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ABSTRACT

Molecular conformation optimization is crucial to computer-aided drug discovery
and materials design, yet conventional force-based minimization with physics or-
acles (e.g., DFT) is prohibitively expensive. Neural network potentials (NNPs)
are capable of accelerating this process but typically require large quantum chem-
ical datasets for training. To reduce data requirements, active learning (AL) ap-
proaches have been designed for this task. The state-of-the-art approach, GOLF,
relies on the surrogate oracle to sample new data. However, the surrogate oracle
utilizes empirical molecular force fields, which may be absent for a current do-
main, and thus necessitates careful tuning. We introduce a new AL method for ef-
ficient conformation optimization that removes the dependency on empirical force
fields. Our approach maintains two NNPs: an online NNP that performs confor-
mation optimization and a target NNP that serves as a trainable surrogate oracle.
The target network is an exponential moving average of the online network. Dur-
ing active sampling, the target NNP supplies potential energy estimates that guide
data acquisition, while periodic queries to the physics oracle provide ground-truth
corrections. Unlike other AL approaches, our method does not require architec-
tural changes to NNP and adds minimal computational overhead compared to the
single-model AL pipelines. Across two challenging conformation-optimization
benchmarks (based on SPICE2.0 and V2D FT datasets) spanning different DFT
levels, our method consistently outperforms a baseline NNP trained without AL,
achieving substantial improvements with only 1,000 additional conformations.

1 INTRODUCTION

Molecular conformational optimization is a fundamental task in drug discovery and materials de-
sign that is used as a preprocessing step in various quantum chemistry (QC) pipelines (Pracht et al.,
2020; Bursch et al,, [2022). Conformational optimization is traditionally performed by iteratively
minimizing the potential energy E using the interatomic forces F' as anti-gradients until the local
minima of the potential energy surface (PES) is reached. This process involves multiple expen-
sive QC calculations with a physical oracle (in this work, we also call it a genuine oracle or Og)
for energy and interatomic forces evaluation. A popular choice is to use the density functional
theory-based genuine oracle. Notably, the computational cost of density functional theory (DFT)
calculations scales at least cubically w.r.t. the number of electrons in the system, which limits its
applicability to at best systems with several thousand electrons. Recently, deep neural network po-
tentials (NNPs) (Khrabrov et al.l 2024; Batatia et al.| [2022; |Gasteiger et al., [2021) have emerged
as a promising alternative that can accurately approximate DFT-level energies and forces orders of
magnitude faster.

Despite being trained on large quantities of QC data, NNPs are still prone to optimization problems
such as unstable optimization or convergence to poor local minima: in practice, models trained on
popular datasets can encounter a distribution shift during iterative structure relaxation (Tsypin et al.,
2024} Khrabrov et al.,2024). The straightforward way to deal with this issue is to enrich the training
dataset with optimization trajectories obtained with costly physical oracle calculations (Tsypin et al.,
2024}, [Khrabrov et all 2024} [Fu et all 2025). Although effective, this approach requires a lot of
additional computations.
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To overcome this issue, active learning methods are applied to efficiently collect additional data.
The core idea behind this family of approaches is to identify a small subset of conformations where
the model is most uncertain or likely to be wrong and add them to the training set of the NNP after
evaluation with a physical oracle. [Tsypin et al.|(2024) demonstrated that the NNP can match the
quality of the DFT-based oracle in the optimization task, given that the training set was enriched
with a sufficient number of conformations from the optimization trajectories. They then proposed
an active learning approach for efficient training of NNPs called GOLF, whose key idea is to use a
cheap but inaccurate surrogate oracle Og, that is correlated with the genuine oracle Og, to decide
which conformations are evaluated with O¢ and added to the training dataset. [Tsypin et al.[(2024)
considered molecules in vacuum and showed that utilizing the empirical MMFF94 (Halgren, |1996)
force field as a surrogate oracle allows for successfully training an NNP that matches the quality of
the DFT-based oracle while cutting down the required additional data by 50 times.

