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Abstract
3D point clouds are increasingly vital for applications like
autonomous driving and robotics, yet the raw data captured
by sensors often suffer from noise and sparsity, creating chal-
lenges for downstream tasks. Consequently, point cloud up-
sampling becomes essential for improving density and unifor-
mity, with recent approaches showing promise by projecting
randomly generated query points onto the underlying surface
of sparse point clouds. However, these methods often result in
outliers, non-uniformity, and difficulties in handling regions
with high curvature and intricate structures. In this work, we
address these challenges by introducing the Progressive Local
Surface Estimator (PLSE), which more effectively captures
local features in complex regions through a curvature-based
sampling technique that selectively targets high-curvature ar-
eas. Additionally, we incorporate a curriculum learning strat-
egy that leverages the curvature distribution within the point
cloud to naturally assess the sample difficulty, enabling cur-
riculum learning on point cloud data for the first time. The
experimental results demonstrate that our approach signifi-
cantly outperforms existing methods, achieving high-quality,
dense point clouds with superior accuracy and detail.

Introduction
Recently, autonomous driving, robotics, and other technolo-
gies that utilize 3D data have attracted significant interest,
leading to the growing popularity of 3D point clouds as a
representation of 3D data. However, the raw point clouds
captured by sensors such as LiDAR, depth cameras often
contain significant noise, and the distribution becomes par-
ticularly sparse for points that are farther from the sensor.
Therefore, point cloud upsampling, the task of increasing
the density points of a sparse 3D point cloud to be of dense
(e.g., Fig. 1 sparse Input to dense GT) is vital for effectively
using raw data in tasks like classification and segmentation,
leading to various methods to tackle this challenge.

Starting with early works (Alexa et al. 2003; Lipman
et al. 2007; Huang et al. 2009) that employed optimization-
based methods, the rise of deep learning has led to the pro-
posal of various learning-based methods (Yu et al. 2018; Li
et al. 2019; Qian et al. 2021a), for training point cloud up-
sampling networks. Existing learning-based methods have
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Figure 1: Comparative visualization of 4× point cloud up-
sampling results on PU1K. Point cloud upsampling is the
task of generating a denser point cloud (i.e., rightmost col-
umn) that accurately reflects the underlying geometry of a
sparse point cloud (i.e., leftmost column). Our method suc-
cessfully upsamples intricate areas where existing methods
struggle to perform well.

demonstrated excellent performance but they have several
drawbacks. These methods typically split the sparse input
point cloud into multiple patches, upsample each patch, and
then recombine them. This approach (i.e., split-and-combine
process), which fails to consider the relationships between
patches during upsampling, often results in issues such as
holes, outliers, and non-uniformity, especially at the bound-
aries where the patches are combined.

To address the issues arising from the split-and-combine
process, recent studies (He et al. 2023; Li et al. 2024) have
proposed a pipeline that moves randomly generated points
(i.e., query points) onto the surface that the point cloud
inherently represents. In the upsampling process of this
pipeline, initial query points are generated around the sparse
point cloud (i.e., input point cloud). Next, these query points
are projected onto the underlying surface of the sparse point
cloud. To accurately determine the underlying surface, it is
necessary to know the unsigned distance field of the ground-
truth point cloud, but during upsampling, the ground-truth



FPS (Farthest Point Sampling)

Curvature-based Sampling

FPS (Farthest Point Sampling)

Curvature-based Sampling

Figure 2: An analysis of the differences between FPS (Far-
thest Point Sampling) and our newly proposed curvature-
based sampling. The comparison shows which points remain
as the point cloud is progressively sampled down to fewer
points using each sampling method. FPS uniformly samples
points across the entire point cloud, whereas curvature-based
sampling selectively samples points from regions with intri-
cate structures and high curvature values.

point cloud is not available. Therefore, in the training phase,
the network is trained to predict the unsigned distance from
randomly generated query points around the sparse point
cloud to its underlying surface. This approach enables the
network to infer the underlying surface of the dense point
cloud using only the sparse point cloud.

