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Abstract

In this paper, we propose a novel method called
Targeted Syntactic Evaluations with pseudo-
languages, which can (i) test whether language
models capture linguistic phenomena without
relying on other superficial cues (e.g., lexical
information), (ii) control the factors out of in-
terest (e.g., vocabulary size), and (iii) easily
test linguistic phenomena that only exist in few
languages without collecting corpora of those
languages. Specifically, we create four types
of pseudo-languages with the abstracted vocab-
ulary of different sizes to control the effect of
lexical information and vocabulary size, and
with different levels of syntactic complexity:
(Adj)™ NP, NP™ VP", Nested Dependency,
and Cross Serial Dependency. We evaluate
four different language models (LSTM, BiL-
STM, Transformer Encoder, and Transformer
Decoder) on these pseudo-languages, using a
binary classification of strings based on their
grammaticality. Our result demonstrated that
the language models have successfully cap-
tured the (Adj)™ NP type phenomenon irre-
spective of vocabulary size, while they failed
to capture the other phenomena as the vocabu-
lary size increases. These results are not con-
sistent with the previous findings that LSTM
or Transformer-based language models can
capture syntactic dependencies in natural lan-
guages to some extent (Hu et al., 2020; Wilcox
et al., 2019; Warstadt et al., 2020), suggesting
that these language models may not necessarily
capture the rules behind these phenomena but
rather use some other superficial cues such as
co-occurrence or frequency.

1 Introduction

In the field of natural language processing (NLP),
language models based on an artificial neural net-
work have achieved remarkable success in var-
ious downstream tasks (Wang et al., 2019c,b).
To find out the underpinnings behind their suc-
cess, the literature on Targeted Syntactic Evalu-
ations (Linzen et al., 2016; Marvin and Linzen,

2018) has investigated what kind of linguistic phe-
nomena these artificial neural network-based lan-
guage models can and cannot capture. The Tar-
geted Syntactic Evaluations first focused on subject-
verb number agreement in English and other Eu-
ropean languages (Linzen et al., 2016; An et al.,
2019; Mueller et al., 2020), and recently a lot of
following-up work was done to cover a wide range
of linguistic phenomena across languages (Wilcox
et al., 2018; Gulordava et al., 2018; Ravfogel et al.,
2018; Marvin and Linzen, 2018; Kann et al., 2019;
Chowdhury and Zamparelli, 2018; Futrell et al.,
2019; Warstadt et al., 2019; Da Costa and Chaves,
2020; Chaves, 2020; Mueller et al., 2020; Trotta
et al., 2021; Xiang et al., 2021; Mikhailov et al.,
2021).

Although this line of work has provided a use-
ful framework to test the syntactic ability of lan-
guage models, there are several methodological
limitations, mainly because it utilized the sentences
sampled from natural corpora or generated from
templates (cf., Newman et al., 2021). First, the
use of sentences in natural corpora leaves uncer-
tainty as to whether language models solve the
problems by truly capturing the rules behind the
linguistic phenomena or fraudulently finding other
superficial cues (e.g., lexical information such as
co-occurrence or word frequency). Second, it also
makes it difficult to make comparison across lan-
guages; we cannot eliminate factors out of interest
(e.g., vocabulary size) when comparing the perfor-
mances of language models on linguistic phenom-
ena which exist in multiple languages. Third, we
cannot easily test linguistic phenomena that only
exist in few languages without collecting corpora of
those languages and training the language models
on them.

To overcome these limitations, we propose a
novel method called Targeted Syntactic Evalua-
tions with pseudo-languages, which can (i) test
whether language models capture linguistic phe-



nomena without relying on other superficial cues
(e.g., lexical information), (ii) control the factors
out of interest (e.g., vocabulary size), and (iii) eas-
ily test linguistic phenomena that only exist in few
languages without collecting corpora of those lan-
guages. Specifically, we create pseudo-languages
with the abstracted vocabulary of different sizes
to control the effect of lexical information and vo-
cabulary size, and evaluate language models on a
binary classification task of strings based on their
grammaticality. In addition, to make our pseudo-
languages look more like natural languages, the dis-
tribution of the words in our pseudo-languages fol-
lows Zipf distribution, which it is claimed the distri-
bution of the words (Zipf, 1942) or the phrases (Ry-
land Williams et al., 2015) in natural languages
follow.

