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Abstract001

Chart question answering (CQA) has become a002
critical multimodal task for evaluating the rea-003
soning capabilities of vision-language models.004
While early approaches have shown promising005
performance by focusing on visual features or006
leveraging large-scale pre-training, most exist-007
ing evaluations rely on rigid output formats and008
objective metrics, thus ignoring the complex,009
real-world demands of practical chart analy-010
sis. In this paper, we introduce ChartMind, a011
new benchmark designed for complex CQA012
tasks in real-world settings. ChartMind covers013
seven task categories, incorporates multilingual014
contexts, supports open-domain textual outputs,015
and accommodates diverse chart formats, bridg-016
ing the gap between real-world applications017
and traditional academic benchmarks. Further-018
more, we propose a context-aware yet model-019
agnostic framework, ChartLLM, that focuses020
on extracting key contextual elements, reducing021
noise, and enhancing the reasoning accuracy of022
multimodal large language models. Extensive023
evaluations on ChartMind and three represen-024
tative public benchmarks with 14 mainstream025
multimodal models show our framework signif-026
icantly outperforms the previous three common027
CQA paradigms: instruction-following, OCR-028
enhanced, and chain-of-thought, highlighting029
the importance of flexible chart understanding030
for real-world CQA. These findings suggest031
new directions for developing more robust chart032
reasoning in future research.033

1 Introduction034

Chart question answering (Ma et al., 2024; Qin035

et al., 2022) is a prominent multimodal task de-036

signed to evaluate the reasoning capabilities of037

vision-language models, especially their multi-038

modal perception ability and local reasoning ability.039

Early studies treat CQA as a discriminative task,040

focusing on directly modeling visual elements to041

answer questions (Kafle et al., 2018; Chang et al.,042

2022). However, these methods often struggle with043

generalization due to their inability to capture the 044

semantic and visual richness of charts. Hence, re- 045

searchers introduce more visual semantic infor- 046

mation (e.g., OCR) to enhance the multimodal 047

perception ability (Liu et al., 2023; Wang et al., 048

2023a). Recent studies have shown the potential 049

of multimodal large language models (LLMs) on 050

the CQA task by adopting large-scale multimodal 051

pre-training (Kim et al., 2022; Lee et al., 2023) or 052

chain-of-thought (COT) reasoning (Li et al., 2024b; 053

Wei et al., 2024), suggesting that leveraging large- 054

scale datasets and supervised fine-tuning improves 055

the interpretation of multimodal charts. 056

Several benchmarks (Zaib et al., 2022; Bajić 057

and Job, 2023; Huang et al., 2024) have been pro- 058

posed to better understand the strengths and weak- 059

nesses of multi-modal LLMs for CQA. However, 060

human evaluations often suffer from high variabil- 061

ity and instability due to individual and cultural dif- 062

ferences, leading many existing benchmarks (Kafle 063

et al., 2018; Mahinpei et al., 2022) to rely pre- 064

dominantly on automatic metrics (e.g., F1 scores). 065

While such approaches effectively evaluate the ac- 066

curacy of a single answer (e.g., “2024" for “What 067

is the largest value in column X?"), they do not 068

fully capture the need for complex and multi-step 069

reasoning commonly required in real-world sce- 070

narios. Many professional data analysis tasks de- 071

mand advanced inference, such as multi-hop rea- 072

soning or synthesizing information from multiple 073

charts. Consequently, most existing benchmarks 074

have widely ignored the logical steps involved in 075

such inferencing, focusing instead on whether the 076

answer includes the correct keyword or value. 077

In addition, as shown in Figure 1, we summa- 078

rize three main challenges in existing benchmarks: 079

multilingual charts, diverse formats, and questions 080

lacking a single definitive answer, such as chart 081

summarization. Models need to handle both visual 082

comprehension and logical reasoning. To extract 083

meaningful information, they must first recognize 084
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Figure 1: Key Challenges in CQA Benchmarks: (A) Predominantly monolingual, limiting multilingual applicability
in chart question answering; (B) Fixed formats and metrics, restricting adaptability to diverse charts; (C) Emphasis
on deterministic answers, overlooking complex reasoning, such as trend analysis, and summarization.

visual elements, such as colors, structures, and spa-085

tial relationships. Then, they must analyze the logi-086

cal connections between elements and answer com-087

plex queries, such as performing calculations, iden-088

tifying trends, and finding relationships within the089

data. Moreover, the wide range of real-world chart090

types (e.g., bar charts, line charts, scatter plots) cre-091

ates higher demands for models to generalize and092

perform well on new and unseen formats.093

To address the above challenges, in this paper,094

we comprehensively review current CQA studies095

and introduce a new benchmark, ChartMind, specif-096

ically designed to evaluate complex CQA tasks in097

real-world settings. ChartMind covers seven task098

categories: Chart Conversion, Chart OCR Recog-099

nition, Suggestions, Chart Classification Analysis,100

Chart Summarization, Chart Assistance, and Infor-101

mation Positioning. Unlike existing benchmarks,102

ChartMind bridges the gap between the industrial103

scenarios and the academic benchmark, includ-104

ing the multilingual context, emphasizing open-105

domain textual outputs and enabling a broader eval-106

uation across diverse formats. We further propose107

a novel context-aware chart understanding frame-108

work, ChartLLM, which is model-agnostic and can109

be applied to any MLLM to selectively extract key110

contextual elements, thus reducing noise and im-111

proving generalization.112

To validate our benchmark, we conduct a com-113

prehensive study of 14 mainstream multimodal114

models, comparing ChartLLM-based approaches115

with three widely used CQA paradigms: (1)116

instruction-following methods driven by predefined117

prompts, (2) OCR-enhanced methods that priori-118

tize text extraction, and (3) COT-based methods119

emphasizing step-by-step reasoning.120

Our contributions are as follows: (1) We intro- 121

duce ChartMind, the first benchmark for com- 122

plex CQA tasks in real-world settings. Covering 123

seven task categories, multilingual contexts, and di- 124

verse chart formats, it bridges the gap between real- 125

world applications and traditional academic bench- 126

marks. (2) We propose ChartLLM, a context- 127

aware yet model-agnostic framework that focuses 128

on extracting key contextual elements, reducing 129

noise, and enhancing the reasoning accuracy of 130

MLLMs. (3) Through experiments across seven 131

task categories, two languages, and seven chart for- 132

mats, we show that ChartLLM outperforms preva- 133

lent CQA paradigms. These findings highlight the 134

need for flexible chart understanding and foster 135

advanced research on real-world chart analysis. 136

2 Related Work 137

CQA Methods. The development of CQA meth- 138

ods (Zeng et al., 2024; Li et al., 2024b; Xu et al., 139

2023) has evolved from early discriminative ap- 140

proaches to structured reasoning and large-scale 141

pretraining (Zhou et al., 2023; Li et al., 2023; 142

Huang et al., 2024; Tan et al., 2024). Early mod- 143

els like IMG+QUESS (Kafle et al., 2018) and V- 144

MODEQA (Chang et al., 2022) use CNNs for vi- 145

sual encoding and RNNs for query processing but 146

struggle with generalization due to limited rea- 147

soning and OOV issues. OCR-enhanced meth- 148

ods (Liu et al., 2023; Wang et al., 2023a) convert 149

chart data into structured text to facilitate numeri- 150

cal and textual extraction but often fail to capture 151

spatial relationships and visual attributes, making 152

them sensitive to noise. COT-based models such as 153

MATCHA (Li et al., 2024b) and mChartQA (Wei 154

et al., 2024) improve accuracy by stepwise de- 155
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Dataset Avg. Ans. Instances Language Diverse Task Topic Chart Pie Scatter Common Grouped Stacked Complex Common
Length Number Format Format Format Format Format Bar Bar Bar Line Line