Although the active learning learning scheme proposed in GOLF proved to be efficient for the con-
sidered domain, a proper surrogate oracle must be carefully selected for each new domain. More-
over, for some complex domains, such as protein-ligand pairs (Faver et al.| 2011} |Yilmazer & Korth,
2013), organic liquids (Kovacs et al., |2025; Kaminski & Jorgensen, [1996), or crystals (Kriz et al.,
20235 /Al Mamun et al., 2023} Zuo et al., 2020), it is challenging to find an empirical force field that
correlates well with DFT-based methods or experimental results. This motivated us to explore active
learning approaches that do not rely on empirical force fields. One common approach is to train an
ensemble of NNP models and use their prediction variance as an uncertainty measure (Smith et al.,
2018 [Kulichenko et al., 2023} |Carrete et al.l [2023; Tan et al., 2023). While effective, ensemble
methods significantly increase computational cost since multiple networks must be trained and eval-
uated in parallel. Alternatively, a single model can be equipped to predict its own uncertainty by
modeling a distribution (mean and variance) over the target value instead of a point estimate (Tan
et al., 2023; Xu et al.,|2024). Such mean-variance estimation (MVE) networks provide uncertainty
without multiple models, but they require architectural modifications that necessitate retraining the
model to incorporate uncertainty estimation.

In this work, we propose a new approach to address the challenges with previous active learning
approaches by introducing Neural Oracle. The core idea is to replace GOLF’s fixed surrogate oracle
with a learned surrogate oracle that is updated in tandem with the NNP. Our method draws inspi-
ration from the self-supervised learning BYOL framework (Grill et al., [2020). Similar to BYOL’s
use of an online and target network, we maintain a secondary neural network (Neural Oracle) that
is updated via a slow-moving average of the main model’s parameters. The Neural Oracle predicts
energies and forces in a way that gradually aligns with the online NNP, without requiring direct
supervision. This design provides a stable target for the NNP to compare against, effectively quan-
tifying the model’s uncertainty. Unlike GOLF, which relies on an empirical surrogate, our Neural
Oracle is adaptable to any chemical domain that can be processed by the NNP. What is more, our
approach does not bring additional computational burden caused by training an ensemble of models
and does not require any architectural changes or retraining the baseline NNP model.

We demonstrate the efficiency of the proposed GOLF Neural Oracle on a challenging V2DFT con-
formational optimization benchmark (Khrabrov et al., |2024), where it surpasses all baselines, in-
cluding the state-of-the-art GOLF active learning framework. Notably, this superior performance is
achieved in a highly data-efficient regime, utilizing only 1000 additional conformations. We then
apply the best model to a significantly more challenging SPICE2.0 (Eastman et al. |[2024) dataset
We then apply the best model to a significantly more challenging SPICE2.0 (Eastman et al., 2024)
dataset. The SPICE2.0 not only contains data from various chemical domains, including dipeptides,
solvated molecules, amino-acid ligand pairs, and water clusters, but also features a more advanced
level of DFT theory: wB97M-D3(BJ)/def2-TZVPPD. The triple basis makes the O calculations
very costly, so we test our proposed approach in a data-efficient regime. We show that only 1000
additional conformations are enough to improve upon an already strong non-active learning baseline.

2 RELATED WORK

Molecular conformation optimization has been approached using machine learning methods,
broadly categorized into models solving position regression tasks, generative methods, and direct
optimization strategies.



Under review as a conference paper at ICLR 2026

Conformation generation Generative and position regression models aim to directly produce
low-energy 3D conformers. Pioneering generative models often operated on internal coordinates,
with early works utilizing normalizing flows (Xu et al., 2021} and torsional diffusion (Jing et al.,
2022). Since diffusion models have become the dominant generative paradigm, now often op-
erating directly in Cartesian coordinate space (Lee et al.l |2024; [Nikitin et al., 2025} [Liu et al.
2025). Other frameworks like variational approximations and GFlowNets have also been actively
explored (Volokhova et al 2024) Another class of models frames the problem as a direct, one or
few-shot regression task. These methods learn an end-to-end mapping from a given molecular rep-
resentation to its ground-state 3D coordinates from a 2D molecular graph (Xu et al., |2023; Kim
et al.,|2025)), or by refining a low-quality 3D structure (Lu et al.|[2024;|Wang et al.,|2025)). However,
a common limitation of these generative and direct prediction models is that their outputs are not
guaranteed to reside at a local minimum on the potential energy surface. Consequently, a subsequent
relaxation using a physically-informed optimizer is typically necessary, motivating the development
of iterative optimization strategies.

