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ABSTRACT

Large Language Models (LLMs) are increasingly used in a variety of important
applications, yet their safety and reliability remain major concerns. Various ad-
versarial and jailbreak attacks have been proposed to bypass the safety alignment
and cause the model to produce harmful responses. We introduce Defensive Self-
supervised Prompt INjection (D-SPIN) which can detect and reverse both prompt
injection and jailbreak attacks on LLMs. Just by injecting an adaptive defense
prompt at inference-time, our method is simple, effective, and compatible with
existing safety-aligned models. Our benchmarks demonstrate that our system can
reduce the attack success rate by up to 87.9%, while maintaining the performance
on benign user requests. In addition, we discuss the situation of an adaptive at-
tacker and show that our method is still resilient against attackers who are aware
of our defense.

Figure 1: Self-Supervised Prompt Injection for LLM Defense. Large language models can be
jailbroken by an adversarial prompt. In this paper, we show that we can detect and defend against
jailbreak and prompt injection attacks by leveraging self-supervised language tasks. The red text
shows the adversarial prompt injection to bypass the safe guardrails of LLMs. The blue box shows
our defensive method D-SPIN which safeguards the LLMs.

1 INTRODUCTION

Large-Language Models (LLMs) have achieved great success in code generation (Rozière et al.,
2023), question answering (Touvron et al., 2023), and task planning (Surı́s et al., 2023). However,
they can be jailbroken by adversarial attacks and prompts (Zou et al., 2023; Zeng et al., 2024; Yuan
et al., 2023), leading them to exhibit behaviors of manipulation (Carroll et al., 2023; Ji et al., 2024),
deception (Park et al., 2023; Hazell, 2023), and explicit content (Kang et al., 2023). This poses an
inherent risk as LLMs are widely deployed in many critical applications, like programming.

To align LLMs for safety, prior work focuses on training to make the model more robust. For ex-
ample, Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) trains reward
models based on human ratings, and is used to judge LLM outputs. DPO (Rafailov et al., 2023)
trains model on direct preference optimization. To make train-time defenses robust against attacks,
it is often required to train the model on the generated attacks, which can take significant resources
to gather responses (Casper et al., 2023). In addition, training-time defenses have fundamental dif-
ficulties defending against unforeseen attacks and jailbroken prompt injection, due to a mismatched
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Figure 2: Self-supervised Prompt Injections. Examples of inputs at each stage of the defense. The
red text is the adversarial suffix. On the left side, all the malicious examples with the trigger attack
are discovered or reversed. The repeat task fails to reproduce the adversarial suffix in red because
the token sequence becomes too random. Even though it does repeat the sentence partially, the
difference is enough that the detection system will detect it as being malicious. The blue under the
‘Reversal’ task represent our defensive prompt injections which reverses malicious attacks, but does
not impact benign inputs. On the right side, we show the same benign question passing through the
layers without issue. Our defense systems is shown to defend against attacks that would otherwise
break alignment, while maintaining performance on benign queries.

generalization between the smaller safety training data and the broader pre-training data (Wei et al.,
2023).

In this paper we introduce a method to defend against these attacks by self-supervised prompt in-
jection, dubbed D-SPIN allowing us to achieve a defense that adapts to each attack online. Just
as an attacker finds the right prompt injection to break the LLM, our approach will find the right
prompt injection to detect and repair the input. Figure 1 shows our prompt injection defending an
adversarial prompt injection.

Our key insight is that the prompts which override the natural guidelines of the LLM also degrade
other capabilities of the model. By constructing various self-supervised tasks, we can detect attacks
without needing to know the true labels of the input requests or examples. Our constructed self-
supervised tasks also allow us to repair attacked user prompts that slip through detection. This is
achieved by adding tokens to the start of the input and taking gradient steps to reduce the perplexity
of the resulting string. By using self-supervised prompt injection at test time, we can defend against
unseen attacks and even adaptive attacks given the online adaptive property. Figure 2 shows the
results of the different tasks rejecting malicious attacks while letting benign requests through.

Our method is model agnostic and can be compatible with existing defense systems. Our self-
supervised criteria do not depend on malicious or benign labels, thus can be used online at inference
time on demand.