Another methodological novelty of this paper
lies in the classification of linguistic phenomena
based on their syntactic complexity. In fact, linguis-
tic phenomena can be classified into several classes
based on their syntactic complexity (i.e., the Chom-
sky hierarchy; Chomsky, 1956), but the previous
work did not attempt to classify each linguistic phe-
nomenon and exhaustively investigate all of these
classes.! In this paper, we test four types of pseudo-
languages with different levels of complexity : (1)
(Adj)™ NP type, which imitates the repetition of ad-
jectives before nouns, (2) NP" VP" type, which im-
itates the embedded sentences without grammatical
agreement between noun phrases and verb phrases,
as seen in Japanese, (3) Nested Dependency type,
which imitates the embedded sentences with the
grammatical agreement between noun phrases and
verb phrases as seen in English, and (4) Cross Se-
rial Dependency type, which imitates the sentences
with multiple dependencies crossing each other, as
seen in Swiss German.

For each phenomenon, we create six variants
for each pseudo-language with varying vocabu-
lary sizes and test four different language models
(LSTM, Hochreiter and Schmidhuber, 1997; BiL-
STM, Schuster and Paliwal, 1997; Transformer En-

'This classification can be also applied to formal lan-
guages, and the literature on formal languages and artificial
neural network-based language models (Delétang et al., 2022)
conduct unified experiments on all the classes of complexity.
Note that the pseudo-languages in this paper are different from
the formal languages utilized in this literature, in that ours re-
produce the characteristics of natural languages such as the
various vocabulary which follows the Zipf distribution, but
the formal languages in (Delétang et al., 2022) did not assume
finer terminal symbols.

coder; Transformer Decoder, Vaswani et al., 2017)
against these pseudo-languages in order to investi-
gate their ability to correctly classify strings based
on their grammaticality.

Our result demonstrated that the language mod-
els have successfully captured the (Adj)"™ NP type
phenomenon irrespective of vocabulary size, while
they failed to capture the other phenomena as the
vocabulary size increases. These results are not
consistent with the previous findings that LSTM
or Transformer-based language models can cap-
ture syntactic dependencies in natural languages to
some extent (Wilcox et al., 2019; Warstadt et al.,
2020; Hu et al., 2020), suggesting that these lan-
guage models may not necessarily capture the
rules behind these phenomena but rather use some
other superficial cues such as co-occurrence or fre-
quency.’

2 Experiments

2.1 Pseudo-languages

In this subsection, we introduce the four types
of pseudo-languages investigated in this paper:
(Adj)™ NP, NP"VP", Nested Dependency, and
Cross Serial Dependency.’

Formal definition of pseudo-languages We de-
fine the pseudo-languages investigated in this pa-
per as follows: Let Vo, be a set of finite non-
terminal symbols. For each non-terminal sym-
bol A € Vion., we define T' terminal symbols
a0, ,aar. Next, we determine a set of finite-
length strings consisting only of non-terminal sym-
bols Lyon. € Vi, - Then, each string contained in
Lyon. is rewritten by replacing every non-terminal
symbol A in it with one of a4, -+ ,aa,7. If a
non-terminal symbol appears multiple times in a
string, it may be replaced with different terminal
symbols. The resulting set of strings consisting
only of terminal symbols is defined as the language
L. The language L is determined by the set of
non-terminal symbols V;o, , the number T of ter-
minal symbols corresponding to each non-terminal
symbol, and the set Lo, of non-terminal sym-
bol strings. Note that L., and L belong to the
same class in the Chomsky hierarchy: If there is
a grammar that generates Lo, , We can construct
a grammar that generates language L by applying

“We will make our code publicly available on the accep-
tance of this paper.

3Adj, NP and VP indicate adjective, noun phrase and verb
phrase, respectively.



the rewriting rules A — a40|---|aa,r to all the
non-terminal symbols A. Conversely, if there is a
grammar that generates language L, we can con-
struct a grammar that generates Ly, by applying
the rewriting rules aq 0 — A, -+ ,aa1r — A.