Optimization with NNPs NNPs [Khrabrov et al.| (2024); Batatia et al| (2022); |Gasteiger et al.
(2021)) offer a computationally efficient alternative to traditional quantum mechanical methods for
predicting molecular energies and forces. These potentials can then be used in conjunction with
standard optimization algorithms, like BFGS, to perform geometry optimizations at a fraction of
the computational cost (Liu et al.| 2022} Tayfuroglu et al.| 2025} Hao et al., [2022). The quality of
NNP-based optimizations can be further improved by incorporating additional conformations into
the training data, which helps to alleviate issues arising from distribution shifts (Tsypin et al., 2024;
Khrabrov et al.|,|2024; |[Fu et al.,|2025)). Reinforcement learning has been employed to accelerate the
optimization algorithm itself (Ahuja et al.| [2021; [Zamaraeva et al.l [2025). In this work, we focus
on improving NNPs optimization accuracy without extensive data generation, a problem that active
learning is specifically designed to address.

Active learning for NNPs Active learning strategies, where the model requests additional calcu-
lations for uncertain regions of the conformational space, have also been employed to reduce the
amount of data required to train accurate NNPs (Zhang et al., 2019} |Kahle & Zipoli, 2022; Bilbrey
et al., [2025; Mazitov et al.l | 2025). A “go-to” approach to uncertainty quantification (UQ) is to use
the standard deviation of predictions from an ensemble of models. While generally robust, training
and running ensembles incur a significant computational overhead (Smith et al., 2018} |Kulichenko
et al.,|2023}; |Carrete et al.,|2023}; |Bilbrey et al., 2025;|Zhang et al.,[2020; |Schran et al., 2020). Conse-
quently, substantial research has focused on developing cheaper, single-model UQ methods, such as
mean-variance estimation (MVE) (Carrete et al.,|2023}; | Xu et al., 2024), evidential regression (Amini
et al.l [2020), and Gaussian Mixture Models (GMMs) (Zhu et al., [2023). However, comprehensive
benchmarks have shown that despite being faster, single-model methods do not consistently outper-
form the robustness of ensembles (Tan et al., 2023). Other uncertainty metrics, such as latent space
distances, have also been explored (Musielewicz et al., 2024).

Furthermore, several works have specifically tailored active learning approaches for explicit search
of transition states in reactive systems (Yang et al., 2021} |Price et al., 2025) and the direct con-
formational optimization of both molecules and materials (Hessmann et al., 2025} [Tsypin et al.,
2024; Singh et al., [2024; [Wang et al., 2024} |Shuaibi et al.|2020). Compared to previous works, our
research develops an active learning framework that is domain-agnostic, can be applied without ar-
chitectural modification to the underlying NNP, and crucially minimizes the computational overhead
of both model retraining and new training data generation.

3 NOTATION AND PRELIMINARIES

We define the conformation s = {z, X} of the molecule as a pair of atomic numbers z =
{z1,...,2n}, 2 € N and atomic coordinates X = {xy,...,®,},z; € R?, where n is the number
of atoms in the molecule. We define the oracle O as a function that takes conformation s as an input
and outputs its potential energy E°™® € R and interatomic forces FO™le ¢ R"*3 ; poracle proracle
O(s). To denote the ground truth interatomic force acting on the i-th atom, we use Fs"ffde. For ex-

ample, we denote the Psi4-calculated energy as E?Fr .
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3.1 NEURAL NETWORK POTENTIALS

In this work, we use equivariant DimeNet++ (Gasteiger et al., 2020) and GemNet-OC (Gasteiger,
et al. 2022) due to their strong performance in the VZDFT optimization benchmark (Khrabrov
et al.,[2024). We denote the NNP parametrized by weights 0 that predicts potential energy as fg(s) :
{z,X} — R. The forces are derived from the predicted energies by taking a partial derivative:

