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Abstract

Bayesian optimal experimental design (BOED) is a methodology to identify experi-
ments that are expected to yield informative data. Recent work in cognitive science
considered BOED for computational models of human behavior with tractable
and known likelihood functions. However, tractability often comes at the cost of
realism; simulator models that can capture the richness of human behavior are often
intractable. In this work, we combine recent advances in BOED and approximate
inference for intractable models, using machine-learning methods to find optimal
experimental designs, approximate sufficient summary statistics and amortized
posterior distributions. Our simulation experiments on multi-armed bandit tasks
show that our method results in improved model discrimination and parameter
estimation, as compared to experimental designs commonly used in the literature.

1 Introduction

Computational models provide a means to describe and study natural phenomena, with important
applications ranging from understanding the spread of viruses [3] to discovering new molecules [5]
and studying climate change [14]. A particular scientific domain where computational models are
playing an increasingly prominent role is the study of human behavior. Here, computational models
allow us to formalize theories about human cognition and thereby better understand and explain
behavior. Often, models that are rich enough to capture realistic behavior have intractable likelihood
functions, complicating common scientific tasks such as model comparison, parameter inference and
designing informative experiments.

Gathering experimental data is generally costly and time-consuming. Meanwhile, behavioral experi-
ments are typically designed based on prior work, intuitions and heuristics, which may yield data that
are poor for resolving the researchers’ theoretical questions. In particular, as psychological theories
become more complex, designing informative experiments can be a difficult task.

As a potential solution to this problem, the field of Bayesian optimal experimental design (BOED)
formalizes the design of experiments and treats it as an optimization problem. Concretely, the aim is
to maximize a utility function that captures the worth of a particular experimental design. This utility
function, however, usually depends on the posterior distribution and is therefore intractable for all but
the simplest heuristic models of cognition.

Prior work in cognitive science has demonstrated the applicability and usefulness of BOED for
parameter estimation and model comparison, albeit for simple models with known and tractable
likelihood functions [e.g., 9, 21, 10]. There is, however, a lack of work that considers more realistic
cognitive models in the context of BOED.
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Figure 1: Neural network architecture for behavioral experiments. For each block of data we have a
small sub-network (shown in blue) that outputs summary statistics .S. These are concatenated with
the variable of interest v and passed to a larger neural network (shown in green).

Nonetheless, in the recent years there have been significant methodological advances in BOED for
simulator models [e.g. 4, 6, 11]. We here leverage these advances and utilize the MINEBED method
of Kleinegesse and Gutmann [6]. This method performs BOED by maximizing a lower bound on
the expected information gain at a particular experimental design. This lower bound is estimated by
training a neural network on data generated by the computational models under consideration.

Contributions We demonstrate the applicability of modern machine learning and BOED methods
to any computational models of cognition from which we can simulate data. To deal with data
common in behavioral experiments, we construct a bespoke neural network architecture, visualized
in Figure 1, that is trained on simulated data from our computational models. In addition to finding
optimal designs and amortized posterior distributions, this allows us to extract approximate sufficient
statistics at the same time. As a case study, we extend previously studied models of behavior in
multi-armed bandit tasks to be more flexible and realistic, which results in intractable likelihood
functions. In our simulation study, we demonstrate how to find optimal experimental designs for
model discrimination and parameter estimation. We validate our results by comparing the performance
of optimal and commonly-used experimental designs in statistical inference.

2 Models of Human Behavior in Bandit Tasks

We turn to models of human sequential decision making in multi-armed bandit tasks as an important
area of research in cognitive science [e.g., 18]. Multi-armed bandits have a long history in statistics
and machine learning [e.g., 13, 19, 18] and formalize a common class of decision problems —
repeatedly choosing between a set of options under uncertainty. Here, we select three computational
models that have previously been proposed as accounts of human choice behavior. We generalize
them to accommodate richer and more realistic behavioral patterns, which results in intractable
likelihoods.

Each of our computational models defines a generative model y ~ p(y|6, d), where the observed
data y consist of the chosen bandit arms and received rewards in a particular bandit task. The model
parameters @ are treated as random variables with known prior distributions. The design vector d that
we wish to optimize consists of the reward probabilities of the Bernoulli distributions associated with
the arms in the bandit task. We provide high-level intuitions for our computational models below,
and give detailed explanations in the Appendix.

