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Abstract

Multimodal image-text models have shown remarkable performance in the past few
years. However, the robustness of such foundation models against distribution shifts
is crucial in downstream applications. In this paper, we investigate their robustness
under image and text perturbations. We first build several multimodal benchmark
datasets by applying 17 image perturbation and 16 text perturbation techniques.
Then we extensively study the robustness of 6 widely adopted models on 3 down-
stream tasks (image-text retrieval, visual reasoning, and visual entailment). We
observe that these powerful multimodal models are sensitive to image/text perturba-
tions, especially to image perturbations. For text, character-level perturbations have
shown higher adversarial impact than word-level and sentence-level perturbations.
We also observe that models trained by generative objectives tend to be more robust.
Our findings in terms of robustness study could facilitate the development of large
image-text models, as well as their deployment for real-world applications.

1 Introduction and Related Work
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Figure 1: Multimodal models are sensitive to image/text perturbations. Take the image-text retrieval
task as an example, perturbed image (i.e., adding pixelation) or perturbed text (i.e., synonym replace-
ment) can both lead to inaccurate retrieval results.

Multimodal learning has drawn increasing attention in the past few years [9, 22| 47} 48], 94, |64,
41} 145, 144, 188) (151 1651 [79, (1}, 164} 91]. Many datasets and models are collected and proposed to
accelerate research in this field. However, despite the extraordinary performance and exciting
potential, multimodal models might be vulnerable under distribution shifts. In Figure[I} we show an
example of CLIP [[64] model’s performance on image-text retrieval under image or text perturbations.
When pixelation is applied to the original image for image-to-text retrieval, the perturbed image
retrieves less relevant or even wrong texts. For text perturbation, we replace words with their synonym
and delete words for text-to-image retrieval. We find the retrieved images changed dramatically even
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though the semantics of the sentence didn’t change. Similar findings have also been observed in
previous works [21} 20, 26, 62].

There is a sizable literature on robustness evaluation of unimodal vision models [89, 95} |16, 13} 127,
631 3, 155157 2, 196]] or unimodal language models [81 (7, 180, 68| 24} 73| [14} 28}, 156l [78]]. However,
robustness evaluation of multimodal image-text models under distribution shift has rarely been
studied [25,[12]]. (More related work can be found in Appendix [5.8). To our best knowledge, there
is currently no benchmark dataset nor a comprehensive study of how the perturbed data can affect
their performance. In this work, we would like to (1) build robustness evaluation benchmarks for
multimodal image-text models, and (2) investigate these models’ robustness under image or text
perturbations in downstream applications. Our contributions can be summarized as follows:

* We build multimodal robustness evaluation benchmarks by leveraging existing datasets and
tasks, e.g., image-text retrieval (Flicker30K, COCO), visual reasoning (NLVR2), and visual
entailment (SNLI-VE). We design 17 image perturbation and 16 text perturbation strategies
to extend them to multimodal evaluation settings.

* We observe that multimodal image-text models are more sensitive to image perturbations
than text perturbations, while for text perturbations, character-level perturbations showed
higher impact than word-level and sentence-level perturbations.

* We introduce a new metric, termed MMI (MultiModal Impact score), to account for the
relative performance drop under distribution shift in downstream applications.

2 Multimodal Robustness Benchmark under Distribution Shift

To evaluate the robustness of large pretrained multimodal models under distribution shift, we start by
building several evaluation benchmark datasets, by perturbing the original image-text pairs on either
image side or text side.

Image Perturbation In this work, we adopt the perturbation strategies from ImageNet-C [33]] and
Stylize-ImageNet [23] 58]]. The reason we include Stylize-ImageNet is because it is an effective
method to perturb the original image by breaking its shape and texture [23]]. The perturbations are
drawn into five categories: Noise, Blur, Weather, Digital, and Stylize. Specifically, we have 17 image
pertubation techniques (1) Noise: Gaussian Noise, Shot Noise, Impulse Noise, Speckle Noise; (2)
Blur: Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur; (3) Weather: Snow, Frost,
Fog, Brightness; (4) Digital: Contrast, Elastic, Pixelate, JPEG Compression; and (5) Stylize.
Note that real-world corruptions can manifest themselves at varying intensities, we thus introduce
variation for each corruption following [33} 23} 58]]. In our evaluation setting, each category has five
levels of severity [1, 2, 3, 4, 5], resulting in 85 perturbation methods in total. More details can be
found in the Appendix [5.2] These strategies are commonly considered as synthetic distribution shifts,
and can serve as a good starting point since they are precisely defined and easy to apply. Examples of
perturbed images from COCO dataset [50] are shown in the Appendix[5.4]

Text Perturbation To simulate the real-world distribution shift in language, we design the text
perturbation into three categories: character-level, word-level and sentence-level. In detail, for
character-level perturbation, we adopt 6 strategies from [54], including Keyboard, OCR, Character
Insert (CI), Character Replace (CR), Character Swap (CS), Character Delete (CD). These
perturbations can be considered as simulating real-world typos or mistakes during typing. For
word-level perturbation, we adopt 5 strategies from EDA and AEDA [83},/40], including Synonym
Replacement (SR), Word Insertion (WR), Word Swap (WS), Word Deletion (WD), and Insert
punctuation (IP). These perturbations aim to simulate different writing habits that people may
replace, delete, or add words to express the same meaning. For sentence-level perturbation, (1) we
first adopt the style transformation strategies from [42} [18] [70} 69], i.e., transferring text style into
formal, casual, passive, and active; (2) we also adopt the back translation method from [54]. These
perturbations will focus more on language semantics, due to the differences of speaking/writing styles,
or translation error. For strategies within character-level and word-level, we apply 5 perturbation
levels [0.15,0.20,0.25, 0.30, 0.35], while for strategies within character-level, there is only one level.
This leads to 60 text perturbation methods in total. Examples of the text perturbation of captions in
Flickr30K dataset [90] and more details about each text perturbation strategy can be found in the

Appendix [5.3]and Appendix [5.5]



Evaluation Tasks and Datasets We select three widely adopted downstream tasks for a compre-
hensive evaluation on the robustness of multimodal image-text models, including image-text retrieval,
visual reasoning (VR), and visual entailment (VE). For each task, we perturbed the corresponding
datasets, i.e., Flickr30K [90] and COCO [350] for image-text retrieval, and NLVR2 [[/4]] for visual
reasoning, SNLI-VE [86) 87]] for visual entailment, using the image perturbation (IP) and text pertur-
bation (TP) methods introduced above, which results in: (1) Flickr30K-IP, Flickr30K-TP, COCO-IP,
and COCO-TP for image-text retrieval evaluation; (2) NLVR2-IP and NLVR2-TP for visual reasoning
evaluation; and (3) SNLI-VE-IP and SNLI-VE-TP for visual entailment evaluation.

3 Experiments and Results

For evaluation, we select six representative large pretrained multimodal models which publicly
released their pretrained models, including CLIP [64], ViLT [41], ALBEF [45], BLIP [44], TCL
[88]], and METER [15]]. To qualitatively analyze the multimodal image-text models’ robustness
under perturbations, we propose a new impact score MMI (multimodal impact score) to calculate the
averaged performance ("ave") drop compared with the non-perturbed performance ("clean"), which
is defined as: MMI = (s. — sp)/s., Where s,, is the perturbed score and s is the clean score. More
experimental settings can be found in the Appendix [5.6

Table 1: Image-Text Retrieval results of IP dataset (averaged RSUM), where the most effective
perturbation results are marked bold and the least effective perturbation results are underlined.

Noise Blur Weather Digital Stylize

Dataset Method | Clean |Gauss. Shot Impulse Speckle|Defocus Glass Motion Zoom | Snow Frost Fog Bright|Contrast Elastic Pixel JPEG |Stylize| ave | Impact

CLIPZS |533.7|501.7 5042 4812 5155 | 502.1 530.1 509.7 457.8|470.7 495.6 519.7 530.1 | 515.4 510.4 469.5 524.6| 447.6 [499.2
CLIPFT |544.3|500.1 503.8 479.1 522.1 | 493.3 536.9 513.3 444.4 464.4 503.2 529.7 543.5| 521.5 513.9 453.9 528.6| 436.9 (499.3
TCLZS |563.8|464.9 467.0 4584 498.0 | 429.8 506.6 388.5 251.3|407.3 449.5 434.2 509.1 | 473.2 434.4 247.2 502.2| 343.4 |427.4
Flickr30K TCLFT |573.4(529.9 532.6 527.7 551.6 | 504.5 566.0 513.9 397.3 |521.7 551.0 554.1 568.0 | 557.1 421.0 372.0 555.4|448.7 |516.2
ALBEF FT| 577.7 | 533.8 538.3 532.0 557.8 | 528.8 569.2 516.0 416.1|532.0 558.1 560.4 572.0 | 550.6 538.7 435.9 559.8| 464.1 527.3
BLIPFT |580.9|536.2 538.9 528.6 560.8 | 529.4 571.6 525.7 412.1|456.6 513.4 568.5 574.4 | 555.1 545.6 490.8 563.8|482.1 |527.2

165%
183%
124.2%
110.0%
18.7%
19.2%

CLIPZS |394.5363.0 361.2 330.2 368.7 | 358.7 391.6 362.2 294.6(294.7 329.0 371.8 391.9 | 356.4 369.7 308.2 388.0| 314.9 |350.3
CLIPFT |420.5|367.2 3653 331.7 381.5 | 371.0 412.2 3744 291.0(289.3 337.3 389.9 413.9 | 371.7 379.7 306.4 402.1| 310.2 |358.5
TCLZS |477.2|419.8 418.4 4184 439.0 | 400.0 450.8 357.5 177.3|316.5 372.0 400.6 452.2 | 416.1 369.0 190.3 442.7| 280.1 371.8
TCLFT |497.2|454.3 454.4 4539 468.1 | 447.8 491.9 433.8 259.9 |408.9 443.2 470.1 489.1 | 467.8 438.2 309.1 474.9| 360.9 (430.9
ALBEF FT| 504.6 | 460.0 460.6 460.3 376.4 | 447.1 493.0 436.5 282.2|408.8 449.8 472.6 493.8 | 452.1 455.0 347.0 480.9| 475.8 |438.3
BLIPFT |516.6 | 471.9 472.1 467.7 489.5 | 466.1 507.2 451.7 291.6 |432.8 471.8 494.2 506.8 | 470.4 472.3 404.7 499.6| 402.9 |458.7

COCO

111.2%
114,7%
122.1%
113.3%
113.1%
111.2%

Table 2: Image-Text Retrieval results of TP dataset (averaged RSUM), where the most effective
perturbation results are marked bold and the least effective perturbation results are underlined.

