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Abstract

Metagenomics is essential for exploring the vast diversity and intricate interactions1

of microbes that impact health, agriculture, and environmental sciences. Despite2

the surge of machine learning-based metagenomic models addressing these ques-3

tions, evaluating their respective benefits is challenging due to the use of distinct,4

experimental datasets, partly contrived, and varying model performance across5

different tasks. To this end, we introduce OpenMeta, the first comprehensive6

benchmark tailored for metagenomic function prediction, which integrates diverse7

datasets ranging from 1,000 to 213,000 sequences and incorporates hierarchical8

data. We highlight the inadequacies of current genomic models and the superior9

performance of metagenomic pre-trained models for handling complex metage-10

nomic data. Furthermore, we identify a critical research gap: the lack of unified11

models that process both sequence and hierarchical data. Addressing this could12

significantly advance metagenomic analyses. OpenMeta sets a new standard for13

metagenomic analysis, offering insights that could enhance the understanding and14

application of microbial ecology in biotechnology and environmental science.15

1 Introduction16

Metagenomics is a discipline that studies the genetic composition and functional dynamics of all17

microorganisms in environmental samples [41, 44]. By directly extracting the entire DNA from these18

microorganisms, metagenomics captures a broad spectrum of life forms, including viruses, viroids,19

and free DNA present in diverse habitats such as soil, seawater, and human microbiomes [53, 40].20

Unlike traditional genomics, which focuses on sequencing DNA from single species in isolation [57,21

74], metagenomics eliminates the need for isolating each organism, allowing research of uncultivable22

microorganisms [83, 48, 23]. Consequently, metagenomics unveils the vast diversity of microbial23

communities, enabling the interpretation of gene interactions and essential biological processes within24

ecosystems [3, 37, 39].25

Deep learning techniques have significantly advanced metagenomics research, enabling more pre-26

cise function prediction and complex relationship elucidation in metagenomics [1, 60, 45, 77, 22,27

38](Sec. 2). However, the field lacks standardized benchmarks, making it difficult to evaluate the28

efficacy of various metagenomic models that often rely on distinct, artificially constructed datasets.29

Existing genomic benchmarks primarily focus on single-species genomic analysis. The GUE bench-30

mark [84], built upon DNABERT2, encompasses multiple datasets ranging from humans to viruses31

and includes 7 binary classification tasks like promoter detection and transcription factor prediction.32

GenomicBenchmarks [49] address gene regulation and chromatin accessibility tasks. Nucleotide33
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Figure 1: Framework of OpenMeta, including dataset preprocessing, data encoding, general and
specialized models pre-trained or not, and target tasks.

Transformer (NT) [9], pre-trained on multi-species genomic data, concentrates on transcription factor34

binding and enhancer-promoter interactions within the human genome [32] (Sec. 3.1).35

However, these methods often fail to address the unique challenges in metagenomics. Firstly,36

metagenomic data is distinct as it comprises genomic collections from multiple organisms sequenced37

simultaneously from numerous individuals, unlike genomic studies that focus on single organisms.38

Secondly, metagenomic tasks are unique, involving the prediction of complex interactions among39

various microorganisms, including bacteria and viruses, influenced by dynamic environments –40

a complexity that surpasses single-species genomic analysis. Lastly, existing genomic models41

often perform poorly on metagenomic tasks, as models trained on genomic data cannot be directly42

transferred to metagenomic data. Hence, there is an urgent need to develop a metagenomic reference43

to deepen our understanding of microbial ecology and provide a powerful tool for biotechnology and44

environmental science research (Sec. 3.2).45

To this end, we develop OpenMeta, the first comprehensive benchmark specifically designed for46

metagenomics based on the FGBERT model [13]. OpenMeta integrates a wide range of tasks across47

genetic, functional, bacterial, and environmental levels and can handle datasets with sequences48

ranging from 1,000 to 213,000, as well as richer hierarchical data of phylogenetic tree structures,49

reflecting the diversity and complexity of metagenomic data. We compare metagenomic pre-trained50

models with genomic pre-trained models (Sec. 5.2), and although the latter provided new insights,51

their performance on metagenome data tended to decrease, highlighting the need for the development52

of metagenome pre-trained models. Our main contributions are as follows:53

i. We establish OpenMeta, the first comprehensive benchmark for metagenomic research en-54

compassing 23 representative models. OpenMeta sets a new standard in the evaluation of55

metagenomic models using various collected standardized datasets and metrics across three di-56

mensions: pre-trained vs. not pre-trained models, general vs. specialized models, and sequence57

data-based vs. hierarchical data-based models.58

ii. We conduct extensive experiments on various tasks ranging from metagenomic sequences to59

hierarchical data, covering small-scale, large-scale, and fine-grained scopes.60

iii. Our findings lead us to reconsider the potential of metagenomic pre-trained models, advocat-61

ing for architectures like FGBERT that better accommodate the diversity and complexity of62

metagenomic data.63

iv. We identify a significant research gap: the lack of a unified model capable of simultaneously64

processing sequence and hierarchical data. Addressing this could significantly advance compre-65

hensive metagenomic analyses and represent a promising direction for future research.66

2 Related Work67

Gene Representation Learning. For sequence metagenomic data, while the K-mer method [17]68

efficiently captures characteristics of short sequences, it struggles with longer sequences due to69

its inherent limitations. Alternatively, one-hot encoding, despite its high-dimensional and sparse70

nature, restricts its utility for large-scale applications. In contrast, deep learning-based embeddings,71

such as those from Transformer models, enhance sequence representation by capturing contextual72

and global features, offering biologically meaningful insights. For hierarchical metagenomic73

data, constructing phylogenetic trees provides an effective framework for delineating hierarchical74

and evolutionary relationships among microbial taxa [2, 79]. This process begins with analyzing75
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microbial genomes through multiple sequence alignment, organizing them into a phylogenetic76

structure. Microbial taxa abundances are then mapped to corresponding nodes on the tree. By77

aggregating abundance values from child nodes to their respective parent nodes and transforming this78

phylogenetic tree into a matrix format [18, 58], the structure is adapted for input into CNN models79

for disease phenotype prediction.80

Metagenomic Methods. Traditional alignment-based methods like MetaPhlAn5 [66] aim to match81

similarities between query sequences and known reference genomes and are common for taxonomic82

profiling. Advancements in deep learning have led to new methods like DeepVirFinder [61], which83

use CNNs for viral classifications with one-hot encoding. K-mer tokenization [17], employed in84

approaches like MDL4Microbiome [33], is a standard for DNA sequence characterization. Addi-85

tionally, Virtifier [45] maps a nucleotide sequence using a codon dictionary combined with LSTM86

to predict viral genes. DeepMicrobes [35] employs a self-attention mechanism, while DeepTE [81]87

uses K-mer inputs with CNNs for element classification, and Genomic-nlp [46] applies word2vec88

for gene function analysis. MetaTransformer [77] uses K-mer embedding for species classification89

with Transformer. For pre-training models, LookingGlass [24] uses a three-layer LSTM model for90

functional prediction in short DNA reads. ViBE [22] employs a K-mer token-based BERT model91

pre-trained with Masked Language Modeling for virus identification.92

Genomic Benchmark. To our knowledge, there is no benchmark in the field of metagenomics.93