Win-Stay Lose-Thompson-Sample (WSLTS) Here, we propose Win-Stay Lose-Thompson-
Sample (WSLTS) as an amalgamation of Win-Stay Lose-Shift [WSLS; 13] and Thompson Sam-
pling [20]. Upon observing a reward, the agent re-selects the previously chosen arm with a certain
probability, and shifts to another arm if there was no reward (with a different probability). Here, the
agent performs Thompson Sampling from a reshaped posterior instead of shifting to another arm
uniformly at random, as would be the case in standard WSLS.



Auto-regressive c-Greedy (AEG) ¢-Greedy [e.g., 19] is a ubiquitous method in reinforcement
learning in which the agent selects the arm with the highest expected reward with p = 1 — ¢
and a uniformly selected arm otherwise. Here, we propose Auto-regressive e-Greedy (AEG) as a
generalization of e-Greedy, where the probability of selecting the previous arm is controlled by a
separate parameter. This allows for modeling people’s tendency towards auto-regressive behavior [16].

Generalized Latent State (GLS) Lee et al. [8] proposed a latent state model for bandit tasks
whereby a learner can be in either an explore or an exploit state and switch between these as they go
through the task. Here, we propose the Generalized Latent State (GLS) model, which unifies and
extends latent-state and latent-switching models, previously studied in Lee et al. [8], allowing for
more flexible and structured transitions (see the Appendix for more details).

3 Methods

BOED Background In BOED, we need to construct a utility function U(d) that describes the
worth of an experimental design d. Finding an optimal design d* then equates to maximizing this
utility function, i.e. d* = arg maxq U(d). A prominent and principled choice of utility function is
the mutual information (MI), which is equivalent to the expected information gain,

p— . = p
U(d) = Ml(v; y|d) = Ep(yjv.d)p(v) [log p(v) v

where v is a variable of interest that we wish to estimate.

Intuitively, mutual information quantifies the amount of information our experiment is expected
to provide about the variables of interest. Unfortunately, computing the MI exactly is generally
intractable, a difficulty that is exacerbated for intractable models. Below, we describe how the MI can
be estimated and optimized effectively, by using the MINEBED methodology of Kleinegesse and
Gutmann [6]. More details on the training procedure can be found in the Appendix.

Variable of Interest In this work we focus on two common scientific goals: (1) the task of model
discrimination (MD), i.e. distinguishing between competing cognitive models, and (2) the task of
parameter estimation (PE) of a given cognitive model. For MD, the variable of interest v in Equation 1
is a discrete model indicator m that determines from which competing model the data originates. For
PE, the variable of interest is the set of parameters 6,,, of a particular model m.

MI Lower Bound We are ultimately interested in maximizing the MI with respect to the designs
d, not estimating it accurately everywhere in the design domain. Recent advances in BOED for
simulator models thus advocate the use of cheaper MI lower bounds instead [e.g. 4, 6]. We shall
here use the MINEBED method of Kleinegesse and Gutmann [6], which works by training a neural
network T, (v,y) using stochastic gradient-ascent, where 1) are the neural network parameters and
the data y is simulated at design d with samples from the prior p(v).

In particular, the neural network is trained by using the MI lower bound as an objective function (see
the Appendix for the exact form of the lower bound).

The resulting trained neural network and the final lower bound estimate can thus be used to compute
an estimate of the MI at design d.

Network Architecture We propose an effective architecture choice for the neural network
Ty (v,y), devised specifically with applications to behavioral experiments in mind (but may also be
effective in other applications). Our architecture, summarized in Figure 1, incorporates sub-networks
S (v,y) for each block of behavioral data in a bandit task. The outputs of these sub-networks are
then concatenated and passed as input to the network Ty (v,y). Following Chen et al. [2], each
sub-network is learning approximate sufficient statistics of the data from a particular block in the
bandit task.

Gradient-Free Optimization The MINEBED method originally optimizes the utility function
U (d) by means of gradient-ascent. This is however not possible when the simulated data y is discrete,
as is commonly the case with behavioral data. We thus follow the third experiment in Kleinegesse
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Figure 3: Marginal posterior distributions of the three
WSLTS model parameters for optimal (green) and baseline
(orange) designs, averaged over 1,000 observations.

and Gutmann [6] and optimize U (d) with respect to d using Bayesian Optimization (BO). We use a
Gaussian Process (GP) as our probabilistic surrogate model with a Matérn-5/2 kernel and Expected
Improvement as the acquisition function (these are standard choices, see Shahriari et al. [17] for a
review on BO).

