
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FORTUNE: FORMULA-DRIVEN REINFORCEMENT
LEARNING FOR SYMBOLIC TABLE REASONING IN
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tables are a fundamental structure for organizing and analyzing data, making
effective table understanding a critical capability for intelligent systems. While
large language models (LMs) demonstrate strong general reasoning abilities, they
continue to struggle with accurate numerical or symbolic reasoning over tabular
data, especially in complex scenarios. Spreadsheet formulas provide a powerful
and expressive medium for representing executable symbolic operations, encod-
ing rich reasoning patterns that remain largely underutilized. In this paper, we
propose Formula Tuning (Fortune), a reinforcement learning (RL) framework that
trains LMs to generate executable spreadsheet formulas for question answering
over general tabular data. Formula Tuning reduces the reliance on supervised for-
mula annotations by using binary answer correctness as a reward signal, guiding
the model to learn formula derivation through reasoning. We provide a theoretical
analysis of its advantages and demonstrate its effectiveness through extensive ex-
periments on seven table reasoning benchmarks. Formula Tuning substantially
enhances LM performance, particularly on multi-step numerical and symbolic
reasoning tasks, enabling a 7B model to outperform OpenAI o1 on table under-
standing. Beyond empirical gains, we present several insights into the role of
RL in symbolic table reasoning, highlighting the broader potential of formula-
driven RL to advance reasoning capabilities in LMs. Our code can be found at
https://anonymous.4open.science/r/Fortune-0597.

Sum values in
A1:A10.

Table

Query

Reasoning

Formula

Formula
Executor

Final
Answer

v.s.

Ground
Truth

Reinforcement Learning

<Think>
…

</Think>

<Answer>
=SUM(A1:A10)

</Answer >

y‘ == y ?

Reward

Figure 1: Overview of Formula Tuning (FORTUNE).

1 INTRODUCTION

Tables are a common and practical data structure in daily life, playing a central role in data collec-
tion, representation, and analysis (He et al., 2023; Yi et al., 2025). Recent advances in large language
models (LLMs) (Gunasekar et al., 2023; OpenAI, 2024; Touvron et al., 2023) have brought im-
pressive performance across a wide range of natural language processing tasks, including language
understanding (Minaee et al., 2024; Zhu et al., 2024) and general reasoning (Plaat et al., 2024). Nat-
urally, LLMs have also been applied to tabular data understanding and reasoning (Fang et al., 2024;
Zhang et al., 2024b; Cao & Liu, 2025).

1

https://anonymous.4open.science/r/Fortune-0597

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, reasoning over tabular data remains a key challenge for language models (LMs) (Cao
& Liu, 2025), primarily because of the numerical nature and intricate structure of tables, which
pose significant obstacles to understanding both content and layout. Besides, some findings (Yan
et al., 2025) suggest current LLMs rely on pattern memorization over genuine rule learning, often
leading to incorrect mathematical computations during traditional chain-of-thought reasoning, also
referred to as textual reasoning. Some approaches introduce symbolic methods (Chen et al., 2023;
Gao et al., 2023), where models first generate symbolic representations (such as programs) and
then execute them to obtain results. While this improves arithmetic accuracy, such methods often
struggle to generalize due to limited symbolic reasoning or program generation capabilities. Instead
of truly understanding the context and generating problem-solving programs, LMs often fall back
on memorized code snippets from pretraining (Yang et al., 2024). Since not all complex symbolic
patterns can be memorized, and given that high-quality code supervision is scarce (Bi et al., 2023),
more effective strategies for symbolic table reasoning are needed.

Recent progress in reinforcement learning (RL) for LMs shows promise for overcoming such limi-
tations. For example, DeepSeek-R1 (DeepSeek-AI et al., 2025) improves mathematical reasoning in
LLMs via rule-based RL rewards, without relying on step-by-step annotations. DeepRetrieval (Jiang
et al., 2025) uses retrieval metrics as RL rewards to train models to reason over queries that maxi-
mize real-world retrieval performance across search engines and databases. DeepCoder (Luo et al.,
2025) also demonstrates the effectiveness of RL for code reasoning and generation. These works
collectively demonstrate the promise of RL in enabling LMs to perform robust symbolic reasoning
without explicit intermediate supervision.

When it comes to symbolic table reasoning, spreadsheet formula (Microsoft Corporation, 2025)
is a powerful and versatile tool. In real-world scenarios, tabular data is often stored in spreadsheet
formats (e.g., Microsoft Excel, Google Sheets) (Dong et al., 2024), where each cell holds individual
data values. The spreadsheet formulas embedded in these files act as lightweight, program-like con-
structs that enable users to compute, transform, and reason over data. Compared to structured inter-
faces such as SQL or Python/Pandas, which are typically restricted to relational or flat table schemas,
spreadsheet formulas offer greater flexibility, as they can be applied to arbitrary two-dimensional ta-
bles without structural constraints (Wang et al., 2025). Moreover, spreadsheet formulas are Turing
complete (Smalley, 2023), making them particularly well-suited as a medium for symbolic table
reasoning.

We envision that by training LMs to understand and generate spreadsheet formulas, they can acquire
more robust and generalizable symbolic reasoning capabilities over tabular data. However, current
LLMs still struggle to produce accurate and reliable spreadsheet formulas, as highlighted by re-
cent evaluations (Thorne, 2023). At the same time, existing publicly available spreadsheet datasets
tend to include relatively simple formulas (Cheng et al., 2021), rely on heuristic conversions from
SQL (Zhao et al., 2024a), or synthesize formulas using LLMs in constrained question-answering
settings (Wang et al., 2025). These approaches fall short of capturing the complexity necessary for
diverse symbolic reasoning tasks and real-world downstream applications. This limitation poses a
significant barrier to effectively leveraging spreadsheet formulas for training LMs in symbolic table
reasoning.

To address these challenges, we propose Formula Tuning (Fortune), a RL framework designed to
teach LMs to perform symbolic reasoning over general tabular data through spreadsheet formula.
Specifically, our framework leverages answer correctness of formula execution results as a reward
signal to guide the LMs in deriving formulas through reasoning (Figure 1). This approach reduces
reliance on supervised formula annotations and enables LMs to generate executable formulas that
answer questions over tables with improved accuracy. Extensive experiments validate the effective-
ness of Formula Tuning, demonstrating that RL is more effective than supervised fine-tuning (SFT)
in enhancing the symbolic reasoning capabilities of LMs. We also find that initializing RL with SFT
as a cold start (DeepSeek-AI et al., 2025) provides a stronger foundation and raises the upper bound
of RL performance, with SFT serving as a form of knowledge injection. Notably, this enables a 7B
model to outperform OpenAI o1 in overall performance (68.48% vs. 66.90%). Furthermore, we
train both textual and symbolic reasoning components using RL in Fortune++. By jointly lever-
aging both components during inference, our method achieves strong performance across multiple
benchmarks (e.g., 82.54% on WikiTQ, 95.06% on TabFact, 87.24% on HiTab, 80.47% on FinQA,
and 93.20% on AIT-QA).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In summary, this paper makes the following key contributions:

• We propose Formula Tuning (Fortune), a reinforcement learning framework that enhances sym-
bolic reasoning for table understanding by training language models to generate executable
spreadsheet formulas.

• We provide a theoretical analysis and discussion comparing textual versus symbolic reasoning in
table understanding, as well as supervised fine-tuning versus reinforcement learning in symbolic
table reasoning.

• We conduct extensive experiments on seven table understanding benchmarks, demonstrating the
effectiveness of Formula Tuning, and perform comprehensive analyses to provide deeper insights.

2 RELATED WORK

Table Understanding and Reasoning. Many studies have explored fine-tuning language models
(LMs) to improve their ability to understand and reason over tabular data. Building on the masked
language modeling introduced by BERT (Devlin et al., 2019), models such as TaPas (Herzig et al.,
2020), PaSTA (Gu et al., 2022), and TUTA (Wang et al., 2021) propose specialized pretraining
strategies tailored for tables. TAPEX (Liu et al., 2022) pretrains an encoder-decoder model as a
neural SQL executor to better capture the semantics of table operations. Recent efforts, including
TableLLaMA (Zhang et al., 2024a) and TableGPT (Zha et al., 2023), build upon large decoder-
only language models pretrained for general-purpose table understanding across a wide range of
downstream tasks.

Other studies focus on enabling LMs to better perform table-related tasks without fine-tuning. For
example, Dater (Ye et al., 2023) proposes strategies for dynamically constructing sub-tables, mod-
ifying the input context to enhance comprehension. Chain-of-Table (Wang et al., 2024) models
table reasoning as a sequence of transformations using predefined operations, gradually generating
sub-tables to support complex multi-step inference. TableMaster (Cao & Liu, 2025) introduces a
general framework for table understanding and underscores the importance of symbolic reasoning
in handling complex scenarios. Given the structured and often numerical nature of tabular data,
program-of-thought prompting (Chen et al., 2023) and other symbolic approaches (Cheng et al.,
2023; Nahid & Rafiei, 2024; Mao et al., 2024) have demonstrated strong effectiveness for table
reasoning.

Formula Learning. A growing body of research has explored the potential of spreadsheet formulas
as a powerful means to enhance table understanding. NL2Formula (Zhao et al., 2024a) constructs
a formula generation dataset by converting text-to-SQL tasks into spreadsheet formulas, enabling
position-aware reasoning from natural language queries. ForTap (Cheng et al., 2022) leverages
spreadsheet formulas as pretraining signals to enhance numerical reasoning. Auto-Formula (Chen
et al., 2024) applies contrastive learning to transfer formulas from similar spreadsheets for formula
recommendation. SpreadsheetCoder (Chen et al., 2021a) formulates formula prediction as a pro-
gram synthesis task, leveraging both headers and surrounding cell values for context. FLAME
(Joshi et al., 2023) trains a small domain-specific model tailored for formula repair and completion.
TabAF (Wang et al., 2025) jointly generates answers and formulas for table question answering, but
relies on supervised fine-tuning over datasets generated by LLMs.

Reinforcement Learning for Language Models. Reinforcement Learning (RL) (Kaelbling et al.,
1996) is a machine learning paradigm that trains agents to make decisions through interaction with
an environment, with the goal of maximizing cumulative rewards. In the era of large language
models (LLMs), RL has gained significant traction as an effective framework for aligning models
with human preferences. A prominent example is Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022), which leverages the
Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) and human preference data
to train a reward model that guides the fine-tuning of LLMs. Building on RLHF, more recent algo-
rithms such as GRPO (Shao et al., 2024) and REINFORCE++ (Hu, 2025) aim to enhance reward
modeling and mitigate issues like biased optimization (Xu et al., 2024).

Reasoning with Language Models. It has been observed that sufficiently large language models
(LMs) can demonstrate emergent reasoning capabilities (Wei et al., 2022; Suzgun et al., 2022).
Chain-of-thought prompting (Wei et al., 2023) is one technique used to elicit step-by-step reasoning,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

SFT RLv.s.

Pred

v.s.

GT

y‘ == y ?

Reward

Distill

Textual Symbolicv.s.

Formula:
SUM(A1:A10)

Accurate calculation
via formula execution

Given the
values in cells
A1 to A10 are

…, we add
them together

to get the
sum: …

Answer: 20

Answer: 20

Teacher

Pseudo-label

Pred

Figure 2: A simplified illustration contrasting Textual versus Symbolic Reasoning in Table Un-
derstanding, and Supervised Fine-Tuning (SFT) versus Reinforcement Learning (RL) in Symbolic
Table Reasoning.

significantly improving performance on complex tasks. Further advances include self-consistency
(Wang et al., 2023) and structuring the reasoning process in forms like trees (Yao et al., 2023) or
graphs (Besta et al., 2024; Cao, 2024) are also useful for more complex reasoning tasks. RL has
also been used to directly improve reasoning skills during training (Lightman et al., 2023; Uesato
et al., 2022). Notably, DeepSeek-R1 (DeepSeek-AI et al., 2025) demonstrates that large-scale RL
can substantially boost the reasoning abilities of LMs. In terms of application, DeepRetrieval (Jiang
et al., 2025) applies RL to teach models how to reason about interacting with search engines for
information retrieval, while DeepCoder (Luo et al., 2025) uses RL for code reasoning and generation
tasks. Rec-R1 (Lin et al., 2025) also bridges LLMs and recommendation systems through RL.

3 METHODOLOGY

In this section, we present a theoretical analysis and discussion comparing textual versus symbolic
reasoning in table understanding, as well as supervised fine-tuning (SFT) versus reinforcement learn-
ing (RL) in symbolic table reasoning (Figure 2). We then introduce our proposed training frame-
work, Formula Tuning. All notations are list at Appendix L.

3.1 TASK FORMULATION

Table Understanding with Language Models. We consider a language model (LM) as a condi-
tional generation policy πθ(a | s), where θ denotes its parameters. The input s ∈ S comprises a
table T and a natural-language query q, i.e., s = (T, q). The table T is a two-dimensional grid of
cells:

Tm×n =

C1,1 C1,2 · · ·
C2,1 Ci,j · · ·

...
...

. . .

 , (1)

where each Ci,j may contain a data value, structural information (e.g., a top header or a left header),
or be empty. In practice, we linearize T into a text sequence before feeding it to the LM.

The LM then generates an output a ∈ A, which can be either a final textual answer or a spreadsheet
formula f that produces the answer upon execution. Our goal is to optimize the parameters θ that
maximize the expected table-understanding performance, measured by a reward function r(a | s).
Formally,

max
θ

Es∼p(s), a∼πθ(·|s)
[
r(a | s)

]
, (2)

where p(s) denotes the empirical distribution over table–query pairs and r(a | s) evaluates the
correctness of the final answer from the LM given the input.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 TEXTUAL VS. SYMBOLIC REASONING IN TABLE UNDERSTANDING

Definition 1 (Textual and Symbolic Policies). Given an input s = (T, q), we consider two types of
reasoning strategies:

1. Textual policy πtxt
θ : The language model generates a chain of thought and directly produces a

textual answer a ∈ Atxt.

