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Abstract

As large language models (LLMs) converge001
towards similar capabilities, the key to ad-002
vancing their performance lies in identifying003
and incorporating valuable new information004
sources. However, evaluating which text col-005
lections are worth the substantial investment006
required for digitization, preprocessing, and007
integration into LLM systems remains a sig-008
nificant challenge. We present a novel ap-009
proach to this challenge: an automated pipeline010
that evaluates the potential information gain011
from text collections without requiring model012
training or fine-tuning. Our method gener-013
ates multiple choice questions (MCQs) from014
texts and measures an LLM’s performance both015
with and without access to the source material.016
The performance gap between these conditions017
serves as a proxy for the collection’s informa-018
tion potential. We validate our approach using019
three strategically selected datasets: EPFL PhD020
manuscripts (likely containing novel special-021
ized knowledge), Wikipedia articles (presum-022
ably part of training data), and a synthetic base-023
line dataset. Our results demonstrate that this024
method effectively identifies collections con-025
taining valuable novel information, providing026
a practical tool for prioritizing data acquisition027
and integration efforts.028

1 Introduction029

Recent advances in large language models (LLMs)030

have revealed a striking phenomenon: as these031

models scale, they tend to develop remarkably032

similar internal representations and capabilities033

regardless of their architecture (Huh et al., 2024).034

This convergence, coupled with established035

scaling laws (Kaplan et al., 2020) and the growing036

recognition that AI development should shift from037

model-centric to data-centric approaches (Zha038

et al., 2025), suggests that the key to advancing039

LLM capabilities lies in identifying and incorpo-040

rating novel, high-quality information sources041

rather than architectural innovations. However, 042

identifying valuable text collections for model 043

enhancement presents significant challenges: 044

digitization and preprocessing are costly, and 045

training or fine-tuning models on new data requires 046

substantial computational resources. 047

048

This creates a critical need: how can we 049

efficiently evaluate whether a text collection 050

contains information that would meaningfully 051

expand an LLM’s knowledge? Current approaches 052

typically require actually training or fine-tuning 053

models on new data to assess its value - an 054

expensive and time-consuming process. While 055

retrieval-augmented generation (RAG) (Lewis 056

et al., 2020) offers a promising approach for 057

helping models access long-tail knowledge without 058

full retraining (Kandpal et al., 2023), this still 059

requires careful curation of knowledge bases and 060

comes with its own computational costs. More- 061

over, the challenge of identifying valuable text 062

collections remains: digitization and preprocessing 063

are costly, and organizations need ways to evaluate 064

the information potential of document collections 065

before investing in their integration. 066

067

We present a novel approach to this challenge: 068

an automated pipeline that evaluates the potential 069

information gain from text collections without 070

requiring model training or fine-tuning. Our 071

method generates and leverages multiple choice 072

questions (MCQs) to systematically probe whether 073

the knowledge contained in a text collection 074

is already accessible to an LLM or represents 075

genuinely novel information. 076

077

To rigorously validate our approach, we evalu- 078

ate it across three strategically selected datasets: 079

(1) EPFL PhD manuscripts, containing specialized 080

academic knowledge likely novel to LLMs, (2) 081

Wikipedia articles that were presumably part of the 082
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LLMs’ training data, and (3) a synthetic baseline083

