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ABSTRACT

Tracking cardiac motion using cine magnetic resonance imaging (cine MRI) is
essential for evaluating cardiac function and diagnosing cardiovascular diseases.
Current methods for cardiac motion tracking depend on scaling and squaring (SS)
integration to learn discrete Lagrangian motion fields. However, this reliance hin-
ders the effective exploitation of temporal continuity, leading to inadequate track-
ing accuracy. In this paper, we introduce a novel unsupervised learning method,
CineMorph, to achieve temporally continuous cardiac motion tracking in cine
MRI image sequences. Our approach integrates a frame-aware UNet with a series
of time-continuous Transformer blocks to learn temporally continuous intra-frame
motion fields, which are then assembled into time-continuous Lagrangian motion
fields. To ensure the diffeomorphism property, we implement semigroup regu-
larization to constrain our model, thus eliminating the reliance on SS integration.
We evaluate our method on the public Automatic Cardiac Diagnostic Challenge
(ACDC) dataset. The experimental results show that our method outperforms the
existing state-of-the-art methods and achieves state-of-the-art performance with a
mean DICE score of 83.6% and a mean Hausdorff distance of 3.4 mm.

1 INTRODCUTION

Cine Magnetic Resonance Imaging (cine MRI) plays a crucial role in cardiac motion tracking due
to its non-invasive nature and superior imaging capabilities Bello et al. (2019); Reindl et al. (2019);
Wang et al. (2023). This technique allows for detailed visualization of the heart’s anatomy and
function throughout the cardiac cycle, capturing high-resolution images at multiple phases. By
tracking the myocardial motion and deformation, clinicians can accurately assess cardiac function
Sliman et al. (2014); Edvardsen et al. (2001), identify abnormalities in heart motion, and evaluate
conditions such as myocardial infarction Reed et al. (2017), cardiomyopathies Ciarambino et al.
(2021), and valvular diseases Coffey et al. (2021).

Compared to tagged MR images, cine MR images have the advantage of clearly visualizing car-
diac anatomy, particularly the myocardium, as the epicardial and endocardial surfaces are distinctly
visible. This makes it easier to track the radial motion of the myocardium. However, cine images
fall short in accurately quantifying circumferential and longitudinal motion because there are few
reliable features within the myocardium to track, and there are often insufficient long-axis images
available Shi et al. (2012). Moreover, magnetic field inhomogeneities can cause variations in image
brightness, especially with the balanced steady-state free precession (bSSFP) sequence, leading to
dark band artifacts Ye et al. (2023).

In recent years, deep learning-based unsupervised methods have emerged as an efficient and effec-
tive design scheme for cardiac motion tracking Lu et al. (2023). These methods typically decompose
the motion-tracking problem into pairwise registration processes. Using classical pairwise registra-
tion networks, such as VoxelMorph Balakrishnan et al. (2019), the motion field can be learned
between two consecutive or any two images. When applied to consecutive images, the resulting
motion fields need to be composed into Lagrangian motion fields to achieve motion tracking be-
tween any two images. The classical work is SequenceMorph Ye et al. (2023), which proposes a
bi-directional generative diffeomorphic registration network to estimate the inter-frame motion field
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between any two consecutive frames, and then recomposed them to the Lagrangian motion field
between the reference frame and any other frame, through a differentiable composition layer. Con-
sidering temporal continuity between consecutive frames, SequenceMorph shows superior tracking
performance and the feasibility of the motion decomposition and recomposition principle. Different
from SequenceMorph, Lu et al. introduce the temporal relations and automatically learn spatiotem-
poral information from multiple images through a bidirectional recurrent neural network to directly
estimate the Lagrangian motion field between the reference image and other images. However, these
methods rely on the scaling and squaring integration scheme Hernandez et al. (2007); Arsigny et al.
(2006) to reconstruct the deformation field. This reliance imposes a constraint on their capacity to
capture temporal continuity, particularly for large deformation motions.