2. Symbolic policy πsym
θ : The language model generates a chain of thought followed by a spread-

sheet formula f ∈ F ; the final answer is obtained by executing the formula deterministically:
a = exec(f,T).

Theorem 1 (Symbolic Reasoning Superiority). Under mild assumptions, the expected reward
achieved by symbolic reasoning is greater than or equal to that of textual reasoning for any input s:

Ea∼πsym
θ

[r(a | s)] ≥ Ea∼πtxt
θ

[r(a | s)]. (3)

The assumptions and the proof of Theorem 1 are provided in Appendix C.1.
Remark 1 (Symbolic Reasoning Potential Benefit). Maximizing the expected reward in Eq. equa-
tion 2 therefore tends to favor the symbolic policy πsym

θ over the textual policy πtxt
θ . Symbolic

reasoning is particularly advantageous for complex tables and questions requiring multi-step com-
putation or precise numerical manipulation, since correctness is determined by the execution result
rather than the exact reasoning trace. As a result, it often achieves higher accuracy than purely
textual reasoning.

3.3 SFT VS. RL IN SYMBOLIC TABLE REASONING

Theorem 2 (RL Superiority). Under mild assumptions, and assuming the reward function r(a | s)
is reasonably aligned with task success (e.g., exact match), reinforcement learning (RL) can in
principle attain higher expected reward than supervised fine-tuning (SFT):

Es∼p, a∼πRL
θ

[r(a | s)] ≥ Es∼p, a∼πSFT
θ⋆

[r(a | s)]. (4)

The assumptions and the proof of Theorem 2 are provided in Appendix C.2.
Remark 2 (RL Objective and Potential Benefit). Unlike SFT, which is constrained to imitating the
teacher policy πg , reinforcement learning (RL) directly seeks to maximize the expected task reward:

max
θ

Es∼p(s), a∼πθ(·|s)[r(a | s)]. (5)

This objective may allow the model to assign probability mass to high-reward actions that lie out-
side the support of πg—for example, alternative formulas that yield the correct answer but differ
syntactically or structurally from those observed during supervised training.

In symbolic table reasoning, such flexibility can be particularly helpful: since many distinct formulas
can yield the same correct result, RL may leverage this many-to-one mapping by exploring diverse
yet semantically valid expressions. Consequently, RL has the potential to surpass the SFT reward
bound, under mild assumptions on reward alignment and exploration quality.

3.4 FORMULA TUNING

Definition. Formula Tuning is a reinforcement learning (RL) framework that defines spreadsheet
formulas as an explicit symbolic reasoning space for table understanding. Specifically, we fine-tune
a pretrained LM πθ to generate formulas f ∈ F , which are executed by a deterministic spreadsheet
engine exec(f,T). The resulting answer a = exec(f,T) is compared against the ground-truth
answer a⋆(s), and the model receives a reward:

r(a | s) =


1, if a = a⋆(s),

0.2, if a ̸= a⋆(s) and f is executable,

0, if f is not executable.

(6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This reward function encourages the model to explore valid, executable formulas—even if initially
incorrect—while assigning full credit only when the answer exactly matches the ground truth.

Objective. Formula Tuning maximizes the expected reward using RL algorithms, such as proximal
policy optimization (PPO) (Schulman et al., 2017), with the action space constrained to spreadsheet
formulas:

max
θ

Es∼p(s), f∼πθ(·|s) [r (exec(f,T) | s)] . (7)

Training Workflow.

1. Decoding: The LM generates a chain of thought and samples candidate formulas f1, f2, . . .
from its current policy πθ.

2. Execution: Each formula fk is executed to produce the corresponding answer ak.
3. Rewarding: The environment returns a scalar reward rk = r(ak | s) based on the correctness

and executability of the result.
4. Policy Update: The LM parameters θ are updated using a RL algorithm (e.g., PPO) based on

the observed tuple (s, fk, rk).

This framework enables the model to perform symbolic reasoning over general tables with higher
accuracy, with its advantages analyzed earlier. For additional discussion of the methodology, please
refer to Appendix D.

4 EXPERIMENTS

4.1 SETTINGS

We conduct experiments on seven diverse table understanding benchmarks, including WikiTQ (Pa-
supat & Liang, 2015), TabFact (Chen et al., 2020), FinQA (Chen et al., 2021b), HiTab (Cheng et al.,
2021), MultiHiertt (Zhao et al., 2022), AIT-QA (Katsis et al., 2021), and TableBench (Wu et al.,
2025). These datasets differ in domain sources, table structure types, and question complexity, col-
lectively covering the full spectrum of table understanding tasks. For training, we merge the first five
datasets into a single training corpus and train the model jointly on this combined set, then evaluate it
separately on each dataset. Among these, AIT-QA and TableBench are treated as out-of-distribution
(OOD) evaluation sets, while the rest are considered in-distribution (ID). Our experiments cover a
range of models, including GPT-4o-mini, GPT-4o, O1, Llama-3.18B, and Qwen2.5-Coder7B. Fol-
lowing prior work (Pasupat & Liang, 2015; Cheng et al., 2021), we use exact match accuracy as
our primary evaluation metric. The prompts used in our experiments are provided in Appendix K.
Detailed settings are provided in Appendix E.

4.2 PERFORMANCE OF FORMULA LEARNING UNDER SFT, RL, AND COLD-START RL

Table 1 presents the performance of different formula learning methods under supervised fine-tuning
(SFT), reinforcement learning (RL), RL with a cold-start strategy (RL w/ CS), and direct zero-shot
inference without any training. This experiment is primarily designed to validate the theoretical
analysis discussed earlier and to discuss how its behavior in practical scenarios aligns with our
theoretical analysis. Several key analyses and insights are summarized below:

Large zero shot performance gap between textual and symbolic reasoning. Closed-source mod-
els such as GPT-4o achieve an overall accuracy of 66.51% using purely textual reasoning, yet their
accuracy on formula based tasks drops significantly to 58.50%. The gap is even more pronounced
in 7B and 8B open-source models. Notably, Qwen2.5-Coder7B, which benefits from additional
code pretraining, shows a modest ability to generate formulas. This reinforces the observation that
vanilla pretraining leaves models largely unaware of spreadsheet syntax and semantics. These find-
ings highlight the critical need for formula tuning to bridge the symbolic reasoning gap.

SFT rapidly narrows the textual and symbolic reasoning gap. After SFT, open-source models
gain 17–20 accuracy points (e.g. Llama-38B rises from 41.47% to 58.71%), and the residual gap

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance under Zero-shot, SFT, and RL settings across models and datasets. Values in
the table indicate accuracy (%). Text and Formula refer to textual and symbolic reasoning methods,
respectively. w/ CS denotes cold-start RL initialized from SFT. For open-source models, the best
performance in each column is highlighted in dark blue, and the second-best in light blue.

Base Model Method In-Distribution Out-of-Distribution Overall
WikiTQ TabFact FinQA HiTab MultiHiertt AIT-QA TableBench

Zero-Shot

GPT-4o-mini Text 67.36 88.44 59.20 57.89 22.41 77.67 36.79 58.54
Formula 49.16 74.90 43.07 48.17 28.26 75.53 34.65 50.53

GPT-4o Text 78.57 94.52 63.12 69.26 36.11 81.36 42.66 66.51
Formula 53.36 79.94 48.65 65.40 38.41 85.83 37.92 58.50

O1 Text 77.90 95.50 55.71 74.31 38.31 81.55 45.03 66.90
Formula 70.40 91.11 42.81 75.00 48.95 88.93 44.02 65.89

Llama-3.18B
Text 50.46 67.84 42.37 29.92 18.77 59.61 21.29 41.47
Formula 12.58 15.77 22.67 6.57 4.23 20.00 10.31 13.16

Qwen2.5-Coder7B
Text 55.53 78.26 55.54 50.38 26.11 73.60 24.12 51.93
Formula 38.96 52.52 34.44 32.60 15.90 52.43 26.05 36.13

Supervised Fine-Tuning (SFT)

Llama-3.18B
Text 66.15 82.95 50.04 70.27 39.98 78.45 23.10 58.71
Formula 59.62 72.48 58.50 72.54 44.00 74.95 31.48 59.08

Qwen2.5-Coder7B
Text 65.98 81.13 59.46 72.35 43.93 81.55 24.01 61.20
Formula 63.46 78.16 58.33 71.83 42.68 76.12 35.56 60.88

Reinforcement Learning (RL)

Llama-3.18B

Text 64.37 82.16 62.60 68.81 31.99 82.91 28.08 60.13
Text w/ CS 71.56 87.01 56.84 77.64 49.34 85.66 28.16 65.17
Formula 57.64 80.09 60.85 67.93 29.40 80.78 30.69 58.20
Formula w/ CS 70.49 83.04 71.99 79.29 54.55 81.29 36.64 68.18

Qwen2.5-Coder7B

Text 66.95 85.43 64.34 74.24 35.55 85.28 27.86 62.80
Text w/ CS 71.31 86.07 64.77 77.42 54.25 85.43 25.94 66.46
Formula 67.80 84.19 62.16 71.19 41.72 81.17 35.45 63.38
Formula w/ CS 70.90 86.18 69.21 77.89 56.78 79.14 39.25 68.48

between textual and symbolic reasoning shrinks to only 1–2 points. SFT thus injects essential task
knowledge and brings symbolic reasoning almost on par with textual reasoning.

RL yields further gains, especially for formula and OOD. Starting from scratch, RL substan-
tially improves formula accuracy for both backbones, pushing overall performance above 63%
for Qwen2.5-Coder7B in particular. The improvements for text-only reasoning are comparatively
smaller, suggesting that RL primarily enhances the model’s ability to generate correct formulas
rather than improve surface-level responses. Furthermore, the out-of-distribution results on AIT-QA
and TableBench show substantial gains over SFT, demonstrating the generalization benefits of RL.

Cold-start RL is essential for open-source models. Initializing RL from an SFT model (the w/
CS rows) instead of from scratch delivers an additional 4–10 point lift. The Formula w/ CS set-
ting consistently achieves the best open-source numbers: 68.18% for Llama-38B and 68.48% for
Qwen2.5-Coder7B. These results suggest that SFT provides a strong knowledge foundation, while
RL drives performance closer to its upper bound.

Symbolic reasoning shows markedly higher robustness on complex benchmarks. On the chal-
lenging TableBench OOD set, Formula w/ CS lifts Llama-38B from a 10.31% zero-shot score to
36.64%, surpassing Text w/ CS by 8 points. This demonstrates that the advantages of symbolic
reasoning are most evident on datasets that demand more complex and multi-step computations.

Textual reasoning remains preferable for simple look-up QA. On TabFact, Text w/ CS outper-
forms formula-based reasoning (87.01% vs. 83.04% for Llama-38B), suggesting that composing an
explicit formula is not always beneficial when a direct textual response suffices. A similar trend
is observed on AIT-QA, where Text w/ CS again achieves higher accuracy (85.66% vs. 81.29%).
These results indicate that textual reasoning is more effective in scenarios where answers can be
directly extracted from the table without the need for symbolic composition.

Formula-tuned small models could surpass closed-source LMs. After SFT + RL, small open-
source models achieve strong overall accuracies (68.18% and 68.48%). The performance surpasses

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of different methods. Values in the table indicate accuracy (%).
Values marked with * indicate out-of-distribution results. ‘-’ indicates results not reported in the
related paper. For fine-tuning-based methods, the best performance in each column is highlighted in
dark blue, and the second-best in light blue.

Method Backbone WikiTQ TabFact HiTab FinQA AIT-QA
Prompting-Based Methods

Binder (Cheng et al., 2023) CodeX 64.60 85.10 - - -
Dater (Ye et al., 2023) CodeX 65.90 85.60 - - -
API-Assisted (Cao & Liu, 2025) CodeX 42.40 - 69.30 - -
ReAcTable (Zhang et al., 2023) CodeX 68.00 86.10 - - -
Chain-of-Table (Wang et al., 2024) PaLM 2 67.31 86.61 - - -
Norm-DP&Agent (Liu et al., 2023) GPT-3.5 73.65 88.50 - - -
TIDE DP&Agent (Yang et al., 2025) GPT-3.5 75.00 89.82 - - -
TableMaster (Cao & Liu, 2025) GPT-4o-mini 78.13 90.12 - 66.40 -
E5 (Zhang et al., 2024c) GPT-4 - - 85.08 - -
SS-CoT (Zhao et al., 2024b) Llama-3.170B 76.80 - 79.10 - -

Finetuning-Based Methods
FORTAP (Cheng et al., 2022) BERT+LSTM - - 47.00 - -
TAPEX-Large (Liu et al., 2022) BARTLarge 59.10 84.20 45.60 - -
OmniTab (Jiang et al., 2022) BARTLarge 62.80 - - - -
TableLlama (Zhang et al., 2024a) Llama-27B 32.14* 82.55 60.48 2.27* 26.99*

TableLLM (Zhang et al., 2025) Qwen27B 53.59 69.81 43.88 8.63* 64.85
TableGPT2 (Su et al., 2024) Qwen2.57B 61.42 77.80 70.27 40.28* 12.43*

TabAF (Wang et al., 2025) Qwen2.5-Coder7B 74.72 83.99 78.41 45.07* 62.33*

Fortune (Ours) Qwen2.5-Coder7B 67.05 85.08 69.74 62.16 80.39*

Fortune++ (Ours) Qwen2.5-Coder7B 82.54 95.06 87.24 80.47 93.20*

GPT series models and even outperforms the large reasoning model O1 with 66.9% accuracy. These
results highlight the power of formula tuning in democratizing high-quality table reasoning.

