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Abstract

LLM-as-a-Judge models generate chain-of-
thought (CoT) sequences intended to capture the
step-by-step reasoning process that underlies the
final evaluation of a response. However, due to
the lack of human-annotated CoTs for evaluation,
the required components and structure of effec-
tive reasoning traces remain understudied. Conse-
quently, previous approaches often (1) constrain
reasoning traces to hand-designed components,
such as a list of criteria, reference answers, or
verification questions and (2) structure them such
that planning is intertwined with the reasoning for
evaluation. In this work, we propose EvalPlanner,
a preference optimization algorithm for Thinking-
LLM-as-a-Judge that first generates an uncon-
strained evaluation plan, followed by its execu-
tion, and then the final judgment. In a self-training
loop, EvalPlanner iteratively optimizes over syn-
thetically constructed evaluation plans and execu-
tions, leading to better final verdicts. Our method
achieves a new state-of-the-art performance for
generative reward models on RewardBench and
PPE, despite being trained on fewer amount of,
and synthetically generated, preference pairs. Ad-
ditional experiments on other benchmarks like
RM-Bench, JudgeBench, and FollowBenchEval
further highlight the utility of both planning and
reasoning for building robust LLM-as-a-Judge
reasoning models.

1. Introduction
As large language models (LLMs) continue to improve, re-
liably evaluating their long-form outputs has become even
more challenging. Owing to the high cost of human eval-
uation, the LLM-as-a-Judge paradigm has emerged as a
promising alternative where LLMs themselves are employed
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as evaluators (Zheng et al., 2023; Kim et al., 2024a; Saha
et al., 2024a; Dubois et al., 2024). LLM-as-a-Judge models
also serve as reward models during training for iterative
preference optimization and self-improvement (Yuan et al.,
2024). Compared to traditional reward models that only
output scalar scores, LLM-as-a-Judge models expend more
test-time compute by generating Chain-of-Thought (CoT)
rationales of the underlying reasoning process of evalua-
tion. This has been shown to not only improve evaluation
accuracy but also enhance transparency (Zheng et al., 2023;
Wang et al., 2024c; Ankner et al., 2024).

Despite the promise of LLM-as-a-Judge models, the lack of
human-annotated CoTs makes it difficult to train such mod-
els. Hence, a crucial step in building these judges is gener-
ating rationales by writing down detailed evaluation instruc-
tions or rubrics that LLMs can follow. These hand-crafted
instructions vary for every new domain (e.g., safety versus
coding) (Yu et al., 2024b) and include manually designing
evaluation criteria (Zheng et al., 2023; Saha et al., 2024a;
Trivedi et al., 2024; Wang et al., 2024b;c), scoring rubrics,
and steps for each criterion (Yuan et al., 2024; Trivedi et al.,
2024; Kim et al., 2024b; Wang et al., 2024d). This is limiting
because different tasks necessitate evaluation standards or
procedures tailored to each specific task. For instance, eval-
uating an essay requires measuring quality along multiple,
potentially subjective, fine-grained criteria like relevance
and clarity whereas evaluating a math problem requires
objectively verifying the correctness of the solution in a
step-by-step manner (Lightman et al., 2024). Simply using
predefined evaluation prompts hurts evaluation accuracy,
while manually adjusting the evaluation instructions is nei-
ther scalable nor realistic, given the wide range of arbitrary
and complex tasks that LLM-as-a-Judge models are used for.

To overcome these limitations, we propose EvalPlanner, a
novel approach to building Thinking-LLM-as-a-Judge mod-
els that teaches LLMs to both plan and reason for evaluation.
EvalPlanner is trained to perform complex evaluation by
thinking and spending more test-time compute with CoTs
that are decoupled into a planning component and a rea-
soning component. In the planning component, the model
generates a detailed evaluation plan, that consists of all the
necessary steps to evaluate responses specific to the given
instruction. In the reasoning component, the model exe-
cutes the plan step-by-step and reasons through the input
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Example Input and Output of EvalPlanner

User Instruction: [Text]There is a French pub called The Phoenix that has a low customer rating but is child
friendly and is more than 30 dollars and is located in the riverside area near Crowne Plaza Hotel.
[Question]According to the above [Text], extract the attributes (name, eatType) of the restaurant.
Do not output your analysis, only output the result in the format of “attribute1[value1], attribute2[value2], ...”

Response A: Name[The Phoenix], eatType[pub], location[Riverside area near Crowne Plaza Hotel],
priceRange[More than 30 dollars]

Response B: Name[The Phoenix], eatType[pub]

Output:
[Start of Evaluation Plan]
To evaluate the response quality, we will follow these steps:
1. **Check if the response provides the correct attributes**: Verify that the response includes the attributes
“name” and “eatType” as requested in the question.
2. **Verify the accuracy of the attribute values**: Check if the values provided for the attributes match the
information given in the original text.
3. **Check for any additional or missing information**: Ensure that the response does not include any extra
attributes or information not requested in the question.