In this paper, we introduce a novel unsupervised learning method, called CineMorph, which gener-
ates time-continuous Lagrangian motion fields to facilitate smoother cardiac motion tracking. Draw-
ing inspiration from Matinkia & Ray (2024), our method leverages the semigroup property Biagi &
Bonfiglioli (2019) to learn the intra-frame motion field at any time and ensure diffeomorphic defor-
mations without using scaling and squaring integration. To achieve this, we propose a new neural
network architecture, which uses a frame-aware UNet Ronneberger et al. (2015) to encode two con-
secutive images with frame information and a series of transformer blocks to obtain time-continuous
intra-frame motion fields. Benefitting from the time-continuous property, we further propose a time-
continuous Lagrangian motion constraint to achieve global temporally-continuous motion tracking,
as shown in Figure 1. To assess the effectiveness of our method, we conduct extensive experiments
on the public ACDC dataset. Our results show our CineMorph is superior to the previous state-of-
the-art models.

To sum up, our contributions can be summarized as the following:

• We introduce a novel unsupervised learning method for tracking cardiac motion in cine
MRI images, which integrates a frame-aware UNet architecture with Transformer blocks
to generate time-continuous Lagrangian motion fields.

• We propose a time-continuous Lagrangian motion constraint to ensure temporal continuity
and diffeomorphism with semigroup regularization.

• We provide extensive experiments on the ACDC dataset, which demonstrate the superior
performance of CineMorph over recent state-of-the-art methods.

2 RELATED WORK

Optical Flow-Based Methods. Optical flow (OF) is a widely used technique in video sequences
to track objects by estimating the motion of objects between consecutive frames Brox & Malik
(2010); Zhang et al. (2021); Xu et al. (2022); Shi et al. (2023); Saxena et al. (2024). OF can pro-
vide dense motion vectors for every pixel in the image, enabling detailed motion analysis across the
entire frame. OF-based methods estimate cardiac motion field based on several basic assumptions
regarding image appearance and motion strength, such as brightness consistency and small motion
between the fixed and moving frames Carranza-Herrezuelo et al. (2010); Wang et al. (2019). How-
ever, these assumptions are not always valid in cardiac image sequences due to lighting changes,
noise, or large displacements of the myocardium. Another challenge is that most OF-based methods
require supervised learning, which is nearly impractical for medical images.

Image Registration-Based Methods. Image registration-based methods aim to find a transforma-
tion directly to obtain a dense displacement field that describes motion. Conventional non-rigid
registration approaches, such as parametric B-Splines Rueckert et al. (1999), are formulated as it-
erative optimization procedures that maximize a similarity criterion between the fixed and moving
images to determine the optimal transformation. Shi et al. developed a spatial and temporal reg-
istration approach that utilizes free-form deformations to estimate motion within the myocardium
using a spatially-varying, weighted similarity measure Shi et al. (2012). Some studies have also uti-
lized or extended this method to estimate cardiac motion for both untagged and tagged MR images
Chandrashekara et al. (2004); De Craene et al. (2012). However, these methods are often associated
with high computational costs and long execution times.

In recent years, there has been a surge of interest in applying deep learning to medical image registra-
tion and motion tracking Dalca et al. (2019); Niethammer et al. (2019); Chen et al. (2023). Compared
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Figure 1: An overview of transforming motion field ϕ to Lagrangian motion field Φ with a composi-
tion layer C. As shown in the figure, our method can achieve temporally continuous motion tracking
by estimating time-continuous Lagrangian motion fields. “w” means “warp”.

to traditional iterative methods, deep learning-based approaches are faster and more accurate. In the
context of motion tracking, the tracking problem is typically decomposed into pairwise registration
processes to directly or indirectly generate Lagrangian motion fields Fechter & Baltas (2020); Yu
et al. (2020) using registration networks Balakrishnan et al. (2019); Wu et al. (2022); Joshi & Hong
(2023); Wang et al. (2024). Ye et al. proposed a bi-directional diffeomorphic registration network
to estimate the inter-frame motion fields between consecutive image pairs and recompose them into
Lagrangian motion fields through a differentiable composition layer Ye et al. (2021; 2023). Lu et
al. proposed to model the temporal relations of cardiac cine MRI images through a bidirectional
recurrent neural network to obtain the Lagrangian motion field between the reference image and
other images Lu et al. (2023).