Due to the scarcity of specialized benchmarks in metagenomics and the inherent similarities in data94

structure and content between genomic and metagenomic datasets, comparing the two allows us95

to leverage advancements in genomics to address metagenomics’ unique needs. Existing genomic96

benchmarks, such as GUE, GenomicBenchmarks, and Nucleotide Transformer [9], each have their97

distinct focus but primarily address single-species genome analysis. GUE, as part of DNABERT2 [9],98

addresses challenges in genome tokenization and pre-training, covering multi-species datasets from99

humans to viruses and involving tasks like promoter detection and transcription factor prediction.100

GenomicBenchmarks, through HyenaDNA [49], focuses on improving long-sequence genome101

modeling and handling ultra-long sequences, including gene regulation and chromatin accessibility102

analysis. NT is pre-trained on multi-species genomic data, emphasizing transcription factor binding103

and enhancer-promoter interaction in the human genome.104

3 Background105

3.1 Difference Between Genomics and Metagenomics106

Table 1: Differences in Metagenomics and Genomics.
Comparison Factor Metagenomics Genomics
Main difference:
Organisms number Many One

Sample type
Genomes from
many individuals
within an environment

Individual
organism’s
genetic makeup

Data complexity
Large, mixed data
from multiple organisms
mixed together

Relatively small,
well-structured data
from single organism

Sequencing depth 3-100M Reads 3-6M Reads
Sample types Stool, Skin, Soil, Water Cell Culture
Cost Higher Lower

The Main distinction between genomics107

and metagenomics lies in the Number of108

organisms evaluated in a sample in Tab. 1.109

Genomics focuses on the genome of a sin-110

gle organism, whereas metagenomics ex-111

amines the collective genomes of differ-112

ent organisms within a sample [31, 63, 52].113

Sample type: Genomics targets the com-114

plete genetic information of a single or-115

ganism, typically from individual cells or116

species, while metagenomics analyzes mixed DNA from multiple organisms in an environmental sam-117

ple, allowing scientists to study unculturable microorganisms [48, 23]. Data complexity: Genomic118

data involves well-structured genetic information from a single organism, making it relatively simple.119

Metagenomic data includes genomes from various organisms, leading to large, mixed, and complex120

data. Sequencing depth: Metagenomic samples require significantly greater sequencing depth121

than single-genome sequencing. Common sample types: Metagenomic samples are derived from122

environments containing multiple genomes, such as soil, water, and human microbiomes, and are123

inherently more complex than genomic samples, which typically come from single-cell cultures [15].124

3



Cost of sequencing: The extensive sequencing depth required for metagenomics generally results in125

higher costs than genomic sequencing.126

3.2 Necessity of Developing Metagenomic Benchmarks127

Tab. 2 provides a detailed comparison of downstream tasks for genomic and metagenomic pre-128

trained models. DNABERT2 [84] primarily engages in binary classification tasks such as promoter129

detection in human, mouse, and yeast species. Notably, Transcription Factor Prediction task recurs130

identically for both human and mouse, indicating consistent yet singular difficulty, which may reduce131

the overall challenge. HyenaDNA [49] is limited to regulatory elements classification tasks, reflecting132

a narrow scope. Additionally, Demo and Dummy Datasets are typically used for initial testing,133

lacking authenticity and practical value, reflecting the simplicity and limitations of its datasets. NT [9]134

covers 18 downstream tasks centered on splice site prediction and chromatin accessibility analysis.135

Table 2: Comparison of pre-trained models for genome
and metagenome.

Model Category Task #Class
Transcription Factor Pred. 2
Promoter Detection 2Human
Splice Site Detection 3

Mouse Transcription Factor Pred. 2

DNABERT2

Virus Covid Variant Class. 9
Human 2
Demo Dataset 2HyenaDNA
Dummy Dataset

Regulatory
Elements
Classification 2

Yeast Epigenetic marks Pred. 10
- Splice site Pred. 2

G
en

om
e

NT
- Chromatin Profiles Pred. 919

Gene Structure Pred. 1379
ARG Pred. on Gene Family 269
Virulence Factor Pred. 15M

et
a.

FGBERT Mixed
Multi-Species

Pathogenic Genes Pred. 110

While these genomic benchmarks perform136

well in single-species analyses, they of-137

ten fail to capture the inherent complexi-138

ties of multi-species interactions present139

in metagenomics. Specifically, the limita-140

tions include (1) reliance on single-species141

data, overlooking the complex interactions142

in metagenomics; (2) lack of data diver-143

sity, insufficient environmental diversity re-144

quired for metagenomics; (3) limited func-145

tional prediction, focusing on sequence-146

based predictions without integrating cru-147

cial functional annotations; and (4) inade-148

quate model adaptability, as models trained on single-species genomic data struggle to adapt to149

multi-species metagenomic data. In contrast, FGBERT [13], a metagenomic pre-trained model, aims150

to address interactions within different microbial communities. Its downstream tasks span multiple151

species, with a large number of classification categories, reflecting the diversity and complexity of152

metagenomic data. Therefore, incorporating FGBERT’s multi-species metagenomic datasets into153

OpenMeta can enhance its ability to decipher complex microbial functions. For detailed analysis,154

please refer to Appendix B.155

4 OpenMeta156

4.1 Supported Methods157

OpenMeta supports 23 methods for comprehensive analysis and performance evaluation across158

various tasks and data types, detailed in Tab. 3 with their respective publication years. To present159

them systematically, we categorize them along three dimensions: General vs. Specialized Models,160

Pre-trained vs. Not Pre-Trained Models, and Sequence data-based vs. Hierarchical data-based161

Models, acknowledging that some methods may span multiple categories.162

General vs. Specialized Models: General models include widely used machine learning and163

deep learning models, such as SVM [69], Random Forest (RF) [64], CNN, LSTM [25], and Trans-164

former [76], providing robust foundations for various tasks. Moreover, models like DNABERT2 [84]165

will be discussed in detail as pre-trained models in the next part. Conversely, specialized models166

are designed for specific metagenomic tasks such as functional gene prediction (PLM-ARG [78],167

DeepARG [5], RGI [4], ViBE [22], CLEAN [82]), and prototype prediction (PopPhy-CNN [59]).168

Pre-trained vs. Not Pre-trained Models: OpenMeta includes DNABERT2 [84], HyenaDNA [49],169

and NT [9] genomic pre-trained models, alongside FGBERT [13] metagenomic pre-trained model.170

Although ViBE [22] and PLM-ARG [78] are not pre-trained from scratch, they use BERT model [11]171

and protein language model [36], respectively, to enhance their functional prediction capabilities.172
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Table 3: Categorizations of all supported metagenomic methods in our OpenMeta. RF denotes
Random Forest, and VT represents Vanilla Transformer.
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Year Description