Step-by-step reference answer:
1. The response should include the attributes “name” and “eatType”.
2. The values for the attributes should be:

* name: The Phoenix
* eatType: French pub

3. The response should not include any additional attributes or information.
[End of Evaluation Plan]

[Start of Plan Execution]
**Step 1: Check if the response provides the correct attributes**
Assistant A’s response includes the attributes “Name”, “eatType”, “location”, and “priceRange”. However, the
question only requests the attributes “nameänd “eatType”. Assistant B’s response includes the attributes “name”
and “eatType”, which matches the request.

**Step 2: Verify the accuracy of the attribute values**
...

**Step 3: Check for any additional or missing information**
Assistant A’s response includes additional attributes “location” and “priceRange” that are not requested in the
question. Assistant B’s response does not include any additional attributes or information.

Based on the evaluation, both responses have some inaccuracies. However, Assistant B’s response is more
accurate in terms of providing only the requested attributes, even though it is missing the “French” descriptor.
The final verdict is: [[B]]
[End of Plan Execution]

[Final Verdict]
[[B]]

Figure 1. A representative input and (truncated) output of EvalPlanner. EvalPlanner takes a user instruction and a pair of responses as
inputs. It generates a Chain-of-Thought, structured into a planning component (the evaluation plan), a reasoning component (the plan
execution), and the final verdict. The evaluation plan specifies the recipe while the plan execution follows this recipe step-by-step by
analyzing the responses, leading to the final judgment.

response(s) to arrive at the final verdict. EvalPlanner is iter-
atively trained in a self-improving loop (Yuan et al., 2024;
Wang et al., 2024c; Wu et al., 2024a) by sampling multiple
plans and plan executions from the current model and per-
forming preference optimization over correct and incorrect
CoTs, i.e., chosen and rejected (plan, execution, verdict)
triples. This teaches the model to iteratively optimize for
both (1) generating a good plan that may encapsulate the
most relevant and fine-grained criteria, scoring rubrics, ref-
erence answers, unit tests, etc based on the input task at

hand and (2) performing correct execution grounded in the
generated plan. EvalPlanner achieves this learning using
only synthetic data as supervision via self-training.

We conduct extensive experiments on five reward modeling
benchmarks – RewardBench, PPE, RM-Bench, JudgeBench,
and FollowBenchEval – spanning instructions across cate-
gories of Chat, Safety, Code, Math, and fine-grained multi-
level constraints. On RewardBench and PPE, EvalPlanner
achieves new state-of-the-art scores (e.g., 93.9 on Reward-
Bench) for generative reward models, outperforming base-
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lines that train on up to 30x more, and typically human-
annotated, data. Our model also generalizes well to other
benchmarks, obtaining up to 13% improvement over a lead-
ing model for complex prompts that require evaluating multi-
level constraint satisfaction. Finally, we conduct a set of
comprehensive ablations that highlight the effectiveness
of EvalPlanner’s (1) unconstrained evaluation plans over
constrained ones, (2) iterative optimization recipe of these
plans, and (3) data-efficiency, allowing it to obtain compet-
itive performance with as few as 5K synthetic preference
pairs. Overall, EvalPlanner opens up new opportunities for
building Thinking-LLM-as-a-Judge models that scale up
test-time compute for robust and transparent evaluation by
learning to both plan and reason jointly.

2. EvalPlanner
We consider the setting of pairwise response evaluation
using the LLM-as-a-Judge paradigm (Zheng et al., 2023).
The judge model takes an instruction x and a pair of
responses a and b as inputs and generates a preference
judgment y, predicting the better response, a or b. By
doing so, the model also generates a Chain-of-Thought
(CoT) (Wei et al., 2022) aiming to capture the step-by-step
reasoning behind the evaluation process.

2.1. Method Overview

Evaluating long machine-generated responses to complex in-
structions is primarily a planning and reasoning problem. In
particular, the evaluator must first plan the evaluation recipe
and then reason through that recipe and the response(s) to
arrive at the final verdict. With that motivation, EvalPlanner
hypothesizes that an effective Chain-of-Thought for evalua-
tion should consist of three components: (1) the Evaluation
Plan z, (2) the Execution of the Plan e, and (3) the Final Ver-
dict y. Figure 1 shows an example highlighting these three
components. For a given input instruction x, the evaluation
plan specifies the recipe for evaluating given responses to the
instruction. The execution of the plan is responsible for actu-
ally conducting the evaluation by following the plan step-by-
step, analyzing the input pair of responses a and b and gen-
erating the final judgment y. Given an LLM operating as an
LLM-as-a-Judge, parameterized by θ, where the plan z and
the execution e are assumed to be latent variables, we can
write the generative process of the final verdict y as follows.

pθ(y|x, a, b) =
∑

z∈P
∑

e∈E pθ(y|e, z, x, a, b)pθ(e|z, x, a, b)pθ(z|x)

We follow this generative process to build preference
pairs of CoTs (Section 2.2) for training such a model. See
Figure 2 for an overview. Given an instruction and a seed
model, we first sample multiple plans z ∈ P . Then, for a
given plan, instruction, and a pair of responses, we sample
multiple executions e ∈ E of the plan which either lead to

the correct final verdict or not. Using this data, we develop
a self-training loop that trains an LLM-as-a-Judge model by
optimizing over both plans and executions, leading to better
judgments (Section 2.3). At test time, the model generates
CoTs of the form ỹ = (z̃, ẽ, ỹ), structured into a plan, its
execution, and the final verdict.