Fi(s) = - 2000, (M

where F}(s) € R? is the force acting on the i-th atom as predicted by the NNP. We follow (Khrabrov
et al.,[2024)) and use slightly different loss functions for DimeNet++ and GemNet-OC:

LDimeNet++ (g 13 |B| Z IEs — fo(s)|? + |B| Z Z |Fi — Fi(s | ; (2)
seB

GemNet— OC(S B; ) | Z |Es — fo(s ZZ HFl F9 ) 3)
seB s seBim

where B is a batch of conformations, E; and F are the ground truth energies and forces, p; and ps
are energy and forces scale coefficients respectively, and ns is the number of atoms in s.

To perform geometry optimization with an NNP, the optimizer Opt utilizes the
forces Fp(s) € R"*3:

Scur = Sprev T Opt(FB(SpreV))- 4)

3.2 EVALUATION METRICS

To evaluate the quality of optimization with NNPs, we optimize conformations from the test dataset
D st until convergence or the step limit is reached. Each conformation s in the test dataset comes
with a ground truth optimal conformation sqp¢ and its energy EDFF calculated by performing re-
laxation with O¢. Following (Tsypin et al.} 2024), the quality of the NNP optimization is evaluated
with the averaged percentage of minimized energy:

o 1 [DFT _ pDFT 1
pctgna = 100% * | | Z E‘SDFT ESSF;I = 100% * | | Z pct(sy), 5
test SEDrest s Sopt test SE€Drest

where Sgna) 1S the final state of the NNP optimization trajectory. Another metric is the residual
energy in state Senal: E"(Sfinal). It is calculated as the delta between Ek];)fiTal and the optimal
energy:

s DFT DFT .
B (s0) = BT — B ©
Similar to pctg,,;, this metric can also be aggregated over the evaluation dataset:
R 1
Erfna = D] E™ (sfina1)- (7
test

SE€Diest

Generally accepted chemical precision is 1 kcal/mol (Helgaker et al.|,|2004). Thus, another impor-
tant metric is the percentage of conformations for which the residual energy is less than chemical
precision. We consider optimizations with such residual energies successful:

1
PClocess = > T[E™(gna) < 1] (8)

success
Dl 25
test

Lastly, we track the percentage of “diverged” optimizations pcty;,. The optimization is considered
diverged if the Ogwas not able to calculate the energy of sopt or when the resulting energy EPFT

Sfinal
is larger than the initial energy EP'T. We treat the diverged optimization as unsuccessful when
calculating the pct

success *
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3.3 ACTIVE LEARNING

The core idea of active learning is the iterative refinement of the training set by incorporating new
data from regions of configuration space where the model is most uncertain, followed by retraining
the model on the augmented dataset. The search for such conformations can be performed us-
ing molecular dynamics (Kulichenko et al.,|2023))) or biased molecular dynamics (Laio & Gervasio),
2008 Sutto et al.L[2012). Two popular approaches for UQ are ensemble- and single model-based (Se-
ung et al.| [1992; |Nix & Weigend, [1994; Schran et al., [2020; [Lakshminarayanan et al.,[2017)).

An ensemble of models is composed of several NNPs that differ slightly (see Section 5] for details).
When the predictions of all members are in close agreement, it indicates that the conformation lies
within a region of configuration space that was well represented in the training set. In contrast,
large discrepancies among the ensemble predictions signal an out-of-distribution conformation. The
uncertainty is calculated as (Tan et al.| [2023):

pensane(®) = 2 o2 = LS (B - o), ©
Vs M-1=

Here, E; = fg, (s) is the energy predicted by the i-th ensemble member, and E(s) = Zf\il Ei(s) is
the ensemble-averaged energy. The variance o g (s) is normalized with the square root of the number
of atoms n

One widely adopted single-model approach is the mean variance estimation technique (MVE),
where training data is treated as Gaussian random variables, and the NNP is trained to predict mean
and variance N (u, o). Training is performed via maximum likelihood estimation (Tan et al., 2023):