3 METHOD

3.1 PRELIMINARIES

3.1.1 MOTION DECOMPOSITION AND RECOMPOSITION

Cardiac cine MRI images capture a complete cardiac cycle, which comprises two phases: diastole
and systole. Typically, the cine sequence starts at the end of diastole (ED), reaches peak contraction
at the end of systole (ES), and then relaxes back to the ED phase. For a point m in a cine image that
moves from position x0 at time t0, we need to track its motion trajectory xt. In an N -frame cine
MRI image sequence, we only have the finite positions xn (n = 0, 1, · · · , N − 1) of m. Over the
time interval ∆t = tn−1 − tn−2, the displacement can be represented as a vector ϕ(n−2)(n−1), also
called inter-frame motion field. A sequence of such inter-frame motions {ϕt(t+1)}n−2

t=0 is composed
to the Lagrangian motion field Φ0(n−1) Wang et al. (2019). Based on Φ0(n−1), we can shift the point
m from position x0 to xn−1. For motion tracking, given the first frame at time t0 as the reference
frame, our goal is to derive the Lagrangian motion field Φ0(n−1) between the reference frame and
any subsequent frame at time tn−1. Direct estimation of the Lagrangian motion field may lead to
considerable motion errors due to large heart motion and intensity differences between temporally
distant frames during the cardiac cycle. To address this, following Ye et al. (2023), we adopt the
motion decomposition and recomposition principle, which first estimates the inter-frame motions
{ϕt(t+1)}n−2

t=0 and then recomposes them to the Lagrangian motion field Φ0(n−1).

3.1.2 DIFFEOMORPHIC REGISTRATION FOR INTER-FRAME MOTION FIELD

For inter-frame motion field, deformable registration seeks for a vector field ϕt(t+1) : R2 → R2,
which warps the moving image Xt at frame t smoothly towards the fixed image Xt+1 at frame

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 16 32 32 32 32 32 32 16 2

Frame Embedding Module

t

f  x

~ (0,1)Uni

Spatial 
Transformer

tX

1tX

Warped

Time Embedding 
Module

{0,1, 2,..., 24}t

Time-Continuous 
Transformer Blocks



f

tX

...16 16

Figure 2: An overview of our proposed network. As illustrated in the figure, our frame-aware UNet
is independent of time τ . Therefore, when calculating the semigroup loss function, we only need to
perform one forward propagation, reducing the training overhead.

t+ 1. The deformation field ϕ is generally considered to be the flow map solution of the following
ordinary differential equation (ODE) Beg et al. (2005); Chen et al. (2022); Joshi & Hong (2023);
Wang et al. (2024): {

dϕτ

dt = v(ϕτ ) = v ◦ ϕτ
ϕ0(x) = x,

(1)

where τ ∈ [0, 1], x is a spatial location, ◦ is a composition operator, v is a stationary velocity field
and ϕ0 is an identity transformation. The utility of Equation (1) is that its solution is guaranteed to
be a diffeomorphism:

ϕ1/2T = x+
v(x)

2T
. (2)

ϕ1 can be obtained by using the scaling and squaring integration scheme with the recurrence ϕ1/2i =
ϕ1/2i+1 ◦ ϕ1/2i+1 , which can be expressed as:

ϕ1/2T−1 = ϕ1/2T ◦ ϕ1/2T ⇒ · · · ⇒ ϕ1 = ϕ1/2 ◦ ϕ1/2. (3)

A necessary and sufficient condition of ϕ as the flow map solution of Equation (1) is that it satisfies
the semigroup property, i.e., for any time steps ξ and ς it holds Biagi & Bonfiglioli (2019)

ϕξ ◦ ϕς = ϕς ◦ ϕξ = ϕξ+ς . (4)

Assuming that ξ = −ς , we have ϕξ ◦ ϕ−ξ = ϕ0 to guarantee the bijectivity of the deformation field
ϕ. Meanwhile, if the deformation ϕ satisfies Equation (4), then ϕ is a diffeomorphism at any time
ξ ∈ [−1, 1] Matinkia & Ray (2024).

