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Abstract
In this paper, we propose a novel method called001
Targeted Syntactic Evaluations with pseudo-002
languages, which can (i) test whether language003
models capture linguistic phenomena without004
relying on other superficial cues (e.g., lexical005
information), (ii) control the factors out of in-006
terest (e.g., vocabulary size), and (iii) easily007
test linguistic phenomena that only exist in few008
languages without collecting corpora of those009
languages. Specifically, we create four types010
of pseudo-languages with the abstracted vocab-011
ulary of different sizes to control the effect of012
lexical information and vocabulary size, and013
with different levels of syntactic complexity:014
(Adj)n NP, NPn VPn, Nested Dependency,015
and Cross Serial Dependency. We evaluate016
four different language models (LSTM, BiL-017
STM, Transformer Encoder, and Transformer018
Decoder) on these pseudo-languages, using a019
binary classification of strings based on their020
grammaticality. Our result demonstrated that021
the language models have successfully cap-022
tured the (Adj)n NP type phenomenon irre-023
spective of vocabulary size, while they failed024
to capture the other phenomena as the vocabu-025
lary size increases. These results are not con-026
sistent with the previous findings that LSTM027
or Transformer-based language models can028
capture syntactic dependencies in natural lan-029
guages to some extent (Hu et al., 2020; Wilcox030
et al., 2019; Warstadt et al., 2020), suggesting031
that these language models may not necessarily032
capture the rules behind these phenomena but033
rather use some other superficial cues such as034
co-occurrence or frequency.035

1 Introduction036

In the field of natural language processing (NLP),037

language models based on an artificial neural net-038

work have achieved remarkable success in var-039

ious downstream tasks (Wang et al., 2019c,b).040

To find out the underpinnings behind their suc-041

cess, the literature on Targeted Syntactic Evalu-042

ations (Linzen et al., 2016; Marvin and Linzen,043

2018) has investigated what kind of linguistic phe- 044

nomena these artificial neural network-based lan- 045

guage models can and cannot capture. The Tar- 046

geted Syntactic Evaluations first focused on subject- 047

verb number agreement in English and other Eu- 048

ropean languages (Linzen et al., 2016; An et al., 049

2019; Mueller et al., 2020), and recently a lot of 050

following-up work was done to cover a wide range 051

of linguistic phenomena across languages (Wilcox 052

et al., 2018; Gulordava et al., 2018; Ravfogel et al., 053

2018; Marvin and Linzen, 2018; Kann et al., 2019; 054

Chowdhury and Zamparelli, 2018; Futrell et al., 055

2019; Warstadt et al., 2019; Da Costa and Chaves, 056

2020; Chaves, 2020; Mueller et al., 2020; Trotta 057

et al., 2021; Xiang et al., 2021; Mikhailov et al., 058

2021). 059

Although this line of work has provided a use- 060

ful framework to test the syntactic ability of lan- 061

guage models, there are several methodological 062

limitations, mainly because it utilized the sentences 063

sampled from natural corpora or generated from 064

templates (cf., Newman et al., 2021). First, the 065

use of sentences in natural corpora leaves uncer- 066

tainty as to whether language models solve the 067

problems by truly capturing the rules behind the 068

linguistic phenomena or fraudulently finding other 069

superficial cues (e.g., lexical information such as 070

co-occurrence or word frequency). Second, it also 071

makes it difficult to make comparison across lan- 072

guages; we cannot eliminate factors out of interest 073

(e.g., vocabulary size) when comparing the perfor- 074

mances of language models on linguistic phenom- 075

ena which exist in multiple languages. Third, we 076

cannot easily test linguistic phenomena that only 077

exist in few languages without collecting corpora of 078

those languages and training the language models 079

on them. 080

To overcome these limitations, we propose a 081

novel method called Targeted Syntactic Evalua- 082

tions with pseudo-languages, which can (i) test 083

whether language models capture linguistic phe- 084
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nomena without relying on other superficial cues085