Character-level Word-level Sentence-level

Dataset  Method | Clean|Keyboard OCR CI CR CS CD | SR WI WS WD IP |Formal Casual Passive Active Back_trans| ave | Impact

CLIPZS |[533.7| 431.8 478.2450.5 4352 444.6 451.3|497.1 509.6 503.3 514.1 519.4|531.7 529.3 5248 5314 5242 |492.3| 1 7.8%
CLIPFT |544.3| 4584 500.1477.6 461.6 471.1 475.5|515.4 530.4 526.0 531.1 536.4| 5458 542.1 5379 5451 5373 |[512.0| | 5.9%
TCLZS 563.8| 4333 499.9443.3 428.4 4444 4489|5119 523.8 519.1 528.8 548.6| 5444 5424 530.1 547.1 5358 |501.9(] 11.0%

Flickr30K TCLFT | 573.4| 4943 545.0504.9 492.8 501.9 502.4|554.7 566.4 560.0 564.2 573.4(571.5 569.6 562.8 572.1  566.5 |[543.9|]5.

1%

ALBEF FT|577.7| 506.2 552.0516.2 505.0 511.7 513.0|561.9 571.6 568.6 570.0 577.7| 576.2 575.0 569.5 5764 5725 |551.5|14.5%
BLIPFT |580.9| 518.0 559.5527.3 518.0 526.4 525.7|565.6 576.1 572.8 573.8 580.7| 579.0 578.6 574.5 579.6 5747 |558.1| 13.9%

CLIPZS |394.5| 2855 286.4286.1 285.4 285.6 285.8|347.5 363.8 355.5 368.6 374.2|393.0 391.6 379.6 393.5 381.2 (341.5|] 13.4%

CLIPFT |420.5| 316.1 316.7316.5 316.4 316.7 315.6|376.2 394.6 389.9 395.3 406.6| 417.3 4152 408.7 4194 4062 (370.5|] 11
Coco

9%
TCLZS 477.2| 368.0 428.4381.3 368.4 382.0 383.4|439.3 453.4 44577 4509 4772|4744 471.8 4647 4757  462.0 [432.9] 1 9.3%

TCLFT |497.2| 397.8 455.1412.0 398.5 408.8 410.5|463.7 481.3 471.8 477.7 497.1| 494.6 493.0 4873 496.0 4835 [458.0| | 7.9%
ALBEFFT|504.6 | 404.5 461.7418.9 406.1 414.7 415.5|471.4 488.9 4833 486.3 504.5| 503.1 502.0 4964 503.7 4913 |465.8|17.7%
BLIPFT |516.6| 429.1 479.1442.4 430.8 441.3 441.4 |484.3 502.1 494.6 499.7 515.8| 514.4 513.6 508.1 5154 5043 |482.3| ] 6.6%

Discussion To emphasize the important findings, we provide a summary of the experiments. (More
discussion can be found in the Appendix[5.7]) According to our impact score, overall, both image and
text perturbation methods can effectively attack the current multimodal image-text models, for image-
text retrieval, visual reasoning, and visual entailment tasks. In general, models are more sensitive
to image perturbations than text perturbations. We also observe that models trained by generative
objectives tend to be more robust. In addition, different models’ sensitivity to perturbation methods is
also very different. To combine the similarities, we found that Zoom Blur shows a consistently high
impact in three downstream tasks across different models as an effective image perturbation method.
In contrast, Glass Blur and Brightness are less effective in attacking models. From text perturbation
results, Keyboard and CR could be the two powerful perturbation methods, while sentence-level
perturbation methods along with IP (Insert Punctuation) seem to be "soft" perturbation methods that
rarely have a significant impact on models’ performance.



Table 3: Visual reasoning evaluation results of NLVR2-IP dataset (averaged accuracy), where the
most effective perturbation results are marked bold and the least effective ones are underlined.

Noise Blur

Weather

Digital Stylize

Dataset Method | Clean |Gauss. Shot Impulse Speckle|Defocus Glass Motion Zoom | Snow Frost

Fog Bright|Contrast Elastic Pixel JPEG |Stylize| ave | Impact

ALBEF
ViLT
BLIP
TCL

METER

82.55
75.70
82.48
80.54
8233

52.80
71.64
85.37
78.20
7739

52.46
71.45
78.54
77.63
76.25

52.61
71.58
72.68
78.21
77.25

52.63
72.42
76.59
78.60
71.76

5222
72.90
80.00
77.04
78.76

5244
7471
73.66
81.20
82.01

51.78
68.79
78.54
77.37
78.26

50.79
63.97
60.98
66.67
69.31

50.69
69.40
73.66
75.96
76.17

52.05

dev

73.02 73.59
76.59 83.90
79.47 79.65
79.40 81.02

52.58 52.09
74.32
76.10
80.76

80.76

51.98
66.72
77.07
74.04
77.50

5245
74.15
81.46
78.92
79.36

50.99 52.37
69.17 7471
74.63 82.93
73.92 81.01
7291 80.67

51.80
72.35
71.71
75.05
76.10

52.04
71.46
77.42
77.28
77.70

137.0%
15.6%
161%
14.0%
15.6%

ALBEF
VILT
BLIP
TCL

METER

83.14
76.13
83.08
81.33
83.05

53.17
74.24
75.39
78.10
78.87

52.85
73.80
75.39
77.87
77.94

53.22
74.43
85.10
78.25
77.78

53.50
74.20
7231
78.91
79.23

52.68
72.32
85.64
78.00
78.97

53.09
76.70
79.49
81.59
82.10

52.39
72.55
76.92
78.17
79.14

51.19
62.34
58.97
67.81
68.89

51.60
69.24
80.51
75.74
76.69

test-P

52.98 53.49
73.36 75.05
75.90 81.54
79.62 80.64
80.10 82.25

5278
74.73
76.92
81.52
81.21

53.13
68.68
81.03
74.35
78.20

53.12
74.07
77.95
79.76
79.91

51.72 53.10
69.06 76.52
73.333 78.97
74.61 81.28
72.65 80.74

52.95
71.50
73.85
75.85
76.93

52.76
72.54
77.01
71.77
78.34

136.5%
14.7%
173%
144%
157%

Table 4: Visual reasoning evaluation results of NLVR2-TP dataset (averaged accuracy), where the
most effective perturbation results are marked bold and the least effective ones are underlined.

Character-level Word-level Sentence-level
Dataset Method | Clean [Keyboard OCR CI  CR CS CD | SR WI WS WD IP |Formal Casual Passive Active Back_trans| ave | Impact
ALBEF | 82.55| 50.64 51.02 50.81 50.66 50.53 50.58 [51.96 51.48 51.58 51.39 51.56] 50.99 51.93 51.52 51.75 51.90 |[51.22]] 38.0%
VILT 75.70| 66.23 69.16 65.47 64.36 64.76 64.96|67.11 72.71 70.77 71.75 73.42| 73.22 73.40 71.83 74.47 7451 |69.88|17.7%
dev TCL 80.54 | 71.15 75.89 71.84 70.99 72.01 71.58|74.96 78.89 77.84 78.05 82.37| 81.56 80.33 79.47 81.46 80.67 |71.77|] 10.9%
BLIP 82.48 | 70.73 70.24 76.59 74.63 72.68 72.20|73.17 77.56 80.00 79.51 87.81| 85.37 82.93 8293 87.81 75.61 |78.11| L 5.3%
METER|82.33| 72.35 75.83 74.10 72.71 73.89 73.30|75.16 79.36 75.41 77.64 81.68| 81.92 81.55 78.69 81.01 82.25 |77.30| | 6.1%
ALBEF | 83.14| 51.39 51.99 51.04 51.26 51.05 51.24 [52.69 52.95 52.95 52.88 53.30| 53.39 53.06 52.68 53.26 53.23 [52.40(] 37.0%
VILT 76.13| 64.85 69.66 66.76 65.64 65.56 65.14 |68.96 73.36 71.35 72.53 75.14| 75.86 74.27 7258 77.00 75.70 |70.90| | 6.9%
test-P TCL 81.33 | 71.16 76.31 72.35 71.56 71.90 72.07 |75.49 80.03 78.80 78.78 82.88| 82.46 81.52 80.25 82.28 81.53 |72.37|] 11.0%
BLIP 83.08 | 67.69 85.6467.18 67.69 7590 74.8769.23 72.82 78.46 83.59 83.59| 79.49 87.18 82.05 82.05 74.36  [76.99| 1 7.3%
METER|83.05| 73.10 77.63 74.05 72.49 70.64 74.27 |76.10 79.62 75.96 78.55 82.58| 81.87 80.42 79.52 82.34 81.45 |77.54| | 6.6%

Table 5: Visual entailment evaluation results of SNLI-VE-IP

dataset (averaged accuracy), where the

most effective perturbation results are marked bold and the least effective ones are underlined.

Noise Blur

Weather

Digital Stylize

Dataset Method | Clean |Gauss. Shot Impulse Speckle|Defocus Glass Motion Zoom | Snow Frost

Fog Bright|Contrast Elastic Pixel JPEG |Stylize| ave |Impact

ALBEF
TCL
METER

80.80
80.51
80.86

77.52 77.56
77.33 77.56
77.05 77.19

77.34
77.22
76.76

78.76
78.23
78.37

76.59
76.70
77.14

79.26
79.21
79.72

76.67
75.25
77.04

71.70
70.98
74.35

75.61
75.71
77.18

78.71

val 77.95

79.38 80.10

78.76
78.43

79.83
79.31
80.49

78.19
78.76
79.12

78.49 74.29 78.91
7778 71.47 78.43
78.78 73.08 78.93

74.58
74.64
75.88

77.22
76.76
77.68

144%
147%
139%

ALBEF
TCL
METER

80.91
80.29
81.19

77.65 77.70
77.46 77.38
77.16 77.09

77.40
77.30
76.90

78.50
78.17
78.58

76.62
76.80
77.14

79.25
79.27
80.13

76.59
75.56
77.39

71.70
71.07
74.35

76.31
76.13
77.79

test

78.60 78.47
78.24 78.38
79.84 80.18

79.71
79.19
80.46

78.07
78.68
79.18

78.34 74.42 78.81
77.74 71.76 78.59
78.91 72.67 79.32

74.89
74.70
76.08

77.24
76.85
77.79

183%
143%
142%

Table 6: Visual entailment evaluation results of SNLI-VE-TP

dataset (averaged accuracy), where the

most effective perturbation results are marked bold and the least effective ones are underlined.