(Adj)" NP The pseudo-language Ly,. Which be-
longs to this type is defined as follows:

Vion. = {Adj, NP} (D
Lyon. = {Adj"NP : n. > 0} 2)

This type of pseudo-language corresponds to a lin-
guistic phenomenon we observe in English: we
can repeat an infinite number of adjectives before a
noun. In (i), for example, we can infinitely repeat
old before man and the sentence is still grammati-
cal (Chomsky, 1957).

(i) The (old)” man comes.

This corresponds to V... with the following
rewriting rules:

Adj — old 3)
NP — man “4)

This pseudo-language is a regular language that
can be easily recognized by a finite state automaton
with two states: one for a sequence of Adj’s and
the other for the single occurrence of NP after the
sequence of Adj’s.

NP"” VP" The pseudo-language Lo, Which be-
longs to this type is defined as follows:
Vaon. = {NP, VP} (5)
Lyon. = {NP"VP" : n. > 0} (6)

This type of pseudo-language corresponds to a lin-
guistic phenomenon we observe in Japanese. In
(ii), for example, there are three NP (noun phrases)
followed by three VP (verb phrases). There is no
particular requirement for grammatical dependency
between each NP and VP.

(i1)) Taroo-ga Hanako-ga Ziroo-ga
Taroo-Nom Hanako-Nom Ziroo-Nom
hashitta to itta to omotta.
ran that said that thought.

‘Taroo thought that Hanako said that Ziroo

’

ran.

This corresponds to V.. with the following
rewriting rules:

NP — Taroo|Hanako|Zirool - - - 7
VP — hasittalittajomottal - - - (8)

This pseudo-language cannot be generated by a
finite state automaton, since it requires memory to
keep track of the number of NP’s generated so far,
thus it is not a regular language. However, it is a
context-free language (Chomsky, 1957), which is
one level higher in the Chomsky hierarchy.

Nested Dependency The pseudo-language Lyon.
which belongs to this type is defined as follows:

Vnon. - {NP07 7NPN—].7VP07' o 7VPN—].}
)
Lnon. = {NPZ'O . -NPZ‘7L71VP,L‘”71 e VP,’O .

n>0;0< dg,+ip1 <N —1} (10)

This type of pseudo-language corresponds to a lin-
guistic phenomenon we observe in English. In (iii),
for example, the plural noun phrase the dogs must
agree in number with the plural verb bark, and the
singular noun phrase the cat with the singular verb
chases.

(iii)) The dogs that the cat chases bark.

This corresponds to V,,,,. with the following
non-terminal symbols and rewriting rules:

Vnon. = {NPsingulara NPplural e

VPgingulars VPplurat, - -} (11D
NPgingular — the cat|the dog| - - - (12)
NP plural — the cats|the dogs| - - - (13)
VPgingular — chases|barks| - - - (14)
VP plural — chase|bark| - - - (15)

This pseudo-language is also known as a context-
free language (Chomsky, 1957), which is one level
higher in the Chomsky hierarchy than a regular
language.

Cross Serial Dependency The pseudo-language
Lyon. which belongs to this type is defined as fol-
lows:

Vnon. = {NP0> 7NPN—17VP07"' 7VPN—1}
(16)

Luon. = {NP;, ---NP; _ VP;, - VP
n>0;0< g, ,ip1 <N —1} (17)

7;'n.—l °

This type of pseudo-language corresponds to a
linguistic phenomenon we observe in Swiss Ger-
man. In (iv), for example, the dative verb hdlfe
has the dative noun phrase em Hans as its argu-
ment, and the accusative verb aastriiche has the



accusative noun phrase es huus as its argument.
Here, there is a syntactic dependency between the
verb and its argument: they should have the same
case-marking (Shieber, 1985).

(iv) .. merem Hans es huus hilfed
... we Hans-DAT the house-ACC helped
aastriiche.
paint.

‘... we helped Hans paint the hause.’

This corresponds to V,,,,. with the non-terminal
symbols and the rewriting rules:

Vnon. = {NPdatiV67 NPaccusative e

VP gative, VPaccusatives -} (18)

NPgative — em Hans|em huus|---  (19)
NPaccusative — de Hansles huus| - - - (20)
VP gative — hilfe| - - 1)
VP.ccusative — aastriiche| - - - (22)

This pseudo-language is known as a context-
dependent language, also called a copy lan-
guage (Aho and Ullman, 1972), which is one level
higher in the Chomsky hierarchy than a context-
free language.