dataset composed of model-generated texts. Our084

key contributions are:085

1. A novel end-to-end pipeline that uses MCQs086

to efficiently evaluate the potential informa-087

tion gain from text collections without requir-088

ing model training or fine-tuning089

2. A self-supervised methodology for ensuring090

MCQ quality through complementary similar-091

ity metrics that address two key challenges:092

verifying question relevance and grounding in093

source material, while ensuring distractors are094

plausible yet unambiguously incorrect095

3. A systematic analysis of knowledge gaps096

across diverse text collections that identifies097

areas of model uncertainty, quantifies the po-098

tential value of different information sources,099

and guides strategic decisions about data col-100

lection and integration101

Importantly, our approach is dataset-agnostic102

and can be applied to any text corpus. This makes it103

applicable to different domains and research ques-104

tions. This pipeline could be leveraged to select105

textual data for model enhancements through fine-106

tuning or retrieval-augmented generation systems.107

2 Related Work108

Information Gain. The challenge of efficiently109

selecting new information sources for LLMs can110

be viewed through the lens of optimal experiment111

design, a field pioneered by Fedorov et al. (1972).112

This framework emphasizes maximizing infor-113

mation gain while being strategic about resource114

allocation – a particularly relevant consideration115

given the costs associated with integrating new116

data into LLM systems. Information gain itself117

has been conceptualized across various fields:118

in information theory, it relates to reductions in119

algorithmic information content (Cover et al.,120

1989); in machine learning, it quantifies a feature’s121

contribution to model performance (Odhiambo122

Omuya et al., 2021); and in cognitive science, it123

represents uncertainty reduction in our experience124

of the world (Damiano et al., 2021). While these125

theoretical frameworks provide valuable insights,126

they have nott been previously applied to the127

specific challenge of evaluating the potential value128

of text collections for enhancing LLM knowledge.129

Our work bridges this gap by proposing a practical,130

MCQ-based approach that quantifies information131

gain by measuring an LLM’s ability to answer132

questions about a text collection with and without 133

access to the source material. 134

135

Knowledge Detection in LLMs. Prior research 136

has developed several methods to analyze how 137

LLMs process and retain textual information. Work 138

on memorization (Hartmann et al., 2023; Shi et al., 139

2024b) and data contamination (Yax et al., 2024; 140

Golchin and Surdeanu, 2024) focuses on identi- 141

fying verbatim recall of training data, while hal- 142

lucination detection (Farquhar et al., 2024) aims 143

to identify when models generate false informa- 144

tion. Research on novelty detection has primarily 145

focused on linguistic and semantic novelty (McCoy 146

et al., 2023; Lin et al., 2024), with less attention 147

paid to factual novelty. While these approaches 148

provide valuable insights into model behavior, they 149

are retrospective – analyzing what models have al- 150

ready learned or memorized. In contrast, our work 151

takes a prospective approach, developing metrics 152

to evaluate the potential value of new information 153

sources before investing in their integration into 154

LLM systems. 155

3 Methods 156

Multiple Choice Questions (MCQs) are a well- 157

established tool for knowledge assessment, sup- 158

ported by research in cognitive science and edu- 159

cational psychology (Thomas M. Haladyna and 160

Rodriguez, 2002). Their four-option format, con- 161

sisting of one correct answer and three distractors, 162

offers an optimal balance between assessment reli- 163

ability and cognitive load (Vyas and Supe, 2007). 164

MCQs are particularly valuable for automated eval- 165

uation as they provide objective correctness mea- 166

sures while efficiently testing understanding across 167

diverse topics (Oc and Hassen, 2024). When work- 168

ing with Large Language Models (LLMs), MCQs 169

offer an additional advantage: they constrain the 170

output space to a finite set of options, eliminat- 171

ing the ambiguity and variability inherent in open- 172

ended responses and enabling precise evaluation of 173

model knowledge. 174

Generating high-quality MCQs presents unique 175

challenges, particularly due to the absence of 176

ground truth signals typically available in human- 177

curated educational assessments. Without explicit 178

supervision on what constitutes a good question 179

or appropriate distractors, we must derive reliable 180

metrics to filter and validate the generated MCQs. 181

This self-supervised setting raises two critical chal- 182
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lenges: ensuring questions are both relevant and183

non-trivial, and guaranteeing that distractors are184

plausible yet unambiguously incorrect. The latter185

is particularly crucial when evaluating LLMs – if186

distractors are too simple, models might succeed187

through elimination rather than true knowledge; if188

too similar to the correct answer, they might con-189

fuse models even when provided with context. To190

address these challenges, we propose similarity-191

based filtering metrics that serve as proxy signals192

for question quality and difficulty, enabling auto-193

mated quality control without human supervision.194

3.1 Pipeline195

As illustrated in Figure 1, our pipeline consists of196

three key stages: (1) MCQ generation from text197

using LLMs, (2) quality-focused filtering using198

similarity metrics, and (3) position-debiased eval-199

uation to assess model knowledge both with and200

without context.201

3.2 MCQ Generation and Filtering202

Question Generation Process. The input text203

is first divided into manageable chunks of 2000204

words to ensure consistent context length across205

questions. These chunks serve as the basis for206

LLM-generated MCQs, where each question is207

crafted to test understanding of specific informa-208

tion within the chunk. The exact prompts used209

for generation can be found in table 2 of the210

Supplementary Methods.211

212

Two-Stage Quality Filtering. To address the dual213

challenges of ensuring question relevance and ap-214

propriate distractor difficulty without human su-215

pervision, we employ two complementary filtering216

mechanisms:217

1. Context-Answer Alignment Filter: To ensure218

questions are both relevant and grounded in219

the source material, we verify that the cor-220

rect answer is more strongly aligned with the221

source context than any distractor:222

min
i

[sim(c, g)− sim(c, di)] for i = 1, 2, 3

(1)223

where similarity is measured using both Jac-224

card index and ROUGE-L score (Lin, 2004).225

This helps eliminate misleading or incorrect226

MCQs while ensuring questions test informa-227

tion actually present in the context.228

Figure 1: Overview of our knowledge evaluation
pipeline. The framework consists of three main com-
ponents: (1) MCQ Generation using LLMs to create
questions from input datasets, (2) Quality-focused filter-
ing using similarity metrics, and (3) Position-debiased
evaluation to assess model knowledge with and without
context. (c: context, q: question, g: ground truth, di:
distractors)