4.3 PERFORMANCE OF FORTUNE AND FORTUNE++ COMPARED TO OTHER METHODS

Table 2 presents the performance of Fortune and Fortune++ compared to several strong baselines,
as detailed in Appendix E. Fortune is derived from the best overall performance achieved through
cold-start RL in formula-based symbolic reasoning. Following prior work (Liu et al., 2023; Yang
et al., 2025; Wang et al., 2025), we adopt the self-consistency strategy (Wang et al., 2023) to enhance
table understanding performance. This strategy involves generating multiple candidate formulas and
selecting the final answer based on majority voting. It is a widely adopted and effective approach for
improving accuracy. Fortune follows previous work by generating 10 symbolic reasoning outputs.
To further leverage the complementary strengths of textual and symbolic reasoning, we introduce
Fortune++, which produces a balanced mix of 5 textual and 5 symbolic outputs. Neither method
relies on a cold-start strategy.

Fortune++ delivers consistently strong performance across benchmarks. Fortune++ surpasses
all finetuning-based methods across the reported datasets. Specifically, it achieves 80.47% on
FinQA, demonstrating strong complex mathematical reasoning ability. On AIT-QA, Fortune++
brings an improvement of 30.9 points, highlighting the out-of-distribution robustness enabled by RL.
These results also show that smaller open-source models can outperform larger closed-source mod-
els. Despite using only a 7B-parameter Qwen backbone, Fortune++ consistently outperforms nearly
all prompting-based methods, including those powered by GPT-4o. The original Fortune, which re-
lies solely on formula-based reasoning, also achieves competitive performance across benchmarks.

RL surpasses SFT. TabAF (Wang et al., 2025) is a strong baseline that uses SFT for symbolic
reasoning with formula and similarly adopts a hybrid self-consistency strategy with 5 textual and
5 formula-based outputs. Nevertheless, Fortune++ significantly outperforms TabAF, demonstrating
that RL offers clear advantages over SFT-only models distilled from stronger teacher models.

Additional results and further analysis. Fortune achieves 40.85% on MultiHiertt and 35.22%
on TableBench, while Fortune++ achieves 51.73% and 44.96%, respectively. An ablation study
and upper-bound performance analysis of Fortune and Fortune++ are presented in Appendix F.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of different symbolic reasoning methods (SQL, Python, and For-
mula) under Zero-shot and RL settings. Values in the table indicate accuracy (%). The best perfor-
mance in each column is highlighted in dark blue.

Method WikiTQ TabFact FinQA TableBench Overall
Zero-Shot

SQL 17.07 21.15 1.51 7.64 11.84
Python 30.96 60.39 34.87 16.33 35.64
Formula 38.96 52.52 34.44 26.05 37.99

Reinforcement Learning (RL)
SQL 67.58 83.94 38.79 32.09 55.60
Python 70.46 84.42 65.85 35.26 64.00
Formula 70.67 84.50 65.89 35.84 64.23

A statistical analysis of the generated formulas is provided in Appendix H, and qualitative case
studies are discussed in Appendix I. An impact analysis of the reasoning process during formula
tuning appears in Appendix G.

5 COMPARATIVE ANALYSIS OF FORMULA TUNING AND OTHER SYMBOLIC
TABLE REASONING METHODS

In this section, we analyze the use of formulas as a symbolic reasoning tool, and compare them
with SQL and Python. Table 3 compare three symbolic reasoning paradigms (SQL queries, Python
snippets, and spreadsheet formulas) under both zero-shot and reinforcement learning (RL) settings.
To ensure a fair comparison, we train and evaluate these symbolic tools only on datasets with flat,
relational tables: WikiTQ, TabFact, and FinQA for training, and all three plus TableBench for evalu-
ation. This restriction is necessary because SQL operates solely on flat tables, while Python/Pandas
are also usually worked for flat tabular structures. Several patterns emerge from the comparison.

Spreadsheet formulas offer the strongest zero-shot symbolic reasoning. Without any task-
specific training, formulas achieve the highest out-of-the-box performance, with an overall accuracy
of 37.99%. They slightly outperform Python (35.64%) and significantly surpass SQL (11.84%).
The gap is especially pronounced on datasets like WikiTQ and FinQA, suggesting that pre-trained
language models possess some intuitive understanding of spreadsheet-style operations, but struggle
to generate valid and executable SQL or Python code without further adaptation. On TableBench,
which features complex table QA questions, Python code falls short. Models without fine-tuning
often fail to generate long and sufficiently accurate code to solve challenging problems. In contrast,
spreadsheet formulas are shorter, easier to generate, and more robust in zero-shot settings, making
them better suited for this type of reasoning.

Spreadsheet formulas remain the most effective symbolic tool after RL. All three symbolic
tools improve significantly with RL training, with SQL and Python gaining 43.8 and 28.4 percent-
age points, respectively. This underscores the value of policy-gradient optimization for learning
execution-constrained program structures. Post-training, formulas and Python reach nearly identi-
cal accuracy (64.23% vs. 64.00%), while SQL still lags behind at 55.60%, largely due to its limited
ability to handle numerical computation required in table reasoning. Although the final scores of
formulas and Python are close, formulas maintain a consistent edge. Beyond their strong perfor-
mance, spreadsheet formulas are shorter, easier to read, and more beginner-friendly. These qualities
make them not only effective but also practical and accessible as a symbolic tool for table reasoning
tasks.

6 CONCLUSION

In this paper, we introduced Formula Tuning (Fortune), a reinforcement learning framework that
trains language models to generate executable spreadsheet formulas for table understanding task.
Our findings highlight the promise of formula-driven learning in enhancing reasoning capabilities
of language models on tabular tasks. Limitations and future work are discussed in Appendix B.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Meta AI. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gi-
aninazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, March 2024.
ISSN 2159-5399. doi: 10.1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/
aaai.v38i16.29720.

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng, Guozhou Zheng, and Huajun Chen. When do
program-of-thoughts work for reasoning?, 2023. URL https://arxiv.org/abs/2308.
15452.

Lang Cao. GraphReason: Enhancing reasoning capabilities of large language models through a
graph-based verification approach. In Bhavana Dalvi Mishra, Greg Durrett, Peter Jansen, Ben
Lipkin, Danilo Neves Ribeiro, Lionel Wong, Xi Ye, and Wenting Zhao (eds.), Proceedings of
the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024),
pp. 1–12, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.nlrse-1.1.

Lang Cao and Hanbing Liu. Tablemaster: A recipe to advance table understanding with language
models. arXiv preprint arXiv: 2501.19378, 2025.

Sibei Chen, Yeye He, Weiwei Cui, Ju Fan, Song Ge, Haidong Zhang, Dongmei Zhang, and Surajit
Chaudhuri. Auto-formula: Recommend formulas in spreadsheets using contrastive learning for
table representations. Proceedings of the ACM on Management of Data, 2(3):1–27, 2024.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification, 2020.
URL https://arxiv.org/abs/1909.02164.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2023. URL https:
//arxiv.org/abs/2211.12588.

Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max Lin, and Denny
Zhou. Spreadsheetcoder: Formula prediction from semi-structured context, 2021a. URL https:
//arxiv.org/abs/2106.15339.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
Moussa, Matt Beane, Ting-Hao Huang, Bryan Routledge, and William Yang Wang. FinQA: A
dataset of numerical reasoning over financial data. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 3697–3711, Online and Punta Cana, Dominican
Republic, November 2021b. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.300. URL https://aclanthology.org/2021.emnlp-main.300/.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang
Lou, and Dongmei Zhang. Hitab: A hierarchical table dataset for question answering and natural
language generation. arXiv preprint arXiv:2108.06712, 2021.

Zhoujun Cheng, Haoyu Dong, Ran Jia, Pengfei Wu, Shi Han, Fan Cheng, and Dongmei Zhang.
Fortap: Using formulas for numerical-reasoning-aware table pretraining, 2022. URL https:
//arxiv.org/abs/2109.07323.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Binding
language models in symbolic languages, 2023. URL https://arxiv.org/abs/2210.
02875.

10

https://arxiv.org/abs/2407.21783
http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2308.15452
https://arxiv.org/abs/2308.15452
https://aclanthology.org/2024.nlrse-1.1
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2106.15339
https://arxiv.org/abs/2106.15339
https://aclanthology.org/2021.emnlp-main.300/
https://arxiv.org/abs/2109.07323
https://arxiv.org/abs/2109.07323
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2210.02875

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Paul Francis Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. ArXiv, abs/1706.03741, 2017. URL
https://api.semanticscholar.org/CorpusID:4787508.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Haoyu Dong, Jianbo Zhao, Yuzhang Tian, Junyu Xiong, Mengyu Zhou, Yun Lin, José Cambronero,
Yeye He, Shi Han, and Dongmei Zhang. Encoding spreadsheets for large language models. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pp. 20728–20748, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
1154. URL https://aclanthology.org/2024.emnlp-main.1154/.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach,
Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models(llms)
on tabular data: Prediction, generation, and understanding – a survey, 2024. URL https:
//arxiv.org/abs/2402.17944.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models, 2023. URL https://arxiv.org/
abs/2211.10435.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xiaoman Zhao, and Xiaoyong Du. Pasta: Table-
operations aware fact verification via sentence-table cloze pre-training, 2022. URL https:
//arxiv.org/abs/2211.02816.

11

https://api.semanticscholar.org/CorpusID:4787508
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/2024.emnlp-main.1154/
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.02816
https://arxiv.org/abs/2211.02816

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/
abs/2306.11644.

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen,
Shi Han, Zejian Yuan, and Dongmei Zhang. Text2analysis: A benchmark of table question an-
swering with advanced data analysis and unclear queries, 2023. URL https://arxiv.org/
abs/2312.13671.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, rancesco Piccinno, and Julian Martin
Eisenschlos. TAPAS: weakly supervised table parsing via pre-training. CoRR, abs/2004.02349,
2020. URL https://arxiv.org/abs/2004.02349.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language mod-
els. ArXiv, abs/2501.03262, 2025. URL https://api.semanticscholar.org/
CorpusID:275342265.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL
https://arxiv.org/abs/2409.12186.

Pengcheng Jiang, Jiacheng Lin, Lang Cao, R. Tian, S. Kang, Z. Wang, Jimeng Sun, and Jiawei
Han. Deepretrieval: Hacking real search engines and retrievers with large language models via
reinforcement learning. arXiv preprint arXiv: 2503.00223, 2025.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neubig, and Weizhu Chen. OmniTab: Pretraining
with natural and synthetic data for few-shot table-based question answering. In Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, July 2022.

Harshit Joshi, Abishai Ebenezer, José Cambronero, Sumit Gulwani, Aditya Kanade, Vu Le, Ivan
Radiček, and Gust Verbruggen. Flame: A small language model for spreadsheet formulas, 2023.
URL https://arxiv.org/abs/2301.13779.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey. J. Artif. Intell. Res., 4:237–285, 1996. URL https://api.semanticscholar.
org/CorpusID:1708582.

Yannis Katsis, Saneem Chemmengath, Vishwajeet Kumar, Samarth Bharadwaj, Mustafa Canim,
Michael Glass, Alfio Gliozzo, Feifei Pan, Jaydeep Sen, Karthik Sankaranarayanan, and Soumen
Chakrabarti. Ait-qa: Question answering dataset over complex tables in the airline industry, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Jiacheng Lin, Tian Wang, and Kun Qian. Rec-r1: Bridging generative large language models
and user-centric recommendation systems via reinforcement learning, 2025. URL https:
//arxiv.org/abs/2503.24289.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
Tapex: Table pre-training via learning a neural sql executor, 2022. URL https://arxiv.
org/abs/2107.07653.

12

https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2312.13671
https://arxiv.org/abs/2004.02349
https://api.semanticscholar.org/CorpusID:275342265
https://api.semanticscholar.org/CorpusID:275342265
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2301.13779
https://api.semanticscholar.org/CorpusID:1708582
https://api.semanticscholar.org/CorpusID:1708582
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2503.24289
https://arxiv.org/abs/2503.24289
https://arxiv.org/abs/2107.07653
https://arxiv.org/abs/2107.07653

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ryan Liu, Jiayi Geng, Addison J. Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L. Griffiths.
Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking
makes humans worse, 2024. URL https://arxiv.org/abs/2410.21333.

Tianyang Liu, Fei Wang, and Muhao Chen. Rethinking tabular data understanding with large lan-
guage models, 2023. URL https://arxiv.org/abs/2312.16702.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, Ion Stoica, and
Tianjun Zhang. Deepcoder: A fully open-source 14b coder at o3-mini level, 2025. Notion Blog.

Qingyang Mao, Qi Liu, Zhi Li, Mingyue Cheng, Zheng Zhang, and Rui Li. Potable: Programming
standardly on table-based reasoning like a human analyst, 2024. URL https://arxiv.org/
abs/2412.04272.

Microsoft Corporation. Overview of formulas in excel, 2025.
URL https://support.microsoft.com/en-us/office/
overview-of-formulas-in-excel-ecfdc708-9162-49e8-b993-c311f47ca173.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey, 2024. URL https://arxiv.
org/abs/2402.06196.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed
framework for emerging ai applications, 2018. URL https://arxiv.org/abs/1712.
05889.