While this pipeline has addressed many of the issues in
previous methods, there are still some significant problems
that remain unresolved. As seen in Fig. 1, areas within the
point cloud that require high curvature and locally complex
structures (e.g., animal paws and ears, object edges) are of-
ten poorly upsampled. To better capture local features in
complex regions that existing methods struggle to upsample,
our work employs a novel approach using the concept of cur-
vature value within the distance-estimating network of this
pipeline. Curvature value represents the degree of curvature
in a specific area, calculated by considering the geometric
relationships with surrounding points. This metric allows us
to quantitatively identify regions where existing methods fail
to upsample effectively. We then utilize our newly proposed
curvature-based sampling technique within the network to
explicitly sample these regions with high curvature values
(Fig. 2). We refer to this network as Progressive Local Sur-
face Estimator (PLSE), which progressively retains regions
with high curvature and intricate structures, enabling the net-
work to focus on extracting features from these critical areas.

Using the curvature value, which effectively highlights re-
gions in the point cloud where upsampling is challenging,
we further enhance the learning process of PLSE by imple-
menting a new curriculum learning strategy that calculates
the difficulty of a point cloud based on the distribution of
curvature values. As shown in Fig. 1, the network’s feature
extractor generally struggles more with capturing features
in local regions with complex structures and high curvature
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Figure 3: An analysis of the easy samples and hard samples
used in our curriculum learning strategy. (a) Point clouds
with a higher proportion of points with low curvature values,
resulting in a distribution with high skewness, were clas-
sified as easy samples. (b) Conversely, point clouds with a
higher proportion of points with high curvature values were
classified as hard samples.

compared to simpler, flatter areas. Based on this observation,
if a point cloud has fewer complex structures—indicated by
a curvature value distribution skewed toward lower values
and a lower mean—we classify it as an easy sample from a
learning perspective (Fig. 3). Conversely, if the point cloud’s
curvature value distribution is skewed toward higher val-
ues, indicating more complex structures, it is classified as
a hard sample. Following the curriculum learning strategy,
easy samples were used during the early epochs, while hard
samples were introduced in the later epochs, helping the net-
work to more effectively learn the unsigned distance field.

Contributions. In this work, we introduce PLATYPUS
(Progressive Local Surface Estimator for ArbiTrarY-Scale
Point Cloud UpSampling) for point cloud upsampling.
Specifically, we make the following contributions:

• We propose a novel network, Progressive Local Surface
Estimator (PLSE), to learn the unsigned distance field
from sparse point clouds. PLSE employs a curvature-
based sampling method, which allows our network to ex-
plicitly focus on extracting features from critical areas.

• To improve the learning of the unsigned distance field,
we implement a curriculum learning strategy, which clas-
sifies training samples into easy and hard based on the
skewness of curvature value distribution.

• The results from diverse experiments demonstrate that
our approach achieves state-of-the-art performance.

Related Works
Optimization-based Point Cloud Upsampling. As a pi-
oneering approach to point cloud upsampling, Alexa et
al. 2003 proposed interpolating points at vertices of the
Voronoi diagram in the local tangent space. Later, Lipman
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Figure 4: Overall Pipeline of PLATYPUS. Input: The input consists of a sparse point cloud Pinput and nearby generated query
points q. Train: During the training process, our Progressive Local Surface Estimator (PLSE) gθ is trained to predict the distance
from the query point to the underlying surface of the sparse point cloud. The loss compares the distance from the query point
q to the surface of the sparse point cloud (assumed to be identical to the ground truth point cloud). Inference: the initial query
point q0 is progressively updates using the PLSE gradient ∇gθ to become the final query qT projected onto the surface of the
input point cloud.

et al. 2007 introduced the locally optimal projection (LOP)
operator for point resampling and surface reconstruction,
which was further improved by Huang et al. 2009 with
weighted LOP for iterative normal estimation. However,
these LOP-based methods assume points are sampled from
smooth surfaces, reducing upsampling quality near sharp
edges and corners. To address this, an edge-aware resam-
pling method was introduced, though it relies heavily on nor-
mal information and parameter tuning. Subsequently, Wu et
al. 2015 proposed a method using Meso-skeleton guidance
for consolidation and completion. Overall, optimization-
based methods may fail when prior assumptions are unmet.