ChartQA (Masry et al., 2022) 1.15 2,500 English 1 1 3 3 ✓ ✗ ✓ ✗ ✗ ✗ ✓

MMC-Benchmark (Liu et al., 2024a) 1.08 2,126 English 1 4 5 2 ✗ ✓ ✗ ✗ ✗ ✗ ✓

PaperQA (Lu et al., 2023) 1.26 107 English 1 1 2 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

OpenCQA (Kantharaj et al., 2022a) 55.73 1,159 English 1 1 4 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

Chart-to-Text (Kantharaj et al., 2022b) 73.49 3,474 English 1 1 3 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

LineCap (Mahinpei et al., 2022) 13.63 1,930 English 1 1 1 2 ✗ ✗ ✗ ✗ ✗ ✓ ✓

ChartMind 119.69 757 EN&ZH 2 7 6 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of ChartMind with Existing Chart QA Datasets.

composition but rely on structured input, limiting156

adaptability to diverse chart formats. Other multi-157

modal models like Donut (Kim et al., 2022) and158

Pix2Struct (Lee et al., 2023) eliminate OCR depen-159

dency, enabling end-to-end pretraining. Instruction-160

following models, such as Qwen-VL (Bai et al.,161

2023) and GPT-4o (Achiam et al., 2023), leverage162

large-scale multimodal pretraining for CQA rea-163

soning but still struggle with multilingual charts,164

format diversity, and complex real-world scenarios.165

CQA Benchmarks. The development of CQA166

models necessitates reliable benchmarks to evalu-167

ate performance across diverse tasks (Zaib et al.,168

2022; Bajić and Job, 2023). Existing datasets fall169

into Factoid Question Answering (FQA), Open-170

Domain Question Answering (OQA), and Caption-171

ing (CAP) categories (Huang et al., 2024). FQA172

datasets, such as ChartQA (Kafle et al., 2018),173

MMC-Bench (Liu et al., 2024a), and PaperQA (Lu174

et al., 2023), assess factual queries, including nu-175

merical extractions, trend identification, and rela-176

tional interpretations, relying on predefined chart177

types for objective reasoning. OQA datasets like178

OpenCQA (Kantharaj et al., 2022a) introduce open-179

ended questions but enforce rigid output structures180

and rely on automated metrics like BLEU, limiting181

adaptability to complex reasoning. CAP datasets,182

including Chart-to-Text (Kantharaj et al., 2022b)183

and LineCap (Mahinpei et al., 2022), generate tex-184

tual chart descriptions but remain constrained by185

structured evaluation metrics. Despite advance-186

ments, most benchmarks are monolingual, rigid,187

and fact-centric, restricting applicability to real-188

world scenarios requiring flexible reasoning, open-189

ended outputs, and diverse chart formats. Table 1190

compares representative CQA benchmarks.191

3 Construction of ChartMind192

3.1 Data Processing193

The dataset is curated from multiple open194

sources, including public datasets, GitHub repos-195

itories, and Overleaf academic projects, follow-196

ing OpenCQA (Kantharaj et al., 2022a) and197

ChartQA (Masry et al., 2022). All sources comply198

with open licenses (e.g., CC BY 4.0, MIT) for le- 199

gal accessibility. The dataset comprises over 1,200 200

charts in English and Chinese, spanning various 201

formats (e.g., Pie, Stacked Bar, etc.). To maintain 202

quality, a manual filtering process removes charts 203

with missing labels, unreadable fonts, or poor clar- 204

ity, ensuring relevance for complex reasoning tasks. 205

This process underpins Stage I of Figure 2. 206

3.2 Generated Questions & Answers 207

Based on the collected charts, we use GPT- 208

4o (Achiam et al., 2023) to generate question- 209

answer pairs across seven task categories. Few-shot 210

prompting ensures diverse, context-aware question- 211

answer pairs for these categories (e.g., suggestions, 212

trend summaries, etc.). For each chart, GPT-4o gen- 213

erates task-specific questions and corresponding 214

answers aligned with chart context and task objec- 215

tives, such as converting visual data into structured 216

formats or providing recommendations. All QA 217

pairs undergo initial review for logical consistency, 218

coherence, and factual accuracy, forming a high- 219

quality dataset, as shown in Stage II of Figure 2. 220

3.3 Human Check 221

To ensure dataset reliability, three expert annotators 222

with over two years of CQA research experience 223

manually review all triplets for accuracy, clarity, 224

and contextual relevance. Questions must align 225

with chart content, and answers must be logically 226

consistent and complete. Triplets with ambiguity, 227

factual errors, or misalignment are flagged for revi- 228

sion or removal. This ensures a high-quality dataset 229

for evaluating complex CQA tasks, as illustrated in 230

Stage III of Figure 2. 231

3.4 Quality Assurance 232

To enhance ChartMind’s reliability and consis- 233

tency, we apply additional quality assurance mech- 234

anisms beyond standard human review. Inspired 235

by TableBench (Wu et al., 2024) and ArXivQA (Li 236

et al., 2024a), we refine annotation processes and 237

align human and model evaluations. Annotators 238

continuously provide feedback to improve task def- 239
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initions and guidelines, ensuring clarity and con-240

sistency. We further validate answers by retaining241

only triplets where model-generated answers align242

with human evaluations, removing ambiguous or243

inconsistent data. This ensures that the dataset ac-244

curately reflects logical reasoning.245

3.5 Data Statistics246

ChartMind evaluates models on complex reasoning247

abilities in CQA. Key characteristics are summa-248

rized below.249

Language and Topic Distribution Figure 3250

shows the dataset’s language distribution: 59.71%251

English and 40.29% Chinese, ensuring balanced252

bilingual evaluation. This enables the assessment253

Task Samples Query Length Answer Length
(Min / Max) (Min / Max)

Chart Conversion 140 11 / 477 5 / 55
Chart OCR Recognition 139 13 / 351 8 / 59
Suggestions 88 17 / 492 13 / 53
Chart Classification Analysis 37 360 / 503 72 / 79
chart Summarization 34 76 / 335 12 / 113
Chart Assistance 76 9 / 276 12 / 41
Information Positioning 140 11 / 208 11 / 35

Total 757 9 / 503 5 / 113

Table 2: Task Type Statistics in ChartMind.