Visualizations, experiments, and qualitative results demonstrate that our self-supervised prompt in-
jection significantly improves the LLM safety upon existing alignment defenses. On Advbench with
Universal Adversarial Triggers (Zou et al., 2023), we are able to reduce Attack Success Rates (ASR)
to 12.11% and 0% on Vicuna and Llama-2 respectively. Our method also can detect natural language
based jailbreak attacks (Wei et al., 2023), adversarial instructions (Wei et al., 2023), and role-play
(Shen et al., 2024), reducing ASR to 0% on both models, fully protecting them. Our method also is
shown to be resilient against attackers who are aware of our defense.
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Figure 3: Self Supervised Detection of Jailbreak Attacks. We detect jailbreak prompts through
self-supervised natural language tasks. Here we show the ’Repeat’ task and the ’Interject’ task that
form the detection layer. We are able to verify if the prompt passes the tests since we know the
answer beforehand, either repeating the entire input or mentioning that Paris is the capital of France.
Since jailbreak prompts often inject unusual patterns into the text, the model will often underperform
on our created self-supervised language tasks compared to a benign user query. Our method uses
this difference for detection.

2 RELATED WORK

Large-Language Models: LLMs are pre-trained models on a huge corpus of textual data. A mix
of these will have open source weights (Touvron et al., 2023), while others are closed off and are
only accessible through APIs (Liu et al., 2023b). Studies have shown that various capabilities are
learned at the pre-training stage (Zhou et al., 2023). Performance of these models is correlated
with parameter size and train time (Hoffmann et al., 2022; Kaplan et al., 2020), however, larger
models also exhibit more problematic behavior (Perez et al., 2022; Elazar et al., 2023) and even the
fine-tuning of these large models on benign datasets can compromise their safety (Qi et al., 2023).

Alignment: Alignment is an inbuilt system in recent LLMs. Originally used for text summarization
(Stiennon et al., 2022), the main motivation recently has been to align the goals of AI models with
human values and morals (Leike et al., 2018; Hendrycks et al., 2022). It can be done through
reinforcement learning through human feedback (RLHF) or even through other LLMs as judges
(Ziegler et al., 2020; Lee et al., 2023). However, as long as alignment does not remove the harmful
behavior entirely, there will exist prompts that can elicit that behavior (Wolf et al., 2023). Wei et al.
(2023) showed that two main issues of alignment come from conflicting objectives, and mismatched
generalization.

Adversarial Attacks: Specific modifications to inputs can cause models to output incorrect or ma-
licious responses. This first gained prominence with Szegedy et al. (2014)’s paper attacking image
classification models. For vision tasks, these attacks can also be repaired through natural super-
vision as well (Mao et al., 2021). For Large-language models, research has been done compiling
jailbreak prompts that can cause harmful responses (Gehman et al., 2020; Liu et al., 2023a). These
refer to user-created prompts, and usually involve a scenario that encourages the LLM to break away
from the preset safety guidelines (Wei et al., 2023). Recent developments such as AutoDAN (Liu
et al., 2024) and CodeChameleon (Lv et al., 2024) incorporate LLMs to generalize and automatically
generate these malicious prompts for a variety of requests.

Universal Adversarial Triggers (UATs) (Wallace et al., 2021) has been one method to attack these
models which embeds a sequence of tokens into the user prompt that will cause it to bypass align-
ment and safety guidelines. In particular, gradient-guided search (Guo et al., 2021) has proven
remarkably effective in adversarially misleading the model. Zou et al. (2023) show that these at-
tacks are also transferable across models, allowing harmful generation even in closed-box models.
In response, various defense methods have been suggested, however, many of them (Kumar et al.,
2023; Li et al., 2023; Phute et al., 2023) rely on external LLMs to verify the safety of the request.
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Defense Methods exist for guarding against certain forms of Adversarial attacks. One example is
Jain et al. (2023) showing a perplexity filter is able to reject certain token attacks that cross a given
score. Another approach have been defenses (Cao et al., 2023; Robey et al., 2024) that randomly
drop or modify tokens within the input to try and trigger alignment. For shorter prompts, such
methods risk dropping important nouns or context, which can classify benign prompts as malicious.
These approaches are similar to ones that preprocess the inputs in a way that adds a secret passphrase
(Liu et al., 2024) or strictly structures the query Chen et al. (2024). As a layer of defense, some
researchers (Inan et al., 2023) proposed adding another LLM to either judge or classify an input as
benign before returning the answer.