Character-level Word-level Sentence-level
Dataset Method | Clean |Keyboard OCR CI CR CS CD | SR WI WS WD IP |Formal Casual Passive Active Back_trans| ave |Impact
ALBEF | 80.80 | 65.35 71.97 66.54 65.17 67.22 67.46 |74.63 74.15 74.88 78.62 80.56| 80.56 80.56 80.56 80.56 76.94 |74.11|] 8.3%
val TCL 80.51| 6524 71.63 65.58 64.72 67.67 67.16|74.32 74.04 74.52 77.84 79.84| 79.84 79.84 79.84 79.84 7579 |73.61|] 8.6%
METER| 80.86| 66.70 74.17 67.99 66.41 68.64 69.53 |74.65 73.19 72.55 78.28 76.24| 80.72 80.49 80.76 80.72 7743 |74.28|] 8.1%
ALBEF | 8091 | 64.87 71.9065.99 65.03 66.91 67.27|74.77 74.93 7490 78.44 80.20| 80.20 80.20 80.20 80.20  77.31 73.96|1 8.6%
test TCL 80.29 | 6527 71.83 65.81 64.66 67.69 67.25|74.59 73.70 74.49 78.01 79.77| 79.77 79.77 79.84 79.84 76.62 |73.67|] 8.2%
METER| 81.19| 66.09 74.26 67.39 66.30 68.92 69.71 [74.88 73.89 72.95 78.38 76.65| 80.96 80.83 81.21 81.05 77.14 |74.41|] 8.4%

4 Conclusion

In the study, we investigate the robustness of large multimodal pretrained image-text models. We

introduce several evaluation benchmarks under distribution s

hift by applying 17 image perturbation

and 16 text perturbation strategies. We select three downstream tasks, including image-text retrieval,

visual reasoning, and visual entailment, to evaluate 6 popul
perturbation datasets could serve as robustness evaluation b
hope our findings could provide inspiration on how to devel
real-world applications.

ar models. Our developed multimodal
enchmarks for image-text models. We
op and deploy more robust models for



References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andy Brock,
Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew
Zisserman, and Karen Simonyan. Flamingo: a visual language model for few-shot learning. ArXiv,
abs/2204.14198, 2022.

Ahmed Aldahdooh, Wassim Hamidouche, and Olivier Déforges. Reveal of vision transformers robustness
against adversarial attacks. ArXiv, abs/2106.03734, 2021.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and Andreas
Veit. Understanding robustness of transformers for image classification. 2027 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 10211-10221, 2021.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Yue Chai, Mirella
Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, and Joseph P. Turian.
Experience grounds language. In EMNLP, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. ArXiv, abs/2005.14165, 2020.

Min Cao, Shiping Li, Juntao Li, Ligiang Nie, and Min Zhang. Image-text retrieval: A survey on recent
research and development. ArXiv, abs/2203.14713, 2022.

Kai-Wei Chang, He He, Robin Jia, and Sameer Singh. Robustness and adversarial examples in natural
language processing. Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing: Tutorial Abstracts, 2021.

Xi Chen, Xiao Wang, Soravit Changpinyo, A. J. Piergiovanni, Piotr Padlewski, Daniel M. Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, Alexander Kolesnikov, Joan Puigcerver, Nan
Ding, Keran Rong, Hassan Akbari, Gaurav Mishra, Linting Xue, Ashish V. Thapliyal, James Bradbury,
Weicheng Kuo, Mojtaba Seyedhosseini, Chao Jia, Burcu Karagol Ayan, Carlos Riquelme, Andreas Steiner,
Anelia Angelova, Xiaohua Zhai, Neil Houlsby, and Radu Soricut. Pali: A jointly-scaled multilingual
language-image model. ArXiv, abs/2209.06794, 2022.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed EI Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing
Liu. Uniter: Universal image-text representation learning. In ECCV, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek B Rao, Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev,
Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne
Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan,
Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Oliveira Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S.
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling
with pathways. ArXiv, abs/2204.02311, 2022.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion,
Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness
benchmark. arXiv preprint arXiv:2010.09670, 2020.

Giannis Daras and Alexandros G Dimakis. Discovering the hidden vocabulary of dalle-2. arXiv preprint
arXiv:2206.00169, 2022.

Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders, Lucas Beyer, Alexander Kolesnikov,
Joan Puigcerver, Matthias Minderer, Alexander D’ Amour, Dan I. Moldovan, Sylvan Gelly, Neil Houlsby,
Xiaohua Zhai, and Mario Lucic. On robustness and transferability of convolutional neural networks. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 16453-16463, 2021.



(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. Towards robustness against natural language
word substitutions. ArXiv, abs/2107.13541, 2021.

Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang Wang, Lijuan Wang, Chenguang Zhu, Nanyun
Peng, Zicheng Liu, and Michael Zeng. An empirical study of training end-to-end vision-and-language
transformers. ArXiv, abs/2111.02387, 2021.

Nathan G. Drenkow, Numair Sani, Ilya Shpitser, and M. Unberath. Robustness in deep learning for
computer vision: Mind the gap? ArXiv, abs/2112.00639, 2021.

Nick Erickson, Xingjian Shi, James Sharpnack, and Alexander J. Smola. Multimodal automl for image,
text and tabular data. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2022.

Isak Czeresnia Etinger and Alan W. Black. Formality style transfer for noisy, user-generated conversations:
Extracting labeled, parallel data from unlabeled corpora. In EMNLP, 2019.

Alexander W. Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar, Achal Dave, and
Ludwig Schmidt. Data determines distributional robustness in contrastive language image pre-training
(clip). 2022.

Stanislav Fort. Pixels still beat text: Attacking the openai clip model with text patches and adversarial
pixel perturbations. 2021.

Yuri Galindo and Fabio A. Faria. Understanding clip robustness. 2021.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale adversarial
training for vision-and-language representation learning. ArXiv, abs/2006.06195, 2020.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix Wichmann, and Wieland
Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and
robustness. ArXiv, abs/1811.12231, 2019.

Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason M. Wu, Stephan Zheng, Caiming Xiong, Mohit
Bansal, and Christopher R’e. Robustness gym: Unifying the nlp evaluation landscape. In NAACL, 2021.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig Schubert, Alec Radford,
and Chris Olah. Multimodal neurons in artificial neural networks. Distill, 6(3):e30, 2021.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig Schubert, Alec Radford,
and Christopher Olah. Multimodal neurons in artificial neural networks. 2021.

Priya Goyal, Quentin Duval, Isaac Seessel, Mathilde Caron, Ishan Misra, Levent Sagun, Armand Joulin,
and Piotr Bojanowski. Vision models are more robust and fair when pretrained on uncurated images
without supervision. ArXiv, abs/2202.08360, 2022.

Tao Gui, Xiao Wang, Qi Zhang, Qin Liu, Yicheng Zou, Xin Zhou, Rui Zheng, Chong Zhang, Qinzhuo Wu,
Jiacheng Ye, Zexiong Pang, Yongxin Zhang, Zhengyan Li, Ruotian Ma, Zichu Fei, Ruijian Cai, Jun Zhao,
Xinwu Hu, Zhiheng Yan, Yiding Tan, Yuan Hu, Qiyuan Bian, Zhihua Liu, Bolin Zhu, Shan Qin, Xiaoyu
Xing, Jinlan Fu, Yue Zhang, Minlong Peng, Xiaoqing Zheng, Yagian Zhou, Zhongyu Wei, Xipeng Qiu,
and Xuanjing Huang. Textflint: Unified multilingual robustness evaluation toolkit for natural language
processing. In ACL, 2021.

Tanmay Gupta, Ryan Marten, Aniruddha Kembhavi, and Derek Hoiem. Grit: General robust image task
benchmark. ArXiv, abs/2204.13653, 2022.

William Han, Jielin Qiu, Jiacheng Zhu, Mengdi Xu, Douglas Weber, Bo Li, and Ding Zhao. An empirical ex-
ploration of cross-domain alignment between language and electroencephalogram. ArXiv, abs/2208.06348,
2022.

Xiaoshuai Hao, Yi Zhu, Srikar Appalaraju, Aston Zhang, Wangian Zhang, Boyang Li, and Mu Li. Mixgen:
A new multi-modal data augmentation. ArXiv, abs/2206.08358, 2022.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Lixuan Zhu, Samyak Parajuli, Mike Guo, Dawn Xiaodong Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 8320-8329, 2021.



(33]

[34]

(35]

(36]

(371

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

(53]

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. ArXiv, abs/1903.12261, 2019.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Xiaodong
Song. Pretrained transformers improve out-of-distribution robustness. In ACL, 2020.

Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. ArXiv,
abs/1912.02781, 2020.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Xiaodong Song. Natural
adversarial examples. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 15257-15266, 2021.

Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan Klein, Trevor Darrell, and Kate Saenko. Are you
looking? grounding to multiple modalities in vision-and-language navigation. In ACL, 2019.

Xun Huang and Serge J. Belongie. Arbitrary style transfer in real-time with adaptive instance normalization.
2017 IEEE International Conference on Computer Vision (ICCV), pages 1510-1519, 2017.

Vidhi Jain, Yixin Lin, Eric Undersander, Yonatan Bisk, and Akshara Rai. Transformers are adaptable task
planners. ArXiv, abs/2207.02442, 2022.

Akbar Karimi, L. Rossi, and Andrea Prati. Aeda: An easier data augmentation technique for text
classification. In EMNLP, 2021.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolution or
region supervision. In /ICML, 2021.

Juncen Li, Robin Jia, He He, and Percy Liang. Delete, retrieve, generate: a simple approach to sentiment
and style transfer. In NAACL, 2018.

Juncheng Billy Li, Shuhui Qu, Xinjian Li, Po-Yao Huang, and Florian Metze. On adversarial robustness of
large-scale audio visual learning. In ICASSP, 2022.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In /CML, 2022.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq R. Joty, Caiming Xiong, and
Steven C. H. Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. In NeurIPS, 2021.

Linjie Li, Jie Lei, Zhe Gan, and Jingjing Liu. Adversarial vqa: A new benchmark for evaluating the
robustness of vqa models. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages
2022-2031, 2021.

Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao Liu, Jiachen Liu, Hua Wu, and Haifeng Wang.
Unimo-2: End-to-end unified vision-language grounded learning. arXiv preprint arXiv:2203.09067, 2022.

Xiujun Li, Xi Yin, Chunyuan Li, Xiaowei Hu, Pengchuan Zhang, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-semantics aligned pre-training for
vision-language tasks. In ECCV, 2020.

Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations and recent trends in multimodal
machine learning: Principles, challenges, and open questions. 2022.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr,
and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Wei Liu, Jie-Lin Qiu, Wei-Long Zheng, and Bao-Liang Lu. Comparing recognition performance and
robustness of multimodal deep learning models for multimodal emotion recognition. /IEEE Transactions
on Cognitive and Developmental Systems, 14:715-729, 2022.

Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Rong Jin, Xiangyang Ji, and Antoni B. Chan. An
empirical study on distribution shift robustness from the perspective of pre-training and data augmentation.
ArXiv, abs/2205.12753, 2022.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-io: A
unified model for vision, language, and multi-modal tasks. ArXiv, abs/2206.08916, 2022.



[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]
[71]

(72]

(73]

[74]

[75]

Edward Ma. Nlp augmentation. 2019.

Kaleel Mahmood, Rigel Mahmood, and Marten van Dijk. On the robustness of vision transformers to
adversarial examples. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages
78187827, 2021.

Emanuele La Malfa and Marta Z. Kwiatkowska. The king is naked: on the notion of robustness for natural
language processing. In AAAL 2022.

Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Ranjie Duan, Shaokai Ye, Yuan He, and Hui Xue.
Towards robust vision transformer. ArXiv, abs/2105.07926, 2021.

Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexander S.
Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking robustness in object detection: Autonomous
driving when winter is coming. arXiv preprint arXiv:1907.07484, 2019.

So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, and Ruslan Salakhutdinov.
Film: Following instructions in language with modular methods. ArXiv, abs/2110.07342, 2022.

Milad Moradi and Matthias Samwald. Evaluating the robustness of neural language models to input
perturbations. In EMNLP, 2021.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and Sergey Edunov. Facebook fair’s
wmt19 news translation task submission. In Proc. of WMT, 2020.

David Noever and Samantha E. Miller Noever. Reading isn’t believing: Adversarial attacks on multi-modal
neurons. ArXiv, abs/2103.10480, 2021.

Sayak Paul and Pin-Yu Chen. Vision transformers are robust learners. In AAAZ, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In /ICML, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. ArXiv, abs/2204.06125, 2022.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In ICML, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019.

Barbara Rychalska, Dominika Basaj, Alicja Gosiewska, and P. Biecek. Models in the wild: On corruption
robustness of neural nlp systems. In /JCONIP, 2019.

Madeline Chantry Schiappa, Yogesh Singh Rawat, Shruti Vyas, Vibhav Vineet, and Hamid Palangi.
Multi-modal robustness analysis against language and visual perturbations. ArXiv, abs/2207.02159, 2022.

Robert Schmidt. Generative text style transfer for improved language sophistication. 2020.

Christoph Schuhmann, Romain Beaumont, Richard Vencu andCade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Patrick Schramowski, Srivatsa Kundurthy, Katherine
Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. Laion-5b: An open large-scale dataset
for training next generation image-text models. 2022.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered 400
million image-text pairs. ArXiv, abs/2111.02114, 2021.

Rahul Singh, Karan Jindal, Yufei Yu, Hanyu Yang, Tarun Joshi, Matthew A. Campbell, and Wayne B.
Shoumaker. Robustness tests of nlp machine learning models: Search and semantically replace. ArXiv,
abs/2104.09978, 2021.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language for visual reasoning.
In ACL, 2017.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
Measuring robustness to natural distribution shifts in image classification. ArXiv, abs/2007.00644, 2020.



[76]

(771

(78]

[79]

[80]

[81]

(82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

Yapeng Tian and Chenliang Xu. Can audio-visual integration strengthen robustness under multimodal
attacks? 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
5597-5607, 2021.

Nishant Vishwamitra, Hongxin Hu, Ziming Zhao, Long Cheng, and Feng Luo. Understanding and
measuring robustness of multimodal learning. ArXiv, abs/2112.12792, 2021.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah,
and Bo Li. Adversarial glue: A multi-task benchmark for robustness evaluation of language models. ArXiv,
abs/2111.02840, 2021.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. Unifying architectures, tasks, and modalities through a simple sequence-to-
sequence learning framework. In ICML, 2022.

Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang Li, Jilin Chen, Alex Beutel, and Ed H. Chi.
Cat-gen: Improving robustness in nlp models via controlled adversarial text generation. In EMNLP, 2020.

Xuezhi Wang, Haohan Wang, and Diyi Yang. Measure and improve robustness in nlp models: A survey.
ArXiv, abs/2112.08313, 2022.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Simple visual
language model pretraining with weak supervision. ArXiv, abs/2108.10904, 2022.

Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text
classification tasks. In EMNLP, 2019.

F. Wenzel, Andrea Dittadi, Peter V. Gehler, Carl-Johann Simon-Gabriel, Max Horn, Dominik Zietlow,
David Kernert, Chris Russell, Thomas Brox, Bernt Schiele, Bernhard Scholkopf, and Francesco Locatello.
Assaying out-of-distribution generalization in transfer learning. ArXiv, abs/2207.09239, 2022.

Hao Wu, Jiayuan Mao, Yufeng Zhang, Yuning Jiang, Lei Li, Weiwei Sun, and Wei-Ying Ma. Unified
visual-semantic embeddings: Bridging vision and language with structured meaning representations. 2079
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6602-6611, 2019.

Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual entailment task for visually-grounded
language learning. arXiv preprint arXiv:1811.10582, 2018.

Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual entailment: A novel task for fine-grained
image understanding. arXiv preprint arXiv:1901.06706, 2019.

Jinyu Yang, Jiali Duan, S. Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul M. Chilimbi,
and Junzhou Huang. Vision-language pre-training with triple contrastive learning. ArXiv, abs/2202.10401,
2022.

Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
perspective on model robustness in computer vision. In NeurlIPS, 2019.

Peter Young, Alice Lai, Micah Hodosh, and J. Hockenmaier. From image descriptions to visual denotations:
New similarity metrics for semantic inference over event descriptions. Transactions of the Association for
Computational Linguistics, 2:67-78, 2014.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. ArXiv, abs/2205.01917, 2022.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel C. F. Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu, Yumao Lu, Yu Shi, Lijuan
Wang, Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, and Pengchuan
Zhang. Florence: A new foundation model for computer vision. ArXiv, abs/2111.11432, 2021.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 1204-1213, 2022.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and
Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5575-5584, 2021.

Stephan Zheng, Yang Song, Thomas Leung, and Ian J. Goodfellow. Improving the robustness of deep
neural networks via stability training. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4480-4488, 2016.



[96] Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Anima Anandkumar, Jiashi Feng, and José Manuel
Alvarez. Understanding the robustness in vision transformers. In ICML, 2022.

[97] Mohammadreza Zolfaghari, Yi Zhu, Peter Gehler, and Thomas Brox. Crossclr: Cross-modal contrastive
learning for multi-modal video representations. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 1450-1459, October 2021.

10



5 Appendix

5.1 Multimodal Robustness Benchmark under Distribution Shift

Distribution shift is one of the significant problems of applying models in real-world scenarios
[75L152]). It is caused by scarcity of data, i.e., the models cannot be trained on all possible data in
p(x,y), where p(x, y) is considered as the real-world data distribution. In other words, the training

set contains the collected data that fits a certain distribution p,-( | y), but the test set usually has a
different distribution pi.(x | y) # pur-(x | y).

5.2 Image Perturbation

In Table[7]and Table[8] we show more details about the image and text perturbations, respectively.

Table 7: Image perturbations.

Category  Perturbation \ Description \ Severities
Gaussian Noise \ Gaussian noise can appear in low-lighting conditions. \ 5
Shot Noise Shot noise, also called Poisson noise, is electronic noise caused by 5
the discrete nature of light itself.
Noise Impulse Noise Impulse noise is a color analogue of salt-and-pepper noise and can 5
be caused by bit errors.
Speckle Noise Speckle noise is the noise added to a pixel tends to be larger if the 5
original pixel intensity is larger.
Defocus Blur \ Defocus blur occurs when an image is out of focus. \ 5
Frosted Glass Blur \ Frosted Glass Blur appears with “frosted glass” windows or panels. \ 5
Blur Motion Blur \ Motion blur appears when a camera is moving quickly. \ 5
Zoom Blur \ Zoom blur occurs when a camera moves toward an object rapidly. \ 5
Snow \ Snow is a visually obstructive form of precipitation. \ 5
Frost \ Frost forms when lenses or windows are coated with ice crystals. \ 5
Weather Fog Fog shrouds objects and is rendered with the diamond-square algo- 5
rithm.
Brightness | Brightness varies with daylight intensity. | 5
Contrast Contrast can be high or low depending on lighting conditions and 5
the photographed object’s color.
Elastic \ Elastic transformations stretch or contract small image regions. \ 5
Digital Pixelate \ Pixelation occurs when upsampling a low-resolution image. \ 5
JPEG Compression | JPEG is a lossy image compression format which introduces com- 5
pression artifacts.
Stylized  Stylize Stylized data is generated by transferring the style information to the 5
content images by AdalN style transfer [38].
Sum 17 | — \ 85

5.3 Text Perturbation

Fidelity To build a convincing benchmark, we need to ensure the perturbed text remains the same
semantics as the original one. Otherwise, for image-text pairs in multimodal learning, the perturbed
text won’t be a matching pair to the original image. In this work, we use paraphrases from pretrained
sentence-transformers [67] to evaluate the semantic similarity between the original and perturbed
sentences. Specifically, “paraphrase-mpnet-base-v2” is used to extract the original and perturbed
sentence embeddings for computing similarity score «s. Given a predefined tolerance threshold «,
a higher score s > « means the perturbed text still has similar semantics. However, if a; < ap
means their semantics are different, we will perturb the sentence again until the semantic similarity
score meets the requirement, in a reasonable looping time. For example, we set number of loops to
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Table 8: Text perturbations.

Category Perturbation | Description | Severities
Keyboard | Substitute character by keyboard distance. | 5
OCR | Substitute character by pre-defined OCR error. | 5
Character-level Character Insert (CI) ‘ Insert character randomly with probability p. ‘ 5
Character Replace (CR) \ Substitute character randomly with probability p. \ 5
Character Swap (CS) | Swap character randomly with probability p. | 5
Character Delete (CD) \ Delete character randomly with probability p. \ 5
Synonym Replacement (SR) | Randomly choose n words from the sentence that are 5
not stop words. Replace each of these words with one of
its synonyms chosen at random.
Word Insertion (WI) Find a random synonym of a random word in the sen- 5
tence that is not a stop word. Insert that synonym into a
Word-level random position in the sentence. Do this n times.
Word Swap (WS) Randomly choose two words in the sentence and swap 5
their positions. Do this n times.
Word Deletion (WD) Each word in the sentence can be randomly removed 5
with probability p.
Insert Punctuation (IP) Random insert punctuation in the sentence with proba- 5
bility p.
Formal | Transfer the text style to Formal. | 1
Casual | Transfer the text style to Casual. | 1
Passive | Transfer the text style to Passive. | 1
Sentence-level
Active | Transfer the text style to Active. | 1
Back Translation Translate source to German and translating it back to 1
English via [61].
Sum 16 [ — \ 60

Niaz = 100. Beyond N, 4., we will just remove this text sample from our robustness benchmark.
This procedure guarantees semantic closeness and ensures our benchmark is valid for evaluation.

