QA) pairs that explicitly
model human-like decision-making, inspired by how humans
iteratively refine their understanding of an environment. To
further mitigate the effects of noisy RGB observations and
incorrect commonsense associations, we introduce a closed-
loop mechanism that incorporates confidence-weighted adap-
tive learning, prioritizing high-confidence trajectories and re-
ducing the influence of unreliable predictions. This refinement
improves generalization to unseen objects and environments
while enabling more robust and reliable navigation decisions.

Our key contributions are as follows:
• We introduce CL-HCoTNav, a VLM-driven ObjectNav

framework that integrates structured hierarchical reason-
ing into navigation policy learning. We fine-tune a small-
scale pre-trained VLM using multi-turn QA data derived
from human demonstration trajectories, enabling H-CoT
prompting to extract compositional knowledge and pro-
vide intermediate supervision for navigation.

• We further develop a closed-loop H-CoT mechanism
that incorporates quantifiable detection and reasoning
confidence scores, educing noise from observations and
improving robustness against hallucinated reasoning.

• Extensive experiments in the AI Habitat demonstrate
that our method outperforms state-of-the-art ObjectNav
baselines in both success rate (SR) and success weighted
by path length (SPL) by 22.4%.

II. RELATED WORK

A. Object Goal Visual Navigation
Visual Object Goal Navigation (ObjectNav) requires a robot

to locate and navigate to a target object using egocentric
observations[26]. Existing approaches can be categorized into
modular learning and end-to-end learning [11]. Modular learn-
ing methods decompose the navigation task into semantic

mapping, goal selection, and motion planning. These methods
construct a top-down semantic map, select exploration goals
based on learned or heuristic policies, and execute low-level
actions through a local planner [11]. Representative pipelines
[6, 34] incrementally build episodic semantic maps while
employing goal-agnostic, frontier-based exploration. The se-
mantic exploration policy determines navigation goals by
leveraging learned priors on object spatial relationships, while
the local planner [23] generates paths and executes actions.
The exploration policy operates at a coarse time scale, whereas
the planner continuously updates the map and refines the
path at a finer scale. Although modular approaches are inter-
pretable and transferable to real-world settings, their reliance
on accurate localization and mapping limits practice in large-
scale environments. End-to-end learning methods, in contrast,
directly map raw sensor inputs and goal descriptions to navi-
gation actions using deep neural networks, bypassing explicit
mapping. It learns implicit representations of the observation
before inputting it into the navigation policy, exploiting the
object relationships or semantic contexts, aiming for a more
robust navigation policy. [17] incorporate attention mecha-
nisms to prioritize relevant observed objects. Meta-learning
strategies [29] enable adaptive navigation in unseen environ-
ments without explicit supervision, and graph neural networks
[7] have been employed to model object relationships and
extract semantic interaction features. [4] introduce an image-
level representation to bridge the gap between RGB inputs and
control-space actions. While end-to-end approaches captures
complex visual-action associations, they require large-scale
interactive training data and often struggle with long-horizon
dependencies and memory retention. In this work, we adopt
this end-to-end learning paradigm, integrating semantic rela-
tionships reasoning among the target object, observed objects
and scene via the H-CoT reasoning process.

B. Zero-Shot Object Goal Navigation

Traditional ObjectNav methods are trained on a fixed set of
object categories and scenes [37, 30], limiting their ability to
generalize beyond seen cases. In contrast, humans can effort-
lessly locate novel objects in unfamiliar environments without
prior exposure. Achieving similar generalization in ObjectNav
requires disentangling navigation ability from specific training
scenes and target objects. To evaluate this, experiments typi-
cally partition object target classes and scenes into seen and
unseen categories, assessing the model’s capability to navigate
to novel objects and scenes without additional training. End-to-
end methods such as SSNet [36] incorporate object detection
results and cosine similarity between word embeddings to
prevent class-specific policy overfitting. SPNet [35] refines
policy learning through object-goal embeddings that guide ac-
tion selection based on semantic similarity. EmbCLIP [14] and
ZSON [18] utilize pretrained vision encoders and text-based
embeddings [21] to establish semantic relationships between
target objects and observed scenes, improving generalization
without requiring additional annotated training data.