(e.g., lexical information), (ii) control the factors086

out of interest (e.g., vocabulary size), and (iii) eas-087

ily test linguistic phenomena that only exist in few088

languages without collecting corpora of those lan-089

guages. Specifically, we create pseudo-languages090

with the abstracted vocabulary of different sizes091

to control the effect of lexical information and vo-092

cabulary size, and evaluate language models on a093

binary classification task of strings based on their094

grammaticality. In addition, to make our pseudo-095

languages look more like natural languages, the dis-096

tribution of the words in our pseudo-languages fol-097

lows Zipf distribution, which it is claimed the distri-098

bution of the words (Zipf, 1942) or the phrases (Ry-099

land Williams et al., 2015) in natural languages100

follow.101

Another methodological novelty of this paper102

lies in the classification of linguistic phenomena103

based on their syntactic complexity. In fact, linguis-104

tic phenomena can be classified into several classes105

based on their syntactic complexity (i.e., the Chom-106

sky hierarchy; Chomsky, 1956), but the previous107

work did not attempt to classify each linguistic phe-108

nomenon and exhaustively investigate all of these109

classes.1 In this paper, we test four types of pseudo-110

languages with different levels of complexity : (1)111

(Adj)n NP type, which imitates the repetition of ad-112

jectives before nouns, (2) NPn VPn type, which im-113

itates the embedded sentences without grammatical114

agreement between noun phrases and verb phrases,115

as seen in Japanese, (3) Nested Dependency type,116

which imitates the embedded sentences with the117

grammatical agreement between noun phrases and118

verb phrases as seen in English, and (4) Cross Se-119

rial Dependency type, which imitates the sentences120

with multiple dependencies crossing each other, as121

seen in Swiss German.122

For each phenomenon, we create six variants123

for each pseudo-language with varying vocabu-124

lary sizes and test four different language models125

(LSTM, Hochreiter and Schmidhuber, 1997; BiL-126

STM, Schuster and Paliwal, 1997; Transformer En-127

1This classification can be also applied to formal lan-
guages, and the literature on formal languages and artificial
neural network-based language models (Delétang et al., 2022)
conduct unified experiments on all the classes of complexity.
Note that the pseudo-languages in this paper are different from
the formal languages utilized in this literature, in that ours re-
produce the characteristics of natural languages such as the
various vocabulary which follows the Zipf distribution, but
the formal languages in (Delétang et al., 2022) did not assume
finer terminal symbols.

coder; Transformer Decoder, Vaswani et al., 2017) 128

against these pseudo-languages in order to investi- 129

gate their ability to correctly classify strings based 130

on their grammaticality. 131

Our result demonstrated that the language mod- 132

els have successfully captured the (Adj)n NP type 133

phenomenon irrespective of vocabulary size, while 134

they failed to capture the other phenomena as the 135

vocabulary size increases. These results are not 136

consistent with the previous findings that LSTM 137

or Transformer-based language models can cap- 138

ture syntactic dependencies in natural languages to 139

some extent (Wilcox et al., 2019; Warstadt et al., 140

2020; Hu et al., 2020), suggesting that these lan- 141

guage models may not necessarily capture the 142

rules behind these phenomena but rather use some 143

other superficial cues such as co-occurrence or fre- 144

quency.2 145

2 Experiments 146

2.1 Pseudo-languages 147

In this subsection, we introduce the four types 148

of pseudo-languages investigated in this paper: 149

(Adj)n NP, NPnVPn, Nested Dependency, and 150

Cross Serial Dependency.3 151

Formal definition of pseudo-languages We de- 152

fine the pseudo-languages investigated in this pa- 153

per as follows: Let Vnon. be a set of finite non- 154

terminal symbols. For each non-terminal sym- 155

bol A ∈ Vnon., we define T terminal symbols 156

aA,0, · · · , aA,T . Next, we determine a set of finite- 157

length strings consisting only of non-terminal sym- 158

bols Lnon. ⊆ V ∗
non.. Then, each string contained in 159

Lnon. is rewritten by replacing every non-terminal 160

symbol A in it with one of aA,0, · · · , aA,T . If a 161

non-terminal symbol appears multiple times in a 162

string, it may be replaced with different terminal 163

symbols. The resulting set of strings consisting 164

only of terminal symbols is defined as the language 165

L. The language L is determined by the set of 166

non-terminal symbols Vnon., the number T of ter- 167

minal symbols corresponding to each non-terminal 168

symbol, and the set Lnon. of non-terminal sym- 169

bol strings. Note that Lnon. and L belong to the 170

same class in the Chomsky hierarchy: If there is 171

a grammar that generates Lnon., we can construct 172

a grammar that generates language L by applying 173

2We will make our code publicly available on the accep-
tance of this paper.