Learning-based Point Cloud Upsampling. With the rise
of deep learning in point cloud analysis, learning-based
methods have made significant breakthroughs in upsampling
tasks. PU-Net (Yu et al. 2018) was the first learning-based
method, introducing multi-scale feature learning per point
and expanding point sets via multi-branch MLPs. However,
it overlooked geometric structures, which led to the de-
velopment of improved methods like the multi-step patch-
based progressive network by MPU (Yifan et al. 2019) and
PU-GAN (Li et al. 2019), which used generative adversar-
ial networks to handle sparse, non-uniform inputs. PUGeo-
Net (Qian et al. 2020) introduced a geometry-centric up-
sampling network, while Dis-PU (Li et al. 2021) separated
the upsampling task into a dense generator and spatial re-
finer. Building on these advancements, recent methods like
NePs (Feng et al. 2022) utilized neural fields for high-
resolution surface representation, and Grad-PU (He et al.
2023) decomposed upsampling into midpoint interpolation
and location refinement. APU-LDI (Li et al. 2024) intro-
duced an unsigned distance field guided by a local dis-
tance indicator for arbitrary-scale upsampling, while Rep-
KPU (Rong et al. 2024) used kernel point deformation and
cross-attention mechanisms. However, these methods still
struggle with capturing local geometry exquisitely, and no
methods yet have explored ways to explicitly locally mea-
sure the degree of geometric complexity.

Implicit Neural Representation. Implicit neural repre-
sentation (INR) achieved great performance in 3D shape
representation. Conventionally, implicit neural representa-
tion works with neural networks by approximating shape
functions, such as signed distance functions (SDF) (Park
et al. 2019) or unsigned distance functions (UDF) (Chibane,
Pons-Moll et al. 2020). Recently, some research in point
cloud upsampling has shown advantages by leveraging im-
plicit neural representation for surface representation (Feng
et al. 2022; Zhao et al. 2022, 2023; He et al. 2023; Li et al.
2024). Yet, these INR-based methods innately require per-
sample training of the INR networks which quickly becomes
impractical when the task demands a fast inference on un-
seen point clouds.

Methods
In this section, we provide a detailed description of our
work, PLATYPUS. First, we explain the progression of our
upsampling pipeline. Following that, we introduce our novel
network, Progressive Local Surface Estimator (PLSE), and
our curriculum learning strategy that leverages the distribu-
tion of curvature values.

Overall Pipeline: Projection-based Upsampling
The pipeline used by existing methods often generate out-
liers because the patches are upsampled independently with-
out considering each other. To address this issue, we follow
a projection-based pipeline (He et al. 2023; Li et al. 2024)
that predicts the underlying surface of the point cloud and
projects points onto the predicted surface (Fig. 4).

Upsampling Process. The upsampling process is as fol-
lows: query points are randomly generated around the sparse
point cloud that needs upsampling. These generated query
points are then projected onto the underlying surface of the
sparse point cloud using a distance minimization process,
similar to the approach used in Grad-PU (He et al. 2023).
The distance minimization process utilizes the unsigned dis-
tance field of the ground-truth point cloud to move a point
to its ground-truth position. For distance minimization, we
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Figure 5: Visualization of each point’s curvature value.
Points with high curvature values are shown in red, while
points with low curvature values are shown in blue.

need a distance function f(·) that outputs the shortest dis-
tance from a point q to the ground-truth point cloud. The
distance minimization process can be described by the fol-
lowing equation:

qt+1 = qt − λ∇f(qt,Pgt), t = 0, . . . , T − 1. (1)

Here, qt ∈ R3 represents the position of the query point at
iteration t, Pgt ∈ RN×3 is the ground-truth point cloud of N
points, λ is the step size, and ∇f(qt,Pgt) is the gradient of
the distance function at qt. Following this approach, the ini-
tially generated query point q0 undergoes several iterations.
As a result, the final projected point qT will be positioned
on the underlying surface of the ground-truth point cloud.