2. Distractor Plausibility Filter: To prevent triv- 229

ial questions while maintaining unambiguous 230

correctness, we ensure distractors are seman- 231

tically similar to the correct answer but not 232

identical: 233

max
i

[cos-sim(g, di)] for i = 1, 2, 3 (2) 234

using NVIDIA’s state-of-the-art NV-Embed- 235

v2 model (de Souza P. Moreira et al., 2024; 236

Lee et al., 2024) for text embeddings. This 237

creates challenging questions where distrac- 238

tors are plausible enough to require true under- 239

standing while remaining distinctly incorrect. 240
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3.3 Evaluation241

We evaluate the information potential (IP ) of a242

context c for a given LLM f with Eq 3 as the243

improvement in correctness when incorporating244

context in the prompt. Formally, it is defined as:245

IP =
Ccontext − Cdirect

|Q| − (Icontext + Idirect)
(3)246

where:247

Ccontext =
∑

q,c∈Q

1(f(q|c) = g), Cdirect =
∑
q∈Q

1(f(q) = g),248

249

Icontext =
∑

q,c∈Q

1(f(q|c) ̸= g), Idirect =
∑
q∈Q

1(f(q) ̸= g).250

Here, 1(·) is an indicator function equal to 1251

if the condition is true, and 0 otherwise. The252

denominator ensures that we focus on questions253

t rather than letting widespread model failures254

distort the results.255

256

Position Bias Mitigation. To address the known257

issue of positional bias in LLMs (Shi et al., 2024a),258

we evaluate each MCQ four times, rotating the259

correct answer through all possible positions (A,260

B, C, D) while randomly arranging the distractors.261

This effect can be seen in Figures 4, 6, and 5. This262

ensures that model performance reflects true knowl-263

edge rather than position-based preferences.264

3.4 Data265

To evaluate our pipeline’s efficacy, we conduct266

experiments across three strategically selected267

datasets representing distinct knowledge domains:268

(1) 177 EPFL PhD manuscripts containing special-269

ized academic research, (2) Wikipedia articles, and270

(3) synthetic LLM-generated text. This dataset271

composition enables systematic assessment of272

knowledge novelty. We hypothesize that PhD273

manuscripts will yield the highest knowledge gaps,274

containing recent research contributions likely275

absent from training data. The synthetic dataset,276

comprising model-generated content, serves as277

a lower-bound baseline for knowledge novelty.278

Wikipedia articles, being a primary source for279

LLM training (Brown et al., 2020; Touvron et al.,280

2023), function as a control group representing281

knowledge presumably well-embedded in the282

models’ parameters.283

284

Data collection. The Wikipedia dataset is created285

by leveraging the Wikipedia API. With the help286

of the PhD manuscript titles, related articles are 287

fetched and combined into similar-sized texts. Sim- 288

ilarly, the manuscript titles are used to generate the 289

baseline dataset. To overcome the LLMs’ genera- 290

tion limits, in a first step, subtopics are generated 291

surrounding the manuscript titles. Then, chunks 292

of around 600 words are generated, using the 293

subtopics as overarching themes, and concatenated. 294

295

All data used in our experiments (including 296

chunks, synthetic and baseline datasets) as well 297

as the complete code of our evaluation pipeline are 298

made available open-source with this submission 299

under creative commons license. 300

4 Results 301

Our analysis reveals three key findings: (1) similar- 302

ity thresholding effectively increases question diffi- 303

culty while maintaining answerable questions, (2) 304

PhD manuscripts contain significantly more novel 305

information compared to Wikipedia and synthetic 306

datasets, and (3) larger language models show 307

consistently lower information potential across all 308

datasets, suggesting better knowledge retention dur- 309

ing pre-training. We present detailed evidence for 310

each of these findings below. 311

4.1 Effectiveness of Similarity Thresholding 312

Effect of Cosine Similarity Thresholding. Figure 313

2a displays the effect of cosine thresholding. It 314

shows a strong decrease of around 10% between 315

the absence of thresholding and the 50th percentile 316

cutoff in the performance of the model with no 317

context (NC 4x), while that of the model with con- 318

text (WC 4x) remains steady. Therefore, the cosine 319

similarity has the expected effect of increasing the 320

MCQ difficulty when answering without context 321

while maintaining the context-based performance. 322

323

Effect of Jaccard and ROUGE-L Thresholding. 324

A different trend is observed when applying the 325

Jaccard and ROUGE-L thresholding, as seen in 326

Figure 2b. Here, a slight increase in performance 327

with context (WC 4x) of 2% can be observed 328

between no thresholding and the 50th percentile 329

cutoff, while performance without context (NC 4x) 330

remains stable. 331

332

Comparative Analysis of Thresholding Meth- 333

ods. Our results demonstrate that cosine similarity 334

thresholding is more effective at increasing ques- 335
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(a) Only Thresholding with Cosine Similarity