3Adj, NP and VP indicate adjective, noun phrase and verb
phrase, respectively.
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the rewriting rules A → aA,0| · · · |aA,T to all the174

non-terminal symbols A. Conversely, if there is a175

grammar that generates language L, we can con-176

struct a grammar that generates Lnon. by applying177

the rewriting rules aA,0 → A, · · · , aA,T → A.178

(Adj)n NP The pseudo-language Lnon. which be-179

longs to this type is defined as follows:180

Vnon. = {Adj,NP} (1)181

Lnon. = {AdjnNP : n ≥ 0} (2)182

This type of pseudo-language corresponds to a lin-183

guistic phenomenon we observe in English: we184

can repeat an infinite number of adjectives before a185

noun. In (i), for example, we can infinitely repeat186

old before man and the sentence is still grammati-187

cal (Chomsky, 1957).188

(i) The (old)n man comes.189

This corresponds to Vnon. with the following190

rewriting rules:191

Adj→ old (3)192

NP→ man (4)193

This pseudo-language is a regular language that194

can be easily recognized by a finite state automaton195

with two states: one for a sequence of Adj’s and196

the other for the single occurrence of NP after the197

sequence of Adj’s.198

NPn VPn The pseudo-language Lnon. which be-199

longs to this type is defined as follows:200

Vnon. = {NP,VP} (5)201

Lnon. = {NPnVPn : n ≥ 0} (6)202

This type of pseudo-language corresponds to a lin-203

guistic phenomenon we observe in Japanese. In204

(ii), for example, there are three NP (noun phrases)205

followed by three VP (verb phrases). There is no206

particular requirement for grammatical dependency207

between each NP and VP.208

(ii) Taroo-ga
Taroo-Nom

Hanako-ga
Hanako-Nom

Ziroo-ga
Ziroo-Nom

209

hashitta
ran

to
that

itta
said

to
that

omotta.
thought.

210

‘Taroo thought that Hanako said that Ziroo211

ran.’212

This corresponds to Vnon. with the following213

rewriting rules:214

NP→ Taroo|Hanako|Ziroo| · · · (7)215

VP→ hasitta|itta|omotta| · · · (8)216

This pseudo-language cannot be generated by a 217

finite state automaton, since it requires memory to 218

keep track of the number of NP’s generated so far, 219

thus it is not a regular language. However, it is a 220

context-free language (Chomsky, 1957), which is 221

one level higher in the Chomsky hierarchy. 222

Nested Dependency The pseudo-language Lnon. 223

which belongs to this type is defined as follows: 224

Vnon. = {NP0, · · · ,NPN−1,VP0, · · · ,VPN−1}
(9)

225

Lnon. = {NPi0 · · ·NPin−1VPin−1 · · ·VPi0 : 226

n ≥ 0; 0 ≤ i0, · · · , in−1 ≤ N − 1} (10) 227

This type of pseudo-language corresponds to a lin- 228

guistic phenomenon we observe in English. In (iii), 229

for example, the plural noun phrase the dogs must 230

agree in number with the plural verb bark, and the 231

singular noun phrase the cat with the singular verb 232

chases. 233

(iii) The dogs that the cat chases bark. 234

This corresponds to Vnon. with the following 235

non-terminal symbols and rewriting rules: 236

Vnon. = {NPsingular,NPplural · · · 237

VPsingular,VPplural, · · · } (11) 238

NPsingular → the cat|the dog| · · · (12) 239

NPplural → the cats|the dogs| · · · (13) 240

VPsingular → chases|barks| · · · (14) 241

VPplural → chase|bark| · · · (15) 242

This pseudo-language is also known as a context- 243

free language (Chomsky, 1957), which is one level 244

higher in the Chomsky hierarchy than a regular 245

language. 246

Cross Serial Dependency The pseudo-language 247

Lnon. which belongs to this type is defined as fol- 248

lows: 249

Vnon. = {NP0, · · · ,NPN−1,VP0, · · · ,VPN−1}
(16)

250

Lnon. = {NPi0 · · ·NPin−1VPi0 · · ·VPin−1 : 251

n ≥ 0; 0 ≤ i0, · · · , in−1 ≤ N − 1} (17) 252

This type of pseudo-language corresponds to a 253

linguistic phenomenon we observe in Swiss Ger- 254

man. In (iv), for example, the dative verb hälfe 255

has the dative noun phrase em Hans as its argu- 256

ment, and the accusative verb aastriiche has the 257
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accusative noun phrase es huus as its argument.258

Here, there is a syntactic dependency between the259

verb and its argument: they should have the same260

case-marking (Shieber, 1985).261

(iv) ...
...

mer
we

em Hans
Hans-DAT

es
the

huus
house-ACC

hälfed
helped

262

aastriiche.
paint.