Distance Function Training. However, during inference,
the ground-truth point cloud Pgt is unavailable, which re-
stricts the use of the distance function f(·) for the distance
minimization process. To address this issue, we train a net-
work gθ(·) to predict the shortest distance from a point q to
the underlying surface of the ground-truth point cloud using
only the point q and the input point cloud Pinput (i.e., sparse
point cloud). Therefore, we train the network gθ(q,Pinput)
which essentially functions as the ideal distance function
f(·) such that f(q,Pgt) ≈ gθ(q,Pinput). This, similar to
Eq. (1), allows the gradient to be approximated using only
Pinput and iteratively projects the input point as follows:

qt+1 = qt − λ∇gθ(q
t,Pinput), t = 0, . . . , T − 1. (2)

Hence, in this projection-based upsampling framework, the
quality of the network gθ(·) directly dictates the point cloud
upsampling quality. In light of this, our work aims to develop
a new network for gθ(·) which addresses the aforementioned
challenges as we describe next.

Progressive Local Surface Estimator
We implement a novel network called Progressive Local
Surface Estimator (PLSE), which serves the role of gθ(·).
This network employs a method that effectively captures
local features in regions with high curvature and intricate
structures, which existing methods struggle to upsample ac-
curately.

Curvature Value. We analyze that effectively upsampling
challenging areas with intricate structures, such as the edges
of objects and the ears of animals, requires focused learn-
ing of their local features. To achieve this, it is necessary
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Figure 6: An illustration showing the structure of Progres-
sive Local Surface Estimator (PLSE). The input point cloud
with k points is sampled through curvature-based sampling
into point clouds with k/2, k/4, k/8, and k/16 points. Each
of these point clouds passes through a feature encoder to
generate features. These features are then concatenated and
passed along with the query through the distance estimator,
which outputs the unsigned distance d.

to establish metrics and criteria that quantitatively define
these regions. We find that these structurally complex re-
gions have relatively high curvature compared to other ar-
eas within the point cloud. By applying the unsigned scalar
of umbrella curvature (Foorginejad and Khalili 2014), we
calculate the curvature value cp for each point p using the
following equation:

cp =
1

K

K∑
i=1

∣∣∣∣ xi

|xi|
· n̂

∣∣∣∣ . (3)

Here, xi is the vector from p to its neighboring point pi

(i.e., xi = pi − p) for each of K neighboring points. n̂
is the surface normal vector at p which is estimated using
Open3D (Zhou, Park, and Koltun 2018) due to the absence
of the ground-truth surface at p. Intuitively, based on Eq. (3),
points in regions with complex structures or sharp curvatures
will have high curvature values, while points in less complex
or flatter areas will have lower curvature values. As shown in
Fig. 5, the calculated curvature values effectively represent
the degree of structural complexity, and intricacy of each
point in the point cloud.

Curvature-based Sampling. We first precompute the cur-
vature value of each point as the criterion for assessing the
complexity and detail of the structure. Then, we employ a
novel technique called curvature-based sampling to ensure
the network effectively captures local features in regions
with complex structures. As shown in Fig. 6, curvature-
based sampling explicitly selects points with relatively high
curvature values from the sparse point cloud, progressively



sampling point clouds of various sizes over multiple itera-
tions. Given a sparse point cloud with k points, we sample
the top k/2 points with the highest curvature values in the
first sampling step. In the subsequent steps, we sample the
top k/4 points, followed by the top k/8 points, progressively
focusing on regions with more complex structures.

Pipeline of PLSE. In our network, called Progressive Lo-
cal Surface Estimator (PLSE), we extract features f0 through
f4 from each of sampled point clouds, where each feature
fi ∈ Rd. The extracted features are then concatenated with
the coordinates of the query point q ∈ R3, resulting in a fi-
nal feature vector ffinal ∈ R3+d×5. This final feature vector
ffinal is then passed through the distance estimator module,
which outputs the predicted shortest distance from the query
points to the underlying surface of the point cloud.

Loss Formulation. To ensure that the output of PLSE,
the unsigned distance gθ(q,Pinput), represents the short-
est distance from the query point to the underlying surface
of the ground-truth point cloud, PLSE optimizes the L1
loss between its output gθ(q,Pinput) and f(q,Pgt) which
is distance from the query point q to the nearest point in
the ground-truth point cloud Pgt. This optimization ensures
that PLSE accurately predicts the shortest distance from the
query point to the underlying surface.