Md Nahid and Davood Rafiei. TabSQLify: Enhancing reasoning capabilities of LLMs through table
decomposition. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 5725–5737, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.320.
URL https://aclanthology.org/2024.naacl-long.320.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano,
Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with human
feedback. ArXiv, abs/2203.02155, 2022. URL https://api.semanticscholar.org/
CorpusID:246426909.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables,
2015. URL https://arxiv.org/abs/1508.00305.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Rea-
soning with large language models, a survey, 2024. URL https://arxiv.org/abs/2407.
11511.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. ArXiv, abs/1707.06347, 2017. URL https://api.
semanticscholar.org/CorpusID:28695052.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

13

https://arxiv.org/abs/2410.21333
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2412.04272
https://arxiv.org/abs/2412.04272
https://support.microsoft.com/en-us/office/overview-of-formulas-in-excel-ecfdc708-9162-49e8-b993-c311f47ca173
https://support.microsoft.com/en-us/office/overview-of-formulas-in-excel-ecfdc708-9162-49e8-b993-c311f47ca173
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1712.05889
https://aclanthology.org/2024.naacl-long.320
https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://arxiv.org/abs/1508.00305
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2407.11511
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Charles Smalley. Excels new lambda function makes it turing complete, 2023. URL https://
www.infoq.com/articles/excel-lambda-turing-complete/. Accessed: 2025-
05-09.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reasoning, 2025. URL https://arxiv.org/
abs/2409.12183.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan J. Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feed-
back. ArXiv, abs/2009.01325, 2020. URL https://api.semanticscholar.org/
CorpusID:221665105.

Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou, Ga Zhang, Gang Chen, Guangcheng Zhu, Haobo
Wang, Haokai Xu, Hao Chen, Haoze Li, Haoxuan Lan, Jiaming Tian, Jing Yuan, Junbo Zhao,
Junlin Zhou, Kaizhe Shou, Liangyu Zha, Lin Long, Liyao Li, Pengzuo Wu, Qi Zhang, Qingyi
Huang, Saisai Yang, Tao Zhang, Wentao Ye, Wufang Zhu, Xiaomeng Hu, Xijun Gu, Xinjie Sun,
Xiang Li, Yuhang Yang, and Zhiqing Xiao. Tablegpt2: A large multimodal model with tabular
data integration, 2024. URL https://arxiv.org/abs/2411.02059.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/
abs/2210.09261.

Simon Thorne. Experimenting with chatgpt for spreadsheet formula generation: Evidence of risk in
ai generated spreadsheets, 2023. URL https://arxiv.org/abs/2309.00095.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. Tuta: Tree-
based transformers for generally structured table pre-training. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1780–1790, 2021.

Zhongyuan Wang, Richong Zhang, and Zhijie Nie. General table question answering via answer-
formula joint generation, 2025. URL https://arxiv.org/abs/2503.12345.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister. Chain-of-table:
Evolving tables in the reasoning chain for table understanding, 2024. URL https://arxiv.
org/abs/2401.04398.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

14

https://www.infoq.com/articles/excel-lambda-turing-complete/
https://www.infoq.com/articles/excel-lambda-turing-complete/
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://api.semanticscholar.org/CorpusID:221665105
https://api.semanticscholar.org/CorpusID:221665105
https://arxiv.org/abs/2411.02059
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2309.00095
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2503.12345
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2201.11903

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xinrun Du, Di Liang, Daixin Shu,
Xianfu Cheng, Tianzhen Sun, Guanglin Niu, Tongliang Li, and Zhoujun Li. Tablebench: A
comprehensive and complex benchmark for table question answering, 2025. URL https://
arxiv.org/abs/2408.09174.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weiling Liu, Zhiyu Mei, Guangju Wang,
Chao Yu, and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive
study. ArXiv, abs/2404.10719, 2024. URL https://api.semanticscholar.org/
CorpusID:269157140.

Yang Yan, Yu Lu, Renjun Xu, and Zhenzhong Lan. Do phd-level llms truly grasp elementary
addition? probing rule learning vs. memorization in large language models, 2025. URL https:
//arxiv.org/abs/2504.05262.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. Can LLMs reason in the
wild with programs? In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2024, pp. 9806–9829, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.573. URL https://aclanthology.org/2024.findings-emnlp.
573/.

Zhen Yang, Ziwei Du, Minghan Zhang, Wei Du, Jie Chen, Zhen Duan, and Shu Zhao. Triples
as the key: Structuring makes decomposition and verification easier in LLM-based tableQA. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=UwcZEoNP19.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decompose evidence and questions for table-based reasoning, 2023.
URL https://arxiv.org/abs/2301.13808.

Deyin Yi, Yihao Liu, Lang Cao, Mengyu Zhou, Haoyu Dong, Shi Han, and Dongmei Zhang.
Tablepilot: Recommending human-preferred tabular data analysis with large language models.
arXiv preprint arXiv: 2503.13262, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023. URL https://arxiv.org/abs/2308.01825.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi Huang, Saisai Yang, Jing Yuan, Changbao
Su, Xiang Li, Aofeng Su, Tao Zhang, Chen Zhou, Kaizhe Shou, Miao Wang, Wufang Zhu, Gu-
oshan Lu, Chao Ye, Yali Ye, Wentao Ye, Yiming Zhang, Xinglong Deng, Jie Xu, Haobo Wang,
Gang Chen, and Junbo Zhao. Tablegpt: Towards unifying tables, nature language and commands
into one gpt, 2023. URL https://arxiv.org/abs/2307.08674.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
models for tables, 2024a. URL https://arxiv.org/abs/2311.09206.

Xiaokang Zhang, Sijia Luo, Bohan Zhang, Zeyao Ma, Jing Zhang, Yang Li, Guanlin Li, Zijun
Yao, Kangli Xu, Jinchang Zhou, Daniel Zhang-Li, Jifan Yu, Shu Zhao, Juanzi Li, and Jie Tang.
Tablellm: Enabling tabular data manipulation by llms in real office usage scenarios, 2025. URL
https://arxiv.org/abs/2403.19318.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Qingfu Zhu, and Wanxiang Che. A survey of ta-
ble reasoning with large language models, 2024b. URL https://arxiv.org/abs/2402.
08259.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M. Patel.
Reactable: Enhancing react for table question answering, 2023. URL https://arxiv.org/
abs/2310.00815.

15

https://arxiv.org/abs/2408.09174
https://arxiv.org/abs/2408.09174
https://api.semanticscholar.org/CorpusID:269157140
https://api.semanticscholar.org/CorpusID:269157140
https://arxiv.org/abs/2504.05262
https://arxiv.org/abs/2504.05262
https://aclanthology.org/2024.findings-emnlp.573/
https://aclanthology.org/2024.findings-emnlp.573/
https://openreview.net/forum?id=UwcZEoNP19
https://openreview.net/forum?id=UwcZEoNP19
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2307.08674
https://arxiv.org/abs/2311.09206
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2402.08259
https://arxiv.org/abs/2402.08259
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2310.00815

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Zhehao Zhang, Yan Gao, and Jian-Guang Lou. e5: Zero-shot hierarchical table analysis us-
ing augmented LLMs via explain, extract, execute, exhibit and extrapolate. In Kevin Duh,
Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pp. 1244–1258, Mexico City, Mexico, June 2024c. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.68. URL https:
//aclanthology.org/2024.naacl-long.68/.

Wei Zhao, Zhitao Hou, Siyuan Wu, Yan Gao, Haoyu Dong, Yao Wan, Hongyu Zhang, Yulei Sui, and
Haidong Zhang. NL2Formula: Generating spreadsheet formulas from natural language queries.
In Yvette Graham and Matthew Purver (eds.), Findings of the Association for Computational Lin-
guistics: EACL 2024, pp. 2377–2388, St. Julian’s, Malta, March 2024a. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2024.findings-eacl.158/.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 6588–6600, Dublin, Ireland, May
2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022.acl-long.454.

Zilong Zhao, Yao Rong, Dongyang Guo, Emek Gözlüklü, Emir Gülboy, and Enkelejda Kasneci.
Stepwise self-consistent mathematical reasoning with large language models, 2024b. URL
https://arxiv.org/abs/2402.17786.

Yilun Zhu, Joel Ruben Antony Moniz, Shruti Bhargava, Jiarui Lu, Dhivya Piraviperumal, Site Li,
Yuan Zhang, Hong Yu, and Bo-Hsiang Tseng. Can large language models understand context? In
Yvette Graham and Matthew Purver (eds.), Findings of the Association for Computational Lin-
guistics: EACL 2024, pp. 2004–2018, St. Julian’s, Malta, March 2024. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2024.findings-eacl.135.

16

https://aclanthology.org/2024.naacl-long.68/
https://aclanthology.org/2024.naacl-long.68/
https://aclanthology.org/2024.findings-eacl.158/
https://aclanthology.org/2022.acl-long.454
https://aclanthology.org/2022.acl-long.454
https://arxiv.org/abs/2402.17786
https://aclanthology.org/2024.findings-eacl.135

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Contents of Appendix

A Ethics Statement 18

B Limitations and Future Work 18

C Supplementary Proofs 19

C.1 Proof of Symbolic Reasoning Superiority . 19

C.2 Proof of RL Superiority . 20

C.3 Proof of MLE Minimizes KL Divergence . 21

C.4 Proof of Convergence of SFT and Reward Upper Bound 21

D Supplementary Discussion of Methodology 22

D.1 Textual vs. Symbolic Reasoning in Table Understanding 22

D.2 SFT vs. RL in Symbolic Table Reasoning . 22

D.3 Practical Challenges of Formula Tuning . 22

E Detailed Settings of Experiments 23

F Ablation Study and Upper-Bound Performance of Fortune++ 25

G Impact Analysis of the Thinking Process in Formula Tuning 26

H Statistical Analysis of Generated Formulas in Symbolic Table Reasoning 27

I Case Study 29

I.1 Textual vs. Symbolic Reasoning . 29

I.2 Performance of SFT vs. RL . 31

J Spreadsheet Formula Operators in Symbolic Table Reasoning 32

K Prompts Used in the Experiments 33

L Notation Table 38

M The Use of Large Language Models (LLMs) 39

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

Formula Tuning (Fortune) introduces a reinforcement learning framework that enhances symbolic
reasoning for table understanding via spreadsheet formulas. By improving the ability of language
models to reason over tabular data with verifiable, executable outputs, our work offers substantial
benefits in domains where transparency and precision are essential—such as education, scientific
analysis, finance, and public policy. Executable formulas can provide interpretable and auditable
reasoning steps, potentially increasing user trust and reliability in AI-generated decisions involving
structured data.

However, these capabilities also introduce potential risks. If applied carelessly, formula genera-
tion may amplify biases present in training data or propagate subtle numerical errors. Moreover,
spreadsheet formulas are deeply embedded in productivity workflows, and inaccurate generation at
scale could lead to downstream harms (e.g., miscalculated budgets or flawed data reports). Further-
more, since symbolic reasoning via formulas may be more accessible in high-resource languages or
domains with well-structured spreadsheets, deployment in low-resource settings could exacerbate
inequalities in model performance and accessibility.

To mitigate such risks, we recommend several safeguards for future use of Fortune and similar sym-
bolic reasoning systems. First, generated formulas should undergo verification through deterministic
execution engines to ensure correctness. Second, evaluations should be conducted across diverse do-
mains and spreadsheet structures, particularly including noisy or adversarial formats. Third, human-
in-the-loop validation should be used in high-stakes applications (e.g., healthcare or financial audits)
to ensure interpretability and safety. Finally, we advocate for transparent reporting of formula gen-
eration limitations and the inclusion of provenance indicators that show how a particular output was
derived, enabling error tracing and accountability.

B LIMITATIONS AND FUTURE WORK

While Fortune demonstrates strong performance, several limitations remain and suggest promising
directions for future research.

Limited datasets and experimental coverage. Due to the resource-intensive nature of reinforce-
ment learning, our evaluation is limited to a few representative public datasets, which primarily
consist of clean and well-structured tables. This may not fully capture real-world scenarios, where
spreadsheets often contain noisy, irregular, or complex two-dimensional layouts. Additionally, we
experimented with only a limited set of base models and reinforcement learning algorithms (e.g.,
PPO). Nonetheless, we believe the experiments conducted in this work sufficiently demonstrate
the effectiveness of our approach. Future work should explore a broader range of model sizes, ar-
chitectures, and reinforcement learning algorithms across different downstream scenarios, such as
applying Formula Tuning to larger models to achieve even better performance.

Applicability to broader table understanding tasks. Our method assumes that answers can be
fully derived from tabular data via executable formulas, which holds for many symbolic reasoning
tasks. However, this assumption may not extend to tasks involving free-form text, multi-modal in-
puts, or ambiguous supervision. Nonetheless, formulas may still serve as useful intermediate repre-
sentations, auxiliary objectives, or reasoning grounding mechanisms in such settings. Investigating
how formula tuning can benefit or integrate with these broader tasks is an important direction.

Extensions to other formula-related tasks. Executable formulas are central not only to reasoning
but also to related tasks such as formula completion, correction, and refilling. These tasks could
benefit from multi-task learning or joint training alongside formula reasoning. Conversely, using
these tasks as pre-training objectives may also enhance symbolic reasoning capabilities via formula.
Exploring how these tasks can be unified within a single framework could lead to more powerful
and general-purpose symbolic table models.

Cold-start challenges in reinforcement learning. For base models with limited symbolic rea-
soning capabilities and minimal knowledge of spreadsheet formulas, reinforcement learning from
scratch can be unstable. In our experiments, we mitigated this by using the same training cor-
pus for both SFT cold-start and RL. However, curating independent and high-quality cold-start
corpora and identifying optimal initialization checkpoints for reinforcement learning remain open

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

challenges.Furthermore, reinforcement learning itself is inherently unstable. Developing practical
techniques to stabilize training and improve performance remains a critical area for exploration.
Enhancing warm-up strategies and training stability could lead to significantly better RL outcomes.