Despite advances in semantic embeddings and target-guided



Fig. 2. Overview of CL-HCoTNav. We finetune a small-scale pre-trained VLM using multi-turn QA data derived from human demonstration trajectories.
This structured dataset enables H-CoT prompting, including two main turns: perception and planning, to iteratively extract compositional knowledge from
egocentric RGB observations through a sequence of large pre-trained models and finally aligned with human demonstration actions. A confidence scoring
system is also generated to evaluate the reliability of each detection and reasoning step, which guide adaptive loss weighting during finetuning to improve
robustness against noisy supervision.

exploration, ZSON remains challenging due to the variability
of object and scene distributions and the absence of unified
features and prior knowledge for efficient search. To address
this, our method leverages human-demonstrated trajectories,
interpreting them hierarchically to generate structured priors,
semantic reasoning, and agnostic exploration, thereby achiev-
ing robust generalization without extensive retraining.

C. Foundation Models for Visual Navigation

Recent works integrate pre-trained multimodal models into
ObjectNav, reducing the need for training from scratch while
leveraging strong visual recognition or reasoning. These meth-
ods primarily use foundation models for (1) exploration
guidance by relating observations to target objects or (2)
policy learning for direct action prediction. For exploration
guidance, VLFM [31] employs BLIP-2 [16] to compute
cosine similarity between observations and target prompts,
projecting scores onto a semantic map to guide frontier-based
exploration. OpenFMNav [15] decomposes ObjectNav into
sequential stages, utilizing vision-language models (VLMs) for
perception, reasoning, and constructing a semantic score map
for language-guided navigation. CoW [16] provides object
grounding, similarly projecting relevance scores onto a top-
down map. While these methods enable zero-shot navigation
without additional training, frozen VLMs may produce incor-

rect associations due to biases or hallucinations, lacking mech-
anisms for real-time correction. For policy learning, ViNT
[25] encodes vision-language features into a transformer-based
policy, requiring an additional adapter to map from token
space to action space. DivScene [27] directly fine-tunes VLMs
using imitation learning, but its reliance on annotated shortest
paths—assuming prior knowledge of the target object’s loca-
tion—limits the model’s ability to learn efficient search strate-
gies. To address these limitations, our method directly employs
a compact VLM as the full navigation policy, introducing
a structured reasoning framework that extracts compositional
knowledge from human-demonstrated trajectories.

III. METHODOLOGY

A. Problem formulation

In the ObjectNav task, consider a set of seen object goal
classes Ctrain = {c1, c2, . . . , cn} available during training,
where n is the total number of seen classes, and a set
of seen scenes Xtrain. During zero-shot testing, the agent
navigates to objects from an unseen target class set Ctest =
{u1, u2, . . . , um}, where m is the total number of unseen
classes, within unseen scenes Xtest. The training and testing
sets are disjoint, i.e., Xtrain∩Xtest = ∅ and Ctrain∩Ctest = ∅. The
robot is first trained to navigate to a target object ci from Ctrain
within a scene Xtrain,i, given egocentric RGB observations,



and is later evaluated in a zero-shot setting where it must
navigate to a target object from Ctest in an unseen scene Xtest,i.
Each episode initializes the agent at a random position pi0
with a random orientation in scene si0, and the target object
category ci is provided. An episode is therefore characterized
by Ti = {si, ci, pi, oi, ai}. At each time step t, the agent
receives an observation oit from its current viewpoint and
selects an action ait. The observation consists of an RGB
image, the agent’s location and orientation, and the target
object category. The action space A consists of six discrete
actions: move forward, which moves the agent forward by 25
cm; turn left and turn right, which rotate the agent 30° left
or right; look up and look down, which adjust the camera
pitch by 30°; and stop, which signals that the target has been
reached. An episode is considered successful if the agent
executes the stop action and the target object is visible, as well
as within 0.2 m of the target. Each episode is constrained to
a maximum of 500 time steps.

B. Overview

The CL-HCoTNav framework is illustrated in Fig. 2. To
model human-like reasoning in ObjectNav, our method trans-
forms egocentric RGB observations and corresponding human
demonstration trajectories into structured, multi-turn question-
answering (QA) sequences. This is achieved using a pipeline
of pre-trained (vision)-language models. Each QA sequence
aligns intermediate reasoning steps with ground-truth actions,
enabling supervision towards low-level behavior cloning.