RF ✓ ✓ ✓ ✓ Machine Learning
SVM ✓ ✓ ✓ ✓ Machine Learning
AdaBoost ✓ ✓ ✓ ✓ Machine Learning
LSTM ✓ ✓ ✓ ✓ Deep Learning
BiLSTM ✓ ✓ ✓ ✓ Deep Learning
VT [76] ✓ ✓ ✓ ✓ Deep Learning
FGBERT [13] ✓ ✓ ✓ ✓ 2024 Metagenomic pre-trained model for functional prediction.
HyenaDNA [49] ✓ ✓ ✓ ✓ 2023 Genomic pre-trained model trained on multi-species genomes.
NT [9] ✓ ✓ ✓ ✓ 2023 Genomic pre-trained model trained over human reference genome.
DNABERT2 [84] ✓ ✓ ✓ ✓ 2023 Genomic pre-trained model trained on diverse human genomes.
CNN-MGP [1] ✓ ✓ ✓ ✓ 2019 Gene prediction using CNN network.
PlasGUN [16] ✓ ✓ ✓ ✓ 2020 Gene prediction tool using multiple CNN network.
PLM-ARG [78] ✓ ✓ ✓ ✓ 2023 ARG identification framework using a pretrained protein language model.
DeepARG [5] ✓ ✓ ✓ ✓ 2018 ARG prediction software by alignment and metagenomic sequences.
RGI [4] ✓ ✓ ✓ ✓ 2023 ARG prediction tools for annotating genes from scratch.
DeepVirFinder [61] ✓ ✓ ✓ ✓ 2020 Viral sequences prediction with reference and alignment-free CNNs.
ViBE [22] ✓ ✓ ✓ ✓ 2022 Eukaryotic viruses identification with hierarchical BERT model.
ViraMiner [71] ✓ ✓ ✓ ✓ 2019 Viral genomes identification in human samples.
DeepVF [80] ✓ ✓ ✓ ✓ 2021 Viral factor identification with hybrid framework using stacking strategy.
HyperVR [27] ✓ ✓ ✓ ✓ 2023 Viral factors and mixing of ARG simultaneous prediction.
CLEAN [82] ✓ ✓ ✓ ✓ 2023 Enzyme function prediction using contrastive learning.
DeepMicrobes [35] ✓ ✓ ✓ ✓ 2020 Taxonomic classification for metagenomics with self-attention model.
PopPhy-CNN [59] ✓ ✓ ✓ ✓ 2020 Host Phenotypes prediction by systematic tree embedded CNN network.

Sequence Data-based vs. Hierarchical Data-based Models: This work further integrates mod-173

els trained on hierarchical data, such as PopPhy-CNN [59], which leverages the phylogenetic tree174

structures of microbial communities to enhance the understanding of microbial interactions, con-175

trasting with sequence-based models essential for raw genetic data analysis without considering the176

hierarchical relational structure among microbial taxa.177

4.2 Supported Tasks178

Table 4: Detailed information of metagenomic sequence datasets in OpenMeta.
Type Dataset Category #Seq. #Cate. Seqs/Cate Range

(Min-Max) Avg. Len. Description

Small-Scale
Classification

E-K12 [65] Gene-pair Cls. 4,315 1,379 1-106 510.96 Tasks involving
smaller datasets
focusing on high
accuracy in
narrow contexts.

CARD-A [28]

Gene-wise Cls.

1,966 269 1-229 1088.1
CARD-D [28] 1,966 37 1-513 1088.1
CARD-R [28] 1,966 7 1-1263 1088.1
PATRIC [19] 5,000 110 1-1081 307.82

Large-Scale
Classification

ENZYME [6]
Gene-wise Cls.

5,761 7 288-2055 426.76 Tasks requiring handling
of large data volumes,
broad pattern extraction.

VFDB [7] 8,945 15 5-1683 415.47
NCycDB [75] 219,089 69 1-20548 347.03

Fine-Grained
Classification

NCRD-N [42]

Gene-wise Cls.

104,363 1912 1-18370 407.44 Focused on detailed
differentiation within
closely related
categories.

NCRD-F [42] 104,363 420 2-35364 407.44
NCRD-C [42] 104,363 29 1-14159 407.44
NCRD-R [42] 104,363 10 166-38073 409.79

Table 5: Detailed information of metagenomic hierarchical datasets in OpenMeta.
Type Dataset Category #Seq. Taxonomic Levels DescriptionK P C O F G S

Hierarchical
Classification

Cirrhosis [56] Metagenome
-wise Cls.

542 3 15 27 40 76 186 531 Detailed profiling of microbial
diversity linked to cirrhosis.

T2D [30] 606 3 17 29 48 94 216 587 Detailed analysis for Type 2
Diabetes-associated microbiota.

We conduct extensive experiments across various multi-classification tasks, including gene structure179

analysis, functional gene prediction, pathogenicity assessment, nitrogen cycle prediction, and disease180

phenotype prediction, utilizing diverse datasets that range from metagenomic sequences to hierar-181

chical data We provide detailed descriptions of the following 14 datasets in Tab. 4 and 5, covering182

small-scale, large-scale, and fine-grained scopes. Seqs/Cate Range provides the range of sequences183

in each category, from minimum to maximum. Details can be found in Appendix C.184

(1) Small-Scale Classification: Gene Operon Prediction Task. This task aims to identify transcrip-185

tion factor binding sites with the strongest correlation with operon regulation in the gene regulatory186

network [8, 14, 51] This gene-pair classification utilizes E-K12 dataset [65], consisting of 4,315 oper-187

ons, each detailed with operon names, descriptions, and gene components. Antibiotic Resistance188

Genes (ARGs) Prediction Task. Accurate identification of ARGs is essential for understand-189

ing the relationship between the microbiome and disease, as pathogenic microorganisms threaten190

public health by exacerbating ARGs to invade the host [50]. This gene-wise classification uses191

CARD dataset [28], categorizing genes by 269 AMR Gene Families (CARD-A), 37 Drug Classes192
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Table 7: Enzyme function Pre-
diction on ENZYME.

Method ENZYME

RF (3-mer) 33.6
SVM (3-mer) 31.3
AdaBoost (3-mer) 31.4
LSTM (w2v) 42.8
LSTM (one-hot) 34.1
BiLSTM (w2v) 38.7
BiLSTM (one-hot) 31.6
BiLSTM-Att. (w2v) 36.9
BiLSTM-Att. (one-hot) 43.6
VT 68.2
HyenaDNA 79.6
NT 74.1
DNABert2 85.4
FGBERT 99.1
CLEAN 92.3

Table 8: Virus factor Prediction
on VFDB.

Method VFDB

RF (3-mer) 22.4
SVM (3-mer) 28
AdaBoost (3-mer) 27.3
LSTM (w2v) 36.7
LSTM (one-hot) 32.9
BiLSTM (w2v) 46.1
BiLSTM (one-hot) 31.3
BiLSTM-Att. (w2v) 37.7
BiLSTM-Att. (one-hot) 36.7
VT 58
HyenaDNA 61.1
NT 58.3
DNABert2 58.2
FGBERT 75.7
ViBE 50.9

Table 9: N Cycling Prediction
on NcycDB.