263

‘... we helped Hans paint the hause.’264

This corresponds to Vnon. with the non-terminal265

symbols and the rewriting rules:266

Vnon. = {NPdative,NPaccusative · · ·267

VPdative,VPaccusative, · · · } (18)268

NPdative → em Hans|em huus| · · · (19)269

NPaccusative → de Hans|es huus| · · · (20)270

VPdative → hälfe| · · · (21)271

VPaccusative → aastriiche| · · · (22)272

This pseudo-language is known as a context-273

dependent language, also called a copy lan-274

guage (Aho and Ullman, 1972), which is one level275

higher in the Chomsky hierarchy than a context-276

free language.277

2.2 Data Generation278

In this paper, we perform a CoLA-style Targeted279

Syntactic Evaluation (Warstadt et al., 2019); we280

evaluate a language model on a binary classifi-281

cation task to predict whether a given string be-282

longs to each of the pseudo-languages defined283

in the previous subsection. We prepare data for284

each form language defined in the previous subsec-285

tion with six different numbers of terminal sym-286

bols (= T in section 2.1): 2, 5, 10, 100, 1000,287

and 5000. This results in a total of 24 pseudo-288

languages. Note importantly that terminal sym-289

bols for a corresponding non-terminal are sam-290

pled from Zipf distribution, which it is claimed291

the distribution of the words (Zipf, 1942) or the292

phrases (Ryland Williams et al., 2015) in natu-293

ral languages follow. For simplicity, we only294

test the Nested Dependency and Cross Serial De-295

pendency types with five non-terminal symbols296

(Vnon. = {NP0, · · · ,NP4,VP0, · · · ,VP4}).297

2.2.1 Data size and data split298

For each pseudo-language, we create 47,500 ran-299

dom samples of strings of length l ∼ U(4, 30). We300

use 40,000 samples as train data, and 5,000 and301

2,500 samples for validation and (in-dist) test data,302

respectively. We also create “out-of-dist” test data 303

by sampling 2,500 strings of length l ∼ U(31, 100) 304

from each grammar, to evaluate whether the lan- 305

guage model can generalize to longer strings than 306

those seen during training. Finally, we generate 307

negative examples for each of the 50,000 posi- 308

tive examples in the manner described in Subsec- 309

tion 2.2.3, and add them to the dataset, resulting 310

in a total of 100,000 examples for each pseudo- 311

language. 312

2.2.2 Generating positive examples 313

We generate positive examples for each pseudo- 314

language by first sampling the necessary number 315

of non-terminal symbol sequences belonging to 316

the pseudo-language and then replacing each non- 317

terminal symbol with a terminal symbol based on 318

the rewriting rules (Algorithm 1). Here, each ter- 319

minal symbol is selected from the set of terminal 320

symbols that can be rewritten from the target non- 321

terminal symbol according to the Zipf distribution. 322

Algorithm 1
1: function GENERATE SAMPLE(Lnon.)
2: Snon. ← a sequence of non-terminals

sampled from Lnon.
3: string ← ∅
4: for i← 0, length(Snon.)− 1 do
5: snon. ← Snon.[i]
6: V ← {v | snon. → v} ▷ Rewriting

rules
7: v ← v sampled from V according to

Zipf Distribution
8: string.append(v)
9: end for

10: return string
11: end function

2.2.3 Generating negative examples 323

We generate the negative examples for each data 324

pseudo-language in the following way (cf. Ta- 325

ble 1): 326

(Adj)n NP We generate a negative example by 327

replacing k ∼ U(1, l−1) occurrences of Adj’s with 328

NP’s in a positive example of length l. 329

NPnVPn We generate a negative example by 330

changing the number of VP’s (=n) in a positive 331

example with m ̸= n such that the length of the 332

generated negative example will be in the specified 333

length range for each data split. 334
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Data type Positive example Negative examples

Adjn NP Adj Adj Adj Adj Adj NP
Adj Adj Adj NP Adj NP
Adj NP NP NP Adj NP

NPn VPn NP NP NP VP VP VP
NP NP NP VP VP VP VP VP

NP NP NP VP VP

Nested Dependency NP1 NP3 NP4 VP4 VP3 VP1
NP1 NP3 NP4 VP2 VP3 VP1

NP1 NP3 NP4 VP2 VP3 VP3

Cross Serial Dependency NP3 NP2 NP1 VP3 VP2 VP1
NP3 NP2 NP1 VP1 VP2 VP1

NP3 NP2 NP1 VP1 VP3 VP1

Table 1: Examples for each pseudo-language. Here, we use non-terminal symbols and ignore terminal symbols.