Reward design for formula optimization. Our current reward signal is based solely on binary
execution accuracy. While simple and effective, it overlooks important factors such as formula
efficiency, token redundancy, and partial credit. Future work can incorporate more fine-grained
reward shaping, including length penalties or structure-aware scoring, to improve both learning
stability and the quality of generated formulas.

These limitations point to several promising directions for future research: (1) scaling Formula
Tuning to diverse domains and tasks, (2) exploring joint learning of symbolic tasks, (3) developing
more stable and adaptive reinforcement learning strategies, and (4) advancing reward engineering
for structured output generation.

C SUPPLEMENTARY PROOFS

C.1 PROOF OF SYMBOLIC REASONING SUPERIORITY

Lemma 1 (Reward Decomposition). Let the reward be defined as r(a | s) = 1[a = a⋆(s)], where
a⋆(s) denotes the ground-truth answer.

For textual reasoning, the expected reward is:

Ea∼πtxt
θ

[r(a | s)] =
∑
a

πtxt
θ (a | s) · 1[a = a⋆(s)], (8)

which represents the probability of generating both a logically valid reasoning path and a numeri-
cally correct final answer.

For symbolic reasoning, the model generates a formula f , which is executed to produce an answer
a = exec(f,T). The expected reward becomes:

Ef∼πsym
θ

[r(exec(f,T) | s)] =
∑
f

πsym
θ (f | s) · 1[exec(f,T) = a⋆(s)]. (9)

This corresponds to the probability of generating a valid reasoning path and a formula that yields
the correct answer. Importantly, any formula that produces the correct output receives full reward,
regardless of whether it matches the canonical ground-truth formula.
Assumption 1 (Symbolic Reasoning Setting).

1. The formula executor is sound and complete with respect to the formula language F .

2. All symbolic outputs are executed deterministically and without numerical error.

3. Both textual and symbolic policies are assumed capable of representing valid high-level solu-
tion strategies in their respective formats, namely text or formula.

Proof. Let E1 denote the event that the model selects a correct high-level reasoning plan—i.e., a
valid logical strategy that, if accurately followed, can lead to the correct answer.

By Assumption 1 (3), both the symbolic policy πsym
θ and the textual policy πtxt

θ are assumed capable
of producing such high-level plans:

Psym[E1] = Ptxt[E1]. (10)

We now compare how these two policies execute the same plan downstream.

• Symbolic reasoning. After selecting a correct high-level plan, the symbolic policy proceeds
by emitting a formal expression—typically a spreadsheet formula f—that directly encodes the
solution. This formula is then passed to an external executor, which deterministically computes
the final answer a = exec(f,T). Under Assumptions 1 (1) and (2), if the plan is correct, the
execution will reliably yield the correct answer a⋆(s). Thus, the expected reward under the
symbolic policy is:

Ea∼πsym
θ

[r(a | s)] = P[E1]. (11)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Textual reasoning. In contrast, after selecting the same correct high-level plan, the textual
policy must verbalize the intermediate reasoning steps and compute results step-by-step in free
text. This includes performing arithmetic, maintaining numerical precision, and formatting the
final answer string. Let E2 denote the event that all intermediate computations and the final
output are accurate. Then, the expected reward under the textual policy is:

Ea∼πtxt
θ

[r(a | s)] = P[E1] · P[E2 | E1]. (12)

Unlike symbolic execution, this textual process is inherently fragile. Errors in numerical cal-
culations, token prediction, or formatting can easily lead to incorrect final answers, resulting in
a reward of 0.

Since P[E2 | E1] ≤ 1, we conclude:

Ea∼πtxt
θ

[r(a | s)] ≤ P[E1] = Ea∼πsym
θ

[r(a | s)], (13)

which completes the proof.

C.2 PROOF OF RL SUPERIORITY

Assumption 2 (SFT Setting).

1. Sufficient expressivity. The model class {πθ(· | s)} is expressive enough to represent the
teacher policy πg(· | s) (a stronger model, e.g., GPT-4o), in the sense that

inf
θ
Es∼p(s) [DKL (πg(· | s) ∥ πθ(· | s))] = 0. (14)

2. Global optimization. The optimization algorithm converges to a global optimum of the super-
vised fine-tuning (SFT) objective.

3. Data sufficiency. As the number of training examples N → ∞, the empirical distribution
p̂(s, a) converges almost surely to the true data-generating distribution p(s)πg(a | s).

Lemma 2 (MLE Minimizes KL Divergence). Maximum likelihood estimation (MLE) corresponds
to minimizing the Kullback–Leibler (KL) divergence between the teacher policy πg and the model
policy πθ. For any fixed input s, we have:

Ea∼πg [− log πθ(a | s)] = H (πg(· | s)) +DKL (πg ∥ πθ) , (15)

where H(πg) denotes the entropy of the teacher policy. Thus, maximizing the log-likelihood of πθ

under samples from πg is equivalent to minimizing the KL divergence from πg to πθ.

The proof of Lemma 2 is provided in Appendix C.3.

Lemma 3 (Convergence of SFT and Reward Upper Bound). Let s = (T, q) ∈ S, where T is
the input table and q is the natural language question. Suppose the model generates a formula
f ∼ πθ(· | s), and let the final answer be computed deterministically as a = exec(f,T).

Under Assumption 2, the optimal supervised fine-tuning (SFT) policy

πθ⋆ = argmax
θ

Es∼p, f∼πg
[log πθ(f | s)] (16)

satisfies
πθ⋆(f | s) = πg(f | s) for almost every s ∈ S. (17)

Consequently, for the reward function r(a | s) = 1[a = a⋆(s)], we have:

Es∼p, f∼πθ⋆
[r(exec(f,T) | s)] ≤ Es∼p, f∼πg [r(exec(f,T) | s)] . (18)

The proof of Lemma 3 is provided in Appendix C.4.
Remark 3 (SFT Bound). This result shows that supervised fine-tuning (SFT), even under ideal as-
sumptions of expressivity, optimization, and data sufficiency, can at most replicate the performance
of the teacher policy. It thus establishes a theoretical upper bound on the expected task reward
achievable by SFT alone.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Assumption 3 (RL Exploration). For each input s ∈ S, we assume that the policy distribution
πθ(· | s) assigns non-zero probability mass to at least one correct action with reward r(a⋆ | s) = 1.
This does not require the policy to sample a correct action at every step, only that the support of
the distribution includes some high-reward actions, so they may be discovered over the course of
training.

Proof. Let a⋆(s) be the ground-truth answer for input s, and suppose that the teacher policy πg(f |
s) covers only a strict subset of all possible formulas f such that exec(f,T) = a⋆(s).

By Lemma 3, supervised fine-tuning under ideal assumptions can at best match the expected reward
of πg:

Es∼p, f∼πθ⋆
[r(exec(f,T) | s)] = Es∼p, f∼πg [r(exec(f,T) | s)] . (19)

Now consider an RL policy πRL
θ . Under Assumption 3, the RL policy explores the full action space

and assigns non-zero probability to correct formulas f ′ that are not in the support of πg but still
satisfy exec(f ′,T) = a⋆(s).

As the reward function r(a | s) depends solely on execution correctness, and not formula structure,
RL is able to collect reward on these additional correct actions that πg does not generate. Therefore,

Es∼p, f∼πRL
θ

[r(exec(f,T) | s)] > Es∼p, f∼πg [r(exec(f,T) | s)] , (20)

which implies the desired result.

C.3 PROOF OF MLE MINIMIZES KL DIVERGENCE

Proof. By definition of KL divergence and entropy:

Ea∼πg
[− log πθ(a | s)] = −

∑
a

πg(a | s) log πθ(a | s)

= −
∑
a

πg(a | s) log πθ(a | s)
πg(a | s)

−
∑
a

πg(a | s) log πg(a | s)

= DKL(πg ∥ πθ) +H(πg).

(21)

C.4 PROOF OF CONVERGENCE OF SFT AND REWARD UPPER BOUND

Proof. (i) KL minimization. By Lemma 2, maximizing the expected log-likelihood

Es∼p(s), f∼πg(·|s) [log πθ(f | s)] (22)

is equivalent to minimizing the expected Kullback–Leibler (KL) divergence from the teacher policy:

Es∼p(s) [DKL(πg(· | s) ∥ πθ(· | s))] . (23)

(ii) Convergence. Under Assumption 2(1), the model class {πθ} is expressive enough such that
there exists some θ⋆ satisfying

inf
θ

Es∼p(s) [DKL(πg(· | s) ∥ πθ(· | s))] = 0. (24)

Assumption 2(2) ensures the optimization algorithm converges to this global optimum, and As-
sumption 2(3) guarantees that the empirical distribution p̂(s, f) converges to the true distribution
p(s)πg(f | s) as the sample size N → ∞.

Therefore, at convergence,

DKL(πg ∥ πθ⋆) = 0 almost everywhere, (25)

which implies pointwise equivalence between the student and teacher policies:

πθ⋆(f | s) = πg(f | s) for almost every s ∈ S. (26)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(iii) Reward upper bound. Let r(a | s) = 1[a = a⋆(s)] be the task reward, where a = exec(f,T)
is the executed output. Since execution is deterministic and the student mimics the teacher exactly,
we have:

Es∼p,f∼πθ⋆
[r(exec(f,T) | s)] = Es∼p,f∼πg

[r(exec(f,T) | s)] . (27)
Thus, supervised fine-tuning under ideal assumptions can at best match the teacher’s reward perfor-
mance. In particular, this expected reward serves as an upper bound for what SFT can achieve when
trained only on demonstrations from πg .

D SUPPLEMENTARY DISCUSSION OF METHODOLOGY

D.1 TEXTUAL VS. SYMBOLIC REASONING IN TABLE UNDERSTANDING

In addition to the formal analysis in Section 3.2, we highlight several conceptual advantages of
symbolic reasoning for table understanding:

• Execution-based computation. Symbolic reasoning externalizes computation through deter-
ministic execution, separating high-level logical planning from low-level arithmetic or format-
ting operations.

• Compositionality and structure. Spreadsheet formulas offer compositional and type-aware
representations, providing stronger structural priors than unstructured text.

• Verifiability and transparency. Symbolic outputs are interpretable and verifiable: they can be
inspected, tested, reused, or debugged—enabling traceable and auditable reasoning processes.

• Discrete action space. The symbolic action space is bounded and discrete, which facilitates
more stable exploration and optimization during training.

• Robustness to token-level variability. Unlike textual reasoning, which is prone to errors from
exposure bias or numerical drift, symbolic reasoning delegates exact computation to the execu-
tor, reducing dependency on fragile token generation.

D.2 SFT VS. RL IN SYMBOLIC TABLE REASONING

We also expand upon the discussion in Section 3.3, comparing supervised fine-tuning (SFT) and
reinforcement learning (RL) for symbolic reasoning:

• SFT limitations. SFT imitates teacher demonstrations at the token level and struggles to gener-
alize beyond the training distribution. It penalizes semantically correct but structurally different
formulas, constraining exploration.

• Reward-aligned optimization. RL optimizes directly for task-level correctness using
execution-based rewards, allowing the model to discover diverse yet valid solution strategies.

• Support for many-to-one mappings. Since different formulas can yield the same correct an-
swer, RL naturally accommodates this multiplicity, whereas SFT often fails to reward such di-
versity.

• Flexible reward shaping. RL allows for auxiliary reward terms—such as penalties on length,
syntactic constraints, or correctness under verification—which are difficult to incorporate in SFT.

• Improved generalization. By optimizing for semantic correctness rather than mimicking
surface-level token patterns, RL enables the model to generalize more effectively in both in-
distribution (ID) and out-of-distribution (OOD) scenarios, including novel question types, un-
seen table schemas, and structurally diverse formulas.

D.3 PRACTICAL CHALLENGES OF FORMULA TUNING

While reinforcement learning (RL) offers significant advantages for symbolic table reasoning, it also
introduces several practical challenges, especially under the assumptions outlined in Section 3.2 and
3.3.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Exploration bottlenecks. Assumption 3 assumes that the RL policy can eventually explore cor-
rect formulas. However, the space of possible formulas is extremely large, and valid, executable
ones are rare—especially at the start of training. This makes it difficult for the model to receive
useful reward signals, leading to slow or unstable learning.

• Limited symbolic priors. Unlike supervised fine-tuning (SFT), RL does not benefit from direct
examples of correct formulas. If the model lacks prior knowledge of spreadsheet syntax or
symbolic structures, it may struggle to generate meaningful outputs. This weak starting point
often results in inefficient exploration and poor early performance.

• RL training instability. When training from scratch, the model often produces repetitive, in-
valid, or meaningless formulas in the early stages, receiving no reward. This can cause unstable
training and hinder convergence. Empirically, initializing with a supervised or pretrained model
leads to more stable training and faster reward learning.

• Sparse and coarse reward signals. Execution-based rewards typically only indicate whether
the final answer is correct or not, without offering any feedback on partially correct or struc-
turally promising outputs. This makes it harder for the model to learn from near misses. De-
signing more informative reward functions—such as those based on formula structure or partial
execution—remains an important direction.

Overcoming these challenges is essential for scaling Formula Tuning to more complex symbolic
tasks, broader domains, and higher-capacity models. Future work may explore techniques such as
curriculum learning, hybrid supervision, symbolic inductive priors, or multi-objective optimization
to improve training stability and exploration efficiency.

E DETAILED SETTINGS OF EXPERIMENTS

Models. Our experiments include both open-source and proprietary models. For open-
source models, we use Qwen2.5-Coder7B (Qwen2.5-Coder-7B-Instruct, Apache 2.0
License) (Hui et al., 2024) and LLaMA-3.18B (LLaMA-3.1-8B-Instruct, Meta Llama
3 Community Licence) (AI, 2024). For proprietary models, we evaluate OpenAI’s1

GPT-4o (gpt-4o-2024-11-20), GPT-4o-mini (gpt-4o-mini-2024-07-18), and O1
(o1-2024-12-17) as baselines.