3.2 PROPOSED METHOD

We propose an unsupervised deep learning method, dubbed as CineMorph, to learn a set of time-
continuous motion fields {ϕt(t+τ)}n−2

t=0 , which are recomposed to the time-continuous Lagrangian
motion fields. As shown in Figure 2, CineMorph consists of a frame-aware UNet and multiple time-
continuous Transformer blocks. We decouple the frame t and time τ , allowing us to perform only
a single forward propagation calculation with UNet when calculating the semigroup loss function.
This reduces the computational cost and enhances the flexibility of the overall framework, as UNet
can be substituted with other more sophisticated models.

3.2.1 FRAME-AWARE UNET

Considering the differences in myocardium motion across different frames, we introduce a frame-
aware UNet that better models the motion features of the image pairs using a frame embedding
module. The frame-aware UNet takes an image pair and frame t as input and maps them to a motion
feature. Formally, let Xt and Xt+1 be a pair of 2D images with the same shape of H ×W and let
Z ∈ RH×W×C be the motion feature encoded by the frame-aware UNet ψ:

Z = ψ(Xt,Xt+1, t;θ1), (5)

4
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Figure 3: The architecture of time-continuous Transformer blocks. Left: The motion feature is
decomposed into patches and processed by several transformer blocks. Right: Details of the time-
continuous Transformer block.

where θ1 represents the model parameters and C represents the number of channels. The frame t
is encoded to an embedding vector of dimension Rd using a sinusoidal positional embedding PE
Vaswani (2017), followed by a multi-layer perceptron (MLP):

W2σ(W1PE(t)), (6)

where W1 ∈ Rd×d and W2 ∈ Rd×C are learnable weights and σ is the SiLU activation function.
The embedding vector is added to UNet.

3.2.2 TIME-CONTINUOUS TRANSFORMER BLOCK

Inspired by Scalable Diffusion Transformers Peebles & Xie (2023), we propose to learn the time-
continuous motion field ϕ using time-continuous transformer blocks. As illustrated in Figure 3, the
time-continuous transformer block has a similar architecture to other transformer blocks Vaswani
(2017). The key difference is that time τ is utilized as additional conditional information to regress
the scale and shift parameters γ and β, as well as the dimension-wise scaling parameters α, through
an MLP layer. The MLP is initialized to output the zero-vector for all α, effectively setting the
entire transformer block as the identity function. This ensures that the model focuses on learning
inter-frame motion fields at the beginning of training. As training progresses, it gradually shifts to
learning intra-frame motion fields.

Patchify and Unpatchify. The motion feature Z has a high spatial resolution (160 × 160 in our
experiment), significantly increasing the computational cost of the transformer blocks. Following
Peebles & Xie (2023), we introduce a “patchify” layer as the first layer, which converts the motion
feature Z into a sequence of tokens, each of dimension d, using a convolutional layer with kernel
size k. After the final transformer block, we apply a final layer norm and linearly decode each
sequence of image tokens. Finally, we rearrange the decoded tokens into their original spatial layout
to obtain the predicted velocity field.

Different from Equation (2), we follow Matinkia & Ray (2024) to model the motion field ϕ. Specif-
ically, we construct a sequence of transformer blocks to map the motion feature Z to the motion
field ϕ:

ϕτ (x,Z;θ2) = x+ τf(x,Z, τ ;θ2),∀τ ∈ [−1, 1], (7)

where f is a sequence of transformer blocks with learnable parameters θ2, which receives the motion
feature Z rather than the pair of images. When τ = 0, we have ϕ0(x) = x, hence satisfying the
initial condition of the ODE 1. Additionally, to ensure that ϕ is a valid flow map, we enforce the
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model to satisfy the semigroup property stated in Equation (4). We achieve this by setting ξ = τ
and ς = τ − 1, which can be expressed as:

ϕτ ◦ ϕτ−1 = ϕτ−1 ◦ ϕτ = ϕ2τ−1,∀τ ∈ [0, 1]. (8)

By randomly sampling τ , we can obtain the motion field ϕτ at any time τ , thus achieving the
prediction of a continuous motion field.