5.4 Examples of Image Perturbation

Examples of perturbed images from COCO dataset [50] are shown in Figure[2]

Original Image Gaussian Noise Shot Noise Defocus

Figure 2: Examples of our 17 image perturbation strategies applied to the COCO dataset. The original
image is shown on the top left.
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5.5 Examples of Text Perturbation

Examples of the text perturbation of captions in Flickr30K dataset [90] are shown in Table 9]

Table 9: Example of text perturbation on Flickr30K text.

Category Perturbation | Example

Original Clean An orange metal bowl strainer filled with apples.

|
|
Keyboard | An orange metal bowk strainer filled witj apples.
OCR | An Orange metal bowl strainer filled with apples.
Character CI | And orange metal bowl strainer filled with atpples.
CR | An orange metal towl strainer fillet with apples.
CS | An orange meatl bowl stariner filled with apples.
CD An orang| X | metal bowl strainer fil[ X |ed with ap-
ples.
SR | An orange bowl strainer filled with apples.
WI | An old orange metal bowl strainer filled with apples.
WS | An orange metal filled with apples.
Word WD | An orange metal bowl strainer with apples.
1P | An orange metal bowl ? strainer filled with apples.
Formal | An orange metal bowl strainer apples.
Casual | An orange metal bowl is filled with apples.
Sentence Passive | apples are in an orange metal bowl strainer.
Active | apples in an orange metal bowl strainer.
Back trans | Apples an orange metal bowl strainer.

5.6 More Experimental Setting

By building the robustness benchmark datasets, we would like to answer the following questions: (1)
How robust can multimodal pretrained image-text models be under distribution shift? (2) What is
the sensitivity of each model under different perturbation methods? (3) Which model architecture or
loss objectives might be more robust under image or text perturbations? (4) Are there any particular
image/text perturbation methods that can consistently show significant influence?

Evaluation Tasks We select three widely adopted downstream tasks for a comprehensive evaluation
on the robustness of multimodal image-text models, including image-text retrieval, visual reasoning
(VR), and visual entailment (VE). Image-text retrieval includes two subtasks: (1) retrieve images
with given text (Image Retrieval) and (2) retrieve text with given images (Text Retrieval) [6} 31]].
Visual Reasoning (VR) requires the model to determine whether a textual statement describes a pair
of images. [74]]. Visual Entailment (VE) is a visual reasoning task to predict whether the relationship
between an image and text is entailment, neutral, or contradictory [86) 187].

Evaluation Models We select six representative large pretrained multimodal models, which have
publicly released their pretrained modelsﬂ including CLIP [64], ViLT [41], ALBEF [45], BLIP [44],
TCL [88]], and METER [15]. In order to provide a fair comparison, we adopt the model weights

>We appreciate all the authors for making the models publicly available
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provided by their official repositoriesﬂ for either zero-shot prediction or fine-tuned results. We only
perform the tasks of each model that have been studied in its original work, where their reported
scores are marked as “clean” in our Tables.

Evaluation Metric We adopt standard evaluation metrics for each task. To be specific, for image-
text retrieval, we use recall and RSUM [85]]. Here, recall is defined as K (R@K) metric, where K =
{1,5,10}, and RSUM is defined as the sum of recall metrics at K = {1, 5, 10} of both image and text
retrieval tasks. As for visual reasoning and visual entailment tasks, we use prediction accuracy as the
evaluation metric.

However, there is no appropriate metric that could be used for robustness evaluation under distribution
shift. Inspired by an example in [75]], given a clean dataset d; and its perturbed dataset do, model
should be considered more robust than model ms if m;’s performance drop is less significant than ms
from d; to da, even though mo’s absolute accuracy/recall on ds is higher than m’s. Thus we believe
robustness should be evaluated relatively when there are distribution shifts. To qualitatively analyze
the multimodal image-text models, we introduce a new evaluation metric, termed MultiModal Impact
score (MMI). We compute MMI as the averaged performance drop compared with the non-perturbed
performance (“clean”), i.e., MMI = (s, — s,,)/s. Where s,, is the perturbed score and s. is the clean
score. In the following experiments, we report both standard performance scores, i.e., recall, RSUM,
accuracy, as well as our MMI.

Our Benchmark Datasets For each task, we perturb the corresponding datasets i.e., Flickr30K
[90] and COCO [50] , NLVR2 [74]], SNLI-VE [86, 87], using the image perturbation (IP) and text
perturbation (TP) methods introduced in Section [2| This leads to our 8 benchmark datasets: (1)
Flickr30K-IP, Flickr30K-TP, COCO-IP, and COCO-TP for image-text retrieval robustness evaluation;
(2) NLVR2-IP and NLVR2-TP for visual reasoning robustness evaluation; and (3) SNLI-VE-IP and
SNLI-VE-TP for visual entailment robustness evaluation.

 For image-text retrieval, the Flickr30K dataset contains 1,000 images, and each of them
has 5 corresponding captions, while the COCO dataset contains 5,000 images, and each
of them also has 5 corresponding captions. We report the RSUM score averaged on five
perturbation levels under each perturbation method to reveal the overall performance. More
detailed results, including the recall at K (R@XK) metric, K = {1, 5, 10}, can be found in the
Appendix For CLIP and TCL, we provide the evaluation results for both zero-shot (ZS)
and fine-tuned (FT) settings, while for ALBEF and BLIP, we follow their original settings
and report the fine-tuned (FT) results.

* For visual reasoning, the NLVR2 dev set contains 2,018 unique sentences and 6,982 samples,
while the test-P set contains 1,995 unique sentences and 6,967 samples. We report the
accuracy of both the dev set and test-P set of the NLVR2 dataset under image and text
perturbations. We evaluate the robustness of ALBEF, ViLT, TCL, BLIP, and METER.

* For visual entailment, the SNLI-VE val set contains 1,000 images and 6,576 sentences,
while the test set contains 1,000 images and 6,592 sentences. We evaluate the accuracy of
both the dev set and test set of the SNLI-VE dataset under image and text perturbations. We
report the results of ALBEF, TCL, and METER.

5.7 Experimental Results and Discussion

Image-text Retrieval Results and Observation The averaged RSUM results of different methods
under five perturbation levels are shown in Table [I| and Table [2] for image perturbation and text
perturbation, respectively. Through Table |1} we found that all the models’ performance dropped
under image perturbation. According to the impact score, overall, the CLIP model is, in general,
more robust than other models, which we hypothesized might be due to the large datasets that
CLIP was trained upon, where large data may lead to better performance, as also noted by [75].
Due to the generative loss objective, the BLIP model also shows good robustness performance.
We think the generative loss objective can help to learn better data distribution, and we observe a
recent paradigm change from using discriminative contrastive loss, i.e., CLIP, ALBEF [64. 43], to

3https://github.com/openai/CLIP, https://github.com/dandelin/ViLT, https://github.com/salesforce/ ALBEF,
https://github.com/salesforce/BLIP, https://github.com/uta-smile/TCL, https://github.com/zdou0830/meter
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using generative loss, i.e., BLIP, CoCa, SimVLM, PaLl, Unified-10, OFA [44} 91l [82| I8} 153} [79].
In detail, we also found that different image perturbation methods have different impact levels on
the model’s performance, and the methods that have the biggest impact also vary among different
models and datasets. CLIP-FT, TCL-ZS, ALBEF, and BLIP seem to be more sensitive to Zoom Blur
perturbation, while ViLT and TCL-FT are more sensitive to pixelation perturbation. Glass blur and
brightness are the two "soft" perturbation methods, where all the models are very robust under these
settings. Besides, fine-tuning may also help to improve robustness, i.e., TCL-FT shows robustness
improvements compared with TCL-ZS on both Flickr30K and COCO datasets. As in Table[2] we
found that all the models’ performance dropped under text perturbation. BLIP overall shows the best
robustness performance, which may bring the idea that the generative loss objective is useful. In
addition, we found that character-level perturbations show much more influence than word-level and
sentence-level perturbations, especially Keyboard and CR (Character Replace) methods consistently
show high impact in attacking the model’s performance. IP (Insert Punctuation), Formal, and Active
are the three least effective text perturbation methods across different models.

Visual Reasoning Results and Observation The averaged accuracy results of different methods
under five perturbation levels are shown in Table [3| and Table [ for image perturbation and text
perturbation, respectively. From Table[3] we can find that all the models’ performance dropped under
image perturbation, especially ALBEF. TCL shows better performance than ALBEF, where TCL
introduced an intra-modal contrastive objective based on the ALBEF architecture, which may be
helpful in improving the model’s performance. In detail, Zoom Blur consistently shows the most
effective impact on attacking all the models’ performance for both the dev set and test-P set. In
contrast, Glass Blur seems to be one of the least effective perturbation methods, while Gaussian
Noise, Defocus Blur, Fog, and JPEG Compression can also be not effective in attacking the model’s
performance. Besides, as shown in Table [d] all the models’ performance also drooped under text
perturbation. In detail, character-level perturbation still shows a much stronger influence than word-
level and sentence-level perturbations for the visual reasoning task, and different models seem to be
sensitive to different character-level perturbations. The sensitivities of different models also vary,
where Keyboard, OCR, CI, CR, CS, and CD show different impacts. However, IP (Insert Punctuation)
seems to be one of the least effective ones in attacking in the visual reasoning task, while SR, Formal,
Active, Back_trans can also be stable methods in different evaluation models.

Visual Entailment Results and Observation The averaged accuracy results of different methods
under five perturbation levels are shown in Table 5| and Table [6] for image perturbation and text
perturbation, respectively. Similar to the results in image-text retrieval and the visual reasoning tasks,
the performance of all the models dropped under both image perturbation and text perturbation settings.
In detail, Zoom Blur still serves as the most powerful image perturbation method, and Brightness
is the least effective one, as shown in Table [5] In addition, as shown in Table [6] character-level
perturbation also shows a much stronger influence than word-level and sentence-level perturbations
for the visual entailment task, where IP, Formal, Casual, Passive, and Active can be stable perturbation
strategies. Unlike the results in image-text retrieval and the visual reasoning tasks, the performance
drop seems insignificant in the VE task, which may be due to VE being a relatively easy task, so
different model variations are not shown explicitly.

Limitation Given our work is one of the early efforts in this direction, there are several limitations
and promising future work. First, we only adopt synthetic image and text perturbation strategies in
our benchmark. However, there are other perturbation methods that could be explored for further
robustness evaluation, e.g., real distribution shift [[75] [84]. Second, we only study three downstream
tasks, while there are more interesting ones, such as visual question answering, image captioning
and text-to-image generation. For those generation tasks, new evaluation metrics might be needed
to properly evaluate the model’s robustness. Third, we only evaluate these image-text models but
the more important question is, how to improve their robustness. Data augmentation is a common
technique to improve unimodal models’ robustness [35) 132], which we could also explore for
multimodal setting [31].