LMVE(

2
F;

ns i i 2
Zlog(Zwa%i)Jr—HFs UFG(S)H , (10)
i=1

seB

where 0'%1’ denotes the predicted per-atom force variance. For MVE-based models, the uncertainty
estimate is computed as:
PMVE = MaX 07 (11)

3.4 GOLF

The GOLF framework (Tsypin et al., [2024) features a unique data sampling scheme, where the
conformation selection is not based on the model’s uncertainty. Instead, a conformation is added
to the training dataset if the energy (accordlng to a cheap surrogate oracle) has increased after the
NNP optimization step (see Equation ' prev - ECur < 0, where Eprev, ECur are the energies
predicted by the surrogate oracle in conformations scyr, Sprev Te€spectively. If this condition is met,
the predicted forces in sprey are considered incorrect and the state sp.ev is added to the training
dataset. Alternatively, small negative energy changes can be encountered near the local minima due
to the nature of gradient-based optimization. We discuss this scenario in Section 4}

4 METHOD

Our proposed active learning framework improves on the original GOLF in several aspects. We
replace the fixed domain-specific surrogate with a Neural Oracle g4. The oracle parameters are
updated after each training epoch by exponential moving averaging of the online NNP weights 6:

=10+ (1—-71)0. (12)

This standard Polyak averaging scheme (Polyak & Juditsky, |[1992)) is widely used in reinforcement
learning (Mnih et al., 2015 [Lillicrap et al., 2015} [Haarnoja et al., [2018}; |Guo et al.,[2022) and self-
supervised learning (Grill et al.| [2020) to stabilize the target network. In our work, we utilize this
feature to stabilize potential energy estimates and select additional conformations more efficiently.

Moreover, to further optimize active data acquisition, we do not add final conformations of
converged (or finished by reaching step limit) trajectories to the training dataset, as the online
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Algorithm 1 GOLF with Neural Oracle

Require: baseline dataset Dy; baseline dataset subsample size D; online NNP fg; neural oracle gg;
genuine oracle O¢; optimizer Opt; optimization step limit 7"; maximum number of negative
energy changes M; per-cycle additional conformations k; total additional conformations K
per-cycle epochs C; batch size B; replay buffer mix ratio n € [0, 1]; EMA coefficient 7 € [0, 1]

1: Initialize replay buffer R <— &; initialize ¢ < 0

2: foriel,...,[K/k] do > Runs for [ K/k] cycles
3: S+ o
4: while |S| < k do > Additional conformations collection
5: Sample s ~ D; t <= 0; m <= 0; Eprev < 9 (S); Sprev < S
6: repeat
7: s' < 5+ Opt(F sy (s)) > Forces predicted with online NNP
8: Ecur < go(s')
9: if Four — E~prev > ( then > Mistake: negative energy change
10: m<+—m+1
11: end if ~ _
12: Sprev < 838 < 8" Eprey < Eours t — t+1
13: until Converged(s) or¢ < T or m < P > Optimize until convergence or TL reached
14: if m = M then
15: S ﬂ Sprev > Encountered M mistakes! Add previous conformation to R
16: else
17: discard and resample
18: end if
19: end while
20: forall s € S do > Evaluate collected conformations with DFT
21: EDFT(S), FDFT(S) — Og(s)
22: R (ﬂ {S, EDFT(5)7 FDFT(«S)}
23: end for
24: Sample shard D; C Dy with |D;| = D > Training
25: fore =1toCdo
26: for batch € D; do
27: Sample (1 — n)B from D; and nB from R to form batch B
28: Update fg on B using Eq.
29: end for
30: dp—T1d+(1—-7)0 > EMA of neural oracle
31: end for
32: end for

NNP already performs well for such conformations. The GOLF method uses the energy change
Eprev — Ecur after the optimization step to select additional conformations. However, due to the
nature of the selected optimization algorithm, the energy can sometimes increase near the local min-
ima. This does not necessarily mean that the forces are poorly predicted, but with GOLF’s data
acquisition scheme, such conformation will still be added to the training dataset, hindering the effi-
ciency of the approach. To minimize the amount of near-optimal non-informative conformations in
the training set, we introduce a “mistake budget” M. The conformation is only added to the training
dataset if there have been M or more negative energy changes in the trajectory.