Method NCycDB

RF (3-mer) 67
SVM (3-mer) 66.9
AdaBoost (3-mer) 68.8
LSTM (w2v) 71.9
LSTM (one-hot) 65
BiLSTM (w2v) 66.9
BiLSTM (one-hot) 82
BiLSTM-Att. (w2v) 69
BiLSTM-Att. (one-hot) 67.3
VT 84.5
HyenaDNA 92.4
NT 75.1
DNABert2 88.6
FGBERT 99.5

(CARD-D), and 7 Resistance Mechanisms (CARD-R). Pathogens Prediction Task. This task193

assesses the pathogenic potential of pathogens to cope with the public health risks [29]. We use194

PATRIC core dataset [19], which has 5000 pathogenic bacterial sequences across 110 classes.195

(2) Large-Scale Classification: Enzymes Prediction Task. Enzymes are important catalysts in living196

cells that produce essential molecules needed by living organisms through chemical reactions [73].197

ENZYME dataset [6] contains 5,761 enzyme sequences, which are grouped into 7 classes according198

to their corresponding EC numbers. Virulence Factors (VFs) Prediction Task. Viruses are common199

in both humans and different habitats, and they are always changing. Therefore, accurately identifying200

VFs is extremely important for understanding the relationship between the microbiome and disease.201

VFDB dataset [7] for virulence factors prediction contains 8,945 VF sequences across 15 categories,202

detailing structural features, functions, and mechanisms of major bacterial pathogens. Nitrogen (N)203

Cycling Process Prediction Task. The N cycle is a collection of important biogeochemical pathways204

in the Earth’s ecosystems, and quantitatively studying the functional genes related to the N cycle [20].205

NCycDB dataset [75] contains 68 genes (sub)families and covers 8 N cycle processes with 219,089206

representative sequences, each involving a specific gene family.207

(3) Fine-Grained Classification: ARG Prediction. Targets a more precise and detailed prediction of208

antibiotic resistance properties, which helps in exploring ARG characteristics comprehensively and209

detecting potential resistant mechanisms [34]. NCRD dataset [42] is dedicated to the fine-grained210

categorization of microbial resistance genes, differentiating in detail between 420 Gene Families,211

1,912 specific Gene Names, 30 major Resistance, and 10 different Mechanisms.212

(4) Hierarchical-Data Classification: Disease Prediction Task. Predicting host phenotypes and213

identifying relevant markers are pivotal for unraveling the complexities of host-microbiome interac-214

tions [72, 55], and the impact of such interactions on disease [26, 43, 47] can be explored using the215

phylogenetic structure and relative abundance of microbial taxa [21]. Cirrhosis dataset [56] comprises216

232 data cases on microbiome liver disease. Type 2 Diabetes (T2D) dataset [30] comprises 440 data217

cases on glucose metabolism disorders.218

4.3 Evaluation Metrics219

Table 6: Comparison of ARG prediction meth-
ods on CARD. (− means inability to predict
specific category).

Method ARG Prediction
CARD-A CARD-D CARD-R

RF (3-mer) 22.4 36.1 47.8
SVM (3-mer) 27.6 33.6 43.3
AdaBoost (3-mer) 36.9 36.4 36.2
LSTM (w2v) 47.1 37.5 47.5
LSTM (one-hot) 46.2 39.1 41.5
BiLSTM (w2v) 43.3 35.5 36.3
BiLSTM (one-hot) 47.4 38.9 58.9
BiLSTM-Att. (w2v) 31.9 43.5 35.1
BiLSTM-Att. (one-hot) 46.7 31.2 41.6
VT 57.1 49.8 55.7
HyenaDNA 50.9 53.6 66.2
NT 58.5 56.2 68
DNABERT2 65.2 51.5 61.2
FGBERT 78.6 57.4 69.4
DeepARG - 52.2 65.3
PLM-ARG - - 68.1
RGI - - -

For multi-classification tasks, we use the Macro F1-220

score (M.F1) as the primary metric to accommodate221

the inherent class imbalance present within datasets.222

For the Fine-grained Benchmark, Accuracy, Preci-223

sion, Recall, and False Negative Rate (FNR) are in-224

corporated. FNR is particularly critical for ARG225

prediction scenarios where the consequences of over-226

looking true positives are severe, necessitating nu-227

anced assessments of the model’s ability to identify228

them reliably.229
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5 Results and Insights230

5.1 Results231

Small-Scale Benchmarks. Appendix Tab. A5 and A6 show M.F1 for gene operon and pathogen232

prediction on two small-scale datasets, E-K12 and PATRIC (sequence length less than 5000). General233

models (RF to VT) test K-mer (K=3), one-hot, and w2v data encoding methods, and BiLSTM234

(one-hot) and LSTM (w2v) performed best. FGBERT achieves superior results, far exceeding235

other methods, highlighting the necessity of metagenomic pre-training. Models like CNN-MGP [1],236

PlasGUN [16], and DeepMicrobes [35], designed for binary classification, are unsuitable for our237

multi-classification benchmark. Tab. 6 evaluates various models on three ARG prediction datasets:238

CARD-A, CARD-D, and CARD-R. In General models, the word2vec data encoding method performs239

better. FGBERT outperforms HyenaDNA, NT, and DNABERT2. This suggests that genomic models240

may not be sufficient to cope with the complexity of metagenomic data, which involves multiple241

microbial interactions and environments. In Specialized models, DeepARG [5] performs well on242

CARD-D and CARD-R but unable to predict CARD-A. Since RGI [4] itself is based on CARD243

dataset, it is not included.244
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Figure 2: Comparison of different data encoding
methods across tasks.

Large-Scale Benchmarks. Tab. 7, 8and 9245

summarize M.F1 across three large-scale246

datasets (sequence length more than 5000): EN-247

ZYME, VFDB, and NCycDB, the analysis re-248

flects a similar trend. FGBERT demonstrates249

exceptional efficacy across all datasets, signifi-250

cantly outperforming specialized models such251

as ViBE [22] and CLEAN [82]. Conversely,252

models designed for binary classification, such253

as ViraMiner [71], deepVF [80], HyperVR [27]254

and DeepVirFinder [61] do not align well with255

our benchmark’s requirements. However, Hy-256

perVR’s innovative approach to predicting VF257

and ENZYME concurrently has inspired poten-258

tial developments in OpenMeta for simultaneous259

multi-task predictions. Fig. 2 compares different data encoding methods. Details can be found in260

Appendix E. From K-mer to language model representation, model performance gradually improves,261

indicating that capturing contextual information in the sequence is important.262
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Figure 3: Comparison of different methods
on each ARG category.

Fine-Grained Benchmarks. The fine-grained263

NCRD dataset provides a more rigorous test for ARG264

prediction tasks. As depicted in Fig. 3, FGBERT265

performs well in all resistance categories, identify-266

ing 30 antibiotic classes. In comparison, DeepARG267

identified 17, and RGI identified 22, with the unde-268

tected classes shown in light gray. Moreover, the 4269

methods have high accuracy in beta-lactam, amino-270

glycoside, and multidrug categories. Furthermore,271

Tab. 11 shows that FGBERT and RGI cover all NCRD272

classes, while DeepARG is limited to specific classes,273

likely due to limitations in its training data. PLM-274

ARG has a high false negative rate, as shown in275

Tab. 10, indicating its limitations in application.276

Hierarchical-Data Benchmark. In the host phe-277

notype prediction task, we use microbial taxa’s relative abundance values as input. Since abundance278
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Table 10: Comparison of M.F1 for ARG Prediction on different categories of NCRD Datasets. (−
indicates inability to predict specific categories. FNR is the false negative rate, lower is better).