Datasets. As shown in Table 4, we conduct experiments on seven diverse table understanding
benchmarks: WikiTQ (Pasupat & Liang, 2015), TabFact (Chen et al., 2020), FinQA (Chen et al.,
2021b), HiTab (Cheng et al., 2021), MultiHiertt (Zhao et al., 2022), AIT-QA (Katsis et al., 2021),
and TableBench (Wu et al., 2025). These datasets vary in domain coverage, table structures, and
question complexity, collectively spanning the full spectrum of table understanding tasks. For Mul-
tiHiertt, which contains multiple tables, we concatenate them vertically to form a single spreadsheet-
like table. For training, we combine the first five datasets into a unified training corpus and train the
model jointly on this merged set. Each dataset is then evaluated individually. All original training
and test splits are preserved, except for TabFact, from which we randomly sample 10,000 exam-
ples to prevent its abundance of relatively simple binary QA examples from dominating or skewing
the training. Among these benchmarks, AIT-QA and TableBench are considered out-of-distribution
(OOD) evaluation sets, while the remaining datasets are treated as in-distribution (ID). The charac-
teristics of each dataset are summarized below:

• WikiTQ is a Wikipedia-based table QA dataset with relatively simple factoid questions over
relational tables.

• TabFact also uses Wikipedia tables but frames the task as fact verification, where each claim
is labeled as either true or false.

• FinQA focuses on financial-domain tables and requires symbolic reasoning over semi-
structured input that includes both pretext and posttext as additional context.

• HiTab contains hierarchical tables derived from statistical reports. While its structure is more
complex than relational tables, the content is relatively straightforward.

• MultiHiertt involves multi-table reasoning over hierarchical tables in the financial domain,
demanding both structural and symbolic reasoning.

1https://openai.com/policies/row-terms-of-use/

23

https://openai.com/policies/row-terms-of-use/

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• AIT-QA consists of hierarchical tables from the airline domain. Although structurally rich, its
questions tend to be simpler.

• TableBench features complex questions over relational tables drawn from various domains.
Many questions require multi-step symbolic reasoning, making it the most challenging bench-
mark in our evaluation.

Table 4: Overview of the training data and table benchmarks used in this study.

Evaluation Type Dataset # Train Data # Test Data Table Type Domain License Source

In-Distribution

WikiTQ (Pasupat & Liang, 2015) 13,753 4,217 Relational Wikipedia CC-BY-SA-4.0 Link
TabFact (Chen et al., 2020) 10,000 2,024 Relational Wikipedia CC-BY-4.0 Link
FinQA (Chen et al., 2021b) 6,251 1,147 Relational Finance MIT Link
HiTab (Cheng et al., 2021) 7,399 1,583 Hierarchical Statistical Reports C-UDA 1.0 Link
MultiHiertt (Zhao et al., 2022) 7,795 1,038 Multiple & Hierarchical Finance MIT Link

Out-of-Distribution AIT-QA (Katsis et al., 2021) – 515 Hierarchical Airline CDLA-Sharing-1.0 Link
TableBench (Wu et al., 2025) – 883 Relational Cross Domain CC0-1.0 Link

Table Encoding. We adopt a table encoding method similar to SpreadsheetEncoder (Dong et al.,
2024), which converts a table into a linearized markdown-style format. Each cell is represented by
its spreadsheet address and value, forming text sequences such as A1,Year|A2,Profit. This
encoding preserves both structural and content information, enabling the model to better understand
cell-level references.

Output Format. Following the structured reasoning paradigm, the model is required to produce
outputs in a two-stage format:

y = ⟨think⟩ t ⟨/think⟩︸ ︷︷ ︸
reasoning trajectory

⟨answer⟩{json} ⟨/answer⟩︸ ︷︷ ︸
final answer

,

where t is a free-form natural language reasoning process (i.e., the thinking process), and the answer
block contains a JSON object from which the final prediction is extracted. This design enables
decoupling the reasoning trajectory from the answer payload and facilitates more structured reward
computation.

To encourage adherence to this format, we introduce a lightweight format reward. If the output fails
to follow the required structure (e.g., malformed tags or unparseable JSON), the model receives a
penalty of −2. If the format is valid and the answer can be successfully parsed from the JSON
object, a small positive reward of +0.1 is added to the answer-level reward. Therefore, the final
reward is as:

rfinal(a | s) = rans(a | s) + rfmt(a) (28)
This reward shaping helps stabilize training and guide the model toward producing reliably struc-
tured outputs.

Baselines. We compare our proposed framework against a broad range of strong baselines, includ-
ing both prompting-based and fine-tuning-based methods. To ensure a fair comparison, we require
all methods to output short, deterministic answers rather than open-ended free-form text. Following
this criterion, we exclude TableLLM (Zhang et al., 2025), which relies on a critique model for an-
swer evaluation and does not produce a directly verifiable answer string. Prompting-based methods
currently dominate the TableQA landscape, with most relying on large closed-source models for per-
formance. We compare Fortune and Fortune++ with several representative methods in this category:
Binder (Cheng et al., 2023), Dater (Ye et al., 2023), API-Assisted (Cao & Liu, 2025), Chain-of-
Table (Wang et al., 2024), ReAcTable (Zhang et al., 2023), Norm-DP (Liu et al., 2023), TIDE (Yang
et al., 2025), E5 (Zhang et al., 2024c), and SS-CoT (Zhao et al., 2024b). We also include Table-
Master (Cao & Liu, 2025), a recent recipe-based prompting framework built on GPT-4o-mini. For
fine-tuning-based methods, we select models specifically trained for table question answering tasks.
These include TAPEX-Large (Liu et al., 2022), OmniTab (Jiang et al., 2022), TableLlama (Zhang
et al., 2024a), TableGPT2 (Su et al., 2024), and TabAF (Wang et al., 2025), a recent strong method
that combines formula generation and hybrid self-consistency. Our framework is evaluated under
the same settings to ensure consistency and comparability across methods.

RL Training. We use Proximal Policy Optimization (PPO) for reinforcement learning (RL). The
maximum prompt length is set to 8192 tokens, and the maximum response length is 512 tokens.

24

https://github.com/ppasupat/WikiTableQuestions
https://github.com/wenhuchen/Table-Fact-Checking
https://github.com/czyssrs/FinQA
https://github.com/microsoft/HiTab
https://github.com/psunlpgroup/MultiHiertt
https://github.com/IBM/AITQA
https://huggingface.co/datasets/Multilingual-Multimodal-NLP/TableBench

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

The critic model is initialized with the same weights as the actor model. The actor is trained with
a learning rate of 1e-6, while the critic uses a slightly higher learning rate of 1e-5 to enable faster
value estimation. We set the KL divergence coefficient to 0.001 to balance exploration and policy
stability. The generation temperature is set to 0.6 to encourage a mix of determinism and diversity
in the generated reasoning chains and formula outputs. The PPO mini-batch size is 64. We evaluate
performance every 20 steps and report the results based on the best performance achieved on each
dataset.

SFT Training. The supervised fine-tuning (SFT) training corpus is distilled from GPT-4o by
prompting it with ground-truth answers, eliciting chain-of-thought reasoning followed by a final
answer. We adopt a rejection-based fine-tuning (RFT) strategy (Yuan et al., 2023), retaining only ex-
amples where the generated answer exactly matches the ground truth. For symbolic reasoning tasks,
correctness is determined by executing the generated formula and verifying that the resulting answer
matches the expected output. This approach ensures high-quality supervision for fine-tuning. All
SFT models are trained for 4 epochs, and we report results based on the checkpoint with the highest
exact match accuracy on the test set. We use a learning rate of 2e-5 and a batch size of 64.

Evaluation Inference. For all models, including both open-source and proprietary ones, we use a
temperature of 0, top-k of 50, and top-p of 0.7 during inference. Setting the temperature to 0 encour-
ages deterministic outputs and improves stability in single-pass predictions. For self-consistency
decoding in Fortune++, we use a higher temperature of 0.6 to promote diversity across multiple
samples, enabling the model to better explore reasoning variations and improve final answer voting.

Evaluation Metrics. Following prior work (Pasupat & Liang, 2015; Cheng et al., 2021), we pri-
marily use exact match (EM) as the evaluation metric, applying numeric tolerance when comparing
numerical values. Official evaluation scripts are used whenever available to ensure consistency. For
TabFact, which is formulated as a binary classification task, we report standard classification accu-
racy. Since our training objective aligns with evaluation, we also use exact match (EM) for answer
reward calculation.

Software. We implement Fortune using Python 3.11, with the VERL framework (Sheng et al.,
2024) serving as the core architecture for reinforcement learning and other supervised fine-tuning
with language models. Our implementation utilizes VLLM (v0.8.3) (Kwon et al., 2023) for efficient
LLM inference and generation, PyTorch (v2.4.0) with CUDA 12.8 for deep learning operations, and
Ray (Moritz et al., 2018) for distributed training and inference. FlashAttention-2 (Dao et al., 2022) is
integrated to accelerate attention computation. For proprietary LLMs, we access OpenAI models via
the Microsoft Azure platform2. For formula execution, we use the open-source spreadsheet engine
formulas3 (EUPL 1.1+ License), which supports a wide range of standard spreadsheet operators.
A representative list of symbolic operators used in our table reasoning framework is provided in
Appendix J.

Hardware. All experiments are conducted on machines equipped with either NVIDIA A100 80GB
PCIe or NVIDIA H100 80GB PCIe GPUs, along with 1.0 TB of RAM. For reinforcement learning
(RL) training of open-source models, we use 8 × NVIDIA H100 80GB PCIe GPUs by default. For
supervised fine-tuning (SFT) of open-source models, we use 4 × NVIDIA A100 80GB PCIe GPUs
by default.

F ABLATION STUDY AND UPPER-BOUND PERFORMANCE OF FORTUNE++

We conduct an ablation study of Fortune++ to investigate the complementary roles and effectiveness
of textual and symbolic reasoning. Table 5 reveals several instructive patterns.

Combining textual and symbolic reasoning yields the most robust performance. The balanced
sampling strategy used by Fortune++ (five textual and five formula candidates) consistently outper-
forms both the pure-text and pure-formula variants across all benchmarks. This confirms that textual
and symbolic reasoning address complementary error modes. Disabling either modality leads to sub-
stantial accuracy degradation, with drops of up to 18 percentage points (e.g., –18 pp on FinQA for
text-only, –13 pp on AIT-QA for formula-only).

2https://azure.microsoft.com/
3https://github.com/vinci1it2000/formulas

25

https://azure.microsoft.com/
https://github.com/vinci1it2000/formulas

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of TabAF, Fortune, and Fortune++ variants. Values in the table
indicate accuracy (%). ‘-’ indicates results not reported in the related paper. Gray rows represent
upper-bound performance. Numbers in parentheses with a downward arrow (↓) indicate the perfor-
mance drop relative to the default Fortune++ configuration. Top results are highlighted in dark blue.

Method WikiTQ TabFact FinQA HiTab MultiHiertt AIT-QA TableBench

TabAF (Wang et al., 2025)

Upper Bound 80.13 94.02 - 82.07 - - -
5 Text 61.42 81.47 - 74.24 - - -
5 Formula 64.20 67.54 - 74.87 - - -
5 Text + 5 Formula 74.72 83.99 - 78.41 - - -

Fortune Upper Bound 77.35 96.49 72.01 79.91 54.82 88.93 43.26
10 Formula 67.05 85.08 62.16 69.74 40.85 80.39 35.22

Fortune++

Upper Bound 93.62 99.51 91.02 95.01 71.29 98.06 61.16
5 Text 64.52 (↓18.02) 85.18 (↓9.88) 63.64 (↓16.83) 74.48 (↓12.76) 36.42 (↓15.31) 83.30 (↓9.90) 28.31 (↓16.65)
5 Formula 66.48 (↓16.06) 82.41 (↓12.65) 61.99 (↓18.48) 68.54 (↓18.70) 39.60 (↓12.13) 79.42 (↓13.78) 34.65 (↓10.31)
5 Text + 5 Formula 82.54 95.06 80.47 87.24 51.73 93.20 44.96

Text and formula reasoning each excel in different scenarios. Textual reasoning performs better
on simpler table QA tasks, such as TabFact and AIT-QA, where natural language understanding
and logical inference dominate. In contrast, formula-based reasoning excels on arithmetic-heavy or
structured computation tasks like FinQA and MultiHiertt, where symbolic execution is crucial for
deriving the correct answer. This division reinforces the importance of integrating both modalities
for general-purpose table understanding.

Reinforcement learning enhances symbolic reasoning beyond supervised fine-tuning. Com-
pared with TabAF—which uses the same backbone but is trained only with SFT—Fortune’s RL
variant achieves substantially stronger formula-only performance (e.g., 82.41% vs. 67.54% on Tab-
Fact with 5 Formula). This suggests that reinforcement learning encourages the model to explore
more reliable and executable reasoning paths, ultimately improving symbolic program quality.

Many correct answers are lost due to naive majority voting. The upper-bound rows show
that Fortune++ frequently generates correct answers that are not selected by simple majority vote.
The discrepancy between upper-bound and actual performance reaches 19 pp on MultiHiertt and
17 pp on TableBench, indicating considerable headroom for improved candidate selection through
confidence-based aggregation or smarter reranking mechanisms.

Complex, low-resource benchmarks remain the greatest challenge. The largest performance
gaps appear on structurally complex and low-resource datasets such as MultiHiertt and TableBench.
These results highlight the limitations of current voting and reasoning mechanisms and point to fu-
ture directions including symbolic planner integration, adaptive sampling, and confidence-calibrated
answer selection.