3.2.3 INTER-FRAME AND INTRA-FRAME MOTION CONSTRAINTS

According to the bijectivity of the motion field, warping Xt up to time τ using the motion field ϕτ
must be equivalent to warping Xt+1 up to time 1− τ using the inverse motion field ϕτ−1 due to the
continuity of the trajectory of ϕ. Hence we can define a time-continuous similarity loss:

Lsim(τ) =MSE(ϕτ [Xt], ϕτ−1[Xt+1]) = ∥ϕτ [Xt], ϕτ−1[Xt+1]∥22 , (9)

where MSE is the mean squared error and ϕτ [Xt] represents warping Xt with ϕτ using a spatial
transformer network Jaderberg et al. (2015). Lsim measures inter-frame motion similarity when
τ = 0 or τ = 1, and intra-frame motion similarity when 0 < τ < 1. The MSE loss is more
suitable than normalized local cross-correlation (NCC) for image pairs that have similar intensity
distributions and local contrast, such as cardiac Cine-MRI images Joshi & Hong (2023). Hence, we
use the MSE loss in our experiments.

Using Equation 8, we impose the semigroup constraint on the motion field to ensure that ϕ is invert-
ible and a diffeomorphism at all time steps:

Lreg(τ) = ∥ϕ2τ−1 − ϕτ ◦ ϕτ−1∥2 + ∥ϕ2τ−1 − ϕτ−1 ◦ ϕτ∥2 ,∀τ ∈ [0, 1]. (10)

We use an explicit smoothness to the motion field to ensure reasonable deformation by penalizing
its gradients:

Lsmooth(ϕ) = ∥▽ϕ∥22 . (11)

Therefore, the inter-frame and intra-frame motion constraints are:

L1 = Eτ∼Uni(0,1)[λ0Lsim(τ) + λ1Lreg(τ) + λ2Lsmooth(ϕ)], (12)

whereUni(0, 1) is the uniform distribution on [0, 1], and λ0, λ1 and λ2 are the regularization factors.

3.2.4 TIME-CONTINUOUS LAGRANGIAN MOTION CONSTRAINTS

Benefiting from the prediction of the continuous motion fields {ϕt(t+τ)}n−2
t=0 , we can recompose

them as time-continuous Lagrangian motion fields {Φ0(t+τ))}n−2
t=0 , with τ ∈ [0, 1], by a differ-

entiable composition layer C, as shown in Figure 1. Formally, we formulate the time-continuous
Lagrangian motion fields as:

Φ0(t+τ) = ϕt(t+τ) ◦Φ0t,∀τ ∈ [0, 1], (13)

where t = 0, 1, · · · , N − 1, Φ00 = ϕ00, and Φ01 = ϕ01.

With the Lagrangian motion field Φ0(t+τ), we can warp the reference frame image X0 to any other
time t+ τ : Φ0(t+τ)[X0]. By measuring the similarity between Xt+τ and Φ0(t+τ)[X0], we form a
time-continuous Lagrangian motion consistency constraint:

Llag(τ) =
1

N − 1

N−2∑
t=0

Lsim(Xt+τ ,Φ0(t+τ)[X0]), (14)

where N is the total frame number of a cine image sequence. τ follows a uniform distribution on
[0, 1]. When τ = 0 or τ = 1, we use the ground truths Xt and Xt+1 as labels to compute the loss
Llag . Otherwise, we use Xt+τ = ϕτ [Xt] as a pseudo-label to to compute the loss Llag . Note that
τ is independently sampled for each frame. Further, we also enforce the explicit smoothness of the
Lagrangian motion field Φ0(t+τ) by penalizing its gradients:

Lsmooth(Φ) = ∥▽Φ∥22 . (15)
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The Lagrangian motion constraints are:

L2 = Eτ∼Uni(0,1)[λ3Llag(τ) + λ4Lsmooth(Φ)], (16)

where λ3 and λ4 are the regularization factors to balance the contribution of each loss term. To sum
up, the complete loss function Ltotal of our method is the sum of L1 and L2:

Ltotal = L1 + L2. (17)