At the core of the framework is the H-CoT prompting
process, which decomposes ObjectNav into two reasoning
phases. Perception and Planning Rounds. In the Perception
Rounds, the system identifies salient objects from the current
RGB observation, infers semantic co-occurrence relationships
at both the room and object levels, and constructs a structured
scene-level context. These steps allow the model to hypothe-
size where the target object is likely to be found, mimicking
the cognitive strategies used by humans during navigation. The
Planning Rounds then reason over the accumulated context,
producing high-level navigation suggestions (e.g., ”turn left”
or ”explore another room”) that are discretized into executable
control actions. This hierarchical prompting process acts as an
interpretable bridge between perception and action, promoting
generalization for out-of-distribution object goal and scenes.

To enhance robustness and learning efficiency, we further
propose the Closed-Loop H-CoT mechanism. While H-CoT
provides structured supervision, it remains vulnerable to label
errors due to noisy visual inputs or incorrect semantic reason-
ing associations. To mitigate this, we introduce a confidence
scoring system that evaluates the reliability of each QA pair
based on reasoning consistency and input quality. During train-
ing, these confidence scores are integrated into an adaptive loss
function that modulates the influence of each sample. High-
confidence samples contribute more strongly, while uncertain
or potentially hallucinated reasoning paths are down-weighted.

The complete QA dataset, annotated with hierarchical rea-
soning steps and associated confidence scores, is then used

to fine-tune a smale-scale pretrained VLM via Low-Rank
Adaptation (LoRA). By combining hierarchical prompting
with closed-loop learning, CL-HCoTNav achieves robust gen-
eralization to unseen scenes and novel object categories. We
next detail the two key components of our approach: the
H-CoT reasoning process and the Closed-Loop confidence
integration.

C. Hierarchical Chain-of-Thought (H-CoT)

To enrich the supervision beyond discrete human demon-
strated actions, we introduce H-CoT—a structured reasoning
process that mimics human cognitive strategies for naviga-
tion. H-CoT decomposes the ObjectNav task into two multi-
turn reasoning stages: Perception Rounds for semantic scene
understanding and Planning Rounds for informed decision-
making. This design enables compositional reasoning over
spatial and semantic cues, allowing the model to generalize
beyond training distributions.

In the Perception Rounds, a sequence of QA rounds is
applied to egocentric RGB observations to extract structured
scene context. The first round identifies subgoal objects and
their spatial arrangements (e.g. “a dining table is centrally
positioned with surrounding chair”), capturing the visual lay-
out of the environment. Subsequent rounds perform semantic
guesswork through two levels of association. At the room
level, the model infers the scene type based on typical object
co-occurrence (e.g., “a TV and sofa suggest a living room”).
At the object level, it relates detected subgoal objects to the
target via commonsense priors (e.g., “a cushion is likely near
a couch, but not near a stove”). These associations allow the
model to hypothesize the likely presence of the target without
direct observation. Each subgoal object is assigned a relevance
score that reflects its semantic proximity to the target object,
serving as a soft-attention mechanism. This scoring filters out
spurious detections and prioritizes contextual cues that are
semantically informative, forming a rich representation of the
current scene to guide object navigation.

Building on this context, the Planning Rounds generate
navigation suggestions grounded in the inferred scene se-
mantics. The model evaluates whether the current room is
a plausible location for the target; if not, it recommends
exploration strategies such as “explore another room” or “turn
around.” These suggestions are then mapped into high-level
textual decisions, which are further discretized into text-based
executable control actions. Critically, these planning outputs
are aligned with human demonstration actions, enabling ab-
stract reasoning in behaviorally relevant supervision.

To generate this hierarchical supervision, we annotate
human demonstration data using a pipeline of pre-trained
(V)LLMs, resulting in this dataset of structured multi-turn
QA pairs aligned with human actions. This dataset enables
supervised training that incorporates both detection, reason-
ing, and control, bridging the gap between low-level action
imitation and high-level semantic understanding. By explicitly
modeling semantic co-occurrence relationships and decompos-
ing decision-making into interpretable stages, H-CoT provides



a strong inductive bias for zero-shot generalization and allows
robot to compositionally reason about new objects and scenes.

D. Closed-Loop H-CoT Mechanism

While the H-CoT framework introduces structured reason-
ing for ObjectNav, it remains vulnerable to failures caused
by noisy visual inputs, hallucinated associations, or unreliable
outputs from the underlying vision-language models. These
detection and reasoning inconsistencies can degrade navigation
performance when treated equally during training. To address
this, we propose the Closed-Loop H-CoT Mechanism, a
feedback-driven strategy that introduces reasoning confidence
scores to modulate training dynamics.