Nested/Cross Serial Dependency We generate335

a negative example of length l by replacing k ∼336

U(1, l/2) occurrences of VPn (0 ≤ n ≤ 4) in a337

positive example of length l with VPm (0 ≤ m ≤338

4,m ̸= n). For these pseudo-languages, we cre-339

ate negative examples by breaking dependencies340

between non-terminals because we are interested341

in whether the language models can successfully342

capture the dependencies between non-terminals.343

2.3 Models344

In this paper, we evaluate the performance of the345

following four neural language models using the346

proposed pseudo-languages.347

LSTM A single-layer LSTM (Hochreiter and348

Schmidhuber, 1997) language model with 256-349

dimensional word embedding and 256-dimensional350

hidden layer, implemented in PyTorch.4 The total351

number of parameters is around 1.05M. We use352

the hidden state at the last time step for the last353

layer as the input into the classification layer, which354

then uses this embedding to produce the grammati-355

cal/ungrammatical prediction.356

BiLSTM A single-layer BiLSTM (Schuster357

and Paliwal, 1997) language model with 128-358

dimensional word embedding and 128-dimensional359

hidden layer, implemented in PyTorch. The total360

number of parameters is around 791k. We concate-361

nate the hidden states from both directions at the362

last time step for the last layer, and use the con-363

catenated vector as the input into the classification364

layer, which then uses this embedding to produce365

the grammatical/ungrammatical prediction.366

Transformer Encoder A 3-layer, 4-head Trans-367

former (Vaswani et al., 2017) encoder with 128-368

4https://pytorch.org/

dimensional word embedding, 1024-dimensional 369

feedforward layer, and sinusoidal word encod- 370

ing, implemented in PyTorch. The total num- 371

ber of parameters is around 1.32M. We use the 372

average of the embeddings for each input token 373

as the input into the classification layer, which 374

then uses this embedding to produce the grammati- 375

cal/ungrammatical prediction. 376

Transformer Decoder A Transformer (Vaswani 377

et al., 2017) decoder with the same configuration 378

as the Transformer Encoder explained above. The 379

only difference is the causal masking applied to the 380

input. We use the embedding for the last input to- 381

ken as the input into the classification layer, which 382

then uses this embedding to produce the grammati- 383

cal/ungrammatical prediction. 384

Training and Evaluation Configurations We 385

use SGD for LSTM/BiLSTM models and 386

AdamW (Loshchilov and Hutter, 2019) for Trans- 387

former Encoder/Decoder models. Each language 388

model is trained for 15 epochs with a batch size of 389

512, using 10 different random seeds and 3 differ- 390

ent learning rates (0.1/0.2/0.3 for LSTM/BiLSTM 391

models, 0.0001/0.0003/0.0005 for Transformer 392

Encoder/Decoder models).5 The score for each 393

architecture is defined as the maximum accu- 394

racy among the 30 models (10 random seeds × 395

3 learning rates) on test data. This is because we 396

are interested in whether these language models 397

can recognize our pseudo-languages at all, and this 398

evaluation metric follows that of Delétang et al. 399

(2022). 400

5All the language models are trained on NVIDIA V100
GPU with 16GB memory.

5
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Data Type #Terminals

Transformer
Encoder

Transformer
Decoder

BiLSTM LSTM

in-dist
out-of-

dist
in-dist

out-of-
dist

in-dist
out-of-

dist
in-dist

out-of-
dist

(Adj)n NP

2 100.0 99.48 100.0 100.0 100.0 100.0 100.0 100.0
5 100.0 99.36 100.0 100.0 100.0 100.0 100.0 100.0

10 100.0 99.66 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 99.66 99.98 100.0 100.0 100.0 99.94 99.86
1000 99.62 99.06 98.96 99.35 99.21 99.53 99.46 99.44
5000 97.29 97.76 96.73 98.34 97.36 99.01 97.76 98.76

NPnVPn

2 100.0 96.48 100.0 100.0 100.0 100.0 99.86 52.04
5 100.0 95.90 100.0 100.0 100.0 100.0 99.84 51.50

10 100.0 95.00 100.0 100.0 100.0 100.0 99.72 51.44
100 99.98 97.36 98.90 74.02 100.0 95.16 98.40 73.20
1000 99.71 75.06 77.68 51.98 83.15 53.49 92.12 61.92
5000 91.33 50.78 69.62 50.76 76.24 51.44 83.45 56.65

Nested
Dependency

2 99.28 69.14 99.20 95.88 98.72 94.68 98.82 66.84
5 99.32 69.66 90.74 80.44 88.82 78.90 98.20 65.42

10 99.14 75.74 54.74 55.50 54.56 51.30 97.48 68.48
100 93.20 71.89 50.35 50.54 50.68 50.43 74.56 67.63
1000 51.92 50.22 50.90 50.59 51.28 50.55 50.80 51.08
5000 50.80 50.49 50.47 50.67 50.66 51.17 50.30 51.08

Cross Serial
Dependency

2 99.38 73.18 99.44 94.94 99.28 95.90 98.48 77.34
5 99.42 88.38 97.00 90.04 97.16 92.26 97.64 77.54

10 99.14 88.48 83.50 64.68 69.48 58.48 94.60 79.48
100 91.74 76.65 50.98 50.43 51.11 50.68 52.44 50.96
1000 52.19 50.76 50.88 51.25 51.09 50.51 51.18 50.95
5000 51.18 50.78 51.37 50.69 50.82 51.56 50.85 51.19

Table 2: The accuracy on the in-dist/out-of-dist test data for each pseudo-language and architecture. The accuracy is
the maximum achieved by models trained with different 10 random seeds and 3 learning rates. The values greater
than 90% are shown in bold. In-dist test data consists of strings with the same length distribution as in train/dev
data, while out-of-dist test data consists of longer strings than in train/dev data.