(b) Only Thresholding with Jaccard and Rouge-L

Figure 2: Llama 3 70B Performance on EPFL Dataset
Across Different Cutoff Percentages. (with Separated
Thresholding and Number of MCQs for the Correspond-
ing Percentiles). NC 4x: Evaluation with no context
correct for all 4 bias mitigation evaluations of each ques-
tion; and WC 4x: Evaluation with context correct for
all 4 bias mitigation evaluations of each question.

tion difficulty than Jaccard and ROUGE-L methods.336

This difference likely stems from cosine similar-337

ity’s ability to capture semantic relationships in the338

embedded space, while Jaccard and ROUGE-L fo-339

cus on surface-level textual overlap. The gradual340

reduction in MCQ count under cosine threshold-341

ing (from 1633 to 653) suggests a more controlled342

filtering process compared to the sharp drop-off343

observed with Jaccard and ROUGE-L (907 to 479344

MCQs between 50th and 60th percentiles).345

4.2 Information Potential (IP) Across346

Different Datasets347

EPFL PhD Manuscripts (IP: 0.229). The EPFL348

dataset yields the highest information potential349

among all tested collections. We observe a350

significant performance gap between context-free351

(73.4%) and context-provided (98%) conditions,352

highlighting the substantial amount of novel353

information in these documents. The questions354

generated from this dataset predominantly focus on355

specialized technical concepts and novel research356

findings. These performance patterns strongly 357

indicate that PhD manuscripts contain substantial 358

novel information not present in the model’s 359

pre-training data. 360

361

Wikipedia Dataset (IP: 0.136). The Wikipedia 362

dataset demonstrates moderate information 363

potential, with a notably smaller gap between 364

context-free and context-provided performance 365

(83.6% vs. 97.8%). Questions from this dataset 366

primarily cover general knowledge and well- 367

documented facts. The performance patterns 368

suggest partial inclusion of this content in the 369

model’s training data, which aligns with our 370

expectations given that these articles were selected 371

from versions predating the model’s training cutoff 372

date. 373

374

Synthetic Baseline Dataset (IP: 0.125). Among 375

the three datasets, the synthetic baseline yields the 376

lowest information potential. We observe a mini- 377

mal performance gap between conditions (85.5% 378

vs. 98.8%), with high performance in the context- 379

free setting reflecting the model’s inherent familiar- 380

ity with self-generated content. This dataset effec- 381

tively serves as a lower bound for the information 382

potential metric, providing a useful reference point 383

for evaluating other collections. 384

4.3 Comparison between open and closed 385

source model 386

Despite their architectural and size differences, 387

both Llama 70B and GPT-4o exhibit similar pat- 388

terns in information potential across datasets, 389

though with notable variations in magnitude. GPT- 390

4o shows slightly lower information potential 391

scores compared to Llama 70B, suggesting bet- 392

ter baseline knowledge retention in the larger 393

model. Interestingly, the relative gap between 394

datasets remains consistent across both models 395

- EPFL manuscripts consistently show approxi- 396

mately double the information potential compared 397

to Wikipedia. This consistency across differ- 398

ent model architectures and training approaches 399

strengthens the validity of our information poten- 400

tial metric. Additionally, both models maintain 401

near-perfect performance (>97%) when provided 402

with context, regardless of the dataset, indicating 403

robust comprehension capabilities when given ac- 404

cess to relevant information. 405

While a more comprehensive analysis compar- 406

ing a wider range of LLMs could provide additional 407
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(a) Llama 70B Baseline
IP: 0.125

(b) Llama 70B Wikipedia
IP: 0.136

(c) Llama 70B EPFL
IP: 0.229

(d) GPT-4o Wikipedia
IP: 0.110

(e) GPT-4o EPFL
IP: 0.211 (f) Legend

Figure 3: Information Potential Analysis Across Datasets and Models. Venn diagrams showing correct response
overlap between context-free and context-provided conditions. Higher Information Potential (IP) scores indicate
greater novel information content, with PhD manuscripts (EPFL) showing consistently higher IP (0.211-0.229)
compared to Wikipedia (0.110-0.136) and synthetic baseline (0.125). Both open and closed-source models exhibit
similar patterns despite architectural differences.