3 METHOD

We begin by describing a series of defenses that use self-supervision to defend against both hand-
crafted jailbreak attacks and optimization-based adversarial trigger attacks (Zou et al., 2023). We
provide two layers of defense, detection and reversal, that complement each other. Both methods
rely on self-supervised signals that we construct for language tasks. These signals are shown in
Figure 3 being able to accurately distinguish between benign and malicious prompts. Lastly, we
consider the scenarios where the attacker can adapt their attack in response to the defense, and
empirically show that our methods are still robust.

3.1 JAILBROKEN LANGUAGE MODELS

In a given user interaction, the user inputs the request x, and the chatbot responds with response y.
The LLM generates text outputs by predicting the next token, sampling from a probability distribu-
tion conditioned on the input such that y ∼ F (·|x).
For attacks, the attacker wants to minimize the difference between the response y and their desired
goal t. In this case, this would be malicious instructions prefaced by an agreement such as “Sure,
here’s how”. To do this, they can add a set of tokens a which causes the model to respond with their
desired output. This results in an attack optimization goal of:

a = min
a

Lattack(F (x+ a), t) (1)

Note here that ’+’ denotes the concatenation of two strings, and that the attack is appended to the end
of the user request. For GCG attack (Zou et al., 2023), this optimization is through gradient descent.
For natural language jailbreaks (Wei et al., 2023), this optimization is through human construction.

3.2 DETECT JAILBREAKS VIA SELF-SUPERVISION

We find jailbreaks prompt to bypass the LLM alignment contains different structure than benign
input. We find jailbreak input often leave a trace, such as degrades other capabilities of the LLM
in order to achieve a successful attack. Motivated by this, we propose to construct tasks that we
already know the groundtruth or the expected behavior, so that we can detect jailbreak if we observe
a violation of those tasks. While there are many self-supervised task in natural language we can
construct, here we show self-supervised tasks as defense measures.

Repeat: One simple request of LLMs is to ask it to repeat back the input. For most requests, there
is no issue at all, and it is only when the input is harmful or it is under attack that the LLM will have
trouble doing so. We use Levenshtein Distance “lev(a1:i, b1:j)” between the original user request
and the newly generated sentence. This distance is then weighted by the average length of the two
strings, where s(x) denotes the size of the string, to compensate for differences in request length.

Lrepeater(x
′) =

2 lev(x′, F (x′))

s(x′) + s(F (x′)
(2)

Interjection: At the end of the user request, another method is to interject with a separate question
where we know the correct answer. This utilizes the internal knowledge set of the model, testing if
it can answer fluently. We hypothesis that if the LLM has been jailbroken, they also degrade their
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Figure 4: Self-supervised loss and ROC Curve for benign and malicious inputs. We show
Lrepeater loss on the left and Linterject on the right. For the repeat task, we find the model can repeat
benign queries from the TriviaQA task well, but fails to repeat consistently when the query is from
Advbench. For the interject task, the model is asked to answer ’What is the capital of France?’ and
the loss is for predicting whether the next token will be ‘Paris’. As seen by the malicious instruction
prompts, the loss increases only with the addition of the suffix. The divergent self-supervised loss
values between malicious and benign allow us to detect malicious query. For the ROC curves, benign
inputs are categorized as negatives, and malicious as positive. Losses for these graphs are calculated
using Llama-2, with the best thresholds for the loss being 0.90 and 5.73 respectively.

capability in ansering those questions, like “What is the capital of France?” By calculating softmax
for the logits for ‘Paris’ as the next token, it provides the following loss function:

Linterject(x
′,y) =

eP (y|x′)∑
v∈V

eP (v|x′)
(3)

Each of these loss functions then cluster the inputs that are harmful and benign. Figure 4 shows the
different loss functions for the repeater and interjection tasks. By placing a threshold T on each of
these self-supervised tasks, we are able to detect when a model has its capabilities attacked.