G IMPACT ANALYSIS OF THE THINKING PROCESS IN FORMULA TUNING

Table 6 and Figure 3 highlight the impact of incorporating an explicit thinking process before gen-
erating formulas.

Table 6: Performance comparison with and without reasoning under Zero-Shot and RL settings
across various datasets. Values in the table indicate accuracy (%).

Method WikiTQ TabFact FinQA HiTab MultiHiertt AIT-QA TableBench Overall
Zero Shot

w/o Reasoning 42.14 57.76 33.13 38.35 15.99 58.45 28.88 39.24
w/ Reasoning 38.96 52.52 34.44 32.60 15.90 52.43 26.05 36.13

Reinforcement Learning (RL)
w/o Reasoning 63.39 80.39 61.99 67.09 38.15 78.84 33.41 60.47
w/ Reasoning 67.80 84.19 62.16 71.19 41.72 81.17 35.45 63.38

In the zero-shot setting, reasoning may hurts performance. We observe that adding a reasoning
trace before the formula generally leads to lower accuracy (e.g., 39.24% → 36.13% overall). This is
likely because such thought-first-then-formula generation patterns are underrepresented in pretrain-
ing corpora. As a result, models tend to produce unnatural or error-prone reasoning steps, which
negatively affect the final output. The limitations of chain-of-thought reasoning in certain scenarios
have also been discussed in recent work (Sprague et al., 2025; Liu et al., 2024).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Wiki
TQ

Ta
bFac

t

FinQA
HiTa

b

MultiH
ier

tt

AIT-
QA

Ta
bleB

en
ch

Ove
ral

l
0

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

42.14

57.76

33.13

38.35

15.99

58.45

28.88

39.2438.96

52.52

34.44
32.60

15.90

52.43

26.05

36.13

63.39

80.39

61.99

67.09

38.15

78.84

33.41

60.47

67.80

84.19

62.16

71.19

41.72

81.17

35.45

63.38

Zero-Shot w/o Reasoning Zero-Shot w/ Reasoning RL w/o Reasoning RL w/ Reasoning

Figure 3: Performance comparison with and without explicit reasoning process under Zero-Shot and
Reinforcement Learning (RL) settings across various datasets. Each group of bars shows the accu-
racy (%) achieved by four configurations: Zero-Shot without Reasoning, Zero-Shot with Reasoning,
RL without Reasoning, and RL with Reasoning.

0 500 1000 1500 2000 2500
count

IF

MINUS

PLUS

DIVIDE

EQUAL

GREATER_THAN

MULTIPLY

AND

LESS_THAN

MAX

OTHERS

2,700

1,695

1,633

1,549

1,501

895

887

869

332

89

326

Top 10 most frequent formula operators used during evaluation

Figure 4: Top 10 most frequent formula operators used during evaluation.

In the RL setting, reasoning significantly improves performance. Once trained with our answer-
based reward, the model begins to benefit from generating an explicit reasoning trace. The inclusion
of a thinking process effectively expands the exploration space during policy optimization and en-
courages the model to break down complex table reasoning tasks into more manageable steps. This
leads to consistent performance improvements across datasets (e.g., 60.47% → 63.38% overall),
demonstrating that reasoning becomes a valuable asset—once the model has been properly trained
to utilize it effectively.

H STATISTICAL ANALYSIS OF GENERATED FORMULAS IN SYMBOLIC
TABLE REASONING

We collect and analyze statistics of the formulas generated by our formula-tuned model during
evaluation to better understand their structural properties.

Table 7 presents a quantitative summary of both table layout characteristics and the structural prop-
erties of generated formulas across seven widely used table understanding datasets. The table is
divided into two parts: the first group (Width, Height, and Area Size) reflects the average struc-

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 7: Statistics of generated formulas across different table understanding datasets.

Dataset Table Layout Generated Formula
Width Height Area Size Length # Operators # Variables

WikiTQ 6.28 19.46 121.68 21.61 0.84 1.50
TabFact 6.28 14.04 87.42 44.85 3.11 2.85
FinQA 3.92 18.09 70.80 18.84 1.98 2.94
HiTab 6.16 21.32 171.40 12.20 0.49 1.34
MultiHiertt 7.25 46.59 339.30 22.64 2.10 3.21
AIT-QA 5.62 13.86 81.91 5.67 0.11 1.89
TableBench 6.71 16.26 108.24 26.87 1.52 2.78

tural complexity of the input tables, while the second group (Length, # Operators, and # Variables)
captures the syntactic and symbolic complexity of the generated formulas.

We observe substantial variation in table layout complexity. For example, MultiHiertt has by far
the largest average table area (339.30), indicating its multiple and hierarchical format. In contrast,
datasets like AIT-QA and FinQA involve relatively smaller or simpler tables, which may place less
structural burden on the reasoning process. Notably, HiTab also exhibits a high area size, despite
having fewer variables and a short formula length, suggesting that its challenge lies more in table
structure than in formula richness.

In terms of generated formulas, TabFact stands out with the longest average formula length (44.85
characters) and the highest number of operators (3.11), indicating that its fact verification tasks typ-
ically require complex symbolic conditions. On the other hand, AIT-QA exhibits the shortest for-
mulas with minimal operator usage (5.67 length, 0.11 operators), reflecting the dataset’s relatively
simple question types. Datasets like FinQA and MultiHiertt show high variable counts (around
3 per formula), which aligns with their multi-step reasoning nature involving multiple cell refer-
ences. TableBench poses a greater challenge due to its combination of complex question intent
and compositional reasoning demands. Although its average table size is moderate, the questions
often require multi-step symbolic operations such as nested aggregations, comparisons, or indirect
references—making it a strong testbed for evaluating deep reasoning ability.

These statistics provide important insights for model evaluation and reward design. First, differ-
ent datasets pose very different reasoning demands—relying solely on benchmarks like WikiTQ or
AIT-QA may underestimate a model’s true symbolic capacity. Second, symbolic complexity (e.g.,
operator density) varies nontrivially across tasks, and therefore reward shaping mechanisms should
adapt accordingly to avoid penalizing semantically necessary long formulas. Lastly, the disconnect
between table area and formula length in datasets like HiTab implies that structural layout, rather
than size alone, can be the main source of reasoning difficulty—an insight that can guide future
benchmark construction and curriculum learning design.

Figure 4 presents the distribution of the most frequently used formula operators during evaluation.
The conditional operator IF appears overwhelmingly often, with a count of 2,700, indicating that
conditional reasoning is central to many table reasoning tasks. Arithmetic operators such as MINUS
(1,695), PLUS (1,633), and DIVIDE (1,549) are also widely used, reflecting the numerical nature of
many questions. Logical comparison operators like EQUAL, GREATER_THAN, and LESS_THAN
occur frequently as well, suggesting that relational reasoning is also a common requirement. Less
frequently used operators such as MAX and those grouped into the OTHERS category play a smaller
role. Overall, the operator distribution highlights the need for models to support both arithmetic and
logical reasoning, with a strong emphasis on conditional operations.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I CASE STUDY

I.1 TEXTUAL VS. SYMBOLIC REASONING

We present representative examples comparing textual and symbolic reasoning methods in table
understanding tasks.

As shown in Table 8, the textual approach performs better in this particular case. This is a sim-
ple counting question, so textual reasoning can easily enumerate the relevant items and output the
correct answer (4). In contrast, the symbolic reasoning attempts to solve the problem via a more
complex formula. Although the reasoning process is logically correct and the intent aligns with
expectations, the actual formula execution produces an incorrect result due to implementation de-
tails—specifically, the presence of the string nan in the table being misinterpreted. This highlights
that in certain corner cases, symbolic reasoning may not have fully mastered tool usage or aligned
formula execution. In comparison, textual reasoning can sometimes bypass such pitfalls and arrive
at the correct answer more robustly.

On the other hand, Table 9 illustrates a case where symbolic reasoning proves more effective. This
is a moderately difficult classic counting problem with a ground truth answer of 13. Here, textual
reasoning fails, producing an incorrect count (22), suggesting that its performance deteriorates as
task complexity increases. In contrast, symbolic reasoning correctly formulates a count-based ex-
pression and arrives at the correct answer. The accompanying reasoning trace (Think) also clearly
articulates the logic behind the computation, demonstrating the advantage of symbolic approaches
in precise numerical tasks.

Table 8: Case study comparing textual and symbolic reasoning. In this example, textual reasoning
yields the correct answer.

Method Case

- Question: rapper saigon has had at least () albums released in the U.S.?
Table:

Groundtruth Answer: 4

Symbolic Think: To compute how many unique albums Saigon has released, I examine column F
(F2:F13), which lists album names. Some of these cells contain "nan", which I treat as
missing values. I only count the unique non-missing values. A standard formula to count
unique non-empty values is: =SUMPRODUCT(1/COUNTIF(F2:F13,F2:F13)) This for-
mula works because COUNTIF returns the number of times each value appears; taking
1 over that and summing gives the count of distinct values. This will count duplicates
only once and ignore empty cells or "nan" if treated as the same placeholder.
Generated Formula: =SUMPRODUCT(1/COUNTIF(F2:F13,F2:F13))

Execution Result: 5

Execution Accuracy: 0.0

Textual Think: We are asked to find out how many albums rapper Saigon has released in the U.S.
From the table, we look at the ’Album’ column (column F), which lists the associated al-
bum for each song. We ignore entries that are ’nan’ or empty, as those do not correspond
to a known album. From F2 to F13, we extract the non-nan values: - Warning Shots 2
- The Greatest Story Never Told - The Greatest Story Never Told Chapter 2: Bread and
Circuses - The Greatest Story Never Told Chapter 3: The Troubled Times of Brian Care-
nard These are 4 distinct album names, so the answer is 4.
Generated Answer: 4

Answer Accuracy: 1.0

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 9: Case study comparing textual and symbolic reasoning. In this example, symbolic reasoning
yields the correct answer.

Method Case

- Question: How many elections did the party win75 or more seats?
Table:

Groundtruth Answer: 13

Textual Think: - A2, 1927 (sep): 57 seats - A3, 1932: 72 seats - ... - A26, 2002: 81 seats - A27,
2007: 77 seats - A28, 2011: 20 seats (less than 75) Counting the rows where the "seats"
column is 75 or more: - 1927 (sep): 57 - 1932: 72 - ... - 2002: 81 - 2007: 77 Counting
these, we find 22 elections where the party won 75 or more seats.
Generated Answer: 22

Execution Accuracy: 0.0

Symbolic Think: 1. To answer this question, I need to look into the table provided in the question.
The question is asking to determine how many times a party won 75 or more seats in
various elections based on a given table. 2. Since the question is focused on the number
of seats won, I need to look for a column in the table that contains the number of seats
each party won in each election. 3. Given that the question is asking to count the number
of elections where the party won 75 or more seats, I will need to look for a column that
contains the seat numbers and then count how many of those seat numbers are 75 or
greater. 4. Since the question is not providing a specific column in the table for seat
numbers, I will need to infer that the seat numbers are contained in column D of the
provided table, which is titled "seats".
Generated Formula: =COUNTIF(D2:D28, ">=75")

Execution Result: 13

Execution Accuracy: 1.0

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

I.2 PERFORMANCE OF SFT VS. RL

We also compare models trained with supervised fine-tuning (SFT) and reinforcement learning (RL)
in the context of symbolic table reasoning using formulas. As shown in Table 10, RL enables the
language model to generate more accurate and executable formulas, leading to improved symbolic
reasoning performance. In this example, the SFT model appears to merely memorize a reasoning
pattern and produces a formula that is superficially related to the question but logically incorrect.
Moreover, the intermediate reasoning process is highly interpretable and clearly aligned with the
question’s logic.

Table 10: Case study comparing performance of SFT vs. RL. In this example, RL yields the correct
answer.

Method Case

- Question: What is the number of winning drivers that represented the U.S.?
Table:

Groundtruth Answer: 15

SFT Think: To determine the number of of winning States that represent, we need to count
the occurrences of U.S. drivers in the range B1:B10. This will give us the total count of
cells that contain the value "A1".
Generated Formula: =COUNTIF(B1:B10, A1)

Execution Result: 0

Execution Accuracy: 0.0

RL Think: 1. To answer this question, I need to look into the table provided in the question.
The question is asking to determine how many times a driver from the United States
(U.S.) won a race based on a given table. 2. Since the question is focused on the winning
drivers, I need to look for a column in the table that contains the names of the winning
drivers. 3. Given that the question is asking to count how many times a U.S. driver won,
I will need to look for a column that contains the names of the winning drivers and then
count how many of those names are U.S. drivers. 4. Since the question is not providing
a specific column or row in the table where the winning drivers’ names are listed, I will
need to assume that the winning drivers’ names are listed in a column that I can reference
in the table.
Generated Formula: =COUNTIF(G2:G18, "Rick Mears") +
COUNTIF(G2:G18, "Al Unser, Jr.") + COUNTIF(G2:G18,
"Michael Andretti") + COUNTIF(G2:G18, "Danny Sullivan")

Execution Result: 15

Execution Accuracy: 1.0

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

J SPREADSHEET FORMULA OPERATORS IN SYMBOLIC TABLE REASONING

Spreadsheet formulas are Turing complete (Smalley, 2023), but in practice, only a core subset of
functions is commonly used. To guide the language model toward effective formula generation and
support future research, we identify a set of representative operators in Table 11. This table lists each
operator’s name, symbol, definition, and a representative example—primarily covering basic arith-
metic and aggregation operations. Acknowledging the model’s limited formula knowledge at the
beginning of training, we explicitly introduce these operators during prompting, while still allowing
the model to use any formula supported by our execution engine.