4 Experiments

In this section we demonstrate the optimization of reward probabilities for multi-armed bandit tasks,
with the scientific goals of (1) model discrimination (MD) and (2) parameter estimation (PE). We
consider multi-armed bandits with three arms and 30 trials per block, where each block may have
different reward probabilities. For the MD task we use two blocks of behavioral data, whereas we use
three blocks for the PE task. As part of our methodology, we use relatively small architectures with 2
hidden layers for all neural networks. More information about the experimental settings, descriptions
of the algorithms and additional discussions can be found in the Appendix.

Baseline design As our baseline designs, we sample all reward probabilities from a Beta(2, 2)
distribution, following the, to the best of our knowledge, largest behavioral experiments on bandit
problems in the literature with 451 participants [18].

Model discrimination The optimal reward probabilities for the MD task found using our method-
ology are [0, 0, 0.6] for the first block of trials and [1, 1, 0] for the other second block. These optimal
designs stand in stark contrast to the usual reward probabilities used in such behavioral experiments,
which almost always take non-extreme values [18]. Using the neural network that was trained at that
optimal design, we can compute posterior distributions of the model indicator (as described in the
appendix). This yields the confusion matrices in Figure 2, which show that our optimal designs result
in considerably better model recovery than the baseline designs.

Parameter estimation We here discuss the PE results for the WSLTS model; the results for the
AEG and GLS model can be found in the appendix. We find that the optimal reward probabilities for
the WSLTS model are [0, 1,0], [0,1, 1] and [1, 0, 1] for the first, second and third block, respectively.
Similarly to the MD task, these optimal designs take extreme values, unlike commonly-used reward
probabilities in the literature. In Figure 3 we show posterior distributions of the WSLTS model
parameters for optimal and baseline designs. We find that optimal designs yield data that result in
considerably improved parameter recovery.

5 Conclusions

Our experiments demonstrate that our methodology allows us to effectively design optimal experi-
ments in cognitive science, resulting in considerably better model and parameter recovery than for
designs commonly-used in the literature. In particular, the combination of a lower bound on the MI,
parameterized by a bespoke neural network, allows us to scale to realistic behavioral experiments.
It would be interesting to see how our approach can be adapted to the sequential BOED setting
with intractable models [e.g., 7]. Additionally, our experiments only included synthetic data and no
real-world data, and therefore it would be useful to apply our approach to real participants as well.
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6 Appendix

6.1 Computational models
6.1.1 Win-Stay Lose-Thompson-Sample (WSLTS)

WSLTS performs Thompson Sampling using the reshaped posterior, excluding the previously selected
arm. That is, WSLTS follows standard Thompson Sampling for Bernoulli bandits, as described in [15],
with two important differences: First, as opposed to sampling from the posterior over all arms, the
sampled reward probability of the previously selected arm is set to zero. This is to ensure that WSLTS
follows the core semantics of WSLS as a strict generalization that allows for more sophisticated
exploration/exploitation mechanisms. Second, we include a temperature parameter A that is used
to reshape the posterior over reward probabilities, to widen or sharpen the posterior, conceptually
following Chapelle and Li [1]. That is, we draw rewards for the k-th arm from Beta(a}), 3;). We
treat the model parameter A as a random variable with a log-normal(0, 1) prior distribution. The
WSLTS model has three parameters: y,,, which controls the probability of staying after winning, ;,
which controls the probability of shifting after losing, and A, for posterior reshaping.

6.1.2 Autoregressive c-Greedy (AEG)

The chance of selecting the previously selected arm is controlled by the ¢ parameter. That is, the
probability of selecting the previous arm is given by ¢ + 1_7@, where on exploration choices, m is
the number of bandit arms, and on greedy choices, m is the number of arms that have the maximal
expected reward probability, thereby breaking possible ties. ¢ can thus be thought of as a “stickiness”
parameter [16] that favors the previous arm on both greedy as well as exploration choices. The AEG
model thus has two parameters, € and .

6.1.3 Generalized Latent State (GLS)

Lee et al. [8] proposed a latent state model for bandit tasks, which includes a latent explore/exploit
state z; for each trial 7. This latent state determines which arm is chosen to resolve the explore-exploit
dilemma whenever one arm has more observed wins but also more losses than the other arm(s). Their
model proposes that the latent state changes stochastically on a trial-by-trial basis, where transitions
between latent states are modeled using a Bernoulli(0.5) distribution.

The authors demonstrate that this model captures people’s behavior in an empirical evaluation, but
they also show that most participants could be modeled by a simplified account, in which there is
only one switch point from exploration to exploitation, without the possibility of transitioning back
to exploration [for details, see 8].