In standard imitation learning, all training samples are
treated with equal importance, regardless of their semantic
clarity or visual quality. In contrast, our approach attaches
a confidence score to each sample during H-CoT generation,
capturing the reliability of both detection (object grounding)
and reasoning (semantic inference) at each turn. Specifically,
for each multi-turn QA sequence labeled by pre-trained mod-
els, we parse out the final text-based action suggestion and
compare it to the human-demonstrated ground truth action.
The degree of semantic alignment—combined with visual
detection certainty—forms a confidence score ci ∈ [0, 1] for
each reasoning trajectory.

These confidence scores are then integrated into training
via an adaptive loss weighting mechanism. ObjectNav is
formulated as a multi-class classification task, where the model
predicts a discrete navigation action (e.g., forward, left, right)
conditioned on the RGB image and the corresponding struc-
tured QA prompt. The baseline training objective is defined
using categorical cross-entropy:

LCE = − log ŷi,yi
(1)

where ŷi,yi is the predicted probability assigned to the cor-
rect action label yi. To prioritize learning from trustworthy
trajectories and downweight unreliable supervision, we define
a sigmoid-based adaptive loss function:

Ladaptive =
1

1 + exp(−α(ci − β))
· (− log ŷi,yi) (2)

Here, ci is the confidence score of the i-th sample, while α and
β are hyperparameters controlling the sharpness and threshold
of the weighting function.

This closed-loop design enables the model to selectively
attend to high-quality detection and reasoning timesteps while
minimizing the impact of noise or hallucinations from photo-
realistic scene and language model. By integrating confidence-
weighted fine-tuning into the training loop, the Closed-Loop
H-CoT mechanism improves generalization to unseen environ-
ments and enhances the robustness of decision-making under
real-world visual uncertainty.

IV. EXPERIMENT

In this section, we first describe the details of our experiment
settings, including the dataset split, simulation platform, and

training parameter. Then, we evaluate our method and other
ZSON methods through the commonly used Habitat platform
and discuss the experimental results.

A. Dataset

We evaluate our method using the Matterport3D (MP3D)
scenes [5] in the Habitat simulator [20], which provides high-
resolution, photo-realistic indoor scenes with 21 object goal
categories. Our experiments follow the standard ZSON set-
ting, which evaluates generalization across both novel object
categories and unseen scenes [35]. Training is conducted on
the MP3D-HD-70k dataset [22], which contains over 70,000
human demonstration trajectories collected across 56 scenes.
To ensure data quality, we remove failed trajectories, filter
non-navigable starting positions, and cap all episodes to a
maximum length of 500 steps. After preprocessing, we obtain
cleaned subsets of 35k, 50k, and 70k demonstrations, balanced
between object classes and scene types. We design two eval-
uation protocols to measure generalization, as shown in Table
I: (1) object generalization, where the target categories differ
between training and test, and (2) scene generalization, where
the environments differ.

TABLE I
BREAKDOWN OF TRAIN AND TEST DATASETS FOR SCENE AND OBJECT

GENERALIZATION EXPERIMENTS. INSIDE () INDICATE EPISODE OR
TARGET NUMBERS AFTER CLEANING.

Split Dataset Scenes Episodes Targets

Scene Generalization

Train MP3D-HD-70k 56 70,176 (53,827) 28 (21)
Train MP3D-HD-50k 40 49,778 (37,925) 28 (21)
Train MP3D-HD-35k 28 34,641 (26,517) 28 (21)
Test MP3D-Val 11 2,195 (1,148) 21

Object Generalization

Train MP3D-HD-35k-C16 28 20,595 16
Test MP3D-HD-35k-C05 28 5,922 5

Object Generalization. For this split, we adopt the setting
from [35], where the 21 object categories in MP3D are
divided into 16 seen and 5 unseen classes. The training
set (MP3D-HD-35k-C16) includes trajectories involving only
the seen classes, while the test set (MP3D-HD-35k-C05)
uses the same 28 training scenes but targets the five unseen
categories: counter, bed, toilet, chest of drawers, plant. This
setting evaluates the model’s ability to reason over novel object
semantics not encountered during training. The remaining
16 categories—e.g., chair, table, sofa, tv monitor, sink—are
exclusively used for training.