The formula operators can be viewed as the action space in reinforcement learning for symbolic
table reasoning. The selected operators are designed to cover the majority of symbolic reasoning
needs in table-based question answering, including row/column indexing, numerical aggregation,
and conditional filtering. Focusing on a fixed set of operators facilitates interpretable error analysis
and enables fine-grained tracking of formula usage patterns during both training and evaluation.
This curated set also provides a natural foundation for curriculum learning strategies—starting with
simpler operators and progressively introducing more complex ones, such as nested conditions and
lookup functions.

Table 11: Representative spreadsheet formula operators in symbolic table reasoning: Symbols, Def-
initions, and Examples.

Name Symbol Description Example
PLUS + Adds two numbers together =A1 + A2
MINUS – Subtracts one number from another =A1 - A2
MULTIPLY * Multiplies two numbers together =A1 * A2
DIVIDE / Divides one number by another =A1 / A2
SUM SUM Sums a range of numbers =SUM(A1:A10)
AVERAGE AVERAGE Calculates the average of a range of numbers =AVERAGE(A1:A10)
COUNT COUNT Counts the number of numbers in a range =COUNT(A1:A10)
MAX MAX Finds the maximum number in a range =MAX(A1:A10)
MIN MIN Finds the minimum number in a range =MIN(A1:A10)
EQUAL = Returns TRUE if the two values are equal =A1 = A2
NOT_EQUAL <> Returns TRUE if the two values are not equal =A1 <> A2
GREATER_THAN > Returns TRUE if the first value is greater than the second =A1 > A2
LESS_THAN < Returns TRUE if the first value is less than the second =A1 < A2
GREATER_THAN_OR_EQUAL >= Returns TRUE if the first value is greater than or equal to second =A1 >= A2
LESS_THAN_OR_EQUAL <= Returns TRUE if the first value is less than or equal to second =A1 <= A2
AND AND Returns TRUE if all arguments are TRUE =AND(A1, A2)
OR OR Returns TRUE if any argument is TRUE =OR(A1, A2)
NOT NOT Returns TRUE if the argument is FALSE =NOT(A1)
IF IF Returns one value if a condition is TRUE and another if FALSE =IF(A1 > 10, "Yes", "No")
TRUE TRUE Returns TRUE =TRUE
FALSE FALSE Returns FALSE =FALSE
INDEX INDEX Returns the value of a cell at a specific row and column =INDEX(A1:A10, 1)
MATCH MATCH Returns the position of an item in an array (see syntax below) =MATCH("value", A1:A10, 0)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

K PROMPTS USED IN THE EXPERIMENTS

Figures 5, 6, 7, 8, and 9 illustrate the prompts used in our experiments across zero-shot inference,
supervised fine-tuning (SFT), reinforcement learning (RL), and evaluation.

Pre-text and Post-text refer to optional unstructured context surrounding the table, such as the data
description format used in FinQA (Chen et al., 2021b). formula operator instruction represents the
textual representations and usage guidelines of the representative spreadsheet formula operators in
symbolic table reasoning, as detailed in Appendix J.

These prompts serve as examples rather than optimal templates. They may vary across tasks and
can be further optimized for better performance.

You are a helpful assistant.

Task

You are an expert in writing Spreadsheet formulas given a table and a question.

You first think about the reasoning process in the mind and then provides the user with the answer.

Your task is to generate the correct spreadsheet formula to answer a given question, based on the provided table.

Spreadsheet Formula Operator List

Below is a JSON list of commonly used formula operators, including their instructions and examples.

{formula_operator_instruction}

Table

The table is represented as cell-value pairs, where each pair consists of a cell address and its content, separated by a comma (e.g., 'A1,Year').

Multiple cells are separated by a pipe symbol '|' (e.g., 'A1,Year|A2,Profit').

Empty cell of A1 can be represented as 'A1,|A2,Profit'.

Pre-text:

{pre_text}

Here is the table:

{table_content}

Post-text:

{post_text}

Response Format

Show your reasoning within <think> </think> tags. Your final output must be in JSON format, enclosed in <answer> </answer> tags. For example:

<think>

[step-by-step reasoning]

</think>

<answer>

{{

"formula": "=......."

}}

</answer>

Notes

1. For simple questions, if a direct cell reference is appropriate, simply return the formula as =CellAddress.

2. Construct the formula mainly using the provided operator symbols from the formula operator list.

3. You may either use cell references (cell addresses) in formulas or use the actual cell values directly.

4. Do not use the dollar sign ($) in addresses; use only formats like A1, A2, etc.

5. If a question has multiple answers, concatenate them using ", " as the separator. For example, use the formula `=A1 & ", " & A2 & ", " & A3` to produce a

single string like `a, b, c`.

6. The execution result of the generated formula must be the direct final answer to the question.

Here is the question:

{question}

Let me write the spreadsheet formula with reasoning.

<think>

Prompt for Symbolic Reasoning with Formula

Figure 5: Prompt for symbolic reasoning with formula. Blue text indicates placeholders for variables
within the prompt.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

You are a helpful assistant.

Task

You are an expert in answering questions given a table.

You first think about the reasoning process in the mind and then provides the user with the answer.

Your task is to generate the correct answer to a given question, based on the provided table.

Table

The table is represented as cell-value pairs, where each pair consists of a cell address and its content, separated by a comma (e.g., 'A1,Year').

Multiple cells are separated by a pipe symbol '|' (e.g., 'A1,Year|A2,Profit').

Empty cell of A1 can be represented as 'A1,|A2,Profit'.

Pre-text:

{pre_text}

Here is the table:

{table_content}

Post-text:

{post_text}

Response Format

Show your reasoning within <think> </think> tags. Your final output must be in JSON format, enclosed in <answer> </answer> tags. For example:

<think>

[step-by-step reasoning]

</think>

<answer>

{{

"answer": "......."

}}

</answer>

Notes

1. Use the values from the table in the reasoning process or answer the question.

2. If a question has multiple answers, concatenate them using ", " as the separator, e.g., "a, b, c".

3. Your answer cannot be the spreadsheet formula.

Here is the question:

{question}

Let me give the answer with reasoning.

<think>

Prompt for Textual Reasoning

Figure 6: Prompt for textual reasoning. Blue text indicates placeholders for variables within the
prompt.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

You are a helpful assistant.

Task

You are an expert in writing Spreadsheet formulas given a table and a question.

You first think about the reasoning process in the mind and then provides the user with the answer.

Your task is to generate the correct Python code to answer a given question, based on the provided table.

Table

The table is represented as cell-value pairs, where each pair consists of a cell address and its content, separated by a comma (e.g., 'A1,Year').

Multiple cells are separated by a pipe symbol '|' (e.g., 'A1,Year|A2,Profit').

Empty cell of A1 can be represented as 'A1,|A2,Profit'.

Pre-text:

{pre_text}

Here is the table:

{table_content}

Post-text:

{post_text}

Response Format

Show your reasoning within <think> </think> tags. Your final output must be in JSON format, enclosed in <answer> </answer> tags. For example:

<think>

[step-by-step reasoning]

</think>

<answer>

{{

”code": "=......."

}}

</answer>

Notes

1. Generate a Python code that can be executed to answer the question.

2. The result of executing the code should be the final answer.

3. You must output the Python code as a single line in the code field of the JSON, enclosed in triple backticks with the python tag (```python```).

4. If a question has multiple answers, concatenate them using ", " as the separator.

5. The input value for the table is already assigned to the variable 'table_data = [[...],[...],...]'.

6. The result of final answer must be assigned to a variable named 'answer’.

Here is the question:

{question}

Let me write the Python code with reasoning.

<think>

Prompt for Symbolic Reasoning with Python

Figure 7: Prompt for symbolic reasoning with Python. Blue text indicates placeholders for variables
within the prompt.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

You are a helpful assistant.

Task

You are an expert in writing Spreadsheet formulas given a table and a question.

You first think about the reasoning process in the mind and then provides the user with the answer.

Your task is to generate the correct SQL query to answer a given question, based on the provided table.

Table

The table is represented as cell-value pairs, where each pair consists of a cell address and its content, separated by a comma (e.g., 'A1,Year').

Multiple cells are separated by a pipe symbol '|' (e.g., 'A1,Year|A2,Profit').

Empty cell of A1 can be represented as 'A1,|A2,Profit'.

Pre-text:

{pre_text}

Here is the table:

{table_content}

Post-text:

{post_text}

Response Format

Show your reasoning within <think> </think> tags. Your final output must be in JSON format, enclosed in <answer> </answer> tags. For example:

<think>

[step-by-step reasoning]

</think>

<answer>

{{

”sql": "=......."

}}

</answer>

Notes

Generate a SQL query that can be executed onto the table to answer the question.

The result of executing the SQL query should be the final answer.

You must output the SQL query as a single line in the SQL field of the JSON.

The table name in the SQL query must be 'TMP_TABLE’.

Here is the question:

{question}

Let me write the SQL query with reasoning.

<think>

Prompt for Symbolic Reasoning with SQL

Figure 8: Prompt for symbolic reasoning with SQL. Blue text indicates placeholders for variables
within the prompt.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

You are a helpful assistant.

Task

You are an expert in writing Spreadsheet formulas given a table and a question.

You need to provide the user with the answer directly.

Your task is to generate the correct spreadsheet formula to answer a given question, based on the provided table.

Spreadsheet Formula Operator List

Below is a JSON list of commonly used formula operators, including their instructions and examples.

{formula_operator_instruction}

Table

The table is represented as cell-value pairs, where each pair consists of a cell address and its content, separated by a comma (e.g., 'A1,Year').

Multiple cells are separated by a pipe symbol '|' (e.g., 'A1,Year|A2,Profit').

Empty cell of A1 can be represented as 'A1,|A2,Profit'.

Pre-text:

{pre_text}

Here is the table:

{table_content}

Post-text:

{post_text}

Response Format

Your final output must be in JSON format, enclosed in <answer> </answer> tags. For example:

<answer>

{{

"formula": "=......."

}}

</answer>

Notes

1. For simple questions, if a direct cell reference is appropriate, simply return the formula as =CellAddress.

2. Construct the formula mainly using the provided operator symbols from the formula operator list.

3. You may either use cell references (cell addresses) in formulas or use the actual cell values directly.

4. Do not use the dollar sign ($) in addresses; use only formats like A1, A2, etc.

5. If a question has multiple answers, concatenate them using ", " as the separator. For example, use the formula `=A1 & ", " & A2 & ", " & A3` to produce a

single string like `a, b, c`.

6. The execution result of the generated formula must be the direct final answer to the question.

Here is the question:

{question}

Let me write the spreadsheet formula.

<answer>

Prompt for Symbolic Reasoning without Thinking Process

Figure 9: Prompt for symbolic reasoning with thinking process. Blue text indicates placeholders for
variables within the prompt.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

L NOTATION TABLE

Table 12 provides a comprehensive list of the notations used throughout this paper, along with their
corresponding descriptions. This table serves as a quick reference to help readers better understand
the concepts presented in our work.

Table 12: Notation used throughout the paper

Notation Description
General

s Input instance, a pair (T, q) of table and question
T Input table with m rows and n columns
q Natural-language query

Ci,j Cell at row i, column j in the table
m,n Number of rows and columns in T
a Generated answer (textual or executed formula result)
f Spreadsheet formula generated by the model

p(s) Empirical distribution over table–query pairs
r(a | s) Reward function evaluating answer correctness
a⋆(s) Ground-truth answer for input s

exec(f,T) Deterministic executor applying f to T
Policies
πθ(a | s) LM generation policy parameterized by θ
πtxt
θ Textual reasoning policy (free-text answer)

πsym
θ Symbolic reasoning policy (formula-based)
πg Teacher policy in supervised fine-tuning

πSFT
θ⋆ Optimal SFT policy under Assumption
πRL
θ Policy learned via reinforcement learning

Objective and Metrics
Es∼p, a∼π[·] Expectation under inputs and policy

1[·] Indicator function (1 if true, 0 otherwise)

Assumptions and Events
E1 Event of selecting a correct high-level reasoning plan
E2 Event that all textual reasoning steps are correct

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

M THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used only to aid with writing and polishing the
manuscript. Specifically, LLMs were employed for grammar correction, phrasing suggestions, and
improving readability. All research ideas, methodological contributions, theoretical analyses, and
experiments were entirely conceived, designed, and executed by the authors without the involvement
of LLMs. The authors take full responsibility for the scientific content of the paper.

39

	Introduction
	Related Work
	Methodology
	Task Formulation
	Textual vs. Symbolic Reasoning in Table Understanding
	SFT vs. RL in Symbolic Table Reasoning
	Formula Tuning

	Experiments
	Settings
	Performance of Formula Learning under SFT, RL, and Cold-Start RL
	Performance of Fortune and Fortune++ Compared to Other Methods

	Comparative Analysis of Formula Tuning and Other Symbolic Table Reasoning Methods
	Conclusion
	Ethics Statement
	Limitations and Future Work
	Supplementary Proofs
	Proof of Symbolic Reasoning Superiority
	Proof of RL Superiority
	Proof of MLE Minimizes KL Divergence
	Proof of Convergence of SFT and Reward Upper Bound

	Supplementary Discussion of Methodology
	Textual vs. Symbolic Reasoning in Table Understanding
	SFT vs. RL in Symbolic Table Reasoning
	Practical Challenges of Formula Tuning

	Detailed Settings of Experiments
	Ablation Study and Upper-Bound Performance of Fortune++
	Impact Analysis of the Thinking Process in Formula Tuning
	Statistical Analysis of Generated Formulas in Symbolic Table Reasoning
	Case Study
	Textual vs. Symbolic Reasoning
	Performance of SFT vs. RL

	Spreadsheet Formula Operators in Symbolic Table Reasoning
	Prompts Used in the Experiments
	Notation Table
	The Use of Large Language Models (LLMs)