insights into the relationship between model archi-408

tecture, size, and information potential, such an409

investigation falls outside the scope of this study,410

which focuses on establishing the validity of our411

evaluation methodology.412

4.4 Qualitative Analysis of High-Value413

Information414

The MCQs presented in Table 1 exemplify three415

key patterns in identifying valuable information:416

1. Technical Terminology: The question about417

articulatory features demonstrates the signifi-418

cant performance gap when dealing with spe-419

cialized terminology. This question, drawn420

from speech recognition research, requires421

specific context to understand how articu-422

latory features differ from phone posterior423

features in their prediction approach. The424

model’s inability to answer correctly without425

context highlights how technical domains in426

PhD manuscripts contain specialized knowl-427

edge not captured in pre-training. Such428

terminology-heavy questions serve as reliable429

indicators of domain-specific knowledge.430

2. Novel Findings: The question regarding 431

"interference errors" exemplifies how PhD 432

manuscripts capture recent research outcomes. 433

The detailed distinction between interfer- 434

ence errors and reduction of intentionality er- 435

rors represents novel academic insights that 436

weren’t available during model pre-training. 437

This type of question effectively identifies 438

valuable new knowledge contributions from 439

academic manuscripts. The consistency with 440

which models fail these questions without con- 441

text, despite their strong general reasoning ca- 442

pabilities, suggests genuine knowledge gaps 443

rather than reasoning limitations. 444

3. Complex Relationships: The question about 445

repetition errors showcases the importance of 446

precise contextual information in understand- 447

ing intricate conceptual relationships. The 448

distinction between repetition and other error 449

types (omission, timing, sequence) requires 450

careful understanding of how these concepts 451

interrelate. This category highlights a key 452

challenge in assessing knowledge: the line 453

between pure knowledge recall and reason- 454
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MCQ (correct answer in italics) Relevant Context Passages
What is a common feature of ’interference errors’
and ’reduction of intentionality errors’?
A) Both involve replacing the correct subject with an-
other similar one.
B) Both typically result from incorrect or incomplete
mental models.
C) Both involve action reversals.
D) Both require complex decision-making at the
knowledge-based level.

[...] Interference errors. These errors occur when people
multi-task, i.e., when multiple sequences of action are
active at the same time, which can result in a person
combining them. [...] this error and the ones for reduced
intentionality and perceptual confusions can be modeled
by replacing the correct subject with another one. [...]
Reversals [...] cause a person to undo a previously per-
formed action

Which error describes memorizing an action without
proceeding to its next logical step?
A) Repetition.
B) Omission.
C) Timing error.
D) Sequence error.

[...] Repetitions. These errors cause a person to misjudge
the progress of a sequence of actions, making them per-
form an action already carried on. [...] Omission, when
a user skips the current action and execution continues
with its successor, e.g., jumping from action i to action
i + 1 [...] Timing errors, when users interact with a sys-
tem at the wrong time, e.g., too early or too late [...]
Sequence errors, when users execute an action out of
order [...]

How are articulatory features (AF) different from
phone posterior features in terms of prediction?
A) AFs rely on spectral analysis.
B) AFs use a frame-to-phoneme alignment.
C) AFs map phonemes to articulatory features.
D) AFs predict phonemes directly.

[...] There are different ways to represent phonemes as ar-
ticulatory features, e.g. as binary features (Chomsky and
Halle, 1968) or multi-valued features (Ladefoged, 1993).
Similar to phone posterior features, they are trained from
a frame-to-phoneme alignment. However, instead of pre-
dicting phonemes, a mapping from phones to AF is used
as targets of the predictor. [...] AFs are modeled by
18 off-the-shelf recurrent neural networks (RNN) based
binary classifiers, i.e. D = 18 × 2. The RNNs take as
input log energies of 33-dimensional Mel filterbank en-
ergies. [...] Similar to phone posterior features, [AFs]
are trained from a frame-to-phoneme alignment [...]

Table 1: Examples of technical terminology, novel findings, and complex relationships in EPFL PhD
manuscripts. MCQs requiring context for correct model responses