Scene Generalization. To assess generalization to unseen
spatial layouts, we train on the full MP3D-HD dataset using
subsets of 28, 40, or 56 scenes (i.e., MP3D-HD-35k/50k/70k),
each containing trajectories across all 21 object categories.
Evaluation is performed on the MP3D-Val set, which in-
cludes 2,195 episodes across 11 held-out scenes that do not
overlap with any training environments. This setting focuses



on the model’s ability to adapt to novel layouts and scene
compositions, even when the object categories remain the
same. Table I summarizes the number of scenes, episodes,
and target categories used across all training and evaluation
configurations.

B. Implementation Details

In the ZSON task, the robot is required to search for an
instance of a specified object category (e.g., bed) within an
unseen environment using only egocentric perception. The
robot is equipped with an RGB camera, a depth sensor, and
an odometry sensor that provides its pose relative to the
episode’s starting position. The simulated robot is 0.88 meters
tall with a radius of 0.18 meters. It captures 480× 640 RGB-
D observations through a forward-facing camera mounted at a
height of 0.88 meters, with a horizontal field of view (HFoV)
of 79 degrees. All experiments are carried out using the Habitat
Lab simulation platform [20], and the models are implemented
in PyTorch [19].

To generate multi-round QA annotations for our dataset,
we employ different pre-trained models for specific submod-
ules: Qwen-VL-Chat [3] for subgoal detection, Qwen-7B [2]
for semantic guesswork and object-target association, and
ChatGPT-3.5-turbo for high-level action suggestion and scene-
level reasoning. An example of the conversation template used
in annotation generation is shown in Fig. 2. For navigation
policy learning, we fine-tune a 2B-parameter vision-language
model based on the InternVL2 [9] framework, which uses a
ViT-based vision encoder and InternVL2-LM as the language
model. Fine-tuning is performed using the LoRA technique
[13] on a compute node equipped with 4 NVIDIA V100 GPUs.
We use a batch size of 16 and train for 3 epochs, which takes
approximately 19 hours on the MP3D-HD-50k dataset. The
LoRA-specific fine-tuning hyperparameters are summarized in
Table II.

TABLE II
HYPERPARAMETERS FOR LORA FINE-TUNING

Parameter Value
LoRA rank (r) 8
LoRA scaling factor (α) 16
LoRA dropout 0.05
Learning rate 3× 10−4

Batch size 16
Gradient accumulation steps 4
Weight decay 0.006
Warmup steps 500

C. Metrics

We follow [1] to evaluate our method using Success Rate
(SR), Success Weighted by Path Length (SPL), and Soft SPL
for object-goal navigation tasks. SR is defined as: 1

N

∑N
i=1 Si

where Si = 1 if the robot successfully reaches the tar-
get; otherwise, the episode is considered a failure. Success
Weighted by Path Length (SPL) is defined as: SPL =
1
N

∑N
i=1

li
max(li,pi)

where li is the shortest path from the start

position to a successful stop position, and pi is the robot’s
actual trajectory length in episode i. Finally, Soft SPL [10]
accounts for navigation efficiency while incorporating partial
progress toward the goal.

D. Comparison Models

We compare our proposed method with representative base-
line and state-of-the-art (SOTA) approaches in ObjectNav,
spanning RL, imitation learning (IL), and VLM paradigms.

Baseline [37]: A RL approach trained from scratch using
egocentric RGB inputs. It directly use a pre-trained ResNet
to extract a 1-D visual feature from the RGB observation and
concatenate with the semantic embedding of the target class
as the input of the policy network. The policy is learned end-
to-end using PPO without incorporating semantic priors.

Habitat-Web [22]: An IL method that trains ObjectNav
agents directly from human demonstration trajectories. The
model maps egocentric RGB observations to expert-labeled
actions via an end-to-end MLP policy, similar to Baseline.

VLFM [31]: A VLM-based modular navigation framework
that employs BLIP-2 [16] for semantic matching. It computes
cosine similarity between the agent’s current RGB view and
the target object description, projecting scores onto a semantic
map for goal selection. The model is frozen during deployment
and not fine-tuned for ObjectNav tasks.

SSNet [36]: A RL-based zero-shot ObjectNav model that
integrates object detection scores and word embedding simi-
larity as anxillary input to policy learning.

DivScene [27]: An VLM approach that also introduces
chain-of-thought (CoT) reasoning for decision-making. Unlike
our method, which learns an end-to-end policy from human
behavior using fine-tuned VLMs, DivScene employs CoT
supervision based on shortest path trajectories.