Method NCRD-Gene Family (420) NCRD-Gene Name (1900) NCRD-Resistance (30) NCRD-Mechanisms (11)
Acc. Pre. Re. F1 FNR Acc. Pre. Re. F1 FNR Acc. Pre. Re. F1 FNR Acc. Pre. Re. F1 FNR

DeepARG - - - - - 0.63 1.00 0.43 0.60 0.57 0.97 0.99 0.51 0.65 0.42 - - - - -
RGI 0.56 0.97 0.36 0.50 0.61 0.50 1.00 0.26 0.42 0.74 0.56 1.00 0.36 0.52 0.64 0.61 0.62 0.59 0.57 0.51
PLM-ARG - - - - - - - - - - 0.96 0.87 0.74 0.88 12.38 - - - - -
FGBERT 0.94 0.96 0.94 0.93 0.03 0.93 0.93 0.92 0.93 0.05 0.99 0.99 0.99 0.99 0.31 0.99 0.99 0.98 0.99 0.01

Table 14: Comparative Analysis of Pre-training Strategies in Genomic and Metagenomic Models.
Model Pre-training Dataset Token Network Architecture Application Tasks Benchmark

DNABERT2
Human and
multi-species
genome

BPE Advanced BERT
with MLM+ ALiBi

Promoter detection,
Transcription factor,
binding site prediction

28 datasets
on GUE benchmark

HyenaDNA
Human
reference
genome

6-mer Simple stack of Hyena
operators with NTP

Gene regulation prediction,
chromatin accessibility
analysis

8 datasets
on GenomicBenchmarks
+18 prediction tasks
on NT

NT
Human
reference
genome

6-mer
Encoder-only
Transformer
+ RoPE

Transcription factor binding,
enhancer-promoter
interaction prediction

18 prediction tasks

FGBERT Multi-species
metagenome

Protein-based
genomic
representation

Advanced BERT with
contrastive learning

Metagenomic sequences
and functions analysis

14 datasets
on Metagenomic
benchmark

data alone cannot reveal the hierarchical structure among species and introduces data redundancy, we279

adopt a phylogenetic tree-based modeling approach to process abundance data [12], effectively reduc-280

ing redundancy and retaining species information. After constructing a phylogenetic tree through281

multiple sequence alignment, abundance values are filtered and assigned to the tree’s nodes, and the282

values of child nodes are summed to their parent nodes. Finally, the phylogenetic tree is converted283

into a matrix format for analysis. Tab. 12 shows that the specialized model PopPhy outperforms the284

general models on Cirrhosis dataset. LSTM and Transformer models are not tested because they285

are mainly applicable to sequence data and have difficulty capturing the hierarchical structure and286

phylogenetic relationships between species. At present, no model can process both metagenomic287

sequence and hierarchical phylogenetic tree data, indicating a key direction for future research.288

5.2 Observations and Insights289

Table 11: Comparisons of different ARG pre-
diction methods on NCRD.

Method Categories of NCRD Dataset
Gene Family Gene Name Resistance Mechanisms

DeepARG ✓ ✓ ✓
RGI ✓ ✓ ✓ ✓
PLM-ARG ✓
FGBERT ✓ ✓ ✓ ✓

Table 12: Performance of General vs. Spe-
cialized Models on Cirrhosis dataset.

Method M.F1 AUC MCC Pre. Re.
RF 0.79 0.93 0.61 0.88 0.87
SVM 0.77 0.89 0.57 0.85 0.84
AdaBoost 0.70 0.71 0.43 0.72 0.71
CNN 0.84 0.89 0.68 0.81 0.80
PopPhy 0.81 0.90 0.61 0.83 0.82

Table 13: Performance of General vs. Spe-
cialized Models on T2d dataset.

Method M.F1 AUC MCC Pre. Re.
RF 0.66 0.72 0.33 0.67 0.67
SVM 0.61 0.63 0.23 0.61 0.61
AdaBoost 0.70 0.70 0.42 0.70 0.70
CNN 0.59 0.65 0.19 0.60 0.59
PopPhy 0.58 0.64 0.18 0.59 0.58

(A) Metagenomic Pre-trained Models vs. Genomic290

Pre-trained Models: Tab. 14 compares genomic291

and metagenomic pre-trained models, including pre-292

training datasets, token embedding methods, network293

architectures, application tasks, and benchmarks. In294

terms of Pre-Training Datasets, DNABERT2 [84]295

utilizes human and multi-species genomes for its296

foundational model pre-training, covering a vast297

dataset of 27.5 billion nucleotide bases from the Hu-298

man reference genome [32] and 135 species genomes299

across seven categories. HyenaDNA [49], on the300

other hand, is pre-trained solely on a single hu-301

man reference genome. NT [9] pre-trains on three302

datasets: the human reference genome [32], 3,202303

diverse human genomes, and 850 genomes from sev-304

eral species. In contrast, FGBERT [13] employs305

MGnify database [62], comprising 2,973,257,435306

metagenomic sequences from various microbial com-307

munities. For Token Embedding, DNABERT2 ap-308

plies Byte Pair Encoding (BPE) [67], while both Hye-309

naDNA and NT use 6-mer tokenization. FGBERT310

utilizes a unique protein-based genomic representation tailored for metagenomic sequences. Re-311

garding Network Architecture, both DNABERT2 and FGBERT adopt BERT-like structures [11];312

DNABERT2 enhances its predecessor by replacing learned positional embeddings with Attention with313

Linear Biases (ALiBi) [54] to eliminate input length limitations and incorporates Flash Attention [10]314
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to boost computational efficiency. FGBERT introduces contrastive learning to strengthen the intricate315

relationships between metagenomic sequences and functions, proposing two pre-training tasks to316

enhance co-representation learning of metagenomic gene sequences and functions. HyenaDNA317

employs a simple stack of Hyena operators for next token prediction, while NT uses an encoder-only318

Transformer architecture with Rotary Positional Embeddings (RoPE) [70] to enable reasoning over319

longer sequences during training.320

Figure 4: Phylogenetic Tree Representation of Mi-
crobial Communities for Hierarchical Data.

(B) Sequence Data vs. Hierarchical Data:321

Why Use Hierarchical Data? Hierarchical322

data introduce an additional dimension by pro-323

viding interrelationships and evolutionary con-324

text among microbial communities, enriching325

metagenomic research. Unlike traditional abun-326

dance data, hierarchical data offer not only327

quantitative information but also capture the328

complex hierarchical relationships between mi-329

crobes, which is crucial for exploring host-microbe interactions [68].330

Why Use Phylogenetic Tree Structures for Hierarchical Data? Tree structures naturally represent331

the hierarchical and phylogenetic relationships among microbial taxa. Each node represents a332

microbial taxon, and the connections between nodes reflect their evolutionary relationships. This333

helps to reveal the evolutionary links between different microbial taxa, integrating complex biological334

information (such as abundance and hierarchical data) into a unified data structure. By accumulating335

the abundance values from child nodes to their parent nodes and converting the phylogenetic tree into336

a matrix format, each row represents a level in the tree, and columns represent different microbes337

or attributes. As shown in Fig. 4, this matrix-based representation effectively combines abundance338

and hierarchical information. This approach is particularly useful in disease prediction tasks, such339

as studies on Cirrhosis and T2D, demonstrating how understanding the hierarchical structure of340

microbial communities can elucidate the complexity of host-microbe interactions. This hierarchical341

method provides powerful tools for the precise identification and functional analysis of disease-related342

microbial communities. Our benchmark framework underscores the importance and benefits of using343

hierarchical data to enhance the accuracy and depth of metagenomic analysis.344

6 Conclusion and Future Work345

Conclusion. In this paper, we introduce OpenMeta, the first comprehensive benchmark tailored for346

metagenomic function prediction. This benchmark standardizes the evaluation process across various347

metagenomic tasks and facilitates the design of metagenomic models through a unified approach.348