Curriculum Learning with Global Curvature Value
Thus far, we have been using the curvature value to locally
characterize each point. However, we realize that the no-
tion of curvature value may easily extend to characterize
the global structure complexity of the entire point cloud as
a new summary measure, namely, global curvature value.
This point cloud-level notion of complexity fundamentally
allows us to identify easy samples (i.e., simple point clouds
of points with small cp) and hard samples (i.e., complex
point clouds of points with high cp). Interestingly, this cri-
terion naturally enables curriculum learning (Bengio et al.
2009; Duan et al. 2020) which is a strategy where the net-
work learns samples in order of increasing difficulty, starting
with easy samples and advancing to hard samples. Although
curriculum learning is a widely used versatile scheme, we
note that applying it to point cloud has not been straight-
forward due to the absence of sample difficulty measures
on point clouds. In our work, our insights on curvature al-
lows us to employ a curriculum learning strategy to aid in
the training of our network PLSE.

Global Curvature Value. To obtain the global curvature
value, which is a measure that effectively reflects global
structure complexity, we calculate the curvature value for
each point in the training sample (i.e., input point cloud)
and analyze the distribution of these curvature values. Given
a training sample Pinput with N points, where each point pi

has a curvature value cpi , the global curvature value of Pinput
is calculated as follows:

global curvature value =
1

N

N∑
i=1

cpi . (4)

We classify the sample’s difficulty based on whether the
global curvature value is above or below the threshold we

Method
PU-GAN (4×) PU-GAN (16×)

CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓
PU-Net 0.401 4.927 4.231 0.323 5.978 5.445
MPU 0.327 4.859 3.070 0.194 6.104 3.375

PU-GAN 0.281 4.603 3.176 0.172 5.237 3.217
Dis-PU 0.265 3.125 2.369 0.150 3.956 2.512

PU-GCN 0.268 3.201 2.489 0.161 4.283 2.632
NePs 0.385 5.615 1.642 0.147 8.851 1.925

Grad-PU 0.245 2.369 1.893 0.108 2.352 2.217
APU-LDI 0.232 1.675 1.338 0.092 1.504 1.544

PU-VoxelNet 0.233 1.751 2.137 0.091 1.726 2.301
RepKPU 0.248 2.880 1.906 0.107 3.345 2.068

PLATYPUS 0.229 1.426 1.908 0.088 1.429 2.142

Table 1: Quantitative comparisons against other methods on
the PU-GAN dataset.

set. If a training sample has many points with high curvature
values and few with low values, it will have a difficulty score
above the threshold, classifying it as a hard sample. Con-
versely, if there are few points with high curvature values
and many with low values, the sample will have a difficulty
score below the threshold, classifying it as an easy sample.
According to Eq. (3), each point can have a curvature value
between 0 and 1, and we set the threshold at 0.5.

We use these classified easy samples during the early
epochs of the training phase and hard samples during the
late epochs to train PLSE. This approach achieves signifi-
cant performance improvements for PLSE.

Experiments
Experimental Setup
Datasets. We conducted experiments using two synthetic
datasets, PU-GAN (Li et al. 2019) and PU1K (Qian et al.
2021a), following the official data split for training and test-
ing. PU-GAN dataset consists of 147 objects, with 120 ob-
jects split into 24,000 patches for training, and the remain-
ing 27 objects used for testing. PU1K dataset, which in-
cludes more data and a wider variety of objects, consists
of 1,147 objects. Of these, 1,020 objects are divided into
69,000 patches for training, while the remaining 127 objects
are used for testing. Additionally, to evaluate performance
on real-scan datasets, we also conducted experiments us-
ing the KITTI dataset (Geiger et al. 2013) and the ScanOb-
jectNN dataset (Uy et al. 2019).