ing ability becomes blurred when concepts455

are interconnected in complex ways. The456

model’s performance on such questions sug-457

gests that even sophisticated reasoning capa-458

bilities cannot compensate for missing foun-459

dational knowledge.460

Additional examples of these patterns can be found461

in Table 3.462

5 Conclusion and Limitations463

5.1 Summary of Contributions464

This work introduces a novel and efficient approach465

for evaluating the information potential of text col-466

lections for large language models. Our key contri-467

butions include:468

1. Efficient Evaluation Pipeline: We present469

a systematic approach combining automated470

MCQ generation, sophisticated filtering mech-471

anisms, and comparative evaluation to assess472

information potential without requiring model473

training or fine-tuning.474

2. Empirical Validation: Our results validate475

the method’s effectiveness by demonstrating 476

alignment with intuitive expectations across 477

both dataset types and model scales. The in- 478

formation potential increases from synthetic 479

baseline (0.125) to Wikipedia (0.136) to EPFL 480

manuscripts (0.229), while larger models 481

(GPT-4o) consistently show lower informa- 482

tion potential than smaller ones (Llama 70B), 483

suggesting better knowledge retention. 484

3. Qualitative Framework: We propose a tax- 485

onomy of high-value information types (tech- 486

nical terminology, novel research findings, 487

and complex relationships), providing deeper 488

insights into the nature of valuable informa- 489

tion sources for LLMs. 490

5.2 Limitations and Future Work 491

Practical Considerations. Our approach, while 492

effective, presents several methodological limita- 493

tions that suggest directions for future research. 494

The current pipeline’s generation-first approach, 495

where questions are created before applying filter- 496

ing criteria, could be enhanced by incorporating 497
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context-answer alignment and distractor plausibil-498

ity directly into the generation process. Such an499

integrated approach could improve question quality500

while reducing computational overhead.501

The scope of our evaluation faces an inherent502

challenge that manifested both as a limitation of503

our study and, ironically, in the process of writ-504

ing this paper: identifying datasets that are defini-505

tively outside of LLMs’ training data. While PhD506

manuscripts serve as a reasonable proxy for novel507

information, the rapid integration of online con-508

tent into training sets makes finding suitable test509

collections increasingly difficult. This challenge510

underscores the timeliness of our work, as it be-511

comes crucial to identify and preserve valuable512

information sources before they are absorbed into513

general training data.514

Perhaps most significantly, our method delib-515

erately focuses on information selection rather516

than distillation. This choice, while aligned with517

our goal of evaluating potential value, leaves518

open questions about how selected information519

can be optimally incorporated into LLM training.520

Recent work has begun to address this gap, with521

approaches such as SKILL (Moiseev et al., 2022)522

exploring efficient knowledge integration methods.523

However, Liu et al. (2024) highlight potential524

conflicts between newly added information and525

existing knowledge compressed in LLMs’ internal526

representations, suggesting that information527

integration remains a complex challenge requiring528

further investigation.529

530

Broader Considerations. While our approach re-531

quires digital text for MCQ generation, it offers a532

significantly more efficient alternative to full model533

training or fine-tuning. This enables strategic sam-534

pling approaches where representative portions535

of larger collections can be evaluated to inform536

broader digitization decisions. For instance, as-537

sessing a few chapters can inform decisions about538

entire book collections, making the method partic-539

ularly valuable for resource-constrained scenarios.540

This sampling-based approach could revolutionize541

how institutions prioritize their digitization efforts,542

allowing for data-driven decisions about resource543

allocation in preservation projects.544

Our effort to categorize high value information545

sheds light on fundamental challenges in distin-546

guishing between information that is unknown to547

an LLM versus information it fails to retrieve. This548

raises important questions about the relationship549

between knowledge possession and practical com- 550

petence in AI systems. When an LLM consistently 551

fails to demonstrate knowledge in a specific do- 552

main, the distinction between these cases may be- 553

come less relevant from a practical perspective. 554

This observation has broader implications for how 555

we conceptualize and evaluate knowledge in AI 556

systems, suggesting that performance-based met- 557

rics might be more meaningful than theoretical at- 558

tempts to map internal knowledge representations. 559

Furthermore, this highlights the need for a more 560

nuanced understanding of how LLMs process and 561

utilize information, particularly when developing 562

strategies for knowledge integration and model en- 563

hancement. 564
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A Appendix708

A.1 Supplementary Methods709

A.1.1 LLM Prompts710

Task LLM Prompt
Multiple-Choice Ques-
tion Generation

From the following piece of a scientific PhD manuscript:
’TEXT_HERE’
Design a multiple-choice question with four answers: ’A’, ’B’, ’C’, ’D’. Please provide the
correct answer. The question needs to be difficult, but answers should not be ambiguous.
Start the question with [’QUESTION’] and the answers with ’A’, ’B’, ’C’, ’D’. Be concise!
Please generate a total of 10 MCQs. Avoid references to the manuscript itself (e.g., do
not use phrases like ’according to the text,’ ’as stated in the manuscript,’ or ’based on the
passage’ etc.). Use the following format: ’[QUESTION] <question>
A) <option A>
B) <option B>
C) <option C>
D) <option D>
Correct answer: <correct answer letter>) <correct answer>’

Multiple Choice Ques-
tion Answer Generation

For the following multiple choice question:
’QUESTION_TEXT_HERE’
Please write which answer option (A, B, C, or D) is the correct one. Answer in the
following format: ’Correct answer: <answer letter>.’