Our extensive analysis includes comparisons between pre-trained and not pre-trained models, general349

versus specialized models, and sequence data-based versus hierarchical data-based models. Inspired350

by OpenMeta, we emphasize the necessity of pre-trained metagenomic models in this field and351

advocate for the community’s engagement with metagenomic models trained on hierarchical data352

such as phylogenetic trees. This approach can profoundly enhance our understanding of the complex353

relationships and interactions within microbial communities.354

Limitations. It is crucial to note that OpenMeta primarily serves as an evaluative tool that aggregates355

and assesses a wide array of multi-class datasets, including both sequence and hierarchical data.356

While this benchmark significantly contributes to the field, it does not involve the development of357

new models but focuses on the assessment of existing methodologies. This limitation underscores the358

necessity for further research and development in creating comprehensive models that can process359

both sequence and hierarchical inputs simultaneously.360

Future Work. We identify a significant gap in the current landscape: the absence of a unified361

metagenomic model capable of simultaneously processing sequence and hierarchical data from362

phylogenetic trees. Addressing this gap represents a promising direction for future work and could363

significantly advance our holistic understanding of metagenomics.364
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how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or587

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing588

the appropriate section of your paper or providing a brief inline description. For example:589

• Did you include the license to the code and datasets? [Yes] See Section E.590

• Did you include the license to the code and datasets? [No] The code and the data are591

proprietary.592

• Did you include the license to the code and datasets? [N/A]593

Please do not modify the questions and only use the provided macros for your answers. Note that the594

Checklist section does not count towards the page limit. In your paper, please delete this instructions595

block and only keep the Checklist section heading above along with the questions/answers below.596
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section A602
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them? [Yes]604
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(a) Did you state the full set of assumptions of all theoretical results? [N/A]606

(b) Did you include complete proofs of all theoretical results? [N/A]607
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open-source.620

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]621
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Supplement Material633

A Social Impacts634

Metagenomics offers significant benefits in fields like medicine and environmental science, yet it also635

poses dual-use concerns. For instance, technologies designed to minimize disease can theoretically636

be repurposed for harmful uses, such as biological weapons. The advancement of metagenomic637

benchmarks could inadvertently facilitate such misuse. Additionally, while these technologies can638

accelerate experimental processes, the need for traditional wet lab experimentation remains crucial.639

Thus, developing robust, clinically validated benchmarks is essential for integrating metagenomic640

methods into medical practice responsibly. This approach will ensure technological advances support641

health and environmental management without replacing foundational experimental techniques.642

B Necessity of Developing Metagenomic Benchmarks643

Table A1: Comparison of Downstream Tasks for Genomic and Metagenomic Pre-trained Models.
The repetition of Transcription Factor Prediction tasks in the human and mouse categories suggests
that it may not present significant challenges. Demo and Dummy datasets are usually artificially
generated.

Model Category Dataset Task #Seq. #Class

Core Promoter Detection (3) 4,904 2
Transcription Factor Pred. (5) 32,378 2
Promoter Detection (3) 4,904 2Human

Splice Site Detection (1) 36,496 3
Mouse Transcription Factor Pred. (5) 6,478 2
Yeast Epigenetic Marks Pred. (10) 11,971 2

DNABERT2

Virus Covid Variant Class. (1) 77,669 9
Enhancers Cohn 27,791 2
Enhancers Ensembl 154,842 2
Regulatory 289,061 3
Nontata Promoters 36,131 2

Human

OCR Ensembl 174,756 2
Coding vs Intergenomic 100,000 2Demo Human vs Worm 100,000 2

HyenaDNA

Dummy Mouse Enhancers

Regulatory Elements Class.

1,210 2
Yeast Epigenetic marks Pred. (10) 25,953 10
- Promoter sequence Pred. (3) 59,194 2
- Enhancer sequence Pred. (2) 14,968 3
- Splice site Pred. (3) 19,775 2
- Chromatin Profiles Prediction (1) - 919

NT

- Enhancer Activity (1) 14,968 50
Mul. Spe. E. coil K12 Gene Structure Pred. 4,315 1379
Mul. Spe. CARD-A ARG Pred. on AMR Gene Family 1,966 269
Mul. Spe. CARD-D ARG Pred. on Drug Class 1,966 37
Mul. Spe. CARD-R ARG Pred. on Resistance Mechanism 1,966 7
Mul. Spe. VFDB Virulence Factor Pred. 8,945 15
Mul. Spe. ENZYME Enzyme Function Pred. 5,761 7
Mul. Spe. PATRIC Pathogenic Genes Pred. 5,000 110

FGBERT

Mul. Spe. NCycDB N Cycling Genes Pred. 213,501 68

In our analysis of applications and benchmarks, Table A1 provides a detailed comparison of down-644

stream tasks for genomic and metagenomic pre-trained models, highlighting datasets, tasks, sequence645

numbers, and class counts. DNABERT2 [84] primarily engages in binary classification tasks such as646

promoter and splice site detection in human, mouse, and yeast datasets. The numbers in parentheses647

indicate the number of independent sub-datasets for each task, and the sequence count reflects the648

size of the first sub-dataset. Notably, the Transcription Factor Prediction task recurs identically649

for both human and mouse species, suggesting a uniform difficulty level and potentially reducing650

the challenge due to its repetition across similar species. HyenaDNA [49]’s downstream tasks are651

divided into two parts: GenomicBenchmarks, which includes 8 regulatory element classification652

datasets with sequence lengths ranging from 200 to 500, and NT’s 18 prediction tasks. Beyond human653

17



Table A2: The detailed information of supported datasets in OpenMeta with source link.
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Year Link Description

SVM 51 51 51 Machine Learning
RF 51 51 51 Machine Learning
AdaBoost 51 51 51 Machine Learning
CNN 51 51 51 Deep Learning
LSTM 51 51 51 Deep Learning
Vanilla Transformer 51 51 51 Deep Learning
FGBERT 51 51 51 2024 Metagenomic pre-trained model for functional prediction.
DNABERT2 51 51 51 2023 https://github.com/MAGICS-LAB/DNABERT_2 Genomic pre-trained model trained on multi-species genomes.
HyenaDNA 51 51 51 2023 https://github.com/HazyResearch/hyena-dna Genomic pre-trained model trained over human reference genome.
Nucleotide Transformer 51 51 51 2023 https://github.com/instadeepai/nucleotide-transformer Genomic pre-trained model trained on diverse human genomes.
CNN-MGP 51 51 51 2019 https://github.com/rachidelfermi/cnn-mgp Gene prediction using CNN network.
PlasGUN 51 51 51 2020 https://github.com/zhenchengfang/PlasGUN Gene prediction tool using multiple CNN network.
PLM-ARG 51 51 51 2023 https://github.com/Junwu302/PLM-ARG ARG identification framework using a pretrained protein language model.
DeepARG 51 51 51 2018 https://github.com/gaarangoa/deeparg ARG prediction software by alignment and metagenomic sequences.
RGI 51 51 51 2023 https://github.com/arpcard/rgi ARG prediction tools for annotating genes from scratch.
DeepVirFinder 51 51 51 2020 https://github.com/jessieren/DeepVirFinder Viral sequences prediction with reference and alignment-free CNNs.
ViBE 51 51 51 2022 https://github.com/DMnBI/ViBE Eukaryotic viruses identification with hierarchical BERT model.
ViraMiner 51 51 51 2019 https://github.com/NeuroCSUT/ViraMiner Viral genomes identification in human samples.
DeepVF 51 51 51 2021 http://deepvf.erc.monash.edu/ Viral factor identification with hybrid framework using stacking strategy.
HyperVR 51 51 51 2023 https://github.com/jiboyalab/HyperVR Viral factors and mixing of ARG simultaneous prediction.
CLEAN 51 51 51 2023 https://github.com/tttianhao/CLEAN Enzyme function prediction using contrastive learning.
DeepMicrobes 51 51 51 2020 https://github.com/MicrobeLab/DeepMicrobes Taxonomic classification for metagenomics with self-attention model.
PopPhy-CNN 51 51 51 2020 https://github.com/YDaiLab/PopPhy-CNN Host Phenotypes prediction by systematic tree embedded CNN network.