Implementation Details. For our experiments, we used
an NVIDIA RTX A6000 GPU. The training process fol-
lowed a curriculum learning strategy, with 50 epochs for
easy samples and 50 epochs for hard samples, totaling 100
epochs, with a batch size of 256. We employed the Adam
optimizer during training, with an initial learning rate of
0.001. Additionally, we applied random rotation to augment
the training samples.

Metrics and Baselines. To evaluate point cloud upsam-
pling performance, we use Chamfer distance (CD), Haus-



Input PU-Net PU-GAN PU-GCN APU-LDI Ours GT

Input PU-GAN MAFU PU-VoxelNet APU-LDI Ours GT

Figure 7: Visualization of upsampling results using synthetic datasets. The top row shows the results on the PU-GAN dataset,
while the bottom row presents the results on the PU1K dataset.
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Figure 8: Visualization of upsampling results using KITTI
dataset. Objects such as buildings, vehicles, and humans,
which are sparsely scanned by the LiDAR sensor, are
densely upsampled.

dorff distance (HD), and point-to-surface distance (P2F).
The units of CD, HD, and P2F are all 10−3. We make
comparison with various traditional and recent state-of-the-
art point cloud upsampling methods, including PU-Net (Yu
et al. 2018), MPU (Yifan et al. 2019), PU-GAN (Li et al.
2019), Dis-PU (Li et al. 2021), PU-GCN (Qian et al. 2021a),
NePs (Feng et al. 2022), Grad-PU (He et al. 2023), APU-
LDI (Li et al. 2024), PU-VoxelNet (Du et al. 2024), and
RepKPU (Rong et al. 2024).

Results on Synthetic Datasets
PU-GAN Dataset. We conducted experiments on the PU-
GAN dataset with upsampling rates of 4 and 16. Table 1
shows that our PLATYPUS outperforms other methods
across various metrics at both upsampling rates. Addition-
ally, the top row of Fig. 7 presents the upsampling results
of PLATYPUS compared to other methods on the PU-GAN
dataset. Notably, in the bird’s foot area, PLATYPUS pro-
duces fewer outliers and preserves the silhouette of the foot
compared to other methods.

PU1K Dataset. The bottom row of Fig. 7 shows our re-
sults on the PU1K dataset. When examining the upsampling

Input Ours

Figure 9: Visualization of upsampling results using ScanOb-
jectNN dataset. Both the real-scanned chair and desk are
densely upsampled.

results for the intricate structures on the wings of the jet, it
is evident that PLATYPUS preserves the structure and ar-
rangement of the missiles compared to other methods.

Results on Real-Scanned Datasets

To demonstrate that our model, trained on synthetic datasets,
generalizes well to diverse real-world scenarios, we con-
ducted upsampling experiments on the outdoor real-scanned
KITTI dataset (Geiger et al. 2013) and the indoor real-
scanned ScanObjectNN dataset (Uy et al. 2019).

KITTI Dataset. KITTI dataset is related to traffic scenar-
ios used in autonomous driving and robotics and includes
point clouds scanned with LiDAR sensor. We selected point
clouds from two different scenes and conducted upsampling
experiments. As shown in Fig. 8, our results demonstrate
that the our work, PLATYPUS, is well-suited for handling
point clouds in real-world scenarios, proving to be a practi-
cal and valuable technology.

ScanObjectNN Dataset. ScanObjectNN dataset consists
of point clouds scanned from various types of objects. We
selected point clouds of chairs and tables to verify whether
our method could effectively upsample everyday objects. As
shown in Fig. 9, PLATYPUS performed well on real indoor
data, demonstrating its effectiveness in these scenarios as
well.



Method
5× 7× 13×

CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓
MAFU (Qian et al. 2021b) 0.252 2.308 1.949 0.207 2.593 2.013 0.177 3.212 2.014
Grad-PU (He et al. 2023) 0.244 2.447 2.459 0.223 2.654 3.325 0.242 4.144 5.703
APU-LDI (Li et al. 2024) 0.193 1.706 1.445 0.148 1.534 1.468 0.134 1.878 1.524

PLATYPUS 0.191 1.327 1.845 0.137 1.433 1.866 0.154 1.494 1.379

Table 2: Quantitative comparisons of arbitrary-scale upsampling performance. The results of upsampling by factors of 5×, 7×,
and 13× were compared with those of other methods.