2.2 Data Generation

In this paper, we perform a CoLA-style Targeted
Syntactic Evaluation (Warstadt et al., 2019); we
evaluate a language model on a binary classifi-
cation task to predict whether a given string be-
longs to each of the pseudo-languages defined
in the previous subsection. We prepare data for
each form language defined in the previous subsec-
tion with six different numbers of terminal sym-
bols (= T in section 2.1): 2, 5, 10, 100, 1000,
and 5000. This results in a total of 24 pseudo-
languages. Note importantly that terminal sym-
bols for a corresponding non-terminal are sam-
pled from Zipf distribution, which it is claimed
the distribution of the words (Zipf, 1942) or the
phrases (Ryland Williams et al., 2015) in natu-
ral languages follow. For simplicity, we only
test the Nested Dependency and Cross Serial De-
pendency types with five non-terminal symbols
(Vnon. = {NP07 e >NP47 VP(), te ,VP4}).

2.2.1 Data size and data split

For each pseudo-language, we create 47,500 ran-
dom samples of strings of length [ ~ 1/(4, 30). We
use 40,000 samples as train data, and 5,000 and
2,500 samples for validation and (in-dist) test data,

respectively. We also create “out-of-dist” test data
by sampling 2,500 strings of length I ~ ¢/(31,100)
from each grammar, to evaluate whether the lan-
guage model can generalize to longer strings than
those seen during training. Finally, we generate
negative examples for each of the 50,000 posi-
tive examples in the manner described in Subsec-
tion 2.2.3, and add them to the dataset, resulting
in a total of 100,000 examples for each pseudo-
language.

2.2.2 Generating positive examples

We generate positive examples for each pseudo-
language by first sampling the necessary number
of non-terminal symbol sequences belonging to
the pseudo-language and then replacing each non-
terminal symbol with a terminal symbol based on
the rewriting rules (Algorithm 1). Here, each ter-
minal symbol is selected from the set of terminal
symbols that can be rewritten from the target non-
terminal symbol according to the Zipf distribution.

Algorithm 1
1: function GENERATE SAMPLE(Lon.)
2 Shon. < a sequence of non-terminals
sampled from Ly,
3 string < ()
4: for i < 0,length(Spon.) — 1 do
S Snon. <= Snon. [Z]
6: V < {v| Spon. = v} > Rewriting
rules
7: v <— v sampled from V according to
Zipf Distribution
string.append(v)
: end for
10: return string

11: end function

2.2.3 Generating negative examples

We generate the negative examples for each data
pseudo-language in the following way (cf. Ta-
ble 1):

(Adj)" NP We generate a negative example by
replacing k ~ U(1,1—1) occurrences of Adj’s with
NP’s in a positive example of length /.

NP"VP" We generate a negative example by
changing the number of VP’s (=n) in a positive
example with m # n such that the length of the
generated negative example will be in the specified
length range for each data split.



Data type Positive example Negative examples
; a1 A as A g Adj Adj Adj NP Adj NP
n
Adj"™ NP Adj Adj Adj Adj Adj NP Adj NP NP NP Adj NP
NP NP NP VP VP VP VP VP
n mn
NP" VP NP NP NP VP VP VP NP NP NP VP VP
Nested Dependency NPy NP3 NPy VP, VPs VP, NP1 NP3 NPy VPy VP3 VPy

NP; NP3 NP, VPy VP35 VP3

Cross Serial Dependency

NP3 NPy NP1 VP3 VP VP

NP3 NPy NP1 VP VP, VP
NP3 NPy NP1 VP VP53 VP,

Table 1: Examples for each pseudo-language. Here, we use non-terminal symbols and ignore terminal symbols.

Nested/Cross Serial Dependency We generate
a negative example of length [ by replacing k& ~
U(1,1/2) occurrences of VP, (0 < n < 4)ina
positive example of length [ with VP,,, (0 < m <
4,m # n). For these pseudo-languages, we cre-
ate negative examples by breaking dependencies
between non-terminals because we are interested
in whether the language models can successfully
capture the dependencies between non-terminals.

2.3 Models

In this paper, we evaluate the performance of the
following four neural language models using the
proposed pseudo-languages.