datasets, HyenaDNA incorporates Demo and Dummy datasets, typically used for initial testing and654

validation, though they may lack the data authenticity and application value of specifically collected655

datasets. Furthermore, NT [9] covers 18 downstream tasks, primarily centered on transcription factor656

binding, promoter prediction, and chromatin accessibility analysis, emphasizing its close relationship657

with gene regulation mechanisms. While these genomic benchmarks perform well in single-species658

analyses, they often fail to capture the inherent complexities of multi-species interactions present in659

metagenomics. Specifically, the limitations of genomic benchmarks include (1) reliance on single-660

species data, which overlooks the complex interactions in metagenomics; (2) lack of data diversity,661

as their datasets are typically structured and uniform, lacking the environmental diversity required for662

metagenomic studies; (3) limited functional prediction, focusing on sequence-based predictions663

without integrating crucial functional annotations; and (4) inadequate model adaptability, as models664

trained on single-species genomic data struggle to adapt to multi-species metagenomic data.665

In contrast, FGBERT [13], as a metagenomic pre-trained model, aims to address interactions within666

different microbial communities and predict functions across various environments, covering diverse667

tasks such as gene structure analysis, functional gene prediction, pathogenicity assessment, and668

nitrogen cycle prediction. These tasks span gene, functional, bacterial, and environmental levels,669

with input sizes ranging from 1,000 to 213,000 sequences, reflecting the diversity and complexity670

of metagenomic data. Therefore, incorporating FGBERT’s multi-species genomic datasets into our671

OpenMeta benchmark not only substantiates its proficiency in deciphering complex microbial func-672

tions but also provides a solid framework for comparing and evaluating different models’ performance673

in practical applications. This approach enhances our understanding and utilization of metagenomic674

pre-trained models in biotechnology and environmental science.675

C Datasets676

We provide CSV files containing the categories and quantities of each dataset in the .zip fils.677

We provide detailed descriptions of the 12 open-source datasets as shown in Appendix Table A2.678

Appendix Table A3 shows detailed statistics for all sequence datasets in OpenMeta. The ‘Num. Seqs.’679

column indicates the total number of sequences in the data set, and the ‘Num. Cates’ column shows680

the number of different categories in the data set. The ‘Seqs/Cate Range’ column provides the range681

of sequence numbers in each category, from smallest to largest. The ‘Avg. Len.’ column indicates the682

average length of the sequences. The ‘Source’ column describes the source of the data. The ‘Task683

Type’ column indicates the type of task for which the data set was used.684

Appendix Table A4 shows detailed statistics for all hierarchical datasets in OpenMeta. The ‘Hierar-685

chical Taxonomic Levels’ column means the Taxonomic Distribution in Metagenomic Datasets for686
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Table A3: Statistical analysis of all sequence datasets.

Dataset Num. Seqs. Num. Cates Seqs/Cate Range (Min-Max) Avg. Len. Source Task Type
E-K12 4312 1379 1-106 510.96 Public Database Multi-Classification
CARD-A AMR Gene Family 1966 269 1-229 1088.1 Public Database Multi-Classification
CARD-D Drug Class 1966 37 1-513 1088.1 Public Database Multi-Classification
CARD-R Resistance Mechanism 1966 7 1-1263 1088.1 Public Database Multi-Classification
PATRIC Pathogenic Genes? 5000 110 1-1081 307.82 Public Database Multi-Classification
ENZYME 5761 7 288-2055 426.76 Public Database Multi-Classification
VFDB 8945 15 5-1683 415.47 Public Database Multi-Classification
NCycDB Nitrogen Cycling Genes 219089 69 1-20548 347.03 Public Database Multi-Classification
NCRD-N Gene Name 104363 1912 1-18370 407.44 Public Database Multi-Classification
NCRD-F Gene Family 104363 420 2-35364 407.44 Public Database Multi-Classification
NCRD-C Categories 104363 29 1-14159 407.44 Public Database Multi-Classification
NCRD-R Resistance Mechanism 104363 10 166-38073 409.79 Public Database Multi-Classification

Table A4: Statistical analysis of all hierarchical datasets.

Dataset #Seq. Hierarchical Taxonomic Levels Source Tasks TypeKindom Phylum Class Order Family Genus Specialized

Cirrhosis 542 3 15 27 40 76 186 531 Public Database Binary-Classification
T2D 606 3 17 29 48 94 216 587 Public Database Binary-Classification

Cirrhosis and T2D. ‘Kingdom’, ‘Phylum’, ‘Class’, ‘Order’, ‘Family’, ‘Genus’, and ‘Specialized’ are687

all different taxonomic levels in the classification of organisms. Together, these taxonomic levels form688

the system of taxonomy, which is commonly used to describe and classify the planet’s biodiversity.689

Each level represents a classification of organisms from broad to specific.690

D Results691

Appendix Table A5 and A6 show the M.F1 metrics for gene operon and pathogen prediction on two692

small-scale datasets, E-K12 and PATRIC (sequence length less than 5000).693

E Implementation Details694

In OpenMeta, we compare several genomic pre-trained models, including FGBERT, DNABERT2,695

NT, and HyenaDNA. Official implementations of these models can be accessed at the follow-696

ing URL links: HyenaDNA: https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen-hf,697

DNABERT2: https://huggingface.co/zhihan1996/DNABERT-2-117M, and Nucleotide Transformer:698

https://github.com/instadeepai/nucleotide-transformer. We have followed the default hyperparameters699

described in their respective publications and maintained consistent settings across all datasets,700

evaluating models at the checkpoints where validation loss was minimized. For sequence datasets, we701

investigate the impact of three encoding strategies on model performance: K-mer (K=3) frequency702

features, one-hot encoding features, and mean pooling embeddings from genomic and metagenomic703

models such as HyenaDNA, NT, DNABERT2, and FGBERT. The Macro F1-score (M.F1) is used as704

Table A5: Gene Operon prediction on E-K12.