The originally proposed latent state model by [8] only dealt with 2-armed bandits. Here we describe
the generalization used for k-armed bandits. > We distinguish between the following situations the
agent can be in [8].

Same If two or more arms have the maximum number of wins and the minimum number of losses,
choose one of these at random.

Better-worse If only one arm has the maximum number of wins and the minimum number of losses,
choose this arm.

Explore-exploit If neither same nor better-worse applies, the agent faces an exploration-exploitation
dilemma, which is resolved based on the latent state of the agent as follows:

Exploit state If the latent state is exploit, then, if there is at least one arm with more wins
than all other arms, choose the arm with the maximum number of wins that has the
minimum number of losses out the set of arms that have the maximum number of wins
(or choose uniformly at random from the set of equivalent options).

Explore state If the latent state is explore, then, if there is at least one arm with fewer losses
than all other arms, choose the arm with the maximum number of wins out of the set of
arms with the minimum number of failures (or choose uniformly at random from the
set of equivalent options).

2We thank Patrick Laverty for contributing towards this.



We propose a simple extension of this model, which we call the generalized latent state (GLS) model
and that includes the original latent state model and the kind of switch-point model as special cases,
but also accommodates more flexible latent state transitions. The GLS models the probability of
being in a latent exploit (as opposed to explore) state as being dependent on whether the last latent
state was explore or exploit, and on whether a reward was observed in the previous trial or not.

The generalization to dependencies in the latent transitions allows the model to account for several
further psychologically plausible mechanisms that may be at play. First, as suggested by the switch-
point model, people may have a “stickiness” (or “anti-stickiness”) in their latent state, such that
the probability of being in an exploit-state at trial ¢ depends on the previous latent state. Note
that the stickiness in the latent state may be different for explore as opposed to exploit states, and
we therefore include these two transition probabilities as two separate model parameters. Second,
switches between the latent explore/exploit state may not be symmetric in regard to the previously
observed reward. That is, people may, e.g., be more willing to switch from exploration to exploitation
when observing a win than when observing a loss, as would be suggested by the WSLS heuristic.
The transition probabilities when observing a win and when observing a loss are thus also treated as
two separate model parameters.

In total, the GLS has an accuracy of execution parameter ygLs (conceptually identical to the one
in the latent state model of Lee et al. [8]) which accounts for random behavior, as well as four
parameters controlling the latent state transitions described above. The initial latent state is sampled
from a Bernoulli(0.5) distribution for simplicity. Note that our proposed GLS model can recover the
latent state model by [8] by setting all latent transition probabilities to 0.5, rendering the latent state
independent of the preceding state and reward. Similarly, we could treat the latent exploitation state
as absorbing, such that once a transition to the exploit state has happened, the agent never goes back
to exploring.

6.2 MINEBED method

In their MINEBED method, [6] proposed to maximize a cheaper, tractable lower bound on the MI,
as opposed to spending resources on estimating the MI to a high accuracy. This lower bound is
parametrized by a neural network Ty (v,y), where 1 are the neural network parameters.> The
MINEBED method uses the NWJ lower bound [see e.g. 12], which is now a function of d and %,
given by

U(d; %) = Epyjo.ayp(w) [T (0,3)] = € Epyjayp(o) [eT‘k(”’y)} )
The expectations in Equation 2 are approximated via sample averages.

The lower bound shown in Equation 2 is a function of the experimental designs d and the neural
network parameters 1. For a fixed design, we can tighten the lower bound, i.e. let it approach the true
MI value, by optimizing the neural network with respect to 1) by means of stochastic gradient-ascent,
using Equation 2 as an objective function. The gradients of U (d; 1)) with respect to 4 can be easily
obtained via automatic differentiation available in common machine-learning libraries. This allows
us to obtain an estimate of the mutual information at a fixed design, i.e.

U(d) = max U(d; %) 3)

In order to then optimize the MI with respect to the designs d we can use any gradient-free optimiza-
tion technique. In our case, we use Bayesian optimization (BO) [17]. As a probabilistic surrogate
model we use Gaussian Processes (GPs) and as an acquisition function we use Expected Improvement
(EI). We present a short summary of the gradient-free MINEBED method in Algorithm 1. Note that a
variant of the MINEBED method deals with gradient-based design optimization [see 6]. However,
this is not applicable in our experiments with bandit tasks, where gradients with respect to the discrete
choices and rewards y are undefined.