LSTM A single-layer LSTM (Hochreiter and
Schmidhuber, 1997) language model with 256-
dimensional word embedding and 256-dimensional
hidden layer, implemented in PyTorch.* The total
number of parameters is around 1.05M. We use
the hidden state at the last time step for the last
layer as the input into the classification layer, which
then uses this embedding to produce the grammati-
cal/ungrammatical prediction.

BiLSTM A single-layer BiLSTM (Schuster
and Paliwal, 1997) language model with 128-
dimensional word embedding and 128-dimensional
hidden layer, implemented in PyTorch. The total
number of parameters is around 791k. We concate-
nate the hidden states from both directions at the
last time step for the last layer, and use the con-
catenated vector as the input into the classification
layer, which then uses this embedding to produce
the grammatical/ungrammatical prediction.

Transformer Encoder A 3-layer, 4-head Trans-
former (Vaswani et al., 2017) encoder with 128-

*nttps://pytorch.org/

dimensional word embedding, 1024-dimensional
feedforward layer, and sinusoidal word encod-
ing, implemented in PyTorch. The total num-
ber of parameters is around 1.32M. We use the
average of the embeddings for each input token
as the input into the classification layer, which
then uses this embedding to produce the grammati-
cal/ungrammatical prediction.

Transformer Decoder A Transformer (Vaswani
et al., 2017) decoder with the same configuration
as the Transformer Encoder explained above. The
only difference is the causal masking applied to the
input. We use the embedding for the last input to-
ken as the input into the classification layer, which
then uses this embedding to produce the grammati-
cal/ungrammatical prediction.

Training and Evaluation Configurations We
use SGD for LSTM/BILSTM models and
AdamW (Loshchilov and Hutter, 2019) for Trans-
former Encoder/Decoder models. Each language
model is trained for 15 epochs with a batch size of
512, using 10 different random seeds and 3 differ-
ent learning rates (0.1/0.2/0.3 for LSTM/BiLSTM
models, 0.0001/0.0003/0.0005 for Transformer
Encoder/Decoder models).> The score for each
architecture is defined as the maximum accu-
racy among the 30 models (10 random seeds x
3 learning rates) on test data. This is because we
are interested in whether these language models
can recognize our pseudo-languages at all, and this
evaluation metric follows that of Delétang et al.
(2022).

SAll the language models are trained on NVIDIA V100
GPU with 16GB memory.
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Transformer

Transformer

BiLSTM LSTM
. Encoder Decoder
Data Type  #Terminals
in-dist OO indist OMOT inedise OWEOF gngige OULO
dist dist dist dist
2 100.0 9948 1000 1000 100.0 100.0 100.0 100.0
5 100.0 9936 1000 1000 100.0 100.0 100.0 100.0
(Adj)" NP 10 100.0 99.66 1000 1000 100.0 100.0 100.0 100.0
100 100.0 99.66 9998 100.0 100.0 100.0 99.94 99.86
1000 99.62 99.06 9896 9935 99.21 9953 9946 99.44
5000 97.29 97.76 96.73 9834 9736 99.01 97.76 98.76
2 100.0 9648 100.0 1000 100.0 100.0 99.86 52.04
5 100.0 9590 1000 1000 100.0 100.0 99.84 51.50
NP"VP" 10 100.0 95.00 100.0 100.0 100.0 100.0 99.72 51.44
100 9998 97.36 9890 74.02 100.0 9516 98.40 73.20
1000 99.71 7506 77.68 5198 83.15 5349 9212 61.92
5000 91.33 50.78 69.62 50.76 7624 5144 8345 56.65
2 99.28 69.14 99.20 9588 98.72 94.68 98.82 66.84
5 9932 69.66 9074 80.44 88.82 7890 9820 6542
Nested 10 99.14 7574 5474 5550 5456 5130 9748 68.48
Dependency 100 9320 71.89 5035 50.54 50.68 5043 7456 67.63
1000 5192 5022 5090 50.59 5128 50.55 50.80 51.08
5000 50.80 5049 5047 50.67 5066 51.17 50.30 51.08
2 99.38 73.18 9944 9494 9928 9590 9848 77.34
5 99.42 88.38 97.00 90.04 97.16 92.26 97.64 77.54
Cross Serial 10 99.14 8848 83.50 64.68 69.48 5848 94.60 79.48
Dependency 100 91.74 76.65 5098 5043 51.11 50.68 5244 50.96
1000 52.19 5076 50.88 51.25 51.09 5051 51.18 50.95
5000 51.18 5078 5137 50.69 50.82 5156 5085 51.19

Table 2: The accuracy on the in-dist/out-of-dist test data for each pseudo-language and architecture. The accuracy is
the maximum achieved by models trained with different 10 random seeds and 3 learning rates. The values greater
than 90% are shown in bold. In-dist test data consists of strings with the same length distribution as in train/dev
data, while out-of-dist test data consists of longer strings than in train/dev data.