5.8 Related Work

Robustness of unimodal vision models is a longstanding and challenging goal of computer vision
[89]. Stable training, adversarial robustness, out-of-distribution and transfer performance, and many
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other aspects have been studied by previous works in deep learning era [95} 16} |13} 27]]. Recently,
Vision Transformer (ViT) has shown improved robustness compared with previous models, i.e., the
comparison between ViT and ResNet for robustness against common corruptions and perturbations
[3l], robustness under distribution shifts and natural adversarial setting [[63], robustness against
different Lp-based adversarial attacks [55]], adversarial examples [57], and adaptive attacks [2]].
In terms of benchmark, [33]] proposed ImageNet-C and ImageNet-P benchmarks for classifier’s
robustness to common perturbations. [36] proposed ImageNet-A and ImageNet-O benchmarks for
adversarial filtration and out-of-distribution detection. [66] proposed ImageNet-V2 for evaluating
distribution shift. [23]] proposed Stylized-ImageNet by removing local texture cues in ImageNet
while retaining global shape information on natural images via AdalN style transfer. Recently, [29]
built the GRIT benchmark to evaluate the performance, robustness, and calibration of a vision system
across a variety of image tasks, concepts, and data sources.

Robustness of unimodal language models under distribution shift or adversarial attack has also
been explored by many previous works, i.e., [7} [81] provided reviews of how to define, measure
and improve robustness of NLP systems, [80]] proposed controlled adversarial text generation to
improve robustness, [24] unified four standard evaluation paradigms, [[73]] proposed a search and
semantically replace strategy, [14]] studied robustness against word substitutions, [56] formalised
the concept of semantic robustness, etc. In terms of benchmark, [34] systematically examined
and measured the out-of-distribution (OOD) generalization for seven NLP datasets. [[L1] built a
large benchmark and analyzed the impact of robustness on the performance of distribution shifts,
calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
Recently, [60] presented empirical results achieved with a comprehensive set of non-adversarial
perturbation methods for testing the robustness of NLP systems on non-synthetic text. [28] proposed
a multilingual robustness evaluation platform that incorporates universal text transformation, task-
specific transformation, adversarial attack, and subpopulation to provide comprehensive robustness
analysis. [[78] proposed a benchmark to evaluate the vulnerabilities of modern large-scale language
models under adversarial attacks.

Multimodal learning has advanced quickly in recent years with appealing applications in different
fields [49,139,159, 14,137, 97,1177, 130L151]], i.e., embodied autonomous agents, image/video understanding,
multimedia and healthcare. Thanks to the larger datasets [64, (92| [72| [71] and larger transformer
models [93} 185, [10], many powerful multimodal image-text models have been developed and shown
great capability. However, unlike unimodal models, the robustness study of these multimodal models
under distribution shift has rarely been explored.

Robustness of multimodal models is essential to study before deploying these amazing foundation
models to real applications. Previous works [21} 20} 26} 62] have unsystematically tested some
pre-trained models, i.e., CLIP [64]], by attacking with text patches and adversarial pixel perturbations.
[77] measured the robustness of multimodal learning by fusing the input modalities and adversarial
attack. [[19] found that diverse training distribution is the main cause for robustness gains. [[76} 43]
investigated the audio-visual model robustness under multimodal attacks. For benchmarks, [46]]
collected an Adversarial VQA dataset to evaluate the robustness of VQA models. A concurrent
work [69] studied the robustness of video-text models under perturbations, but their models, tasks,
and datasets are different from ours. In this work, we focus on studying robustness under distribution
shifts for multimodal image-text models. We introduce new datasets and metrics, and extensively
evaluate recent multimodal models.

5.9 Detailed Image-Text Retrieval Results

In the appendix, we provide the detailed robustness evaluation results for the image-text retrieval
task, where the evaluation datasets are Flickr30K and COCO. In the following tables, we report the
recall at K (R@K) metric, K = {1, 5,10}, where Mean is the averaged recall results for either text
retrieval or image retrieval, RSUM is defined as the sum of recall metrics at K = {1, 5,10} of both
image and text retrieval tasks.
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5.9.1 Image Perturbations

Table 10: CLIP image perturbation performance comparison of Zero-Shot (ZS) image-text retrieval

on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l R@5 R@10 Mean R@I R@5 R@10 Mean RSUM | R@l R@5 R@10 Mean R@I R@5 R@10 Mean RSUM
Gaussian | 75.1 928 960 880 617 851 909 793 5017 | 478 721 806 669 347 587 69.1 542 363.0
Noise  Shot 756 934 966 885 617 855 914 795 5042 | 476 716 803 665 342 585 69.1 539 3612
; Impluse | 682 902 943 842 574 821 889 762 4812 | 40.1 656 754 604 30.1 541 648 497 3302
Speckle | 802 958 980 913 629 864 922 805 5155 | 495 739 820 685 346 591 69.6 544 3687
Defocus | 747 934 966 882 613 851 911 79.1 5021 | 465 713 800 659 337 583 688 536 3586
Ble  Glass 855 978 990 941 661 884 934 826 530.1 | 556 789 864 736 373 617 717 569 3916
Motion 770 941 970 894 635 862 919 80.6 509.7 | 488 723 804 671 342 582 683 536 3622
Zoom 623 846 906 79.1 548 792 863 735 4578 | 324 570 672 522 269 501 610 460 2946
Snow 648 869 931 816 562 814 883 753 4707 | 323 562 678 521 268 501 Gl4 461 2947
Weather  FFOst 728 926 965 873 594 840 904 779 4956 | 411 656 756 608 294 532 641 489 3290
Fog 808 961 982 917 646 873 927 815 5197 | 513 755 836 702 340 585 688 538 3718
Brightness | 852 97.6 989 939 664 88.6 934 828 530.1 | 565 798 874 746 364 607 711 560 3919
Contrast | 807 959 980 915 627 862 919 803 5154 | 480 715 80.1 665 325 569 674 522 3564
Digital  Elastic 795 949 973 906 616 858 914 796 5104 | 506 747 831 695 338 585 69.0 538 369.7
180 pielate | 684 876 920 827 555 796 864 738 4695 | 363 604 703 557 279 513 619 470 3082
JPEG 836 968 984 929 658 874 927 820 5246 | 553 789 864 735 359 607 709 558 388.0
Stylize  Stylized | 653 833 883 790 516 758 832 702 4476 | 399 628 722 583 280 508 612 467 3149

Table 11: CLIP image perturbation performance comparison of Fine-tuned (FT) image-text retrieval

on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l R@5 R@10 Mean R@I R@5 R@10 Mean RSUM | R@1 R@5 R@10 Mean R@I R@5 R@10 Mean RSUM
Gaussian | 72.7 912 950 863 63.1 865 91.6 804 500.1 | 430 703 80.1 645 351 635 751 579 3672
Nois Shot 730 919 958 869 639 871 921 810 503.8 | 424 699 799 641 349 633 749 577 3653
o1se Impluse 651 879 925 818 592 843 90.1 779 4792 | 356 630 743 576 298 583 707 530 3317
Speckle 78.1 950 978 903 669 899 944 837 522.1 | 365 657 77.1 598 365 657 771 598 3815
Defocus 70.1 902 945 849 616 856 914 795 4934 | 437 717 815 656 352 638 752 581 3710
Blue Glass 823 97.1 991 929 706 919 958 86.1 5369 | 523 80.1 885 737 408 699 806 638 4122
Motion 76.1 937 968 889 650 884 933 822 5133 | 446 717 810 658 364 649 758 59.1 3744
Zoom 587 809 878 758 530 785 855 723 4443 | 284 541 651 492 266 523 644 478 2910
Snow 69.6 913 957 855 642 888 934 821 5030 | 266 517 639 474 264 540 66.6 49.0 2893
Weather FTOSt 81.7 97.0 989 925 69.1 909 950 850 5325 | 373 652 758 594 303 584 704 530 3373
Fog 805 959 983 916 69.0 908 952 850 5297 | 470 753 846 690 377 670 782 610 3899
Brightness | 85.9 97.8 993 943 723 923 961 869 5437 | 528 80.1 884 738 412 704 809 642 4139
Contrast 781 949 975 902 669 898 943 836 5215 | 434 71.6 815 655 356 641 755 584 3717
Digital Elastic 76.9 938 969 892 654 8.0 929 8.1 5139 | 458 736 828 674 362 650 763 59.1 3797
e Pixelate 625 839 888 784 544 786 855 728 4538 | 324 583 689 532 273 538 657 489 3064
JPEG 815 962 983 920 682 90.1 942 842 5285 | 504 781 868 71.8 392 682 794 623 402.1
Stylize  Stylized | 599 808 865 757 513 760 826 700 4370 | 333 591 693 539 281 545 659 495 3102

Table 12: BLIP image perturbation performance comparison of Fine-tuned (FT) image-text retrieval

on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)
Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@I0 Mean R@I R@5 R@10 Mean RSUM | R@l1 R@5 R@I0 Mean R@] R@5 R@10 Mean RSUM
Gaussian | 85.1 949 964 921 743 91.1 944 86.6 5362 | 70.1 884 928 838 552 79.0 864 735 4719
Noi Shot 854 950 968 924 751 916 950 873 5389 | 70.1 832 928 837 552 792 865 737 4721
o1se Impluse 833 934 957 908 729 899 935 854 5286 | 687 87.6 923 829 545 786 86.1 731 4677
Speckle 913 982 99.1 962 802 948 972 90.7 560.8 | 744 915 950 87.0 584 816 85 762 4895
Defocus 838 939 960 912 731 895 932 853 5294 | 680 875 922 826 546 783 854 728 466.1
Blue Glass 946 996 998 980 834 961 980 925 5716 | 79.1 943 972 902 620 843 903 789 5072
Motion 826 934 960 907 719 889 929 846 5257 | 658 850 898 802 529 756 825 703 4517
Zoom 562 749 804 705 533 747 81.6 699 421.1 | 307 522 610 480 318 534 625 492 2916
Snow 622 827 8.8 779 567 797 865 743 456.6 | 583 80.5 87.1 753 497 745 828 69.0 43238
Weather Frost 79.1  93.0 96.1 894 664 868 919 81.7 5134 | 692 880 927 833 557 795 867 740 4718
929 992 996 972 828 960 980 923 5685 | 747 917 954 872 60.1 829 894 715 4942
Brightness | 95.6 99.6 99.8 983 848 965 983 932 5745 | 79.1 940 968 90.0 619 844 905 789 506.8
Contrast 90.2 975 984 954 794 935 961 89.7 5551 | 69.5 87.6 92.1 831 561 79.1 861 738 4704
Digital Elastic 873 954 968 932 775 928 957 887 5456 | 704 879 924 836 559 793 864 739 4723
e Pixelate 756 82 915 851 647 830 878 785 4908 | 56.1 763 826 716 449 683 765 633 4047
JPEG 927 985 993 968 812 949 972 911 5638 | 775 932 964 89.1 60.1 830 895 775 499.6
Stylize  Stylized | 733 864 893 830 641 821 870 777 4821 | 551 753 816 707 459 686 765 636 4029
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Table 13: ALBEF image perturbation performance comparison of Fine-tuned (FT) image-text retrieval

on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K)

MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l R@5 R@10 Mean R@1 R@5 R@I10 Mean RSUM | R@l R@5 R@I0 Mean R@I R@5 R@10 Mean RSUM
Gaussian | 839 946 965 91.7 734 909 945 863 5338 | 66.1 865 920 815 521 776 857 718 460.0
Noise Shot 849 952 971 924 740 918 952 87.0 5383 | 662 866 920 816 521 779 858 719 4606
Impluse 837 944 963 915 730 905 941 859 5320 | 660 868 92.1 81.6 521 776 857 TL8 460.3
Speckle 90.1 981 99.1 958 788 946 972 902 557.8 | 69.9 893 941 844 547 80.1 87.6 741 4758
Defocus 826 940 965 911 71.8 902 93.6 852 5288 | 626 841 90.1 79.0 506 757 839 70.1 447.1
Blue Glass 938 992 997 976 823 963 979 921 569.2 | 751 92.1 962 878 58.1 822 892 765 4930
Motion 80.0 92.0 942 8.7 693 882 923 833 5160 | 61.6 824 879 773 493 738 815 682 4365
Zoom 560 738 794 697 526 738 804 69.0 4161 | 294 511 602 469 292 513 609 47.1 2822
Snow 81.7 944 968 91.0 732 912 947 864 5320 | 51.3 768 848 T71.0 449 710 799 653 408.8
Weather FTOSt 904 975 988 955 795 947 972 905 5581 | 62.1 847 907 792 51.0 767 846 70.8 4498
Fog 902 981 99.1 958 805 951 974 910 5604 | 683 89.1 942 839 546 79.6 869 737 4726
Brightness | 945 994 99.7 978 837 966 982 928 5720 | 746 927 962 87.8 581 827 895 768 493.8
Contrast 882 967 979 943 783 934 960 892 5506 | 63.8 850 908 799 51.7 765 843 708 4521
Digital Elastic 853 947 965 922 753 91.8 951 874 5387 | 657 856 9.1 808 517 765 844 709 455.0
° Pixelate 638 782 824 748 554 753 807 705 4359 | 459 657 727 614 363 589 675 542 3470
JPEG 917 982 991 963 791 946 971 903 559.8 | 71.7 91.1 954 861 553 80.0 874 742 4809
Stylize  Stylized | 70.0 837 869 802 60.0 79.0 845 745 4641 | 506 719 786 670 403 632 717 584 3764

Table 14: TCL image perturbation performance comparison of Zero-Shot (ZS) image-text retrieval

on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l R@5 R@I0 Mean R@I R@5 R@10 Mean RSUM | R@l R@5 R@I0 Mean R@I R@5 R@10 Mean RSUM
Gaussian 693 868 904 822 552 784 848 728 4649 | 579 802 87.0 750 442 706 799 649 4198
Noise Shot 70.1 87.0 912 828 555 784 847 729 4670 | 572 799 869 747 440 705 799 648 4184
Impluse 673 859 903 812 537 774 838 71.6 4584 | 572 802 870 748 438 704 798 647 4184
Speckle 781 929 964 89.1 603 823 832 769 4980 | 62.0 842 905 789 467 733 824 675 439.0
Defocus 60.0 820 873 764 502 71.6 787 669 4298 | 547 79.1 86.5 734 399 652 746 599 4000
Blue Glass 782 940 972 898 63.8 841 894 79.1 506.6 | 66.7 887 947 834 465 726 816 669 4508
Motion 512 729 805 682 438 660 741 61.3 3885 | 476 723 80.7 669 335 570 664 523 3575
Zoom 250 445 535 410 275 459 549 428 2513 | 167 335 427 310 153 305 387 281 1773
Snow 517 754 833 70.1 476 705 788 657 4073 | 37.1 638 747 585 285 512 612 470 3165
Weather Frost 628 855 913 799 520 752 828 70.0 4495 | 489 751 839 693 345 597 698 547 3720
Fog 59.0 81.7 892 766 495 732 816 681 4342 | 557 813 89.1 754 381 633 731 582 400.6
Brightness | 824 962 986 924 613 825 88.1 773  509.1 | 66.8 887 943 833 47.1 733 820 675 4522
Contrast 698 899 940 846 563 783 850 732 4732 | 585 829 8.7 770 412 672 766 617 4l6.1
Digital  Elastic 624 806 859 763 520 733 803 685 4344 | 506 733 807 682 356 596 692 548 369.0
s Pixelate 304 464 533 434 258 422 491 39.0 2472 | 212 364 433 337 174 324 395 298 1903
JPEG 782 938 966 895 612 834 890 779 5022 | 63.1 860 920 803 46,5 731 821 672 4427
Stylize  Stylized | 442 648 712 60.1 384 585 662 544 3434 | 337 550 637 508 263 464 550 426 280.1

Table 15: TCL image perturbation performance comparison of Fine-tuned (FT) image-text retrieval

on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)
Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@1 R@5 R@I0 Mean R@I R@5 R@10 Mean RSUM | R@l1 R@5 R@I0 Mean R@] R@5 R@10 Mean RSUM

Gaussian | 83.1 943 967 914 714 903 941 853 5299 | 648 858 913 80.6 508 766 849 708 4543

Noi Shot 833 951 971 918 719 907 945 857 5326 | 648 857 913 806 507 768 8.1 709 4544
o1se Impluse 829 941 965 91.1 706 899 938 848 5277 | 644 857 915 805 506 767 8.0 708 4539
Speckle 888 978 987 951 763 935 965 888 551.6 | 679 881 934 832 530 788 868 729 468.1

Defocus 770 906 935 871 66.6 86.1 907 8.1 5045 | 628 846 907 794 50.1 758 838 699 4478

Blue Glass 927 99.1 997 972 812 956 977 915 566.0 | 741 924 963 87.6 577 823 892 764 4919
Motion 789 922 949 887 681 876 922 826 5139 | 605 819 878 767 484 734 817 678 4338

Zoom 51.8 705 764 662 484 713 789 662 3973 | 245 452 546 415 272 493 591 452 2599

Snow 788 933 959 893 700 899 938 846 521.7 | 515 764 847 709 446 712 805 654 4089

Weather Frost 88.1 975 986 947 766 937 965 889 5510 | 612 831 895 779 496 756 841 69.8 4432
88.1 980 991 951 779 942 967 89.6 5541 | 67.7 883 935 832 539 795 873 735 4701

Brightness | 93.7 99.0 99.6 974 819 959 979 919 5680 | 734 91.6 959 87.0 57.1 820 8.1 76.1 489.1

Contrast 90.0 97.8 992 957 785 945 971 900 557.1 | 674 87.8 932 828 536 79.1 867 731 467.8

Digital Elastic 813 924 947 895 721 90.1 938 853 5244 | 613 824 884 774 489 744 828 687 4382
e Pixelate 50.1 662 720 628 457 654 725 612 3720 | 377 57.1 650 533 320 541 63.1 498 309.1
JPEG 90.2 983 993 959 771 939 967 892 5554 | 69.9 893 943 845 541 798 874 738 4749

Stylize  Stylized | 650 80.7 850 769 574 775 832 727 4487 | 453 675 753 627 388 626 713 576 3609
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5.9.2 Text Perturbations

Table 16: CLIP text perturbation performance comparison of Zero-Shot (ZS) image-text retrieval on
Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l R@5 R@I0 Mean R@I R@5 R@I0 Mean RSUM |R@l R@5 R@10 Mean R@I R@5 R@I0 Mean RSUM
Keyboard | 62.4 869 931 80.8 435 688 770 63.1 4318 | 368 621 728 572 210 412 516 379 2855
Ocr 734 932 967 878 529 773 846 71.6 4782 | 372 622 726 574 211 415 518 381 2864
Character CI 664 89.6 947 836 473 723 802 66.6 4505 | 37.0 621 728 573 212 414 516 381 286.1
CR 630 884 938 817 441 687 772 633 4352 | 36.6 621 727 571 210 414 517 380 2854
Cs 655 893 949 832 457 704 787 650 4446 | 365 622 726 57.1 211 414 518 381 2856
CD 663 904 954 840 472 719 801 664 4513 | 36.6 622 73.0 573 211 414 516 380 2858
SR 760 951 980 897 580 817 82 760 497.1 | 47.0 728 818 672 292 53.0 63.6 486 3475
WI 783 957 983 908 61.6 849 909 79.1 5096 | 499 749 835 694 321 565 669 518 3638
Word S 772 951 98.0 90.1 59.7 836 89.8 777 5033 | 489 736 823 683 306 547 653 502 3555
WD 80.9 968 985 921 614 854 911 793 5141 | 517 764 846 709 323 565 671 519 368.6
P 81.8 971 988 926 638 86.1 91.6 805 5194 | 524 766 845 712 341 582 684 536 3742
Formal 864 986 991 947 660 885 931 825 5317 | 568 804 877 750 364 609 708 56.0 393.0
Casual 849 979 992 940 66.1 884 928 824 5293 | 571 79.6 877 748 359 606 707 557 391.6
Sentence  Passive 843 969 992 935 648 873 922 815 5248 | 543 778 8.1 727 341 584 689 538 379.6
Active 856 979 992 942 669 888 93.1 829 5314 | 575 803 879 752 361 608 709 559 3935
Back_trans | 839 970 985 93.1 655 872 922 81.6 5242 | 551 782 857 73.0 343 589 69.1 541 3812