E. Training Results

Table III presents the evaluation performance of CL-
HCoTNav and other baseline models on the training splits after
training. All methods achieve comparable success rates (SR)
and success weighted by path length (SPL), indicating that
ObjectNav is generally learnable across different paradigms.

CL-HCoTNav consistently achieves the highest SPL and
competitive SR, demonstrating the effectiveness of structured
hierarchical reasoning and confidence-aware fine-tuning. Com-
pared to IL approaches such as Habitat-Web and DivScene,
CL-HCoTNav exhibits notably higher SPL, suggesting that
structured multi-round reasoning contributes to more efficient
and purposeful trajectories. While VLFM leverages frozen
vision-language embeddings and commonsense priors, it per-
forms worse than fine-tuned approaches, particularly in SPL.
This confirms that adaptation to navigation-specific tasks is
critical for fully exploiting the semantic reasoning capacity
of large-scale VLMs. Although DivScene incorporates CoT
supervision into its IL pipeline, its reliance on shortest-path
ground truth limits its adaptability. In contrast, CL-HCoTNav
further benefits from closed-loop mechanism, improving ro-
bustness by emphasizing high-confidence data pairs.



We also observe that increasing the number of human
demonstration trajectories improves performance, though with
diminishing returns. Moving from 35k to 50k demonstrations
yields substantial gains in both SR and SPL, while the im-
provement from 50k to 70k is more modest. This suggests that
while IL benefits from more data, its effectiveness saturates
without structured supervision. In this context, our results
highlight the importance of structured reasoning over pure data
scaling for achieving high-quality navigation performance.

TABLE III
TRAINING RESULTS FOR OBJECTNAV. WE REPORT SUCCESS RATE (SR)

AND SUCCESS WEIGHTED BY PATH LENGTH (SPL) FOR EACH SOTA.

Method SR (%) SPL (%) Training
Object Goals

Baseline [37] 63.3 0.21 Yes
SSNet [36] 65.4 0.23 Yes
Habitat-Web [22] 69.1 0.26 Yes
VLFM [31] 70.1 0.28 No
DivScene [27] 73.8 0.30 Yes
CL-HCoTNav (MP3D-HD-35k-C16) 74.1 0.31 Yes

Scenes
Baseline [37] 64.1 0.22 Yes
SSNet [36] 67.5 0.25 Yes
Habitat-Web [22] 70.8 0.27 Yes
VLFM [31] 71.3 0.28 No
DivScene [27] 75.6 0.32 Yes
CL-HCoTNav (MP3D-HD-35k) 73.5 0.32 Yes
CL-HCoTNav (MP3D-HD-50k) 74.8 0.35 Yes
CL-HCoTNav (MP3D-HD-70k) 76.2 0.38 Yes
Humans 93.7 42.5

F. Zero-Shot Generalization Test
Table IV reports performance of various models on ZSON

under two settings: novel object categories and novel scenes.
CL-HCoTNav achieves the highest success rate and SPL in
both settings, demonstrating its strong generalization ability
through hierarchical reasoning and confidence-aware learning.

For novel object generalization, models that incorporate
semantic priors—such as VLFM, SSNet, DivScene, and
CL-HCoTNav—outperform traditional RL (Baseline) and IL
(Habitat-Web). Although trained on expert demonstrations,
Habitat-Web fails to generalize well to unseen objects, likely
due to overfitting to category-specific patterns without broader
semantic reasoning. VLFM benefits from frozen vision-
language embeddings but lacks fine-tuning, resulting in low
SPL due to inefficient trajectory planning. SSNet improves
upon RL by modeling object-object associations but remains
limited by its static representations. DivScene introduces
chain-of-thought reasoning during VLM finetuning, leading
to improved generalization, but is constrained by reliance on
shortest-path supervision. CL-HCoTNav outperforms all base-
lines by explicitly modeling both object-level and room-level
semantic relationships and refining decision-making through
confidence-based weighting. This structured reasoning enables
the agent to infer the likely location of unseen targets and
navigate efficiently without memorized spatial priors.