3 Results and Discussion

The results are presented in Table 2, which shows
the scores for each architecture on in-dist/out-of-
dist test data. The score for each architecture was
obtained by taking the maximum accuracy of 30
models trained with different 10 random seeds and
3 different learning rates. We considered architec-
tures that achieved an accuracy greater than 90%
to have successfully captured the rules of each data.
In the following sections, we organize the results
and provide our analysis for each pseudo-language.

(Adj)" NP For this type of pseudo-language, all
architectures have successfully captured the rules
for both in-dist and out-of-dist test data, regardless

of the number of terminal symbols. Given that
our pseudo-language doesn’t have any words as
seen in natural languages, this result suggests that
all the architectures are capable of capturing this
syntactic phenomenon without relying on lexical
information. Furthermore, the high accuracy ob-
served in this pseudo-language regardless of the
number of terminal symbols suggests that each ar-
chitecture can capture this syntactic phenomenon
across languages regardless of the vocabulary size
of the language.

NP" VP" The Transformer Encoder architecture
successfully captured the rules for in-dist test data
irrespective of the number of terminal symbols,
while other architectures failed as the number of



terminal symbols increased. In the case of out-
of-dist test data, some architectures were able to
generalize the rules correctly when the vocabulary
size is comparatively small, but all architectures
failed when the vocabulary size exceeded 1,000.
These findings suggest that when lexical informa-
tion is not available as it is in natural languages,
these architectures cannot generalize this syntactic
phenomenon when the vocabulary size is large.

Nested Dependency For in-dist test data, Trans-
former Encoder and LSTM were able to success-
fully capture the rules when the number of terminal
symbols was small, while the other architectures
failed in almost all cases. As for out-of-dist test
data, some of the architectures were able to gener-
alize the rules correctly in some cases where the
number of terminal symbols is small, but almost
all of them failed in almost all cases. Notably, the
Transformer-based model was not able to capture
the rules in most cases regardless of the number
of terminal symbols. These results are not con-
sistent with the previous findings that LSTM or
Transformer-based language models can capture
English center embedding to some extent (Wilcox
et al., 2019; Hu et al., 2020), suggesting that these
language models may not necessarily capture the
rules of center embedding, but rather solve the task
using lexical information such as co-occurrence or
frequency.

Cross Serial Dependency First of all, this phe-
nomenon has not been observed in languages that
have been the subject of Targeted Syntactic Evalu-
ation thus far. Our work is the first to evaluate this
phenomenon using a pseudo-language. In terms
of the in-dist test data, Transformer Encoder and
LSTM were able to successfully capture the rules
when the number of terminal symbols was small,
while other architectures failed in almost all cases.
As for the out-of-dist test data, some of the archi-
tectures were able to generalize the rules correctly
with a small number of terminal symbols, but no
architectures successfully captured the rules when
the number of terminal symbols is greater than 5.
Notably, the Transformer-based model was unable
to capture the rules in all cases regardless of the
number of terminal symbols.

Summary The language models only exhibited
an ability to capture the structural patterns of the
(Adj)"™ NP type pseudo-language even with an in-
creased vocabulary size. While previous studies

claimed that language models are able to capture
certain syntactic structures, such as nested depen-
dency, to some extent (Hu et al., 2020; Wilcox et al.,
2019), our results suggest that the language models
may have actually relied on superficial cues, such
as lexical semantics or co-occurrence frequency of
words, to solve the tasks. Furthermore, although
this study only focused on a limited number of
language phenomena, the results also suggest that
the models may not be able to solve other gram-
matical phenomena when controlling for lexical
information. Therefore, the conventional approach
of Targeted Syntactic Evaluations using texts from
natural corpora may not have achieved its origi-
nal goal of measuring the pure syntactic ability of
language models. To achieve this, new methods
such as the one introduced in this study may be
necessary.