of bilingual reasoning consistency. Figure 4 illus- 254

trates topic diversity, with Economy comprising 255

68.00%, followed by Education and Technology, 256

ensuring broad real-world applicability. 257

Task and Answer Variability Table 2 provides 258

detailed statistics on task distribution and an- 259

swer complexity. Tasks vary in difficulty, with 260

Chart Classification Analysis requiring the longest 261

queries (up to 503 tokens), while Chart Assistance 262

involves the shortest queries (9–276 tokens). An- 263

swer length also varies significantly, ranging from 264

5 to 113 tokens, with Chart Summarization gen- 265

erating the longest responses. This highlights the 266

benchmark’s complexity, requiring models to han- 267

dle both concise and complex reasoning. 268

4 ChartLLM 269

4.1 Problem Definition 270

CQA is a task that involves providing an answer 271

A to a natural language question Q, based on the 272

information contained in a chart C. The answer 273

A may take various forms, depending on the type 274

of question. Specifically, A could be a numerical 275

value, a categorical label, an entity set, or an open- 276

domain sentence. These different answer types re- 277

quire distinct reasoning capabilities, ranging from 278

retrieval-based reasoning (e.g., extracting numeri- 279

4



cal values) to analytical reasoning (e.g., identifying280

patterns and trends in the chart). Formally, the an-281

swer A is represented as a collection of values or282

entities {a1, a2, . . . , ak}, where k ∈ N+.283

4.2 Reasoning Methods284

Instruction-following (Wei et al., 2021) and In-285

context learning (Dong et al., 2024) refer to strate-286

gies that optimize input for LLMs to generate prac-287

tical outputs based on task-specific instructions and288

context. These methods enable models to leverage289

the provided task instructions to guide reasoning290

and output generation. To fully assess the reasoning291

capabilities of LLMs for CQA, we propose three292

distinct reasoning methods that aim to evaluate the293

model’s reasoning performance.294

Instruction-following-based methods Such295

methods (Wei et al., 2021) leverage task-specific296

instructions to guide LLMs in reasoning tasks.297

The model utilizes a prompt to interpret chart data298

and generate answers. The prompt P provides299

additional contextual guidance for the natural300

language question Q, specifying how the model301

should reason over the chart data. The reasoning302

process can be expressed as:303

M(C,Q, P ) → A (1)304

where M represents the model, C is the chart, Q is305

the natural language question, P is the instruction306

prompt, and A is the answer. This approach can be307

applied in both fine-tuning and zero-shot settings,308

allowing the model to adapt to tasks based on the309

provided instructions.310

OCR-enhanced methods OCR-enhanced meth-311

ods (Liu et al., 2023) augment reasoning by incor-312

porating textual content extracted from charts using313

OCR tools. These tools provide the model with ad-314

ditional information embedded in the chart, which315

may not be directly accessible through its visual316

content. The reasoning process is formulated as:317

M(C,Q,O(C)) → A (2)318

where O(C) denotes the OCR-extracted content319

from the chart C. OCR tools offer essential support320

in understanding chart-based queries by enhancing321

the model’s input with relevant textual data.322

COT-based methods COT-based methods (Wei323

et al., 2022) break down the reasoning process324

into intermediate steps to improve both the accu-325

racy and interpretability of the model’s responses.326

This approach decomposes the reasoning into a 327

sequence of logical steps, which enhances the 328

model’s ability to solve complex tasks. The process 329

is represented as: 330

M(C,Q) → {r1, r2, . . . , rk} → A (3) 331

where r1, r2, . . . , rk represent intermediate reason- 332

ing steps, and A is the final answer. CoT is partic- 333

ularly useful for tasks requiring step-by-step rea- 334

soning, such as analyzing trends, identifying pat- 335

terns, or extracting structured insights from com- 336

plex chart data. 337

4.3 ChartLLM: Context Extraction for CQA 338

The ChartLLM is designed to enhance CQA by 339

extracting and structuring relevant contextual infor- 340

mation from a chart. Given a chart C, the context 341

Ccontext = {T, L,X, Y }, where T is the title, L 342

is the legend, X is the X-axis label, and Y is the 343

Y-axis label, is generated to represent the essential 344

elements of the chart. This approach minimizes ir- 345

relevant data and focuses solely on the components 346

required for accurate reasoning in CQA tasks. To 347

extract Ccontext, predefined prompts, such as "Ex- 348

tract key information from the chart, including title, 349

legend, and X and Y-axis information," guide the 350

model in identifying the necessary elements of the 351

chart. This ensures the extracted context is concise, 352

relevant, and foundational for reasoning. 353

The reasoning objective for ChartLLM is to pre- 354

dict the answer A that maximizes the conditional 355

probability given the question Q and the extracted 356

context Ccontext. This can be expressed as: 357

A = argmaxa∈A
∑n

i=1 ECcontext,Q [logP (ai | Ccontext, Q; Θ)]

(4) 358

Here, A is the predicted answer, A represents the 359

candidate answer space, Ccontext is the extracted 360

context from the chart C, Q is the natural language 361

question, ai is the i-th candidate answer, and Θ 362

denotes the model parameters. 363

5 Experiments 364

5.1 Experimental Setup 365

We evaluate four paradigms for CQA tasks, in- 366

cluding instruction-following, COT-based reason- 367

ing, OCR-enhanced methods, and our proposed 368

ChartLLM framework. These methods are tested 369

on 14 MLLMs from three categories: specialized 370

CQA models, general-purpose open-source models, 371

and general-purpose closed-source models. The 372
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Models Size
ChartMind ChartQA Chart-to-Text OpenCQA

ACC Avg.CIDEr Avg.GPT-4o Score Aug. ACC Hum. ACC Avg. ACC Pew. BLEU Statista. BLEU Avg. BLEU Avg. BLEU

Instruction-Following-Based (Wei et al., 2021)

TinyChart† (Zhang et al., 2024a) 3B 5.36 18.45 16.81 93.60 72.16 82.88 10.84 27.04 18.94 19.62
ChartInstruct† (Masry et al., 2024) 7B 9.82 24.55 15.05 82.40 40.64 61.52 12.81 39.39 26.10 14.78
ChartLlama† (Han et al., 2023) 7B 20.54 21.34 12.72 90.36 48.96 69.66 14.23 40.71 27.47 4.70
Sphinx-v2 (Lin et al., 2023) 7B 9.82 25.95 13.69 60.96 43.92 52.44 3.43 4.94 4.19 3.10
LLaVA1.5 (Liu et al., 2024c) 7B 34.82 39.50 15.58 20.12 25.20 22.66 15.70 11.07 13.39 15.17
ViP-LLaVA (Cai et al., 2024) 7B 20.54 37.01 15.56 17.60 26.16 21.88 1.36 2.59 1.98 15.04
LLaVA-NEXT (Liu et al., 2024b) 7B 20.54 47.37 31.09 74.26 46.30 60.28 13.85 6.63 10.24 8.07
IXC-2.5 (Zhang et al., 2024b) 7B 47.30 40.10 43.31 92.40 74.32 83.36 17.69 11.86 14.78 9.39
Qwen2-VL (Bai et al., 2023) 7B 57.14 37.32 47.89 94.10 72.00 83.05 11.07 22.98 17.03 8.26
mPLUG-Owl2 (Ye et al., 2024) 8B 25.00 36.17 14.22 24.13 27.34 25.74 12.83 5.97 9.40 5.34
MiniCPM-v2 (Hu et al., 2024) 8B 22.32 28.48 10.63 91.12 69.02 80.07 22.17 11.01 16.59 20.05
CogVLM (Wang et al., 2023b) 17B 23.21 40.20 29.35 23.95 39.53 31.74 16.38 11.84 14.11 1.75
GLM-4V-plus (GLM et al., 2024) - 59.83 38.36 21.52 16.80 12.80 14.80 5.69 5.71 5.70 7.41
GPT-4o (Achiam et al., 2023) - 61.89 47.25 68.81 95.34 76.06 85.70 17.75 8.70 13.23 13.92

OCR-Enhanced (Liu et al., 2023)