3 Results and Discussion401

The results are presented in Table 2, which shows402

the scores for each architecture on in-dist/out-of-403

dist test data. The score for each architecture was404

obtained by taking the maximum accuracy of 30405

models trained with different 10 random seeds and406

3 different learning rates. We considered architec-407

tures that achieved an accuracy greater than 90%408

to have successfully captured the rules of each data.409

In the following sections, we organize the results410

and provide our analysis for each pseudo-language.411

(Adj)n NP For this type of pseudo-language, all412

architectures have successfully captured the rules413

for both in-dist and out-of-dist test data, regardless414

of the number of terminal symbols. Given that 415

our pseudo-language doesn’t have any words as 416

seen in natural languages, this result suggests that 417

all the architectures are capable of capturing this 418

syntactic phenomenon without relying on lexical 419

information. Furthermore, the high accuracy ob- 420

served in this pseudo-language regardless of the 421

number of terminal symbols suggests that each ar- 422

chitecture can capture this syntactic phenomenon 423

across languages regardless of the vocabulary size 424

of the language. 425

NPn VPn The Transformer Encoder architecture 426

successfully captured the rules for in-dist test data 427

irrespective of the number of terminal symbols, 428

while other architectures failed as the number of 429
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terminal symbols increased. In the case of out-430