The training of GOLF Neural Oracle alternates between data collection and supervised updates
of the online NNP. In each collection phase, we build a batch S of k conformations. Starting from
so ~ D, we iteratively optimize the conformation using prediced forces Fp(s) and estimate potential
energy with a Neural Oracle:

Scur = Sprev + Opt(FO(Sprev)>7 Ecur = gd)(scur)~ (13)

We maintain a mistake counter m that increments whenever the energy change according to the
neural oracle is negative,

Eypev —Eowr < 0 = m<+m+1, (14)
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Table 1: Evaluation on the test set Dis;. Columns report the averaged percentage of minimized
energy pctg, ), the mean residual energy E™5g,,1 in kcal/mol, the success rate pety,. ... (fraction
with £7* < 1 kcal/mol), and the diverged conformations percentage pcty;,. Arrows indicate pre-
ferred direction (1 higher is better; | lower is better). Best results are in bold.

mﬁnal T Eresﬁnal \I/ pCtsuccess T pCtdiv \L

Model %) (keal/mol) (%) (%)
DimeNet++ baseline 96.21 1.67 41.45 0.85
Active Learning Models
Ensemble 99.99 0.001 87.6 0.25
MVE 99.86 0.096 87.4 0.85
GOLF-RDK:it 100.13 -0.04 89.05 0.55
GOLF-Neural Oracle (ours) 100.24 -0.092 90.5 0.15

and we terminate a trajectory on optimizer convergence, a step limit 7, or when m = M. If

m = M, the previous conformation sy is added to S. When enough data is collected (|S| = k),
conformations are evaluated with O¢ and added to the replay buffer R.

After collection, the online NNP fy is trained for a small number of epochs using minibatches that
mix baseline data from Dy and additional data R. With mixture coefficient ) € [0, 1], each minibatch
B contains a fraction (1 — n) drawn from Dy and a fraction ) drawn from R. The training objective
is defined in Equations[2]and[3] At the end of each epoch, the Neural Oracle is updated via the EMA
rule in Equation and the loop returns to the batched collection phase. Over [K /M| cycles,
this procedure acquires K DFT-labeled conformations. The full training procedure is detailed in
Algorithm

5 EXPERIMENTS

5.1 V2DFT OPTIMIZATION BENCHMARK

We benchmark the proposed GOLF-Neural Oracle on V2DFT (Khrabrov et al., [2024) benchmark.
This benchmark evaluates the optimization performance of NNPs on a subset of 2000 molecules
from the V2DFT and utilizes wB97X-D/def2-SVP level of DFT theory. This benchmark only con-
tains molecules in vacuum, which makes direct comparison with GOLF-RDKit possible.

As baselines, we consider two classical active learning approaches: ensemble and MVE (Tan et al.,
2023); the GOLF-RDKit method; and the baseline NNP trained on a fixed dataset without active
learning finetuning. The DimeNet++ is used as the NNP for all iterative optimization methods.
We use the D™edium gubset of V2DFT to train the baseline NNP and as Dy for active learning
approaches.

For all active learning approaches, we use the same data collection scheme and training hyperpa-
rameters except for the conformation selection criterion. The number of additional conformations
K equals to 10000. The number of additional conformations per-cycle is £ = 200, and the number
of epochs per cycle is C = 5, resulting in a total of 250 training epochs. The initial conformations
are sampled from Dy and then optimized with the L-BFGS (Liu & Nocedal,|1989) algorithm (as im-
plemented in Pytorch[Paszke et al[(2019)) using the forces predicted by the NNP (see Equation[I3).
The training step limit is 7' = 100. We set = 0.5, so the batch consists of conformation from Dy
and R in equal parts.