4 Related Work

The evaluation of language models has primarily
been based on metrics such as perplexity, which
provides an objective measure of their performance
but lacks insight into their performance on spe-
cific downstream tasks. While large-scale bench-
marks such as GLUE (Wang et al., 2018) and Su-
perGLUE (Wang et al., 2019a) provide valuable
information in this regard, many recent studies
have attempted to demonstrate that language mod-
els have learned the syntax of natural languages.
One such study was conducted by Linzen et al.
(2016), who used minimal pairs to investigate the
sensitivity of language models to the subject-verb
agreement in English. The results showed that
LSTM language models are fairly sensitive to En-
glish subject-verb agreement. However, this study
and other related studies (e.g., Marvin and Linzen,
2018; Futrell et al., 2019; Gulordava et al., 2018)
only focused on a limited range of linguistic phe-
nomena. In order to tackle this problem, more
recent studies have introduced large-scale datasets
for comprehensive syntactic evaluations (Warstadt
etal., 2019, 2020). These datasets have made it pos-
sible to target a wide range of linguistic phenom-
ena, not just subject-verb agreement, and to more
thoroughly analyze the linguistic performance of
language models. Additionally, these datasets have
been constructed for several languages besides
English (Trotta et al., 2021; Xiang et al., 2021;
Mikhailov et al., 2021), allowing us to verify if
the results obtained in English also hold for other



languages, and to make comparisons between lan-
guages. However, it is impossible to compare the
performance of language models across languages
without identifying shared linguistic phenomena
across multiple languages. In addition, even if such
shared phenomena are identified and a comparison
is conducted, it remains challenging to determine
the linguistic characteristics responsible for varia-
tions in performance and to isolate the impact of
performance differences in the language models
used. Furthermore, it is difficult to evaluate rare
linguistic phenomena that only exist in a specific
language. Our proposed methodology, utilizing
pseudo languages, provides a potential solution to
these challenges.

Another line of research has focused on the abil-
ity of neural language models to recognize formal
languages (Bodén and Wiles, 2000; Boden and
Wiles, 2002; Suzgun et al., 2019; Bhattamishra
et al., 2020; Ebrahimi et al., 2020; Hahn, 2020;
Delétang et al., 2022). These studies have in-
vestigated, both mathematically and experimen-
tally, how far neural language models can rec-
ognize formal languages in the Chomsky hierar-
chy. For example, RNNs and LSTMs can rec-
ognize some context-free languages (Rodriguez
and Wiles, 1997; Skachkova et al., 2018; Suzgun
et al., 2019) and some simple context-dependent
languages (Bodén and Wiles, 2000; Boden and
Wiles, 2002), while Transformers are not well po-
sitioned in the Chomsky hierarchy (Bhattamishra
et al., 2020; Hahn, 2020). However, as correctly
pointed out by Delétang et al. (2022), just because
a language model recognizes one language on a
certain level of the Chomsky hierarchy, it cannot
be guaranteed that there are no other languages
on the same level that the language model cannot
recognize. From this perspective, this study can
also be considered as an attempt to examine what
differences, if any, arise from assuming finer ter-
minal symbols corresponding to the vocabulary of
natural languages compared to the results obtained
in previous studies.

5 Conclusion

In this paper, we proposed a novel method called
Targeted Syntactic Evaluations with pseudo-
languages, which can (i) test whether language
models capture linguistic phenomena without re-
lying on other superficial cues (e.g., lexical infor-
mation), (ii) control the factors out of interest (e.g.,

vocabulary size), and (iii) easily test linguistic phe-
nomena that only exist in few languages without
collecting corpora of those languages. Specifically,
we created pseudo-languages with abstracted vo-
cabulary of different sizes to control the effect of
lexical information and vocabulary size, and eval-
uated language models on a binary classification
task of strings based on their grammaticality. We
tested four types of pseudo-languages with dif-
ferent levels of syntactic complexity: (Adj)" NP,
NP"VP", Nested Dependency, and Cross Serial
Dependency. Our result demonstrated that the
LSTM and Transformer-based models can success-
fully capture the (Adj)" NP type phenomenon ir-
respective of vocabulary size, while they failed to
capture the other phenomena as the vocabulary size
increases. These results are not consistent with the
previous findings that LSTM or Transformer-based
language models can capture syntactic dependen-
cies in natural languages to some extent (Hu et al.,
2020; Wilcox et al., 2019; Warstadt et al., 2020),
suggesting that these language models may not nec-
essarily capture the rules behind these phenomena
but rather use some other superficial cues such as
co-occurrence or frequency. We will leave it for
future research to expand the variety of pseudo-
languages and language models.