Context-Based Multiple
Choice Question An-
swer Generation

Using the information of the following passage:
’PASSAGE_TEXT_HERE’
Answer the following multiple-choice question:
’QUESTION_TEXT_HERE’
Please write which answer option (A, B, C, or D) is the correct one. Answer in the
following format: ’Correct answer: <answer letter>.’

Baseline Subtopic List
Generation

For the following topic:
’TOPIC_HERE’
Please generate a list of 5 subtopics that could be used to create a comprehensive PhD
manuscript about this topic. List them in order and number them in the following format:
’1) <write subtopic 1 here>
2) <write subtopic 2 here>
3) <write subtopic 3 here>
4) <write subtopic 4 here>
5) <write subtopic 5 here>
<end>’

Baseline Chapter Gener-
ation

For a scientific manuscript with the following title:
’MANUSCRIPT_TITLE_HERE’
Please generate a comprehensive chapter that covers the following subtopic:
’SUBTOPIC_HERE’. Aim for around 600 words, include facts and numbers, and focus
solely on substantial content. Omit any introductory or closing remarks and just output
the content that this chapter would have.

Table 2: LLM Task Prompt Templates
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A.2 Supplementary Results 711

A.2.1 Positional Bias 712

For all three generated MCQ datasets, GPT-4o shows a strong tendency to place the correct answer in the 713

answer options B and C over A and D in around 80% of the time. This tendency may come from training 714

biases where datasets exhibited a similar distribution in MCQ formats. 715

When ignored, this positional bias may skew a model’s performance during evaluation. To counteract 716

this effect, this project employed the rotation of the correct answer position and evaluated each question 717

four times independently. This ensures a balanced distribution of the correct answer among the four 718

positions and reduces the risk of skewing the evaluation statistics with the positional MCQ generation bias. 719

After the positional bias mitagation strategy is applied, the correct answer is distrubuted evenly, appearing 720

in each option 25% of the time. During evaluation, the models also show some levels of positional bias, 721

however on a lower scale than during the MCQ generation. 722

(a) Baseline (b) Wikipedia (c) Venice

Figure 4: Distribution of the Correct Answer Among the Answer Options for the MCQ Dataset Generated with
GPT-4o Before Positional Bias Mitigation.

(a) EPFL - No Context (b) EPFL - With Context

(c) Wikipedia - No Context (d) Wikipedia - With Context

Figure 5: Distribution of Correct Answer Letter Prediction for EPFL and Wikipedia MCQ Datasets Evaluated on
GPT-4o After Positional Bias Mitigation.
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(a) EPFL - No Context (b) EPFL - With Context

(c) Wikipedia - No Context (d) Wikipedia - With Context

(e) Baseline - No Context (f) Baseline - With Context

Figure 6: Distribution of Correct Answer Letter Prediction for EPFL, Wikipedia, and Baseline MCQ Datasets
Evaluated on Llama 70B After Positional Bias Mitigation.

723
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A.2.2 Information Potential 724

Figure 7 shows the models’ performance with an emphasis on the positional bias mitigation strategy. As 725

every MCQ is evaluated four times, this allows the analysis of a model’s consistency. It is clearly visible 726

that the models become less consistent without context in datasets with higher information potential while 727

this trend is less pronounced with context. Figure 8 shows the performance of Llama 70B along with the 728

information potential across the datasets and cutoff percentiles. 729

(a) Llama 70B Baseline
IP: 0.125

(b) Llama 70B Wikipedia
IP: 0.136

(c) Llama 70B EPFL
IP: 0.229

(d) GPT-4o Wikipedia
IP: 0.110

(e) GPT-4o EPFL
IP: 0.211 (f) Legend

Figure 7: Statistics of Model Performances Including whether Model was Correct on all Four Evaluations of Each
MCQ
Venn diagrams of the number of correctly answered questions when answered with or without context.
IP: Information Potential computed with Equation 3
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(a) Baseline (b) Wikipedia

(c) EPFL (d) Legend

Figure 8: Llama 3 70B Performances Across Different Cutoff Percentiles with Joint Cosine and Jaccard-ROUGE-l
Metric Thresholding and Number of MCQs for the Corresponding Percentiles.
NC 4x: Evaluation with no context correct for all 4 bias mitigation evaluations of each question.
WC 4x: Evaluation with context correct for all 4 bias mitigation evaluations of each question.
Information Potential: The value computed with Equation 3

A.2.3 Qualitative Analysis of EPFL MCQ Dataset730

14



MCQ (correct answer in italics) Relevant Context Passages Category
What is the only possible scheme for Bernstein wave
excitation in the TCV tokamak due to its plasma equi-
libria?
A) O-SX-B scheme.
B) FX-B scheme.
C) EB-B scheme.
D) SX-O-B scheme.