3.3 REVERSALS

As a second layer for defending against adversarial attacks, we can even reverse attacks that slip
through detection. To do so, we append additional tokens in front of the request x′, and aim to find a
series of tokens that will restore the natural alignment of the LLM. This would allow it to work with
existing defenses, and further strengthens the models against attacks. Our proposed method, the
introduction of defense tokens into the prefix of the user prompt also leaves the core content of the
request unchanged. One observation we made with the GCG adversarial triggers (Zou et al., 2023)
was that their inclusion would drastically increase the total perplexity of the input. By defining our
Lautoreg as the perplexity of the entire user input, we get the following objective:

d = argmin
d

Lautoreg(d+ x′) (4)

After every p stages of optimization, we run the completion of the new input request ŷ = F (d+x′)
and record if the response began with any of the common alignment refusals. To pass through, it
must run through all n steps without triggering any of the common denial prefixes. Once the optimal
d is found, the final output of the model is ŷ = F (d+ x′).

3.4 TOTAL SYSTEM

For an attack to be successful, it must pass through all the detection stages, and the generated re-
sponse will have the defense tokens as the prefix. The multi-layered approach allows each defense
system to plug up holes in the others, and adds to the variables that an attack must consider. Due to
the compositionality of our self-supervised defense, users can easily remove some tasks to speed up
the system.
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3.5 ADAPTIVE ATTACKER

Another key advantage of our defense is that it is also robust to adaptive attackers. If the attack
ignores our defense strategy, then we will defend it. If the attackers consider our defense strategy and
then attack, then they need to optimize to also respect the self-supervised tasks, therefore make their
optimization harder due to the additional constraints. Formally, an adaptive attacker will alternate
between attacking and defending the same prompt until it converges:

a = argmin
a

Lattack(F (x+ a), t) (5)

d = argmin
d

Lautoreg(d+ x+ a) (6)

This iterative process is computationally intensive, and has the equivalent result as a constrained
optimization problem. We use the Lagrangian penalty method by adding a new penalty to the score
function. For each new defense system, we can include it as a new multi-target optimization the
attack must consider. With all the detection layers and reversal implemented, the adaptive attack
would have a multi-target optimization problem as follows:

Ladapt(x
′, t, λr, λi, λs, λp) = Lattack(x

′, t) + λrLrepeater(x
′) + λiLinterject(x

′) + λpLautoreg(x
′) (7)

By allocating more optimization budget to satisfying these constraints, the resulting attack is also
less efficient. There is a trade-off that the attacker must consider: by optimizing to bypass the
detection layers, it also increases the coherence of the input and constraint the input the be benign. If
the attacker does not optimize to bypass the detection layers, our defense algorithm will be activated
due to the violation of our self-supervised constraints. Thus, adding our self-supervised constraint
will result in a lose-lose situation for the attacker, and we will straightly increase the safety.

4 EXPERIMENTS

4.1 DATASETS

Advbench ‘harmful behaviors’ contains 520 malicious requests, which we then added adversarial
triggers by following Zou et al. (2023)’s method of multi-prompt attack.

TriviaQA (Joshi et al., 2017) contains a series of trivia questions crafted by humans along with an
evidence dataset that contains the answer. We evaluate our performance on the wikipedia validation
set with one-shot learning and closed-book performance after reversal.

4.2 MODELS

Llama 2-chat is a chatbot released by Meta, finetuned for dialogue and aligned through human
feedback (Touvron et al., 2023).

Vicuna-7b is an open-source chatbot released by LMSYS based on finetuning Llama 2 with con-
versations from ShareGPT (Zheng et al., 2023).

4.3 ATTACKS

Universal Adversarial Trigger. We implement Greedy Coordinate Gradient-based (GCG) search
as done in (Zou et al., 2023). Each malicious request gets appended a suffix, and the suffix gets
optimized for up to 500 iterations or until alignment is broken. Then the next request begins with
the previous optimized suffix appended. In the case of Vicuna, the suffix injection is able to achieve
an Attack Success Rate (ASR) of 100%.

Natural Language Jailbreak. Jailbreak Chat is a website for users to share handcrafted prompts
that can bypass AI alignment. We take the top 5 upvoted jailbreak prompts and pair them each with
30 randomly selected Advbench requests for a total of 150 prompts. These prompts tend to be older
attacks, and were published before Llama2 released.