4 EXPERIMENTS

4.1 DATASET AND PRE-PROCESSING

We evaluated our method on the Automatic Cardiac Diagnostic Challenge (ACDC) dataset Bernard
et al. (2018). ACDC is a public cine MR dataset that only consists of SAX view cine MR images
from 150 subjects. Each scan includes 9 to 10 slices to cover the whole heart. In the original data
split, there are 100 subjects in the training set, which includes segmentation mask annotations for
the ED and ES frames, and another 50 subjects are in the testing set without any annotation masks.
We rearranged and randomized the data based on subgroups, resulting in a revised configuration of
90 cases in the training set, 20 in the validation set, and 40 in the test set. We excluded slices located
near the heart’s base or apex due to the absence of annotation masks. The modified data contains
921 two-dimensional sequences in the training set, 180 in the validation set, and 388 in the test set,
respectively. For each sequence, the number of frames varies from 12 to 35, covering only the ED to
ES phases. If a sequence contains more than 25 frames, we removed extra frames from the sequence,
except for the beginning and ending ones. Sequences with fewer than 25 frames remain unchanged.
We first extracted the region of interest from the images to cover the heart, then resampled them to
the same in-plane spatial size 160 × 160. Each sequence is used as input to the model for tracking
the cyclic cardiac motion. Each input is a 2D sequence with a spatial resolution of 160 × 160 and
a maximum of 25 frames. Following Ye et al. (2023), for each 2D image, we normalized the pixel
values by first dividing them by 8 times the median intensity value of the image and then truncating
the values to the range [0, 1]. Additionally, we performed data augmentation for each image with
random rotation, translation, scaling, and Gaussian noise addition.

4.2 EVALUATION METRICS

We evaluated the motion tracking performance using the segmentation masks of the left ventricle
(LV), myocardium wall (MYO), right ventricle (RV), and left atrium (LA). Since the mask anno-
tations are available only on the ED and ES frames, we warped the mask from the ED frame to
the ES frame using the estimated Lagrangian motion field. Here we used two metrics, the Dice
score Dice (1945) and the 95% maximum Hausdorff distance (HD95) Huttenlocher et al. (1993).
The Dice score evaluates the degree of overlap between the estimated ES mask and the ground
truth ES mask, while the HD95 measures the similarity of the region contours. A higher Dice and
lower HD95 scores indicate better overlap between the two segmentation masks, reflecting superior
tracking performance.

4.3 BASELINE METHODS

We compared our proposed method with three state-of-the-art methods: VoxelMorph (VM) Bal-
akrishnan et al. (2018); Dalca et al. (2019), DeepTag Ye et al. (2021), and SequenceMorph (SM)
Ye et al. (2023). For VM and DeepTag, we used their public implementations and retrained them
from scratch, following the optimal hyper-parameters suggested by the authors. Since the code has
not been released for SM, we report the results directly from their paper. We compare our method
with SM without Lagrangian motion refinement (SM woR) for fair comparisons. VM is based on
direct Lagrangian motion tracking, whereas DeepTag, SM, and our method are based on Lagrangian
motion recomposition.

4.4 IMPLEMENTATION DETAILS

Our method was implemented with PyTorch. The architecture of the frame-aware UNet is similar
to that described in Matinkia & Ray (2024). Specifically, the encoder has 3 down-sampling layers

7
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Figure 4: Motion tracking results on three cine MR image sequences (best viewed zoomed in). In
each case, first row shows the images and second row shows the segmentation masks. Between
ED and ES, we show the warped images by the estimated motion fields of different methods. Red
contour shows the ground truth edge of LV, MYO and RV on the ES frame.

of dimensions 32, 32, and 32, and the decoder has 3 up-sampling layers with the same dimensions
as the down-sampling layers. After the last up-sampling layer, we use a convolution layer to reduce
the dimension to 16. All the activation functions for the layers are set to SiLU Hendrycks & Gimpel
(2016) to provide more smoothness to the network. The number of time-continuous transformer
blocks is set to 2. The time-embedding dimension is 64. The kernel size of the patchify layer is
8. We use the Adam optimizer with a 1e−4 learning rate to train our model for 1000 epochs. The
regularization factors are set to λ0 = 100, λ1 = 5e8, λ2 = 5, λ3 = 50, and λ5 = 1, respectively.