Limitations

There are several limitations with this paper. First,
the models tested were limited in their variety. To
evaluate whether each architecture was able to cap-
ture the rules of each pseudo-language, we trained
30 models for each architecture using 10 differ-
ent random seeds and 3 different learning rates.
To fairly compare the performance of the architec-
tures, we kept the number of parameters roughly
the same for each architecture. However, there are
other hyperparameters such as embedding dimen-
sions and the number of layers that vary between
architectures. Therefore, it is possible that some
architectures may perform better with different hy-
perparameters. Second, the method for creating
negative examples for each pseudo-language is lim-
ited. While we used a specific method to generate
negative examples for each pseudo-language, there
are countless other ways to generate negative exam-
ples. It is unclear whether the results of this study
hold true with other types of negative examples.
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A Additional Results

In section 3, we reported the results when the dis-
tribution of terminal symbols follows Zipf distribu-
tion. Here, we report the results when the distribu-
tion is uniform. As shown in Table 3, similar results
were obtained when using the uniform distribution
compared to when using the Zipf distribution. This
suggests that the language model is able to cap-
ture certain syntactic phenomena regardless of the
distribution of the vocabulary.
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Transformer Transformer .
Pseudo-language #Terminals Encoder Decoder BILSTM LSTM
C out-of- . . out-of- . . out-of- . . out-of-
in-dist . in-dist . in-dist . in-dist .
dist dist dist dist

2 100.0 9948 1000 1000 100.0 100.0 100.0 100.0

5 100.0 9936 1000 1000 100.0 100.0 100.0 100.0

(Adj)" NP 10 100.0 99.66 1000 1000 100.0 100.0 100.0 100.0
100 100.0 99.66 9998 100.0 100.0 100.0 99.94 99.86

1000 99.62 99.06 9896 99.35 99.21 99.53 9946 99.44

5000 97.29 97.76 96.73 98.34 9736 99.01 97.76 98.76

2 100.0 9648 1000 100.0 100.0 100.0 99.86 52.04

5 100.0 9590 1000 1000 100.0 100.0 99.84 51.50

NP VP" 10 100.0 95.00 1000 100.0 100.0 100.0 99.72 51.44
100 9998 9736 9890 74.02 100.0 9516 98.40 73.20

1000 99.71 7506 77.68 5198 83.15 5349 9212 6192

5000 91.33 50.78 69.62 50.76 76.24 5144 8345 56.65

2 99.28 69.14 9920 9588 98.72 94.68 98.82 066.84

5 99.32 69.66 90.74 8044 88.82 7890 98.20 6542

Nested 10 99.14 7574 54774 5550 5456 5130 9748 68.48
Dependency 100 93.20 71.89 5035 5054 50.68 5043 7456 67.63
1000 5192 5022 5090 50.59 5128 50.55 50.80 51.08

5000 50.80 5049 5047 50.67 50.66 51.17 50.30 51.08

2 99.38 73.18 9944 9494 99.28 9590 9848 77.34

5 9942 8838 97.00 90.04 97.16 9226 97.64 77.54

Cross Serial 10 99.14 8848 83.50 64.68 69.48 5848 94.60 79.48
Dependency 100 91.74 76.65 5098 5043 51.11 50.68 5244 50.96
1000 52.19 50.76 50.88 51.25 51.09 5051 51.18 50.95

5000 51.18 50.78 5137 50.69 50.82 5156 50.85 51.19

Table 3: The accuracy on the test data for each data type and architecture. The accuracy is the maximum achieved
by models trained with different 10 random seeds and 3 learning rates. The values greater than 90% are shown in
bold. In-dist test data consists of strings with the same length distribution as in train/dev data, while out-of-dist test
data consists of longer strings than in train/dev data. The distribution of the terminal symbols is uniform.
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