TinyChart† (Zhang et al., 2024a) 3B 6.71 (+1.35) 13.91 (-4.54) 17.91 (+1.10) 94.86 (+1.26) 73.95 (+1.79) 84.41 (+1.53) 13.85 (+3.01) 28.27 (+1.23) 21.06 (+2.12) 20.15 (+0.53)
ChartInstruct† (Masry et al., 2024) 7B 10.01 (+0.19) 32.80 (+8.25) 23.42 (+8.37) 83.74 (+1.34) 42.17 (+1.53) 62.96 (+1.44) 14.95 (+2.14) 40.83 (+1.44) 27.89 (+1.79) 16.01 (+1.23)
ChartLlama† (Han et al., 2023) 7B 22.03 (+1.49) 21.07 (-0.27) 26.70 (+13.97) 90.85 (+0.49) 49.26 (+0.30) 70.06 (+0.40) 16.02 (+1.79) 39.97 (-0.74) 28.00 (+0.53) 5.89 (+1.19)
Sphinx-v2 (Lin et al., 2023) 7B 11.54 (+1.72) 24.14 (-1.81) 17.21 (+3.52) 64.08 (+3.12) 45.49 (+1.57) 54.79 (+2.35) 8.81 (+5.38) 2.39 (-2.55) 5.60 (+1.41) 3.16 (+0.06)
LLaVA1.5 (Liu et al., 2024c) 7B 36.15 (+1.33) 33.49 (-6.01) 21.03 (+5.45) 19.73 (-0.39) 25.95 (+0.75) 22.84 (+0.18) 15.94 (+0.24) 12.67 (+1.60) 14.30 (+0.91) 16.31 (+1.14)
ViP-LLaVA (Cai et al., 2024) 7B 25.38 (+4.84) 36.77 (-0.24) 26.45 (+10.89) 27.12 (+9.52) 24.94 (-1.22) 26.03 (+4.15) 14.13 (+12.77) 14.37 (+11.78) 14.25 (+12.27) 18.08 (+3.04)
LLaVA-NEXT (Liu et al., 2024b) 7B 41.15 (+20.61) 47.83 (+0.46) 31.51 (+0.42) 70.47 (-3.79) 52.68 (+6.38) 61.58 (+1.30) 15.16 (+1.31) 8.82 (+2.19) 11.99 (+1.75) 8.25 (+0.18)
IXC-2.5 (Zhang et al., 2024b) 7B 42.31 (-4.99) 40.35 (+0.24) 45.38 (+2.06) 94.23 (+1.83) 73.40 (-0.92) 83.82 (+0.46) 17.03 (-0.66) 12.34 (+0.48) 14.68 (-0.10) 14.53 (+5.14)
Qwen2-VL (Bai et al., 2023) 7B 42.31 (-14.83) 36.04 (-1.27) 49.28 (+1.39) 94.23 (+0.13) 75.96 (+3.96) 85.10 (+2.05) 11.08 (+0.01) 23.21 (+0.23) 17.15 (+0.12) 11.75 (+3.49)
mPLUG-Owl2 (Ye et al., 2024) 8B 27.62 (+2.62) 30.60 (-5.57) 24.67 (+10.44) 35.58 (+11.45) 37.18 (+9.84) 36.38 (+10.65) 11.82 (-1.01) 7.30 (+1.33) 9.56 (+0.16) 4.45 (-0.89)
MiniCPM-v2 (Hu et al., 2024) 8B 23.04 (+0.72 19.73 (-8.75) 18.10 (+7.47) 92.36 (+1.24) 73.21 (+4.19) 82.79 (+2.72) 20.93 (-1.24) 5.75 (-5.26) 13.34 (-3.25) 20.60 (+0.55)
CogVLM (Wang et al., 2023b) 17B 25.54 (+2.33) 39.00 (-1.20) 36.80 (+7.45) 29.81 (+5.86) 48.72 (+9.19) 39.27 (+7.53) 20.85 (+4.47) 13.88 (+2.04) 17.37 (+3.26) 1.79 (+0.04)
GLM-4V-plus (GLM et al., 2024) - 44.64 (-15.19) 44.83 (+6.47) 35.79 (+14.27) 17.95 (+1.15) 16.87 (+4.07) 17.41 (+2.61) 7.91 (+2.22) 7.63 (+1.92) 7.77 (+2.07) 8.72 (+1.31)
GPT-4o (Achiam et al., 2023) - 49.31 (-12.58) 46.48 (-0.76) 71.79 (+2.98) 96.20 (+0.86) 78.04 (+1.98) 87.12 (+1.42) 20.13 (+2.38) 9.86 (+1.16) 15.00 (+1.77) 14.85 (+0.93)

COT-Based (Wei et al., 2022)

TinyChart† (Zhang et al., 2024a) 3B 6.01 (+0.65) 13.58 (-4.87) 19.30 (+2.49) 94.84 (+1.24) 74.46 (+2.30) 84.65 (+1.77) 12.31 (+1.47) 28.53 (+1.49) 20.42 (+1.48) 20.74 (+1.12)
ChartInstruct† (Masry et al., 2024) 7B 9.96 (+0.14) 31.95 (+7.40) 22.44 (+7.39) 83.35 (+0.95) 42.74 (+2.10) 63.05 (+1.53) 14.34 (+1.53) 41.32 (+1.93) 27.83 (+1.73) 15.25 (+0.47)
ChartLlama† (Han et al., 2023) 7B 21.44 (+0.90) 18.99 (-2.36) 21.77 (+9.04) 91.63 (+1.27) 50.04 (+1.08) 70.84 (+1.18) 15.76 (+1.53) 41.42 (+0.71) 28.59 (+1.12) 6.32 (+1.62)
Sphinx-v2 (Lin et al., 2023) 7B 9.91 (+0.09) 25.03 (-0.92) 16.26 (+2.57) 61.86 (+0.90) 46.79 (+2.87) 54.33 (+1.89) 3.53 (+0.10) 5.09 (+0.15) 4.31 (+0.12) 3.13 (+0.03)
LLaVA1.5 (Liu et al., 2024c) 7B 35.77 (+0.95) 35.61 (-3.89) 19.68 (+4.10) 16.90 (-3.22) 28.57 (+3.37) 22.74 (+0.08) 15.20 (-0.50) 11.66 (+0.59) 13.43 (+0.04) 15.93 (+0.76)
ViP-LLaVA (Cai et al., 2024) 7B 23.31 (+2.77) 36.13 (-0.88) 22.24 (+6.68) 22.12 (+4.52) 28.21 (+2.05) 25.17 (+3.29) 15.48 (+14.12) 12.20 (+9.61) 13.84 (+11.86) 15.67 (+0.63)
LLaVA-NEXT (Liu et al., 2024b) 7B 40.23 (+19.69) 47.44 (+0.07) 27.34 (-3.75) 68.49 (-5.77) 52.13 (+5.83) 60.31 (+0.03) 14.81 (+0.96) 6.29 (-0.34) 10.55 (+0.31) 8.09 (+0.02)
IXC-2.5 (Zhang et al., 2024b) 7B 41.15 (-6.15) 41.23 (+1.13) 46.73 (+3.42) 93.91 (+1.51) 72.82 (-1.50) 83.37 (+0.01) 17.36 (+0.23) 11.92 (+0.06) 14.64 (-0.14) 14.39 (+5.00)
Qwen2-VL (Bai et al., 2023) 7B 40.69 (-16.45) 44.72 (+7.41) 55.12 (+7.24) 94.87 (+0.77) 77.88 (+5.88) 86.38 (+3.33) 16.70 (+5.63) 23.91 (+0.93) 20.30 (+3.27) 10.32 (+2.06)
mPLUG-Owl2 (Ye et al., 2024) 8B 25.89 (+0.89) 35.10 (-1.08) 21.27 (+7.04) 27.56 (+3.43) 31.09 (+3.75) 29.33 (+3.59) 14.00 (+1.17) 7.84 (+1.87) 10.92 (+1.52) 7.88 (+2.54)
MiniCPM-v2 (Hu et al., 2024) 8B 22.78 (+0.46) 28.81 (+0.33) 18.18 (+7.54) 92.37 (+1.25) 71.47 (+2.45) 81.92 (+1.85) 26.56 (+4.39) 12.53 (+1.52) 19.54 (+2.95) 20.30 (+0.25)
CogVLM (Wang et al., 2023b) 17B 24.01 (+0.80) 40.04 (-0.16) 37.14 (+7.79) 27.31 (+3.36) 44.93 (+5.40) 36.12 (+4.38) 17.94 (+1.56) 12.57 (+0.73) 15.26 (+1.15) 3.41 (+1.66)
GLM-4V-plus (GLM et al., 2024) - 41.00 (-18.83) 39.55 (+1.19) 21.68 (+0.16) 18.63 (+1.83) 15.96 (+3.16) 17.30 (+2.50) 6.86 (+1.17) 7.72 (+2.01) 7.29 (+1.59) 8.83 (+1.42)
GPT-4o (Achiam et al., 2023) - 46.15 (-15.74) 48.19 (+0.95) 69.00 (+0.19) 95.39 (+0.05) 77.23 (+1.17) 86.31 (+0.61) 19.20 (+1.45) 9.31 (+0.61) 14.26 (+1.03) 15.42 (+1.50)