of-dist test data, some architectures were able to431

generalize the rules correctly when the vocabulary432

size is comparatively small, but all architectures433

failed when the vocabulary size exceeded 1,000.434

These findings suggest that when lexical informa-435

tion is not available as it is in natural languages,436

these architectures cannot generalize this syntactic437

phenomenon when the vocabulary size is large.438

Nested Dependency For in-dist test data, Trans-439

former Encoder and LSTM were able to success-440

fully capture the rules when the number of terminal441

symbols was small, while the other architectures442

failed in almost all cases. As for out-of-dist test443

data, some of the architectures were able to gener-444

alize the rules correctly in some cases where the445

number of terminal symbols is small, but almost446

all of them failed in almost all cases. Notably, the447

Transformer-based model was not able to capture448

the rules in most cases regardless of the number449

of terminal symbols. These results are not con-450

sistent with the previous findings that LSTM or451

Transformer-based language models can capture452

English center embedding to some extent (Wilcox453

et al., 2019; Hu et al., 2020), suggesting that these454

language models may not necessarily capture the455

rules of center embedding, but rather solve the task456

using lexical information such as co-occurrence or457

frequency.458

Cross Serial Dependency First of all, this phe-459

nomenon has not been observed in languages that460

have been the subject of Targeted Syntactic Evalu-461

ation thus far. Our work is the first to evaluate this462

phenomenon using a pseudo-language. In terms463

of the in-dist test data, Transformer Encoder and464

LSTM were able to successfully capture the rules465

when the number of terminal symbols was small,466

while other architectures failed in almost all cases.467

As for the out-of-dist test data, some of the archi-468

tectures were able to generalize the rules correctly469

with a small number of terminal symbols, but no470

architectures successfully captured the rules when471

the number of terminal symbols is greater than 5.472

Notably, the Transformer-based model was unable473

to capture the rules in all cases regardless of the474

number of terminal symbols.475

Summary The language models only exhibited476

an ability to capture the structural patterns of the477

(Adj)n NP type pseudo-language even with an in-478

creased vocabulary size. While previous studies479

claimed that language models are able to capture 480

certain syntactic structures, such as nested depen- 481

dency, to some extent (Hu et al., 2020; Wilcox et al., 482

2019), our results suggest that the language models 483

may have actually relied on superficial cues, such 484

as lexical semantics or co-occurrence frequency of 485

words, to solve the tasks. Furthermore, although 486

this study only focused on a limited number of 487

language phenomena, the results also suggest that 488

the models may not be able to solve other gram- 489

matical phenomena when controlling for lexical 490

information. Therefore, the conventional approach 491

of Targeted Syntactic Evaluations using texts from 492

natural corpora may not have achieved its origi- 493

nal goal of measuring the pure syntactic ability of 494

language models. To achieve this, new methods 495

such as the one introduced in this study may be 496

necessary. 497

4 Related Work 498

The evaluation of language models has primarily 499

been based on metrics such as perplexity, which 500

provides an objective measure of their performance 501

but lacks insight into their performance on spe- 502

cific downstream tasks. While large-scale bench- 503

marks such as GLUE (Wang et al., 2018) and Su- 504

perGLUE (Wang et al., 2019a) provide valuable 505

information in this regard, many recent studies 506

have attempted to demonstrate that language mod- 507

els have learned the syntax of natural languages. 508

One such study was conducted by Linzen et al. 509

(2016), who used minimal pairs to investigate the 510

sensitivity of language models to the subject-verb 511

agreement in English. The results showed that 512

LSTM language models are fairly sensitive to En- 513

glish subject-verb agreement. However, this study 514

and other related studies (e.g., Marvin and Linzen, 515

2018; Futrell et al., 2019; Gulordava et al., 2018) 516

only focused on a limited range of linguistic phe- 517

nomena. In order to tackle this problem, more 518

recent studies have introduced large-scale datasets 519

for comprehensive syntactic evaluations (Warstadt 520

et al., 2019, 2020). These datasets have made it pos- 521

sible to target a wide range of linguistic phenom- 522

ena, not just subject-verb agreement, and to more 523

thoroughly analyze the linguistic performance of 524

language models. Additionally, these datasets have 525

been constructed for several languages besides 526

English (Trotta et al., 2021; Xiang et al., 2021; 527

Mikhailov et al., 2021), allowing us to verify if 528

the results obtained in English also hold for other 529
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languages, and to make comparisons between lan-530