Adversarial Instructions. These attacks bypass alignment by circumventing the priorities of the
LLM as mentioned in Wei et al. (2023). We test the strongest attack combination presented in their
paper including prefix injection and refusal suppression, and pair it with 150 Advbench samples.
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Figure 5: Multi-Benchmark Attack Success Rate (ASR). We show performance of our defense
against multiple types of attacks and benign inputs (Except for TriviaQA, lower indicates better
performance). Our defense is robust and dramatically lowers ASR across all attacks. Even in cases
where alignment is effective, D-SPIN is shown to decrease the ASR further.
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Figure 6: Adaptive Attack Success Rate. The attacker minimizes the loss with respect to a La-
grangian score function, which balances between attacking the alignment, and bypassing the de-
fenses we created. Then we run the same defenses on the newly generated attack suffixes. We vary
the λ penalty score for layers of the defense and measure the attack success rate. While the adaptive
attacks do lower the ability of the specific layer, it leads to easier detection by the other layers.

Multiple Role-Play. By simulating role playing in conversation, attackers instruct the LLM to act
out a role which is able to bypass safety guardrails. This type of attack is similar to ’Do Anyhing
Now’ (DAN) attacks in (Shen et al., 2024). We pair the ’dev mode v2’ (Wei et al., 2023) attack with
the same 150 malicious requests from Advbench.

Automated Jailbreaks. Code Chameleon (Lv et al., 2024), AutoDAN (Liu et al., 2024), and ICA
(Wei et al., 2024), are all automated ways of generating natural language jailbreaks. The attacks
commonly have a starting attack template that is gradually modified with the attack query, similar
to GCG-search, to bypass defense systems. We pair each attack with 150 malicious requests from
Advbench.

4.4 RESULTS

Detection. For our Repeater layer, we inject the string “Repeat only the following sentences exactly
without changes: ” into the model with the entire input surrounded by quotation marks. We use the
best threshold of 0.89 to filter out inputs that failed to correctly repeat.

For our Interjection layer, we chose the question to be “But first, answer only what is the capital of
France?”. This gets appended to the end of the model, which leaves the system prompt unchanged.
On benign cases, the model was able to answer correctly more than 99% of the time, making it a
reasonable question to ask. It passes the layer if the generation returns the answer within the first 10
tokens, and in practice, this gave similar results to using the loss threshold.

The ROC curves in figure 4 show that there is a clear delineation in loss between malicious and
benign requests when asked to repeat back the entire string. With only the malicious requests, the
LLM will identify the harmful content and refuse to repeat the sentence. When the adversarial
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tokens do appear, the repeated string will usually not include the suffix tokens, leading to a higher
loss. This is because when predicting the next word, the actual token that follows is too random to
be reliably chosen.

As for the interjection task, it makes sense that the benign and malicious prompts without the attack
have similar losses. This is because the model still has all of its capabilities, and alignment will still
work. Only when an attack disturbs the coherency of the input does the loss go up. In our imple-
mentation, we classify the request based on whether it is able to generate the token ’Paris’ within
the first 10 tokens. This results in a False Positive Rate (Benign requests classified as harmful), of
less than 1%. While the malicious queries without attacks might be able to answer the question, it
also triggers the alignment, which correctly prevents them from generating the ’Paris’ token.

Reversal. For each request, we append 5 tokens “! ! ! ! !” to the start of the user message. For
25 steps of optimization, at each stage the reversal calculates the top-256 tokens that best decrease
the perplexity of the overall sentence. Then for our batch size of 50, we uniformly pick from one
of the 256 tokens and substitute it in. The sequence with the lowest loss is then chosen. At every 5
iterations it checks if the generated output matches one of the common denials for Vicuna or Llama.
In both models, the reversal alone is able to reduce ASR by nearly half.