4.5 RESULTS

Motion tracking performance. Table 1 provides a comprehensive comparison of the motion track-
ing performance of our method against other baseline methods. All values are expressed as mean

8
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Figure 5: Motion tracking results on two cine MR image sequences (best viewed zoomed in). In each
sequence, first row shows the warped images and second row shows the corresponding Lagrangian
motion fields at different time T = t+ τ .

and standard deviation. Our implementation achieves similar motion tracking performance to that of
Ye et al. (2023). As shown in Table 1, our method achieves the best performance regarding Dice and
HD95 metrics. Compared to VM and DeepTag, our method consistently delivers better results for
the LV, MYO, and RV regions. Compared to SM woR, our method shows significant performance
improvements, except for the HD95 score in the MYO region. Figure 4 visualizes the warped im-
ages and motion tracking results of different methods from the ED phase to the ES phase on cine
MR image sequences. The visualization shows that our method aligns more consistently with the
ground truth of the ES mask. These results demonstrate the effectiveness of our method.

Table 1: Comparison of the performance of CineMorph with other methods. “woR” denotes “with-
out Lagrangian motion refinement”. “*” denotes that the results are reported in Ye et al. (2023).

Method Dice ↑ HD95(mm)↓
LV MYO RV avg LV MYO RV avg

VM* 0.824± 0.156 0.793± 0.105 0.785± 0.175 0.801± 0.021 3.752± 3.607 3.071± 2.399 7.037± 6.679 4.620± 2.121
VM (our impl.) 0.827± 0.170 0.797± 0.110 0.765± 0.208 0.798± 0.166 3.657± 2.508 3.418± 1.822 5.484± 3.731 4.099± 2.867
DeepTag* 0.825± 0.146 0.793± 0.094 0.803± 0.159 0.807± 0.016 3.632± 3.048 2.924± 1.819 6.066± 6.448 4.208± 1.648
DeepTag (our impl.) 0.838± 0.147 0.796± 0.093 0.794± 0.169 0.810± 0.139 3.698± 2.339 3.501± 1.672 4.664± 3.324 3.907± 2.523
SM woR* 0.833± 0.146 0.802± 0.094 0.808± 0.158 0.815± 0.017 3.367± 2.935 2.787± 1.808 5.804± 6.372 4.016± 1.652
Ours 0.860± 0.137 0.826± 0.084 0.821± 0.152 0.836± 0.127 3.073± 2.072 3.050± 1.549 4.081± 3.273 3.356± 2.384

Visualization of the time-continuous Lagrangian motion field. Benefiting from the prediction
of the time-continuous Lagrangian motion fields, our method, compared to other tracking methods,
can predict not only trajectories across frames but also intra-frame trajectories. By estimating the
intra-frame motion field, our approach makes the motion field smoother, thereby improving tracking
performance. In Figure 5, we visualize the warped images and corresponding Lagrangian motion
fields at different time.

4.6 ABLATION STUDY

Effects of time-continuous transformer blocks. To investigate the impact of time-continuous
transformer blocks on model performance, we train our model with varying numbers of blocks.
Considering when the number of the transformer block is 0, the semigroup property is not used
to constrain our model. In this case, we change the input of the frame embedding module to the
time τ sampled from Uni(0, 1). The results are reported in Table 2. We find that the transformer
block yields considerable performance improvement, indicating the transformer block is critical to
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improving motion tracking performance. Again, we observe that across different configurations,
similar average Dice and HD95 scores are obtained by increasing the number of blocks, indicating
that our method is insensitive to the number of transformer blocks. However, further increasing the
number of blocks will increase the computational cost. Therefore, in our experiments, we set the
number of blocks to 2 by default.

Table 2: Results of our method with varying numbers of transformer blocks.