In the novel scene generalization setting, the focus shifts
to layout adaptation. RL-based methods struggle due to

overfitting to seen environments. While SSNet introduces
object-aware exploration cues, its performance remains lim-
ited in unfamiliar layouts. Imitation learning models, includ-
ing Habitat-Web, experience significant performance drops,
suggesting limited adaptability to new spatial arrangements.
VLFM achieves better generalization due to its strong semantic
priors, but its frozen architecture limits efficiency. DivScene
benefits from intermediate reasoning but remains less effective
than CL-HCoTNav in navigating complex spatial layouts.
CL-HCoTNav maintains a relatively small performance gap
between training and zero-shot testing, indicating superior gen-
eralization. Its hierarchical planning allows flexible adaptation
to novel configurations, while the closed-loop mechanism sup-
presses unreliable supervision, improving trajectory quality.

Overall, these results highlight the importance of structured
multi-turn reasoning and adaptive learning in achieving robust
generalization. CL-HCoTNav bridges the limitations of prior
approaches by integrating semantic reasoning with confidence-
aware training, offering a scalable solution for ZSON.

TABLE IV
ZERO-SHOT OBJECTNAV RESULTS ON MP3D VAL SPLIT. WE REPORT

SUCCESS RATE (SR) AND SUCCESS WEIGHTED BY PATH LENGTH (SPL)
UNDER TWO GENERALIZATION SETTINGS: NOVEL OBJECT GOALS AND
NOVEL SCENES. ALL MODELS ARE TRAINED ON 35K TRAJECTORIES.

Method Novel Object Goals Novel Scenes
SR (%) SPL (%) SR (%) SPL (%)

Baseline [37] 22.7 5.1 25.3 6.1
Habitat-Web [22] 26.5 7.4 28.2 9.0
VLFM [31] 34.2 14.8 35.8 16.5
SSNet [36] 30.2 10.8 31.1 12.1
DivScene [27] 44.1 19.1 46.7 21.3
CL-HCoTNav (35k) 55.2 25.7 58.5 27.4

G. Ablation Study

This section isolates the contributions of hierarchical rea-
soning and closed-loop learning within the CL-HCoTNav
framework, analyzing their impact on zero-shot generalization.

As shown in Table V, proposed H-CoT plays a central role
in boosting generalization. Compared to a baseline using pure
human annotations—where the QA format is limited to query-
ing the target object and returning the human-demonstrated
action—standard CoT prompting [8] improves performance by
introducing intermediate reasoning. However, H-CoT further
amplifies these gains by introducing a two-stage structure
that separately models subgoal identification and semantic
reasoning across room- and object-level contexts. This design
leads to better-informed decision-making, significantly reduc-
ing failure cases arising from reactive or shallow policies.

Building on H-CoT, the Closed-Loop CoT mechanism
provides an additional performance boost. By incorporat-
ing reasoning confidence scores into the training loop, the
model learns to prioritize high-quality supervision while down-
weighting noisy or semantically ambiguous samples. This
adaptive loss weighting refines decision-making and enhances
robustness under distribution shifts, particularly in unseen en-
vironments. The improvement from H-CoT to CL-HCoTNav



Fig. 3. Zero-shot generalization results on MP3D Val. The figure illustrates how CL-HCoTNav navigates in unseen scene layouts. The predicted navigation
path is shown in blue and shortest path is shown in green. SPL = 0.71, ep length = 97.

TABLE V
ABLATION STUDY RESULTS ON MP3D VAL (UNSEEN SCENES). THIS

STUDY EVALUATES THE IMPACT OF HIERARCHICAL REASONING (H-COT)
AND ADAPTIVE LEARNING (CLOSED-LOOP COT) ON GENERALIZATION.

Method Success (↑) SPL (↑)
Pure Text (Human Annotations) 24.3% 6.5%
Standard CoT [8] 36.5% 15.8%
H-CoT (Hierarchical CoT Only) 52.9% 23.1%
CL-HCoTNav (H-CoT + Closed-Loop) 55.2% 25.7%

highlights the value of confidence-aware learning in mitigating
the effect of hallucinated associations and unreliable interme-
diate predictions. Taken together, these results validate that
CL-HCoTNav’s superior generalization stems not only from
its structured reasoning process, but also from its ability to
selectively learn from trustworthy examples.