Jailbreaks present an interesting scenario. Because these are handcrafted prompts, they usually
involve role-play and bypass guidelines by misleading the priorities of the model. The sentence
structure is coherent, and as a result, they have the same perplexity as benign inputs. This means
that our reversal is less effective because minor perturbations do not affect the overall understanding
by the model. Most of these prompts also tell the model to ‘Ignore all the instructions you got
before’, which is needed to weaken alignment or safety reminders in the system prompt. In the case
of the repeat task, this actually causes the attack to fail that detection layer, because the model no
longer repeats the input, and the Levenshtein distance will be above the threshold. As seen in Figure
5, the repeat condition is strong enough for D-SPIN to prevent all attacks.

Performance on TriviaQA Figure 5 shows that under the benign cases, the overall performance is
not significantly affected. Because of how we chose the thresholds for D-SPIN detection, the benign
cases passed through without any issues. The addition of tokens that lower the perplexity does not
impact how the model answers the question.

4.5 DEFENSE AWARE ADAPTIVE ATTACK

We present the adaptive attack success rates in Figure 6. The same defense is run, but depending on
the λ penalty chosen, the attacker can optimize the attack for certain layers. However, this usually
comes with a lower ASR in other layers. This is because the attacker has less of a budget to tackle
the original goal of breaking alignment. Our defense system still reduces the attack success rate by
up to 76%, even under an adaptive attacker, proving that the method is resilient.

4.6 ABLATION STUDY

Computational Overhead With the detection layers, on benign inputs the model goes through two
iterations of token generation. As shown in Table 1, the interjection task and the repeat task causes
inference to run up to 1.2x and 1.3x longer, respectively. Reversal is 4.5x longer than inference when
doing 25 steps of optimization, and using less steps can significantly speed up inference, however it
is important that attacks do not succeed for the sake of a faster response time. Compared to the cost
of running the GCG attack, our reversal is still only 1% of the cost.

Table 1: Latency (Averaged across 100 sam-
ples). The table shows the latency times for var-
ious defense methods.

Method Time (s)
Standard Inference 2.80
Repeat 0.45
Interjection 0.89
Reversal (25 steps) 12.62
Full Defense 16.31

Steps of optimization. There is an inherent
trade-off between optimization steps and com-
putation speed. Looking at Figure 7, the increase
in steps does lead to a lower ASR. However,
when examining the defense as a whole, the re-
versal only comes into effect if it slips through
the previous detection layers. Under the assump-
tion that detection will remove a large portion of
attacks, going beyond 25 for the marginal im-
provements seems less appealing.

8
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Figure 7: Ablation Attack Success Rate for UAT and Jailbreak. On the left we show performance
across multiple combinations of the defense system. In our defense, each of the layers complements
the others, so that when placed sequentially it catches the majority of attacks, and is robust against
adaptive attackers. On the right we show ASR for only the reversal layer with increasing iterations,
both Vicuna and Llama2 level off in terms of gains from increasing optimization steps.

5 CONCLUSION

In this paper, we show that self-supervised metrics are sufficient in detecting adversarial attacks, and
that the attacks are also repairable by targeting perplexity. We introduce an inference time defense
system to detect and repair input generation through prompt injection. Our defense works with ex-
isting models and alignment, while not requiring any additional training or fine-tuning. This ensures
that our defense system can react to new types of attacks that were not present in the alignment
training set. The creation of these self-supervised defenses allow for multiple variations that can
detect attacks. The layered nature of the method also shows resilience against adaptive attackers.

6 ETHICS STATEMENT

This paper presents work on Large-Language Model safety, in hopes of presenting results that will
make future conversational models safer to use. We acknowledge that our discussion does contain
mentions of attacks and harmful content, but it is done to illustrate how our techniques specifically
address those problems. These attacks have already been published, and we believe that there is
value in bringing up discussions of new defense methods, even if it might bring increased promi-
nence to these attacks. Whether researchers should publicly share defense methods because it might
help attackers is a point up for discussion, but we do present the scenario of an adaptive attacker to
help alleviate those concerns. There is already substantial discussion about the safety and prevalence
of conversational AI, and the models we tested on are already pub- licly available for use. Our meth-
ods are designed with practicality in mind, but they cannot account for every scenario in real-life use
cases. As with any other safety system, the methods we present must be constantly monitored, and
updated if necessary as attackers discover new avenues. This is to ensure that the work this paper
produces does not lead to eventual harm.
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