Method E-K12

RF (3-mer) 20.2
SVM (3-mer) 38.6
AdaBoost (3-mer) 39.9
LSTM (w2v) 40.4
LSTM (one-hot) 38.1
BiLSTM (w2v) 40
BiLSTM (one-hot) 40.1
BiLSTM-Att. (w2v) 38.2
BiLSTM-Att. (one-hot) 40.8
VT 43.3
HyenaDNA 42.4
NT 45.1
DNABert2 51.7
FGBERT 61.8
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Table A6: Pathegons prediction on PATRIC.

Method E-K12

RF (3-mer) 20.2
SVM (3-mer) 38.6
AdaBoost (3-mer) 39.9
LSTM (w2v) 40.4
LSTM (one-hot) 38.1
BiLSTM (w2v) 40
BiLSTM (one-hot) 40.1
BiLSTM-Att. (w2v) 38.2
BiLSTM-Att. (one-hot) 40.8
VT 43.3
HyenaDNA 42.4
NT 45.1
DNABert2 51.7
FGBERT 61.8

the primary evaluation metric. In fine-grained sequence datasets, particularly the NCRD dataset for705

ARG prediction tasks, we evaluate three domain-specific models: the template-matching-based RGi,706

the deep learning-based DeepARG, and the pre-trained language model-based approaches PLM-ARG707

and FGBERT. Metrics used for evaluation included Accuracy, Precision, Recall, Macro F1-score, and708

False Negative Rate. For hierarchical datasets, due to the limited number of labels per hierarchical709

gene, we employed a variety of supervised models specifically designed for disease prediction, such710

as RF, SVM, Adaboost, and 1D-CNN, in addition to the specialized PopPhy model.711

F Observations and Insights712
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Figure A1: Performance comparison of FGBERT, DeepARG,
PLM-ARG, and RGI on each antibiotic-resistant category.

Fine-Grained Benchmarks.713

Regarding ARG resistance714

category classification on the715

NCRD dataset, the metagenomic716

pre-trained method FGBERT717

outperforms the other three ARG718

prediction methods in all per-719

formance metrics and almost all720

resistance categories, as shown721

in Figure A1. The performance722

results in Table 10 show that723

DeepARG, a combination of724

traditional template matching725

methods and deep learning,726

performs well in the gene name727

and resistance categories but728

fails to identify the gene family and mechanism categories, which is since no relevant data are729

included in the model training process or insufficient information is available in the matching730

dataset.RGI, as a template matching method, has a more general performance in all categories.731

PLM-ARG based on protein language modeling provided results and high false-negative rates only732

in the resistance category. FGBERT, as a metagenomic pre-trained model, performs well in all733

categories, demonstrating its comprehensiveness and high performance in dealing with fine-grained734

ARG assays, further proving the necessity and advantages of metagenomic pre-trained models.735

F.1 Genomic and Metagenomic Benchmark736

Relation between Genomic Benchmark and Metagenomic Benchmark. While these benchmarks737

excel in single-species genome analysis, they often fail to capture the complex interactions among738

multiple species inherent in metagenomics. In contrast, metagenomic benchmarks aim to address739

interactions within diverse microbial communities and functional predictions in various environments,740
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covering tasks such as gene structure analysis, functional gene prediction, pathogenicity assessment,741

and nitrogen cycle prediction. Specifically, the limitations of genomic benchmarks include (1) their742

reliance on single-species data, which misses the complex interactions in metagenomics; (2) lack of743

data diversity, as their datasets are typically structured and uniform, lacking the environmental diver-744

sity needed for metagenomic studies; (3) limited functional prediction, focusing on sequence-based745

predictions without integrating crucial functional annotations; and (4) insufficient model adaptabil-746

ity, as models trained on single-species genomic data struggle with multi-species metagenomic data.747

These deficiencies underscore the urgent need to develop metagenomic benchmarks that can integrate748

multi-species interactions and complex environmental factors.749

(A) Metagenomic Pre-trained Models vs. Genomic Pre-trained Models:750

Table 14 compares genomic and metagenomic pre-trained models, including pre-training datasets,751

token embedding methods, network architectures, application tasks, and benchmarks. In terms of Pre-752

Training Datasets, DNABERT2 [84] utilizes human and multi-species genomes for its foundational753

model pre-training, covering a vast dataset of 27.5 billion nucleotide bases from the Human reference754

genome [32] and 135 species genomes across seven categories. HyenaDNA [49], on the other hand,755

is pre-trained solely on a single human reference genome. Nucleotide Transformer (NT) [9] pre-trains756

on three datasets: the human reference genome [32], 3,202 diverse human genomes, and 850 genomes757

from several species. In contrast, FGBERT [13] employs the MGnify database (updated February758

2023) [62], comprising 2,973,257,435 metagenomic sequences from various microbial communities.759

For Token Embedding, DNABERT2 applies Byte Pair Encoding (BPE) [67], while both HyenaDNA760

and NT use 6-mer tokenization. FGBERT utilizes a unique protein-based genomic representation761

tailored for metagenomic sequences.762

Regarding Network Architecture, both DNABERT2 and FGBERT adopt BERT-like structures [11];763

DNABERT2 enhances its predecessor by replacing learned positional embeddings with Attention with764

Linear Biases (ALiBi) [54] to eliminate input length limitations and incorporates Flash Attention [10]765

to boost computational efficiency. FGBERT introduces contrastive learning to strengthen the intricate766

relationships between metagenomic sequences and functions, proposing two pre-training tasks:767

Masked Gene Modeling (MGM) and Triplet Enhanced Metagenomic Contrastive Learning (TMC)768

to enhance co-representation learning of metagenomic gene sequences and functions. HyenaDNA769

employs a simple stack of Hyena operators for next token prediction, while NT uses an encoder-only770

Transformer architecture with Rotary Positional Embeddings (RoPE) [70] to enable reasoning over771

longer sequences during training.772

For Application and Benchmark, Table 2 provides a detailed comparison of downstream tasks for773

genomic and metagenomic pre-trained models, highlighting the datasets, tasks, sequence numbers,774

and class counts. DNABERT2 focuses primarily on binary classifications of promoters and splice775

site detection tasks across human, mouse, yeast, and virus datasets, with the number in parentheses776

indicating the number of independent sub-datasets for each task and the sequence count reflecting777

the size of the first sub-dataset. Notably, Transcription Factor Prediction task recurs for both778

human and mouse species with identical dataset numbers, class numbers, and sequence lengths,779

suggesting a uniform level of difficulty that may not present significant challenges due to its repetitive780

nature across similar species settings. HyenaDNA’s downstream tasks are divided into two parts:781

GenomicBenchmarks, consisting of 8 regulatory element classification datasets with sequence lengths782

ranging from 200 to 500, and NT’s 18 prediction tasks. In addition to the human datasets, HyenaDNA783

includes Demo and Dummy datasets. The inclusion of Demo and Dummy datasets, which are784

typically used for initial testing and validation purposes. Additionally, NT covers 18 downstream785

tasks primarily centered around transcription factor binding, promoter prediction, and chromatin786

accessibility analysis, underscoring its detailed engagement with gene regulation mechanisms. FG-787

BERT engages with various downstream tasks that address multi-species metagenomic sequences788

through multi-class classification challenges. These tasks span across gene, functional, bacterial,789

and environmental levels, accommodating input sizes that range from 1,000 to 219,000 sequences,790

reflecting the diversity and complexity of metagenomic data.791
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