Posterior Estimation By looking at Equation 2, we can see that the NWJ lower bound is tight
when Ty« (v,y) = 1 + logp(v]y,d*)/p(v). By rearranging this, we can thus use our trained neural
network 7'+ (v, y) to compute a (normalized) estimate of the posterior distribution,

p(vly,d”) :p(v)eTw*(v,y)fl' W

3This neural network takes as input v and y, which are concatenated, and returns a scalar value.




Algorithm 1 Gradient-Free MINEBED

Input: Implicit simulator model y ~ p(y|v, d), prior distribution p(v), neural network architecture
for Ty (v,y)
Output: Optimal design d*, trained neural network T+ (v,y) at d*

1: Randomly initialize the experimental designs d,, < dg
2: Initialize the Gaussian Process for BO
3: while U(d,,) not converged do

4: Sample from the prior: v ~ p(v) fori =1,..., N
5. Sample from the simulator: y() ~ p(y|v® d) fori =1,..., N
6: Randomly initialize the neural network parameters 1,, <— 1
7: while U(d,,; v,,) with fixed d,, not converged do
8: Compute a sample average of the lower bound in Equation 2
9: Estimate gradients of sample average with respect to v,,

10: Update ), using any gradient-based optimizer

11: Use d,, and U(d,,) to update the Gaussian Process
12: Use BO to find out at which d,,4; to evaluate next

6.3 Experimental Details

We here provide details about our experiments.

Priors We use a uniform categorical prior over the model indicator m, i.e. p(m) = U({1, 2, 3}).
We generally use uninformative priors (0, 1) for all model parameters, except for the temperature
parameter of the WSLTS model that has a LogNorm(0, 1) prior, as it acts as an exponent in reshaping
the posterior. We generate 50,000 samples from the prior and then simulate corresponding synthetic
data y|0,d at every design d.

Sub-networks For all of our experiments, we use sub-networks S, (v,y) that consist of two
hidden layers with 64 and 32 hidden units, respectively, and ReLU activation functions. The number
of sufficient statistics we wish to learn for each block of behavioral data is given by the number
of dimensions in the output layer of the sub-networks. These are 6, 8, 6 and 8 units for the MD,
PE WSLTS, PE AEG and PE GLS experiments, respectively. The flexibility of a sub-network is
naturally increased when increasing the number of desired summary statistics, but the cost increases
accordingly. When the number of summary statistics is too low, the summary statistics we learn
may not be sufficient. We have found the above number of summary statistics to be effective
middle-grounds.

Main Network The main network Ty, (v,y) consists of the concatenated outputs of the sub-
networks for each block of behavioral data and the variable of interest. This is then followed by two
fully-connected layers with ReLU activation functions. For the MD experiment we use 32 hidden
units for the two hidden layers, while we use 64 and 32 hidden units for the PE experiments. See
Figure 1 for a visualization of this bespoke neural network architecture.

Training We use the Adam optimizer to maximize the lower bound shown in Equation 2, with a
learning rate of 102 and a weight decay of 10~3 (except for the PE WSLTS experiments where
we use a weight decay of 10~*). We additionally use a plateau learning rate scheduler with a decay
factor of 0.5 and a patience of 25 epochs. We train the neural network for 200, 400, 300 and 300
epochs for the MD, PE WSLTS, PE AEG and PE GLS experiments, respectively. At every design
we simulate 50,000 samples from the data-generating distribution (one for every prior sample) and
randomly hold out 10,000 of those as a validation set, which are then used to compute an estimate of
the mutual information via Equation 2. During the BO procedure we select an experimental budget
of 400 U(d) evaluations (80 of which were initial evaluations), which is more than double needed to
converge.
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Figure 4: Marginal posterior distributions of the two AEG model parameters for optimal (green) and
baseline (orange) designs, averaged over 1,000 observations.
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Figure 5: Marginal posterior distributions of the five GLS model parameters for optimal (green) and
baseline (orange) designs, averaged over 1,000 observations. Note that the downwards behavior at
the boundaries is due to taking a Gaussian kernel density estimation of a nearly-uniform distribution.

6.4 Additional Results

We here present additional parameter estimation results for the AEG in Figure 4 and for the GLS
model in Figure 5.

Similarly to the parameter estimation task of the WSLTS model (see Figure 3), our optimal designs
yield data that are more informative than baseline designs from literature, which can be seen from
sharper posterior distributions that are centered around the ground-truths (shown in red-dotted lines).
We note that the transition parameters of the GLS model are not well-estimated for any of the designs
due to the uninformative priors and small number of trials in the behavioral blocks.
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