Number Dice ↑ HD95(mm)↓
LV MYO RV avg LV MYO RV avg

0 0.848± 0.145 0.818± 0.092 0.815± 0.158 0.828± 0.134 3.331± 2.130 3.147± 1.574 4.212± 3.284 3.520± 2.409
1 0.859± 0.140 0.828± 0.085 0.817± 0.157 0.836± 0.130 3.060± 2.066 2.987± 1.542 4.146± 3.291 3.348± 2.397
2 0.860± 0.137 0.826± 0.084 0.821± 0.152 0.836± 0.127 3.073± 2.072 3.050± 1.549 4.081± 3.273 3.356± 2.384
3 0.858± 0.141 0.828± 0.083 0.817± 0.159 0.835± 0.131 3.069± 2.127 3.040± 1.562 4.130± 3.304 3.366± 2.421

Importance of time-continuous Lagrangian motion constraint. To evaluate the effectiveness of
our proposed time-continuous Lagrangian motion constraint (TCLMC), we train our model with
and without TCLMC. Table 3 shows the motion tracking performance. Our proposed TCLMC
significantly improves the model’s performance in terms of Dice and HD95 scores. TCLMC helps
the model learn more continuous motion fields and reduces the drift error accumulating over time,
resulting in better motion estimation on a series of frames.

Table 3: Ablation study on the time-continuous Lagrangian motion constraint (TCLMC).

TCLMC Dice ↑ HD95(mm)↓
LV MYO RV avg LV MYO RV avg

× 0.848± 0.150 0.815± 0.094 0.811± 0.160 0.826± 0.137 3.270± 2.135 3.117± 1.575 4.209± 3.326 3.487± 2.431√
0.860± 0.137 0.826± 0.084 0.821± 0.152 0.836± 0.127 3.073± 2.072 3.050± 1.549 4.081± 3.273 3.356± 2.384

Effects of frame embedding module. Here we study the effects of the frame embedding module
with three embedding ways. First, we remove the frame embedding module to explore its impor-
tance for motion tracking (Model A). Second, we replace the frame t with the time τ as the input to
the frame embedding module (Model B). Third, we maintain the frame embedding module (Model
C). The results are shown in Table 4. We find that Model B is superior to Model A, demonstrat-
ing the effectiveness of the frame embedding module. Models A and B achieve similar Dice and
HD95 scores, indicating that the frame t and the time τ are interchangeable. However, the advan-
tage of using the frame t as the input is that when implementing the semigroup property, only one
forward propagation of the UNet is required, whereas using the time τ requires three propagation,
significantly reducing computation costs. Additionally, we can use more complex models, such as
TransMorph Chen et al. (2022), to train our model for more accurate motion tracking.

Table 4: Ablation study on the frame embedding module. A: without the frame embedding module.
B: Replacing the frame t with the time τ as the input to the frame embedding module. C: with the
frame embedding module.

Model Dice ↑ HD95(mm)↓
LV MYO RV avg LV MYO RV avg

A 0.854± 0.143 0.825± 0.091 0.818± 0.157 0.833± 0.132 3.215± 2.165 3.079± 1.584 4.175± 3.323 3.444± 2.443
B 0.859± 0.139 0.827± 0.088 0.821± 0.151 0.836± 0.128 3.123± 2.088 3.064± 1.599 4.089± 3.291 3.381± 2.406
C 0.860± 0.137 0.826± 0.084 0.821± 0.152 0.836± 0.127 3.073± 2.072 3.050± 1.549 4.081± 3.273 3.356± 2.384

5 CONCLUSION

In this paper, we present a novel unsupervised learning method for generating time-continuous La-
grangian motion fields to improve cardiac motion tracking in cine MRI images. Our approach
utilizes a frame-aware UNet to encode two consecutive images with frame information and em-
ploys a series of transformer blocks to derive time-continuous intra-frame motion fields. We train
our model using semigroup regularization and time-continuous Lagrangian motion regularization
to capture temporal continuity and ensure diffeomorphism. Extensive experiments on the public
ACDC dataset demonstrate the effectiveness of our method.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A log-euclidean frame-
work for statistics on diffeomorphisms. In Medical Image Computing and Computer-Assisted
Intervention, October 1-6, 2006. Proceedings, Part I 9, pp. 924–931. Springer, 2006.

Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag, and Adrian V Dalca. An unsu-
pervised learning model for deformable medical image registration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 9252–9260, 2018.

Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag, and Adrian V Dalca. Voxelmorph:
a learning framework for deformable medical image registration. IEEE Transactions on Medical
Imaging, 38(8):1788–1800, 2019.
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