ChartLLM-Based

TinyChart† (Zhang et al., 2024a) 3B 7.69 (+2.33) 20.07 (+1.62) 23.21 (+6.40) 95.04 (+1.44) 74.41 (+2.25) 84.73 (+1.85) 14.68 (+3.84) 34.22 (+7.18) 24.45 (+5.51) 21.84 (+2.22)
ChartInstruct† (Masry et al., 2024) 7B 11.54 (+1.72) 34.79 (+10.24) 26.43 (+11.39) 85.93 (+3.53) 43.52 (+2.88) 64.73 (+3.20) 15.52 (+2.71) 41.42 (+2.03) 28.47 (+2.37) 18.53 (+3.75)
ChartLlama† (Han et al., 2023) 7B 22.67 (+2.13) 22.54 (+1.19) 27.58 (+14.85) 91.42 (+1.06) 51.72 (+2.76) 71.57 (+1.91) 17.94 (+3.71) 40.47 (-0.24) 29.21 (+1.74) 7.40 (+2.70)
Sphinx-v2 (Lin et al., 2023) 7B 13.85 (+4.03) 30.11 (+4.16) 23.68 (+9.99) 62.80 (+1.84) 48.00 (+4.08) 55.40 (+2.96) 7.90 (+4.47) 7.35 (+2.41) 7.63 (+3.44) 6.88 (+3.78)
LLaVA1.5 (Liu et al., 2024c) 7B 36.92 (+2.10) 38.39 (-1.11) 26.95 (+11.37) 25.44 (+5.32) 31.68 (+6.48) 28.56 (+5.90) 18.21 (+2.51) 17.83 (+6.76) 18.02 (+4.63) 17.40 (+2.23)
ViP-LLaVA (Cai et al., 2024) 7B 26.23 (+5.69) 41.98 (+4.97) 28.79 (+13.23) 23.96 (+6.36) 29.04 (+2.88) 26.50 (+4.62) 14.31 (+12.95) 14.38 (+11.79) 14.35 (+12.37) 18.72 (+3.68)
LLaVA-NEXT (Liu et al., 2024b) 7B 42.31 (+21.77) 49.40 (+2.03) 34.40 (+3.32) 75.82 (+1.56) 47.68 (+1.38) 61.75 (+1.47) 15.26 (+1.41) 8.93 (+2.30) 12.10 (+1.86) 9.02 (+0.95)
IXC-2.5 (Zhang et al., 2024b) 7B 47.31 (+0.01) 43.38 (+3.28) 51.88 (+8.56) 94.88 (+2.48) 76.24 (+1.92) 85.56 (+2.20) 19.82 (+2.13) 14.70 (+2.84) 17.26 (+2.48) 16.83 (+7.44)
Qwen2-VL (Bai et al., 2023) 7B 57.66 (+0.52) 45.54 (+8.22) 56.10 (+8.21) 94.40 (+0.30) 77.44 (+5.44) 85.92 (+2.87) 20.96 (+9.89) 24.45 (+1.47) 22.71 (+5.68) 18.53 (+10.27)
mPLUG-Owl2 (Ye et al., 2024) 8B 29.38 (+4.38) 40.46 (+4.29) 29.15 (+14.93) 38.76 (+14.63) 40.34 (+13.00) 39.55 (+13.82) 13.01 (+0.18) 8.91 (+2.94) 10.96 (+1.56) 6.26 (+0.92)
MiniCPM-v2 (Hu et al., 2024) 8B 24.21 (+1.89) 38.65 (+10.17) 23.73 (+13.09) 93.84 (+2.72) 71.86 (+2.84) 82.85 (+2.78) 27.68 (+5.51) 24.55 (+13.54) 26.12 (+9.53) 20.88 (+0.83)
CogVLM (Wang et al., 2023b) 17B 26.38 (+3.17) 41.05 (+0.85) 41.85 (+12.50) 33.41 (+9.46) 51.73 (+12.20) 42.57 (+10.83) 21.46 (+5.08) 14.74 (+2.90) 18.10 (+3.99) 2.48 (+0.73)
GLM-4V-plus (GLM et al., 2024) - 60.18 (+0.35) 47.00 (+8.64) 37.19 (+15.67) 19.74 (+2.94) 18.04 (+5.24) 19.66 (+4.86) 9.75 (+4.06) 8.97 (+3.26) 9.36 (+3.66) 9.74 (+2.34)
GPT-4o (Achiam et al., 2023) - 61.89 (+0.00) 50.42 (+3.17) 73.89 (+5.08) 98.63 (+3.29) 79.49 (+3.43) 89.06 (+3.36) 23.65 (+5.90) 11.07 (+2.37) 17.36 (+4.14) 16.04 (+2.12)

Table 3: Performance of multimodal models on ChartMind and three structured-output CQA datasets. The best
results are highlighted in bold, and the second-best results are underlined. †Specialized CQA models.

evaluation spans four datasets, including our pro-373

posed ChartMind and three structured-output CQA374

datasets—ChartQA (Masry et al., 2022), Chart-to-375

Text (Kantharaj et al., 2022b), and OpenCQA (Kan-376

tharaj et al., 2022a)—which primarily rely on pre-377

defined answer formats and automated scoring met-378

rics. In contrast, ChartMind introduces diverse379

chart formats and open-domain textual outputs, en-380

abling a more comprehensive assessment of real-381

world CQA scenarios. Further implementation de-382

tails, model descriptions, and benchmark specifica-383

tions are provided in Appendix B.384

5.2 Main Results385

To evaluate the effectiveness and robustness386

of ChartLLM-based methods over OCR-387

enhanced (Liu et al., 2023) and COT-based (Wei388

Models Size Avg. GPT-4o Score Avg. Human Score

ChartInstruct (Masry et al., 2024) 7B 26.43 22.52
ChartLlama (Han et al., 2023) 7B 27.58 23.11
TinyChart (Zhang et al., 2024a) 3B 23.21 21.97
mPLUG-Owl2 (Ye et al., 2024) 8B 29.15 29.31
Sphinx-v2 (Lin et al., 2023) 7B 23.68 22.31
CogVLM (Wang et al., 2023b) 17B 41.85 34.96
LLaVA1.5 (Liu et al., 2024c) 7B 26.95 22.93
MiniCPM-v2 (Hu et al., 2024) 8B 23.73 24.01
ViP-LLaVA (Cai et al., 2024) 7B 28.79 30.75
LLaVA-NEXT (Liu et al., 2024b) 7B 34.40 32.31
IXC-2.5 (Zhang et al., 2024b) 7B 51.88 36.61
Qwen2-VL (Bai et al., 2023) 7B 56.10 40.39
GLM-4V-plus (GLM et al., 2024) - 37.19 39.35
GPT-4o (Achiam et al., 2023) - 73.89 50.73

PCC (Cohen et al., 2009) - 93.09

Table 4: Correlation of GPT4o and Human Eval.