In the case of the ensemble, the forces are averaged over ensemble members. For the ensemble, we
used M = 4 DimeNet++ NNPs. Following (Tan et al.,|2023), each NNP was trained on predium
using identical hyperparameters, but with different random seeds. The criterion for conformation
selection iS pensemble > tensemble = 2.8 x 10™4. We found this threshold to strike a good balance
between the model’s performance and data collection time. For MVE, we modified the final layers
of DimeNet++ so that the network outputs the conformational energy along with the per-atom force
variance ‘7%1’ To ensure the positivity of variance values, a soft-plus activation function was applied
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Table 2: Ablation on the mistake budget M/ (maximum negative energy changes per trajectory) and
the EMA coefficient 7 used to update the Neural Oracle. Arrows indicate preferred direction.

ﬁﬁnal T Eresﬁnal Jr pCtsuccess T pCtdiv i’
Method T MG (keal/mol) (%) %)
. 1 100.13 20.04 89.05 0.55
GOLF-RDKit 3 1002 0.073 89.35 0.75
09 1 10011 20.035 89.0 03
0.9 3 10024  -0.092 90.5 0.15
GOLF-Neural Oracle 57 5 507 0061 89.5 0.4
05 3 10018  -0.061 89.55 0.35

to the corresponding outputs. The DimeNet++ for MVE was pretrained on Dyedium Using loss
defined in Equation[I0} The same DimeNet++ modification and loss function were used during the
active learning phase. The criterion for conformation selection is pyve > tyve = 1 x 1075,

All iterative optimization baselines featured the same evaluation procedure: the conformations from
the D5t were optimized with L-BFGS until convergence or step limit Tyya1 = 200. The perfor-
mance on the V?DFT optimization benchmark is in Table The active learning approaches surpass
the direct optimization model and the baseline DimeNet++. Moreover, the GOLF approaches out-
perform the ensemble and MVE. We hypothesize this is because the conformation selection criterion
in GOLF merely depends on the model’s uncertainty, but instead is specifically tailored for the opti-
mization.

5.2 GOLF ABLATIONS

In this section, we study how hyperparameters 7 and M affect the models. The results are provided
in Table The “mistake budget” M > 1 improves the performance of the GOLF-Neural Ora-
cle, while not significantly affecting the GOLF-RDKit. Despite the fact that energies predicted by
MMFF9%4 (used as a surrogate oracle in GOLF-RDKit) correlate with the DFT energies, the local
minima of these functionals differ significantly. Therefore, the MMFF94-predicted energies near the
DFT local minima can behave arbitrarily, so the increased M does not help to better select additional
training conformations.

For the GOLF-Neural Oracle, 7 regulates the rate of the EMA update (see Equation[I2). The lower
the update rate, the more Neural Oracle resembles the online NNP, and, conversely, a higher update
rate leads to a more stable Neural Oracle. We found that reasonably high values of 7 lead to stable
energy estimation and better additional conformation selection.

Table 3: Data-efficient regime. We report the number of additional conformations K used for train-
ing and evaluate on Dy with the same metrics as before. Arrows indicate preferred direction

Model K ﬁﬁnal T Eresﬁnal \L pCtsuccess T pCtdiV *L
(add. confs) (%) (kcal/mol) (%) (%)
MVE 1000 99.03 0.437 76.7 0.55
GOLF-Neural Oracle (ours) 1000 99.19 0.376 81.45 0.45

5.3 DATA EFFICIENT REGIME

Additionally, we test our proposed method in a “data-efficient” regime, where only 1000 additional
conformations are collected during the active learning finetuning. This is especially useful when
training with an expensive O¢. For the data efficient regime, we use K = 1000, k = 20, C' =
1 and keep other hyperparameters unchanged. The results in Table [3] indicate that our proposed
approach remains effective in a data-efficient regime and outperforms other classical active learning
approaches.
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Table 4: Evaluation on the test set Dg5[. Columns report the averaged percentage of minimized
energy pctg, .1, the mean residual energy £S5, in kcal/mol, the success rate ety qess (fraction
with £ < 1 kcal/mol), and the diverged conformations percentage pctg;,. Arrows indicate pre-
ferred direction (1 higher is better; | lower is better). Best results are in bold.