[...] As a consequence, the extremely steep density gradients
necessary for the FX-B mode conversion cannot be obtained in
TCV plasma equilibria and the only possible Bernstein waves
excitation scheme in TCV is the O-SX-B double mode conversion.
[...]

Technical
Terminol-
ogy

What technological challenge is associated with reduc-
ing power consumption in CMOS circuits?
A) Maintaining acceptable dynamic range in the face of
digital noise
B) Reducing the intrinsic capacitance per unit area.
C) Ensuring constant voltage swing at all frequencies.
D) Achieving higher gain at lower supply voltages.

[...] In downscaled processes with lower supply voltages, the cou-
pling and noise through the substrate is higher, partially because
of the limitations of the substrate and well bias [40,41]. Therefore,
sometimes noise that is produced by the chip due to the digital
blocks may be orders of magnitude above the thermal noise, so
to achieve the required dynamic range we require a proportional
increase in power. [...]

Technical
Terminol-
ogy

In learning molecule representations directly in the
sparse code domain, what is the main constraint im-
posed on sparse codes?
A) They must be linear combinations of deformed
molecules.
B) They must be nonlinear mixtures of entire signal sets.
C) They must consist of deactivated elements.
D) They must strictly adhere to original signal morphol-
ogy.

[...] We constrain sparse codes to be linear combinations of a few,
possibly deformed, molecules and we design an algorithm that can
learn the structure from the codes without transforming them back
into the signal domain. [...]

Technical
Terminol-
ogy

Which component significantly contributes to total
variance in back-to-back scan-rescan scenarios?
A) 2-week-gap variance.
B) Scan-rescan variability
C) Session-dependent offsets.
D) Repositioning effects.

[...] The scan-rescan differences in back-to-back scanning scenario
significantly contributed to the total variance and represented a
significant proportion of between-subject variance for all of the
investigated structures. [...] Both repositioning (R2) and 2-week-
gap between a rescan (R3) did not significantly contribute to the
total variability compared to back-to-back scans and between-
subject variability. [...]

Complex Re-
lationship

Which factor most critically affects the measurement
noise in an ex-situ detection setup?
A) The frequency at which measurements are taken.
B) The remanence of the magnetic core.
C) The sensitivity of the lock-in amplifier.
D) The microbead placement precision.

[...] However, this increases the measurement noise, as the mea-
surement is carried out in the 1/f noise frequency range. [...]

Complex Re-
lationship

What condition allows the bond in the RMIB model to
be unbreakable under compressive deformation?
A) High hydrostatic compressive stress.
B) High thermal conductivity.
C) Low volumetric strain.
D) Low thermal resistance.

[...] It is known that the hydrostatic compressive strength is infinite
for most materials, which means the bond in RMIB model for these
cases cannot be broken under compressive deformation. [...]

Complex Re-
lationship

What is the approach used by RouLette to manage
materialization overhead in symmetric joins?
A) Symmetric join pruning of tuples forming outputs.
B) Incremental materialization of queried tuples.
C) Partial materialization of all relations.
D) Deferred materialization until query execution.

[...] Symmetric joins require that all relations be materialized and
hence incur materialization overhead. To reduce the overhead,
RouLette materializes only tuples that can form output tuples for
their query-set. We call this symmetric join pruning [...]

Novel Find-
ings

What primary limitation affects the clinical success of
MPCs in bone healing?
A) Limited number of available endogenous MPCs.
B) Extensive proliferation in vitro.
C) Over-differentiation into non-mesenchymal lineages.
D) High heterogeneity in cell populations.

[...] its clinical outcome was rather disappointing 4 . One of
reasons for this seems to be the limiting number of available
endogenous mesenchymal progenitor cells (MPCs) that can give
rise to bone cells. [...]. Hence, there is a clear clinical need
for implants that augment the homing/recruitment of endogenous
MPCs to fracture sites [...]

Novel Find-
ings

What leads to the gradual increase in average THC
concentration over time during oscillations?
A) Accumulation of carbonates on ceria sites.
B) Thermal degradation of the catalyst.
C) Continuous ceria site activation.
D) Increasing gas hour space velocity (GHSV).

[...] The higher average THC concentrations levels with time was
caused by the gradual accumulation of carbonates on ceria sites
during the periodic oscillations. [...]

Novel Find-
ings

Table 3: Selection of EPFL Dataset MCQs and their Relevant Context Passages Categorized by Question Type
where GPT-4o Required Context to Correctly Answer Consistently
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