guages. However, it is impossible to compare the531

performance of language models across languages532

without identifying shared linguistic phenomena533

across multiple languages. In addition, even if such534

shared phenomena are identified and a comparison535

is conducted, it remains challenging to determine536

the linguistic characteristics responsible for varia-537

tions in performance and to isolate the impact of538

performance differences in the language models539

used. Furthermore, it is difficult to evaluate rare540

linguistic phenomena that only exist in a specific541

language. Our proposed methodology, utilizing542

pseudo languages, provides a potential solution to543

these challenges.544

Another line of research has focused on the abil-545

ity of neural language models to recognize formal546

languages (Bodón and Wiles, 2000; Boden and547

Wiles, 2002; Suzgun et al., 2019; Bhattamishra548

et al., 2020; Ebrahimi et al., 2020; Hahn, 2020;549

Delétang et al., 2022). These studies have in-550

vestigated, both mathematically and experimen-551

tally, how far neural language models can rec-552

ognize formal languages in the Chomsky hierar-553

chy. For example, RNNs and LSTMs can rec-554

ognize some context-free languages (Rodriguez555

and Wiles, 1997; Skachkova et al., 2018; Suzgun556

et al., 2019) and some simple context-dependent557

languages (Bodón and Wiles, 2000; Boden and558

Wiles, 2002), while Transformers are not well po-559

sitioned in the Chomsky hierarchy (Bhattamishra560

et al., 2020; Hahn, 2020). However, as correctly561

pointed out by Delétang et al. (2022), just because562

a language model recognizes one language on a563

certain level of the Chomsky hierarchy, it cannot564

be guaranteed that there are no other languages565

on the same level that the language model cannot566

recognize. From this perspective, this study can567

also be considered as an attempt to examine what568

differences, if any, arise from assuming finer ter-569

minal symbols corresponding to the vocabulary of570

natural languages compared to the results obtained571

in previous studies.572

5 Conclusion573

In this paper, we proposed a novel method called574

Targeted Syntactic Evaluations with pseudo-575

languages, which can (i) test whether language576

models capture linguistic phenomena without re-577

lying on other superficial cues (e.g., lexical infor-578

mation), (ii) control the factors out of interest (e.g.,579

vocabulary size), and (iii) easily test linguistic phe- 580

nomena that only exist in few languages without 581

collecting corpora of those languages. Specifically, 582

we created pseudo-languages with abstracted vo- 583

cabulary of different sizes to control the effect of 584

lexical information and vocabulary size, and eval- 585

uated language models on a binary classification 586

task of strings based on their grammaticality. We 587

tested four types of pseudo-languages with dif- 588

ferent levels of syntactic complexity: (Adj)n NP, 589

NPnVPn, Nested Dependency, and Cross Serial 590

Dependency. Our result demonstrated that the 591

LSTM and Transformer-based models can success- 592

fully capture the (Adj)n NP type phenomenon ir- 593

respective of vocabulary size, while they failed to 594

capture the other phenomena as the vocabulary size 595

increases. These results are not consistent with the 596

previous findings that LSTM or Transformer-based 597

language models can capture syntactic dependen- 598

cies in natural languages to some extent (Hu et al., 599

2020; Wilcox et al., 2019; Warstadt et al., 2020), 600

suggesting that these language models may not nec- 601

essarily capture the rules behind these phenomena 602

but rather use some other superficial cues such as 603

co-occurrence or frequency. We will leave it for 604

future research to expand the variety of pseudo- 605

languages and language models. 606

Limitations 607

There are several limitations with this paper. First, 608

the models tested were limited in their variety. To 609

evaluate whether each architecture was able to cap- 610

ture the rules of each pseudo-language, we trained 611

30 models for each architecture using 10 differ- 612

ent random seeds and 3 different learning rates. 613

To fairly compare the performance of the architec- 614

tures, we kept the number of parameters roughly 615

the same for each architecture. However, there are 616

other hyperparameters such as embedding dimen- 617

sions and the number of layers that vary between 618

architectures. Therefore, it is possible that some 619

architectures may perform better with different hy- 620

perparameters. Second, the method for creating 621

negative examples for each pseudo-language is lim- 622

ited. While we used a specific method to generate 623

negative examples for each pseudo-language, there 624

are countless other ways to generate negative exam- 625

ples. It is unclear whether the results of this study 626

hold true with other types of negative examples. 627
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A Additional Results 858

In section 3, we reported the results when the dis- 859

tribution of terminal symbols follows Zipf distribu- 860

tion. Here, we report the results when the distribu- 861

tion is uniform. As shown in Table 3, similar results 862

were obtained when using the uniform distribution 863

compared to when using the Zipf distribution. This 864

suggests that the language model is able to cap- 865

ture certain syntactic phenomena regardless of the 866

distribution of the vocabulary. 867
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Pseudo-language #Terminals
Transformer

Encoder
Transformer

Decoder
BiLSTM LSTM

in-dist
out-of-

dist
in-dist

out-of-
dist

in-dist
out-of-

dist
in-dist

out-of-
dist

(Adj)n NP

2 100.0 99.48 100.0 100.0 100.0 100.0 100.0 100.0
5 100.0 99.36 100.0 100.0 100.0 100.0 100.0 100.0
10 100.0 99.66 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 99.66 99.98 100.0 100.0 100.0 99.94 99.86

1000 99.62 99.06 98.96 99.35 99.21 99.53 99.46 99.44
5000 97.29 97.76 96.73 98.34 97.36 99.01 97.76 98.76

NPnVPn

2 100.0 96.48 100.0 100.0 100.0 100.0 99.86 52.04
5 100.0 95.90 100.0 100.0 100.0 100.0 99.84 51.50
10 100.0 95.00 100.0 100.0 100.0 100.0 99.72 51.44
100 99.98 97.36 98.90 74.02 100.0 95.16 98.40 73.20

1000 99.71 75.06 77.68 51.98 83.15 53.49 92.12 61.92
5000 91.33 50.78 69.62 50.76 76.24 51.44 83.45 56.65

Nested
Dependency

2 99.28 69.14 99.20 95.88 98.72 94.68 98.82 66.84
5 99.32 69.66 90.74 80.44 88.82 78.90 98.20 65.42
10 99.14 75.74 54.74 55.50 54.56 51.30 97.48 68.48
100 93.20 71.89 50.35 50.54 50.68 50.43 74.56 67.63

1000 51.92 50.22 50.90 50.59 51.28 50.55 50.80 51.08
5000 50.80 50.49 50.47 50.67 50.66 51.17 50.30 51.08

Cross Serial
Dependency

2 99.38 73.18 99.44 94.94 99.28 95.90 98.48 77.34
5 99.42 88.38 97.00 90.04 97.16 92.26 97.64 77.54
10 99.14 88.48 83.50 64.68 69.48 58.48 94.60 79.48
100 91.74 76.65 50.98 50.43 51.11 50.68 52.44 50.96

1000 52.19 50.76 50.88 51.25 51.09 50.51 51.18 50.95
5000 51.18 50.78 51.37 50.69 50.82 51.56 50.85 51.19

Table 3: The accuracy on the test data for each data type and architecture. The accuracy is the maximum achieved
by models trained with different 10 random seeds and 3 learning rates. The values greater than 90% are shown in
bold. In-dist test data consists of strings with the same length distribution as in train/dev data, while out-of-dist test
data consists of longer strings than in train/dev data. The distribution of the terminal symbols is uniform.
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