Mﬁnal T Eresﬁnal \I/ pCtsuccess T pCtdiv l’
Model (%) (kcal/mol) (%) (%)
Nutmeg-Large 76.60 11.17 3.67 5.45
MACE-OFF23 (Large) 98.27 1.04 64.11 2.79
GOLF-Neural Oracle (ours) 99.88 0.66 94.2 0.96

5.4 SPICE

To test both transferability to a more advanced level of DFT theory and to multi-domain chemical
data, we benchmark the proposed GOLF-Neural Oracle on the SPICE2.0 dataset. To get the DS} g,
we optimized a subset of test set described in [Eastman et al.| (2024) (see Appendix [A.T]for details).
This resulted in | DS | = 216 conformations optimized at wB97M-D3(BJ)/def2-TZVPPD level
of theory. As baselines, we selected the Nutmeg-large model (Eastman et al.,[2024) and the MACE-
OFF23 (Large) [Kovacs et al. (2025) as they have already been pretrained on the full SPICE2.0
dataset. We then trained GemNet-OC on the full SPICE dataset and finetuned it with GOLF-Neural
Oracle.

As the DI, consists of large ligand molecules, pentapeptides and amino-acid ligand dimers, we
filter out molecular systems with less than 40 atoms from the SPICE2.0 dataset and call this filitered
dataset Dgl“’md. Hyperparameters specified in Section were used to train the GOLF-Neural
Oracle on Dfi"*red, The results in Table E] demonstrate that GOLF-Neural Oracle successfully opti-
mizes almost all molecules from DS}, significantly surpassing MACE-OFF23 which was trained
without the active learning.

6 CONCLUSION

In this work, we have presented a new framework called GOLF with Neural Oracle for molecular
conformation optimization learning. We show that a trained neural Oracle can successfully replace
a cheap physical simulator, and help the final model achieve a quality comparable with an expensive
physical simulator. We thoroughly compare our approach with several baselines, including recent
conformation generation models and an adaptation of other active learning schemes. A primary
direction for future work is to apply our framework to larger systems and systems dominated by
intermolecular interactions, such as optimizing ligand conformations within protein binding pockets
or relaxing adsorbates on surfaces. Furthermore, we plan to test the scalability of the Neural Ora-
cle for condensed-phase systems, including liquids and solids under periodic boundary conditions.
A particularly promising extension will be the integration of our active learning approach into a
hybrid ML/MM (Machine Learning / Molecular Mechanics) framework. This would allow for the
data-efficient optimization of a high-accuracy NNP for a reactive site while treating the surround-
ing environment with a classical force field, enabling the study of chemical processes in large and
complex biological systems.

REPRODUCIBILITY STATEMENT

We will soon release the code used to train all active learning approaches in this study.
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A APPENDIX

A.1 OPTIMIZATION OF SPICE CONFORMATIONS

To generate the ground truth optimized conformations, we performed full geometry relaxations for
each initial conformation from the test set of the SPICE dataset. These calculations were carried out
using the Psi4 computational chemistry package (Smith et al.;[2020). The optimizations were driven
by the optking optimizer, employing the wB97M-D3BJ (Mardirossian & Head-Gordon,[2016) func-
tional with the def2-TZVPPD (Weigend & Ahlrichs} |2005) basis set to remain consistent with the
original level of theory used in the SPICE methodology (Eastman et al.,|2024). Each optimization
was run until standard convergence criteria were met, defined as the maximum force component
on any atom falling below 3 x 10~% Hartree/Bohr, energy change less than 3 x 10~% Hartree, and
maximum atom displacement less than 1.2 x 10~ Bohr. Throughout each relaxation, the geometry,
potential energy, and interatomic forces were recorded at every step, yielding a complete optimiza-
tion trajectory for each initial structure.

However, we faced significant challenges during this data generation process, primarily due to
the optking optimizer’s reliance on an internal coordinate system. For larger and more flexible
molecules, the back-transformation from the optimized internal coordinates to Cartesian coordinates
frequently failed, leading to a substantial number of unsuccessful optimizations. Consequently, we
were only able to generate complete and successful optimization trajectories for approximately one-
third of the molecules from the test set. For this successfully optimized subset, a single conformation
was relaxed for each molecule to construct our final ground truth dataset.
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