Table 17: CLIP text perturbation performance comparison of Fine-tuned (FT) image-text retrieval on
Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)
Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l R@5 R@10 Mean R@l R@5 R@I0 Mean RSUM | R@l R@5 R@10 Mean R@l R@5 R@10 Mean RSUM
Keyboard | 67.0 912 962 848 483 740 816 68.0 4584 | 368 66.1 781 603 243 494 613 450 3l16.1
Ocr 762 954 984 900 585 833 89.1 770 5009 | 368 663 779 604 244 497 615 452 3167
Character CI 714 933 968 872 532 781 848 720 4776 | 363 66.6 782 604 244 496 614 451 3165
CR 689 91.7 96.1 856 487 745 81.7 683 4616 | 365 663 781 603 243 497 615 452 3164
CcsS 70.7 924 96.6 866 51.0 766 837 704 471.1 | 365 665 782 604 244 496 614 451 3167
CD 709 933 972 872 521 715 845 713 4755 | 367 661 779 603 242 495 613 450 3156
SR 780 964 985 910 634 872 920 809 5154 | 453 750 851 685 338 627 743 569 3762
WI 81.0 970 990 923 683 904 947 844 5304 | 484 773 868 708 373 668 781 60.7 394.6
Word 'S 808 970 990 922 66.1 893 939 831 5260 | 480 77.1 8.7 70.6 359 653 769 594 3899
WD 81.0 974 991 925 679 907 950 845 5311 | 491 777 8.8 71.2 371 667 780 606 3953
1P 830 979 992 934 699 912 951 854 5364 | 515 795 8.1 73.0 391 687 796 625 406.6
Formal 852 984 995 944 733 929 964 876 5458 | 535 81.0 89 745 417 708 813 646 4173
Casual 839 976 994 936 725 923 964 871 5421 | 525 80.6 89.0 740 414 704 812 644 4152
Sentence  Passive 829 977 991 932 713 913 956 8.1 5379 | 519 80.0 83 734 396 689 800 628 4087
Active 850 976 994 940 735 929 966 877 5451 | 541 814 890 748 422 71.1 817 650 4194
Back_trans | 83.8 97.7 990 935 704 912 952 856 5373 | 514 79.1 82 729 396 685 795 625 4062

Table 18: BLIP text perturbation performance comparison of Fine-tuned (FT) image-text retrieval on
Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@10 Mean R@1 R@5 R@I10 Mean RSUM | R@l R@5 R@10 Mean R@1 R@5 R@10 Mean RSUM
Keyboard | 84.5 973 989 936 638 841 894 791 5180 | 641 864 919 808 427 675 766 622 429.1
Ocr 93.6 995 998 976 775 931 96.0 889 5595 | 743 922 960 875 536 777 853 722 479.1
Character C1 86.6 980 993 947 663 861 909 8.1 5273 | 66.7 88.1 934 827 450 702 79.0 647 4424
CR 846 975 990 937 639 838 8.2 790 5180 | 645 867 921 811 429 677 769 625 4308
CS 874 979 993 949 659 854 905 80.6 5264 | 67.0 88.1 93.2 828 446 697 786 643 4413
CD 86.8 977 992 946 659 857 904 807 5257 | 67.0 88.1 933 828 448 69.7 786 644 4414
SR 938 996 999 978 806 947 97.0 907 5656 | 742 924 96.1 876 555 795 867 739 4843
WI 96.0 998 999 986 8.0 969 985 934 576.1 | 781 940 97.1 897 60.1 832 8.6 776 5021
Word WS 948 996 100.0 981 836 965 984 928 5729 | 759 932 966 886 581 820 8.9 763 4946
WD 951 998 1000 983 838 967 985 930 5738 | 773 939 97.0 894 592 827 895 77.1 4997
P 97.3 999 100.0 990 872 975 989 945 580.7 | 81.8 954 978 917 639 856 913 803 5158
Formal 96.5 999 100.0 988 867 97.1 988 942 579.0 | 81.7 952 976 915 635 853 912 800 5144
Casual 96.8 100.0 100.0 989 860 97.1 987 939 5786 | 813 950 977 913 634 851 911 798 5136
Sentence  Passive 968 998 999 988 833 965 982 927 5745 | 805 947 973 908 617 838 902 786 508.1
Active 97.1 999 1000 99.0 86.6 972 987 942 5796 | 81.6 952 977 915 640 855 913 803 5154
Back_trans | 96.0 999 100.0 986 845 96.1 982 929 5747 | 799 942 970 904 610 829 893 778 5043
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Table 19: ALBEF text perturbation performance comparison of Fine-tuned (FT) image-text retrieval
on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l R@5 R@I0 Mean R@l R@5 R@I0 Mean RSUM | R@l R@5 R@10 Mean R@l R@5 R@I0 Mean RSUM
Keyboard | 82.1 960 985 922 597 821 877 765 5062 | 579 826 8.6 767 380 634 730 581 4045
Ocr 913 992 99.6 967 746 921 951 873 5520 | 693 899 948 847 495 749 833 692 4617
Character CI 844 972 986 934 625 842 892 786 5162 | 608 847 910 788 406 662 756 608 4189
CR 821 959 984 921 599 81.6 872 762 5050 | 583 829 89 770 383 63.6 731 583 406.1
CS 829 968 988 928 61.6 832 884 777 5117 | 599 841 908 783 398 653 748 60.0 4147
CD 836 967 985 929 619 836 887 781 513.0 | 60.0 84.1 908 783 399 657 751 602 4155
SR 929 992 998 973 787 945 968 900 5619 | 70.1 90.6 95.1 83 524 777 855 719 4714
WI 943 99.6 999 979 829 966 983 926 5716 | 732 924 963 873 568 81.6 887 757 4889
Word WS 933 994 999 976 815 963 981 920 5686 | 720 91.8 96.1 866 551 80.6 882 746 4837
WD 934 995 999 976 822 965 983 924 5700 | 729 92.1 961 870 557 8l.1 885 751 4863
1P 959 998 1000 986 855 975 989 940 5777 | 77.6 943 972 897 60.7 843 905 785 5045
Formal 954 997 999 983 852 973 987 937 5762 | 776 941 970 896 602 839 903 781 503.1
Casual 95.1 99.7 1000 983 84.6 97.1 985 934 5750 | 77.1 941 974 895 597 836 90.1 778 502.0
Sentence  Passive 946 994 1000 980 815 961 98.0 918 5695 | 76.1 934 967 87 584 826 892 767 4964
Active 956 99.8 1000 985 850 973 987 937 5764 | 715 942 97.1 896 604 842 903 783 5037
Back_trans | 959 99.7 999 985 830 961 980 923 5725 | 752 930 964 882 574 810 83 756 4913

Table 20: TCL text perturbation performance comparison of Zero-Shot (ZS) image-text retrieval on
Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@l R@5 R@I0 Mean R@l R@5 R@I0 Mean RSUM | R@l R@5 R@10 Mean R@l R@5 R@I0 Mean RSUM
Keyboard 63.8 872 927 812 441 688 76.7 632 4333 | 49.6 76.1 84.9 702 323 572 678 524 368.0
Ocr 782 948 979 903 588 821 881 763 4999 | 614 851 91.6 794 426 690 787 634 4284
Character CI 673 830 934 829 459 705 783 649 4433 | 519 785 867 724 341 598 703 547 3813
CR 63.1 859 914 80.1 438 681 761 627 4284 | 497 761 851 703 322 574 679 525 3684
(& 66.5 88.6 938 830 463 708 785 652 4444 | 526 785 87.0 727 340 597 70.1 546 3820
CD 66.7 894 942 834 472 719 794 662 4489 | 526 788 869 728 343 602 706 550 3834
SR 783 953 979 905 632 860 91.1 80.1 5119 | 621 857 919 799 458 723 815 665 4393
WI 80.0 963 985 91.6 670 886 934 830 5238 | 633 868 930 81.0 495 76.1 847 70.1 4534
Word WS 804 959 984 91,6 648 872 924 815 5191 | 632 865 927 808 465 73.8 830 678 4457
WD 836 97.1 988 931 670 89.0 934 831 5288 | 653 872 931 819 476 744 833 684 4509
P 894 986 996 959 734 922 955 870 5486 | 714 90.8 954 859 535 79.0 871 732 4772
Formal 880 980 998 953 720 91.6 951 862 5444 | 708 90.6 952 855 529 784 865 72.6 4744
Casual 872 983 995 950 714 912 948 858 5424 | 699 902 949 850 523 781 864 723 4718
Sentence  Passive 845 97.1 994 937 676 886 929 830 530.1 | 68.6 89.1 944 840 505 769 852 709 4647
Active 893 983 999 958 729 915 951 865 5471 | 709 90.6 953 856 531 789 869 73.0 4757
Back_trans | 86.0 97.6 994 943 694 89.8 936 843 5358 | 685 892 942 839 503 759 841 70.1 462.0

Table 21: TCL text perturbation performance comparison of Fine-tuned (FT) image-text retrieval on
Flickr30K and COCO datasets (results are averaged on five perturbation levels).

Flickr30K (1K) MSCOCO (5K)

Method Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@] R@5 R@I0 Mean R@] R@5 R@I0 Mean RSUM | R@l R@5 R@10 Mean R@I R@5 R@10 Mean RSUM
Keyboard | 79.7 952 979 909 570 79.1 854 738 4943 | 558 813 888 753 369 625 724 573 3978
Ocr 90.0 99.1 997 963 717 904 940 854 5450 | 67.6 889 940 835 480 739 826 682 4551
Character CI 822 962 983 922 596 814 872 761 5049 | 585 835 904 775 393 653 750 59.8 412.0
CR 793 948 978 907 567 79.1 850 736 4928 | 556 815 89.0 754 372 627 725 575 3985
(& 80.7 960 982 91.6 590 812 8.8 757 5019 | 57.6 829 902 769 387 648 746 594 408.8
CD 814 957 983 918 59.1 812 867 757 5024 | 581 830 900 77.0 392 653 750 598 4105
SR 91.0 99.1 997 966 761 930 958 883 5547 | 67.8 89.1 942 837 510 768 848 708 4637
WI 934 994 998 975 805 955 977 912 5664 | 708 91.0 956 858 553 80.6 88.0 746 4813
Word WS 91.0 99.1 99.6 96.6 782 947 974 90.1 560.0 | 69.2 903 949 848 523 785 86.6 725 4718
WD 926 994 998 973 795 953 97.6 908 5642 | 70.8 90.7 955 857 537 797 8713 73.6 4717
1P 949 995 998 981 840 967 985 931 5734 | 756 92.8 967 883 59.0 832 899 773 4971
Formal 944 994 998 979 832 965 983 926 5715 | 753 924 967 8.1 582 827 895 768 4946
Casual 940 995 999 978 821 960 98.0 921 569.6 | 746 92.1 965 878 579 825 894 766 493.0
Sentence  Passive 927 99.1 998 972 795 945 97.1 904 5628 | 735 91.9 96.1 872 563 813 883 753 4873
Active 948 995 998 980 835 964 982 927 572.1 | 754 927 96.6 882 587 830 897 771 4960
Back_trans | 939 995 999 978 806 953 973 9.1 5665 | 727 916 960 868 555 803 873 744 4835
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