et al., 2022) approaches in open-ended and 389

structured-output reasoning, Table 3 compares 390

their performance across various benchmarks. 391

Both OCR-enhanced and COT-based methods 392

yield significant improvements (blue text), but 393
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their effectiveness varies by task. OCR-enhanced394

methods often degrade performance (red text),395

particularly in open-ended reasoning, where redun-396

dancy and noise from textual extraction disrupt397

holistic reasoning. For instance, GPT-4o’s (Achiam398

et al., 2023) ACC in open-ended tasks drops by399

-12.58 with OCR-enhanced methods, reflecting400

their sensitivity to flexible reasoning. COT-based401

methods enhance structured-output reasoning but402

struggle in open-ended tasks, reducing GPT-4o’s403

ACC by -15.74 due to difficulties in integrating404

contextual and visual elements. ChartLLM-based405

methods address these challenges by strategically406

extracting key contextual information and min-407

imizing redundancy, reducing external noise in408

reasoning. By focusing on essential chart elements409

and preserving relevant semantic relationships,410

they achieve superior performance with consistent411

adaptability across both reasoning types. Their412

ability to balance context extraction and noise413

reduction underscores their robustness in handling414

complex chart reasoning.415

5.3 Correlation Analysis of Metrics416

To assess the consistency between automated and417

human evaluation in open-ended CQA, Table 4418

analyzes the correlation between GPT-4o Score419

and Human Score across 14 multimodal models.420

The Pearson Correlation Coefficient (PCC) (Co-421

hen et al., 2009) is 93.09, indicating a strong linear422

relationship. High-performing models like GPT-423

4o (Achiam et al., 2023) and Qwen2-VL (Bai et al.,424

2023) show strong alignment between GPT-4o and425

human scores, validating automated evaluation re-426

liability. Notably, models like mPLUG-Owl2 (Ye427

et al., 2024) and ViP-LLaVA (Cai et al., 2024)428

exhibit slight deviations, where human scores429

marginally exceed automated ones, possibly re-430

flecting nuanced human judgment in open-ended431

reasoning. The high PCC confirms GPT-4o Score432

as a robust proxy for human evaluation, reinforcing433

its applicability in open-ended CQA.434

5.4 Sensitivity Analysis435

Language-Level Analysis. To evaluate the sen-436

sitivity of different paradigms to multilingual chal-437

lenges in CQA tasks, we analyze model perfor-438

mance on English and Chinese charts in Chart-439

Mind. Figure 5 reveals that models perform signif-440

icantly better on English charts compared to Chi-441

nese charts, highlighting challenges in multilingual442

scenarios. Instruction-following methods, such as443
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Figure 5: Performance of multimodal models across
Chinese and English datasets in ChartMind.

GPT-4o (Achiam et al., 2023) and LLAVA1.5 (Liu 444

et al., 2024c), show severe performance degrada- 445

tion on Chinese charts due to limited multilingual 446

capabilities. In contrast, IXC-2.5 (Zhang et al., 447

2024b) and GLM-4V-plus (Wang et al., 2023b) han- 448

dle Chinese data more effectively. OCR-enhanced 449

and COT-based methods mitigate performance de- 450

clines to some extent, with OCR often outperform- 451

ing COT in Chinese scenarios by leveraging visual- 452

semantic elements. ChartLLM-based methods en- 453

hance multilingual robustness by extracting con- 454

text, achieving the best performance across diverse 455

multilingual charts types. 456

Task-Level Analysis. In order to explore how 457

different paradigms handle diverse CQA tasks, we 458

evaluate model performance across seven tasks in 459

ChartMind. As shown in Figure 6, the tasks ex- 460

hibit varying levels of difficulty, with Chart Con- 461

version and Chart Summarization being the most 462

challenging due to their reliance on complex se- 463

mantic integration and reasoning, while tasks like 464

Suggestions and Information Positioning are rel- 465

atively easier, requiring localized data extraction 466

and straightforward analysis. Performance dispari- 467

ties are particularly evident in high-difficulty tasks, 468

where instruction-following methods struggle sig- 469

nificantly, revealing their limitations in integrating 470

multimodal information. OCR-enhanced methods 471
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Figure 6: Performance of multimodal models on seven tasks in ChartMind.

perform well in text-heavy tasks such as Chart472

OCR Recognition, but often introduce noise in tasks473

requiring holistic understanding, such as Chart474

Summarization. COT-based methods improve on475

logical reasoning in tasks like Suggestions, yet fal-476

ter in capturing complex dependencies in tasks such477

as Chart Assistance. In contrast, ChartLLM-based478

methods consistently demonstrate superior adapt-479

ability and performance across tasks, excelling in480

high-difficulty scenarios by effectively integrating481

contextual and visual features while maintaining482

robust results in simpler tasks.483

Chart-Type-Level Analysis. We analyze the sen-484

sitivity of different paradigms to various chart485

types in ChartMind, examining their strengths and486

weaknesses. Chart types vary in complexity, with487

Pie and Stacked Bar requiring high-context rea-488

soning, while Complex Line mainly involves di-489

rect data extraction. Instruction-following mod-490

els, such as GPT-4o (Achiam et al., 2023) and491

LLAVA1.5 (Liu et al., 2024c), struggle with com-492

plex charts, while OCR-enhanced methods perform493

well on text-heavy types but fail in visual-reliant494

tasks. COT-based methods exhibit stable perfor-495

mance but lack high-context reasoning. ChartLLM496

achieves the highest overall performance, effec-497

tively utilizing contextual elements. A comprehen-498

sive breakdown of model performance across chart499

types is provided in Appendix D.500

5.5 Error Analysis501

Specific error types observed in the ChartMind502

benchmark include value recognition errors, judg-503

ment errors, calculation errors, and color recog- 504

nition errors. Value recognition errors stem from 505

inaccuracies in extracting or interpreting numer- 506

ical values from charts. Judgment errors result 507

from flawed reasoning or misinterpreting task re- 508

quirements, such as misunderstanding the ques- 509

tion’s context. Calculation errors reflect weak- 510

nesses in performing arithmetic operations, while 511

color recognition errors occur when models fail 512

to associate chart elements with their correspond- 513

ing colors, particularly in complex legends or bar 514

segments. A detailed breakdown of these errors is 515

shown in Appendix E. 516

6 Conclusion 517

We introduce ChartMind, the first benchmark de- 518

signed to evaluate complex CQA tasks in real- 519

world settings. ChartMind addresses critical limita- 520

tions in existing benchmarks by supporting multi- 521

lingual charts, diverse output formats, and seven di- 522

verse CQA tasks. Through experiments on 14 mul- 523

timodal models across four paradigms, we demon- 524

strate the effectiveness of ChartLLM, a model- 525

agnostic framework that leverages context-aware 526

chart understanding to significantly enhance reason- 527

ing accuracy. ChartLLM consistently outperforms 528

OCR-enhanced and COT-based methods, setting a 529

new standard for evaluating complex CQA in real- 530

world scenarios. Future work will extend Chart- 531

Mind to multi-turn, multi-chart dialogues, cross- 532

chart reasoning, and mixed chart-text contexts for 533

complex queries, further advancing multimodal 534

chart understanding for real-world CQA. 535
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Limitations536

ChartMind provides a benchmark for complex537

CQA evaluation, yet several limitations remain.538

First, the dataset primarily relies on publicly avail-539

able charts, potentially introducing biases in data540

distribution and task complexity. Ensuring broader541

representativeness requires further dataset expan-542

sion and diversification. Second, although Chart-543

Mind defines seven reasoning tasks, real-world544

chart analysis often involves more advanced rea-545

soning, such as multi-turn interactions, cross-chart546

comparisons, and textual-visual information inte-547

gration, which remain underexplored. Third, the548

reliance on automated evaluation methods, such as549

GPT-4 ratings, introduces challenges in capturing550

nuanced human judgment in complex reasoning.551

Addressing these issues requires refining evalua-552

tion methodologies and incorporating more human553

annotations. Future improvements may focus on554

expanding the dataset, enhancing evaluation met-555

rics, and integrating multi-turn reasoning and cross-556

chart analysis to better reflect real-world scenarios.557
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A Chart Types and Tasks in ChartMind753