V. CONCLUSION AND FUTURE WORK

In this work, we introduce Closed-Loop Hierarchical Chain-
of-Thought Navigation (CL-HCoTNav), a vision-language
model (VLM)-driven ObjectNav framework that integrates
structured reasoning and closed-loop feedback into naviga-
tion decision-making. We fine-tune a VLM using multi-turn

question-answering (QA) data derived from human demon-
stration trajectories. This structured dataset enables hierarchi-
cal Chain-of-Thought (H-CoT) prompting, iteratively extract
compositional knowledge and provide auxiliary navigation
guidance. Additionally, we propose a Closed-Loop H-CoT
mechanism that incorporates confidence scores into training
to prioritize high-confidence data pairs, enhancing robustness
against hallucinated or incorrect reasoning. Extensive exper-
iments in the AI Habitat environment demonstrated that our
method achieves superior generalization to unseen scenes and
target objects, outperforming state-of-the-art approaches in
success rate (SR) and success weighted by path length (SPL).

Despite these advancements, our approach still relies on
imitation learning, which is inherently limited by the quality
and coverage of the dataset. To overcome this, future work
will explore finetuning VLM using Reinforcement Learning
to enhance online policy learning beyond supervised data
constraints. Further, we plan to conduct physical experiments
to validate the approach in realistic settings. By integrating
offline IL and online RL adaptation, we aim to bridge the
gap between structured reasoning and real-world navigation
challenges, ensuring more robust and scalable ObjectNav
performance.
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[24] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-
nav: Robotic navigation with large pre-trained models of
language, vision, and action. In Conference on robot
learning, pages 492–504. PMLR, 2023.

[25] Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Sta-
chowicz, Kevin Black, Noriaki Hirose, and Sergey
Levine. Vint: A foundation model for visual navigation.
arXiv preprint arXiv:2306.14846, 2023.

[26] Jingwen Sun, Jing Wu, Ze Ji, and Yu-Kun Lai. A
survey of object goal navigation. IEEE Transactions on
Automation Science and Engineering, 2024.

[27] Zhaowei Wang, Hongming Zhang, Tianqing Fang,
Ye Tian, Yue Yang, Kaixin Ma, Xiaoman Pan, Yangqiu
Song, and Dong Yu. Divscene: Benchmarking lvlms for
object navigation with diverse scenes and objects. arXiv
preprint arXiv:2410.02730, 2024.

[28] Congcong Wen, Yisiyuan Huang, Hao Huang, Yanjia
Huang, Shuaihang Yuan, Yu Hao, Hui Lin, Yu-Shen Liu,
and Yi Fang. Zero-shot object navigation with vision-
language models reasoning. In International Conference
on Pattern Recognition, pages 389–404. Springer, 2025.

[29] Mitchell Wortsman, Kiana Ehsani, Mohammad Raste-
gari, Ali Farhadi, and Roozbeh Mottaghi. Learning
to learn how to learn: Self-adaptive visual navigation
using meta-learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 6750–6759, 2019.

[30] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta,
and Roozbeh Mottaghi. Visual semantic navigation using
scene priors. arXiv preprint arXiv:1810.06543, 2018.

[31] Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang
Wang, and Bernadette Bucher. Vlfm: Vision-language
frontier maps for zero-shot semantic navigation. In
2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 42–48. IEEE, 2024.

[32] Bangguo Yu, Hamidreza Kasaei, and Ming Cao. L3mvn:
Leveraging large language models for visual target nav-
igation. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3554–3560.
IEEE, 2023.

[33] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian
Lu. Vision-language models for vision tasks: A survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[34] Liang Zhang, Leqi Wei, Peiyi Shen, Wei Wei, Guang-
ming Zhu, and Juan Song. Semantic slam based on
object detection and improved octomap. IEEE Access,

6:75545–75559, 2018.
[35] Qianfan Zhao, Lu Zhang, Bin He, and Zhiyong Liu.

Semantic policy network for zero-shot object goal visual
navigation. IEEE Robotics and Automation Letters, 2023.

[36] Qianfan Zhao, Lu Zhang, Bin He, Hong Qiao, and
Zhiyong Liu. Zero-shot object goal visual navigation.
In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 2025–2031. IEEE, 2023.

[37] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep
reinforcement learning. In 2017 IEEE international
conference on robotics and automation (ICRA), pages
3357–3364. IEEE, 2017.


	Introduction
	Related Work
	Object Goal Visual Navigation
	Zero-Shot Object Goal Navigation
	Foundation Models for Visual Navigation

	Methodology
	Problem formulation
	Overview
	Hierarchical Chain-of-Thought (H-CoT)
	Closed-Loop H-CoT Mechanism

	Experiment
	Dataset
	Implementation Details
	Metrics
	Comparison Models
	Training Results
	Zero-Shot Generalization Test
	Ablation Study

	Conclusion and Future Work