Method
τ = 0.01 τ = 0.02

CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓
PU-Net 0.588 6.182 9.842 1.057 9.954 16.282

PU-GAN 0.435 7.848 7.300 0.815 9.450 14.246
Dis-PU 0.430 6.580 6.954 0.776 8.861 13.934

PU-GCN 0.411 5.001 6.963 0.781 8.926 13.730
Grad-PU 0.423 4.307 6.403 0.730 6.993 11.481
APU-LDI 0.339 3.089 5.167 0.622 6.485 10.984

PLATYPUS 0.368 2.224 6.804 0.622 5.504 10.633

Table 3: Quantitative comparison against other methods for
two Gaussian noise levels. τ represents the noise level (stan-
dard deviation) of the Gaussian noise.

Additional Analyses
Arbitrary-Scale Upsampling. Most upsampling methods
are constrained to the upsampling rate used during training,
such as 4×, meaning they can only upsample by 4 times
during inference as well. Even when performing inference
with a 16× upsampling rate, it typically involves applying
the 4× upsampling process twice. To demonstrate that our
method can perform arbitrary-scale upsampling, not just up-
sampling at a fixed rate (4×), we conducted experiments us-
ing a model trained on the PU-GAN dataset with a 4× up-
sampling rate and applied this model to upsample at rates
of 5×, 7×, and 13×. As shown in Table 2, when compared
with other methods capable of arbitrary-scale upsampling,
PLATYPUS demonstrates excellent performance.

Robustness on Additive Noise. To evaluate whether our
model can robustly upsample the correct structure even
when the input point cloud’s structure is distorted, we con-
ducted experiments by adding Gaussian noise to the xyz co-
ordinates of the input point cloud from PU-GAN test dataset
and then upsampling the perturbed point cloud. Table 3
presents the results of upsampling with various methods,
including ours, using the same noisy input. For both noise
levels (i.e., standard deviations), 0.01 and 0.02, PLATYPUS
demonstrated superior upsampling performance compared
to other methods, indicating that the PLATYPUS upsam-
pling system is robust to variations in the input.

Ablation Study. We conducted experiments to evaluate
the effectiveness of various techniques used in PLATYPUS.

Curvature-based Curriculum CD↓ HD↓ P2F↓Sampling Learning

- - 0.258 2.720 2.013
✓ - 0.235 1.739 1.983
- ✓ 0.249 2.521 1.948
✓ ✓ 0.229 1.426 1.908

Table 4: An ablation study demonstrates the effectiveness
of our proposed curvature-based sampling and curriculum
learning strategy.

For the ablation studies, we used the PU-GAN dataset. Ta-
ble 4 shows the performance changes in PLATYPUS when
the core techniques, curvature-based sampling and curricu-
lum learning based on the skewness of the curvature dis-
tribution, are included or excluded. When curvature-based
sampling is not used, the sparse point cloud bypasses any
sampling process, with the entire original point cloud being
fed directly into the feature encoder, followed by the dis-
tance estimator, which outputs the unsigned distance d. In
the absence of the curriculum learning strategy, the training
data is not divided into easy and hard samples; instead, all
training data is used in every epoch. As shown in Table 4,
both curvature-based sampling and curriculum learning sig-
nificantly improve performance compared to the base set-
ting. Moreover, the best performance is achieved when both
techniques are applied together.

Conclusion
In this study, we introduce PLATYPUS, a novel upsampling
system that addresses the challenges of outliers and the dif-
ficulty of upsampling complex regions in point clouds. Our
network, Progressive Local Surface Estimator (PLSE), uti-
lizing a newly proposed curvature-based sampling method,
effectively captures local features from intricate areas with
high curvature in sparse point clouds. Additionally, the
adoption of a curriculum learning strategy allows the net-
work to progressively learn more complex features, leading
to better overall performance. While there is room for op-
timizing memory usage, our future work will focus on im-
proving the efficiency of storing sampled point clouds. Over-
all, PLATYPUS significantly advances the state-of-the-art
in point cloud upsampling, providing a solid foundation for
further research and development in this area.
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