ChartMind supports a diverse range of chart types754

and reasoning tasks, ensuring a comprehensive755

evaluation of complex reasoning in CQA. As756

shown in Figure 7 The dataset includes seven757

distinct chart types—Pie, Common Bar, Scatter,758

Grouped Bar, Complex Line, Stacked Bar, and759

Common Line—capturing varied visual structures760

and data representations. Additionally, ChartMind761

defines seven reasoning tasks: Chart Conversion,762

Chart OCR Recognition, Suggestions, Chart Assis-763

tance, Chart Classification, Chart Summarization,764

and Information Positioning, covering key aspects765

of multimodal chart understanding. These distribu-766

tions illustrate ChartMind’s ability to comprehen-767

sively assess complex multimodal reasoning, span-768

ning diverse chart types and reasoning paradigms.769

Compared to prior benchmarks, ChartMind pro-770

vides a broader evaluation scope, capturing the771

complexity of real-world CQA tasks.772

B Experimental Setup Details773

B.1 Implementation Details774

To assess the performance of models on com-775

plex CQA tasks in real-world settings, we experi-776

ment with four types of paradigms. First, we test777

MLLMs in the instruction-following setting (Zhou778

et al., 2023), where we use prompts to evaluate their779

ability to answer chart-related questions. Second,780

we apply COT-based methods (Wei et al., 2022),781

which break down reasoning processes into inter-782

mediate steps to generate answers. Third, we adopt783

OCR-enhanced methods inspired by DePlot (Liu784

et al., 2023), which extract chart content as text and785

use it as input for multimodal reasoning models. Fi-786

nally, we propose the ChartLLM method, which en-787

hances reasoning performance by extracting struc-788

tured contextual information, such as chart titles,789

legends, and axes, using Qwen2-VL (Bai et al.,790

2023), and feeding this information into models for791

further analysis.792

B.2 Models793

We evaluate 14 MLLMs across three categories:794

specialized CQA models, general-purpose open-795

source multimodal models, and general-purpose796

closed-source multimodal models. The majority of797

the models have a parameter size of approximately798

7B, with a few exceptions, including smaller mod-799

els such as TinyChart (Zhang et al., 2024a) with 3B800

parameters and larger models like CogVLM (Wang801

et al., 2023b) with 17B parameters. For special- 802

ized CQA models, we include ChartInstruct (Masry 803

et al., 2024), ChartLlama (Han et al., 2023), and 804

TinyChart (Zhang et al., 2024a). These models are 805

specifically trained on CQA datasets, making them 806

particularly suited for tasks requiring precise un- 807

derstanding of chart-related queries. Among open- 808

source general-purpose multimodal models, we 809

evaluate mPLUG-Owl2 (Ye et al., 2024), Sphinx- 810

v2 (Lin et al., 2023), CogVLM (Wang et al., 2023b), 811

LLaVA1.5 (Liu et al., 2024c), MiniCPM-v2 (Hu 812

et al., 2024), ViP-LLaVA (Cai et al., 2024), LLaVA- 813

NEXT (Liu et al., 2024b), IXC-2.5 (Zhang et al., 814

2024b), and Qwen2-VL (Bai et al., 2023). These 815

models leverage extensive multimodal training 816

datasets, including CQA data, and exhibit strong 817

performance on chart-related tasks. Finally, closed- 818

source general multimodal models, including GPT- 819

4o (Achiam et al., 2023) and GLM-4V-plus (GLM 820

et al., 2024), are state-of-the-art models with ad- 821

vanced multimodal reasoning capacities, provid- 822

ing strong competition to existing open-source sys- 823

tems. 824

B.3 Benchmarks and Metrics 825

To comprehensively evaluate multimodal CQA 826

tasks, we adopt three representative structured- 827

output reasoning datasets—ChartQA (Masry et al., 828

2022), Chart-to-Text (Kantharaj et al., 2022b), and 829

OpenCQA (Kantharaj et al., 2022a)—alongside our 830

proposed benchmark, ChartMind. ChartQA and 831

Chart-to-Text primarily take a chart and a natural 832

language question as input and generate structured 833

textual answers, such as numerical values, categor- 834

ical labels, or predefined captions, making them 835

well-suited for factual extraction tasks. OpenCQA, 836

despite allowing open-ended queries, constrains 837

responses to structured formats evaluated by au- 838

tomated metrics like BLEU, limiting its ability to 839

assess flexible reasoning. To address these con- 840

straints, ChartMind introduces a more comprehen- 841

sive evaluation by supporting diverse chart types, 842

open-ended textual outputs, and seven complex 843

reasoning tasks, enabling a broader assessment of 844

multimodal reasoning. Models are evaluated using 845

Accuracy and CIDEr for structured assessments, 846

while GPT-4o score and Human score serve as 847

open-ended evaluation metrics, with GPT-4o score 848

as the primary metric, as detailed in Appendix C. 849

The structured-output datasets are evaluated using 850

Accuracy and BLEU score. 851
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Chart Classification AnalysisSuggestions Chart SummarizationChart Assistance Information PositioningChart Conversion

Based on the chart, please convert  the 
chart into a table and output it in 
markdown format.

| Entity | Percentage |\n|---|---|\n| 
Individuals | 45.00% |\n| 
Corporations | 20.00% |\n| 
Foundations | 20.00% |\n| 
Government | 10.00% |\n| Other | 
5.00% |

Please extract the donation amounts 
for each type of donation shown in 
the bar chart and convert the 
extracted OCR data into a formatted 
data table.

| Donation Type | Donation 
Amount(USD) |\n|---|---|\n| Online 
donations | 500 |\n| Donations by 
mail | 400 |\n| Donations in person | 
300 |\n| Donations by phone | 450 |

Based on the corresponding information 
of male and female height and weight 
in the chart, analyze the differences in 
the relationship between male and …

The scatter plot shows the 
relationship between height and 
weight for both males and females. 
The data points for males are 
generally higher on the y-axis …

The chart has the following categories: 
pie chart, regular bar chart … Please 
determine the category of the chart 
based on the graphs shown in this image. 

Based on the chart, summarize the trends 
in healthcare coverage in the US 
population from 2000 to 2025. Note: 
Please provide a detailed analysis process.

According to this grouped bar 
chart, which art-related venues do 
visitors over 50 prefer the most?

According to the grouped bar 
chart, visitors over 50 prefer 
theaters the most… this age 
cohort shows a significant 
preference for theaters.

In the chart, the area 
representing the average time 
spent by users on the Twitter 
platform in 2021 is the 
segment of the red bar that 
extends above the black part.

Please mark the area representing 
the average time spent by users 
on the Twitter platform in 2021 
on the chart.

Chart OCR Recognition

The chart in the image shows 
two lines representing …Based 
on the detailed analysis, the 
category of the chart shown in 
the image is a complex line 
chart.

Based on the chart, from 2000 to 
2025 … This trend indicates that 
over these 25 years, there has 
been a significant expansion in 
the scope of healthcare coverage.

7 Chart Tasks

Pie Common Bar Scatter Grouped Bar Complex Line Stacked Bar Common Line 

7 Chart Types

Figure 7: Overview of the seven chart types and seven reasoning tasks included in ChartMind.

C GPT-4o Scoring Prompt Design852

The GPT-4o score prompt evaluates the perfor-853

mance of models on CQA tasks by assessing two854

key dimensions: output quality and output correct-855

ness. Output quality focuses on the fluency of the856

model’s answer, the completeness of its reasoning857

process, and its ability to follow instructions accu-858

rately. Output correctness measures the overall ac-859

curacy of the reasoning, the correctness of the data,860

and the logical alignment with the human reference861

answer or chart content. The input to the prompt862

includes a JSON object containing the question, the863

human reference answer, and the model-generated864

answer. The output is also formatted as a JSON865

object, which includes a detailed explanation of866

the scoring rationale along with scores for both di-867

mensions. The full design of the scoring prompt is868

visualized in Figure 8.869

D Chart-Type-Level Analysis870

To evaluate the sensitivity of different paradigms871

to diverse chart types in CQA tasks, we analyze872

their performance across seven chart types in Chart-873

Mind. Figure 9 presents a detailed breakdown of874

model performance. Chart types exhibit varying875

complexity, with Pie and Stacked Bar being the876

most challenging due to their reliance on integrated877

contextual reasoning, while simpler types like Com-878

plex Line primarily require straightforward data ex-879

traction. Instruction-following methods (Wei et al.,880

2021), such as GPT-4o (Achiam et al., 2023) and881

LLAVA1.5 (Liu et al., 2024c), show significant per-882

formance drops in high-complexity charts, under-883

scoring their limitations in managing holistic rea-884

soning tasks. OCR-enhanced methods (Liu et al.,885

2023) excel in text-heavy charts such as Grouped 886

Bar, leveraging their ability to extract textual infor- 887

mation, but struggle with tasks like Scatter that de- 888

mand comprehensive visual-semantic integration. 889

COT-based methods (Wei et al., 2022) demonstrate 890

moderate performance across most chart types, per- 891

forming relatively well in structured charts like 892

Common Line, yet falling short in tasks requiring 893

high-contextual reasoning. ChartLLM-based meth- 894

ods achieve the highest overall performance, ex- 895

celling in high-difficulty charts by effectively us- 896

ing critical contextual elements and showcasing 897

adaptability to diverse chart types. These results 898

highlight the necessity of contextual reasoning for 899

high-performance chart understanding. 900

E Error Analysis 901

Figure 10 illustrates specific examples of the four 902

major error types observed in the ChartMind: value 903

recognition errors, judgment errors, calculation er- 904

rors, and color recognition errors. These examples 905

highlight typical failure cases, such as incorrect 906

identification of numerical values in bar segments 907

(value recognition), flawed logical reasoning or 908

mismatched context interpretation (judgment), in- 909

accurate arithmetic operations (calculation), and 910

misassociation of chart elements with their respec- 911

tive colors in legends or overlapping areas (color 912

recognition). The figure provides detailed scenar- 913

ios, such as errors in identifying peak values, inter- 914

preting differences in chart segments, and miscalcu- 915

lating relationships between visual elements. These 916

cases emphasize the challenges faced by models in 917

aligning visual interpretation with reasoning accu- 918

racy. 919
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You are a professional **chart-based question-answering evaluation expert**. You need to evaluate the model's performance based on **charts**, 
**questions**, **human reference answers**, and **model answers**. In your evaluation, please analyze the performance in two dimensions in detail:

1. **Output Quality (0-1 points)**: Evaluate whether the model's answer is fluent, whether the reasoning process is complete, and whether the instructions are 
accurately followed.
2. **Output Correctness (0-1 points)**: Assess whether the reasoning is correct overall, whether most of the data is accurate, and whether the model's answer 
aligns with the logic of the human reference answer.

### Input Format
The input is a JSON object with the following fields:

"question": "string, the question description",  
"human_reference": "string, the human reference answer",  
"model_answer": "string, the model's generated answer"

### Scoring Criteria
- **Output Quality Score (0-1 points)**:

- **0 points**: The expression is not fluent, the reasoning process is lacking, or the instructions are not followed.
- **1 point**: The expression is generally clear and fluent, the logic is reasonable, and it adheres to the instructions.

- **Output Correctness Score (0-1 points)**:
- **0 points**: The reasoning process is incorrect, the data is inaccurate, or the key elements such as labels, colors, etc., are not correctly identified.
- **1 point**: The reasoning process is generally reasonable, the key data in the model's answer is mostly consistent with the reference answer or the chart 

content, and it aligns with the question requirements, even if it is not 100% consistent with the human reference answer.

### Output Format
The output should be a JSON object, including a detailed analysis and score:

```json
{

"reason": "string, please use Chinese to describe in detail the quality and correctness of the model's output, including the reasoning process and data 
accuracy. Specially compare the data with human reference answers and chart content, and explain the basis for the score.",

"quality_score": "int, the output quality score (0 or 1)",
"correctness_score": "int, the output correctness score (0 or 1)"

}

### Task Requirements
Based on the chart information and model responses, conduct a detailed analysis of the model's reasoning logic and data accuracy, providing specific reasons 
for scoring. Note that the reference answers are only examples; the model's response should be generally reasonable and consistent with the question in terms of 
logic and data.

Figure 8: Prompt design for GPT-4o score.
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Figure 9: Performance of multimodal models across chart types, categorized by four paradigms.
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Value Recognition Error Judgment Error

Calculation Error Color Recognition Error

Please locate the area in the chart where
the average score of 6th-grade students
is depicted.

The average score of 6th-grade students is depicted at the highest
point on the chart, where the score is 95.

The graph shows the average scores of students in grades 4th to 8th. Here
are the key observations:\n\n- The average score starts at 87 in the 4th
grade.\n- It increases to 91 in the 5th grade.\n- The score peaks at 92 in the
6th grade.\n- It then decreases to 90 in the 7th grade.\n- Finally, it increases
again to 92 in the 8th grade.\n\nThe highest average score is in the 6th
grade, and the lowest is in the 4th grade.

Is the Not at all value of Use military
force wisely more than Handle an
international crisis?

In the chart, we can see two different policy areas:- **Use military force
wisely** (Wise use of military force)
- "Not at all" (Not at all): 51%
- **Handle an international crisis** (Handling an international crisis) …
compared to using military force wisely. Therefore, the answer is "No"
meaning the "Not at all" value for "Use military force wisely" is not
greater than that for "Handle an international crisis."

The answer to this question is Yes.

Please mark the area where the
number of art museums in Germany in
2021 is located.

The area where the number of art museums in Germany in 2021 is located
is represented by the blue segment in the bar chart for Germany. This
segment starts at the 50-mark on the y-axis … Therefore, the number of
art museums in Germany in 2021 is between 50 and 100.

In this bar chart, the number of art museums in Germany for the year
2021 is represented in orange. In the \"Germany\" column, the orange
area represents the number of museums. Please look at the orange area in
the middle of the third bar …

Based on the chart, what is the difference
between the highest and lowest number of
artworks sold during the Renaissance era?

Based on the information from the chart … is 400, and the lowest is
150. The difference between these two figures is 400 - 150 = 250.

According to the information from the chart, the highest number of
artworks sold during the Renaissance era is 400, and the lowest
number of artworks sold during this period might be 180. The
difference between these two figures is 400 - 180 = 200. Therefore …
during the Renaissance era is 200.

Figure 10: The four major error types in ChartMind.

14


	Introduction
	Related Work
	Construction of ChartMind
	Data Processing
	Generated Questions & Answers
	Human Check
	Quality Assurance
	Data Statistics

	ChartLLM
	Problem Definition
	Reasoning Methods
	ChartLLM: Context Extraction for CQA

	Experiments
	Experimental Setup
	Main Results
	Correlation Analysis of Metrics
	Sensitivity Analysis
	Error Analysis

	Conclusion
	Chart Types and Tasks in ChartMind
	Experimental Setup Details
	Implementation Details
	Models
	Benchmarks and Metrics

	GPT-4o Scoring Prompt Design
	Chart-Type-Level Analysis
	Error Analysis