2.2. Synthetic Training Data Generation

LLM-as-a-Judge models are typically trained on human-
annotated preference judgments. However, collecting such
data is a costly and tedious process, often requiring expert
annotations for domains like code and mathematics (Ouyang
et al., 2022; Wang et al., 2024c). Even when such judgments
exist, they do not come with any corresponding reasoning
steps. This motivates us to develop EvalPlanner by only
assuming access to some carefully-chosen input instructions
as training data. In the rest of this section, we describe our
synthetic training data generation process, which includes
constructing both preference pairs (a, b) and their CoTs y.

Prompt Selection and Generating Response Pairs. We
choose prompts belonging to general instruction-following
as well as mathematical reasoning. For general instruction-
following prompts, we use the same approach as in Self-
Taught Evaluators (Wang et al., 2024c) to generate response
pairs, i.e., by first modifying the original instruction into
a ‘noisy’ instruction and then generating a response to the
noisy instruction. Consequently, the response to the original
instruction becomes the chosen response, while the one for
the ‘noisy’ instruction becomes the rejected response. For
prompts specific to math reasoning, we sample multiple
responses, where responses that lead to the correct solutions
become our chosen responses, while those with incorrect
solutions are considered rejected responses.

Generating Evaluation Plans. Given these synthetic pref-
erence pairs, we now want to generate the latent evaluation
plans. Intuitively, a plan that evaluates an open-ended writ-
ing question would be structurally and semantically very dif-
ferent from a plan that evaluates a coding question. Hence,
depending on the evaluation domain, the plans could vary
significantly (see Appendix C for some examples of diverse
plans). This makes manually defining the structure or the
components of a good plan time-consuming, less generaliz-
able, and prone to user biases. Thus, we design a generic and
unconstrained plan generation prompt (Fig. 3 in Appendix)
that queries a seed model (e.g., an instruction-tuned LLM)
for an initial plan conditioned only on the input instruction.
These plans will then be optimized later by self-training.
As part of our experiments, we also show the efficacy of
this plan generation prompt against other prompts that try
to constrain plans to certain pre-defined components. Note
that our planning prompt does not condition on the response
pair to ensure that the generated plans represent only the
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Figure 2. EvalPlanner: A Thinking-LLM-as-a-Judge model that learns to think by planning and reasoning for evaluation. Given an
instruction and a preference pair as input, the synthetic reasoning data generation recipe consists of sampling multiple plans and multiple
executions from the current model. These evaluation plans and executions are used to construct preference pairs of Chain-of-Thoughts,
which are then iteratively optimized with DPO in a self-training loop.

recipe and not the actual evaluation. Evaluation happens in
the second stage of plan execution, as described below.

Generating Plan Executions. In this second stage of plan
execution, we now prompt the same seed model with the
instruction and the response pair to reason through the
plan generated in the previous step and the response pairs
to produce a verdict (Fig. 4 in Appendix). The benefits
of disentangling the planning and execution stages are
two-fold. First, the disentanglement tries to enforce that the
reasoning/execution follows the plan. Second, by sampling
multiple plans and multiple executions for the same plan, we
can train a model on diverse evaluation data that vary in both
planning and execution. Like the initial plans, the initial
plan executions will also be optimized later via self-training.

Building Preference Pairs of Plans & Executions. Given
the preference pairs, the plans, and their executions, we
now build a preference tuning dataset to optimize over the
CoTs. For each input instruction, we sample |P| plans
and for each plan, we sample |E| executions. To account
for position bias (Zheng et al., 2023), we generate plan
executions according to both orders of the response pairs –
(a, b) and (b, a). This results in a total of 2×|P|×|E| CoTs,
for each input instruction. A thought is considered correct if
the corresponding (plan, execution, judgment) triplet leads
to the correct verdict and incorrect otherwise. Using this
correctness criterion, we construct our preference tuning
dataset D = D(a,b) ∪ D(b,a) where D(a,b) is defined as
follows and D(b,a) swaps the execution order of responses.

D(a,b) =
⋃
z∈P

{(x, a, b) → (z, ec, yc); (x, a, b) → (z, er, yr)

|ec, er ∈ E(a,b)}

Intuitively, given an input (x, a, b), we generate multiple
executions for each sampled plan z to enable the model
to learn from its executions. Specifically, for each plan,
we generate multiple executions and construct all possi-

ble correct and incorrect execution-pairs leading to correct
and incorrect judgments respectively. This process allows
us to construct “chosen” (c) and “rejected” (r) pairs that
differ in their executions. To further improve the model’s
performance, we repeat this construction process. We con-
struct chosen and rejected pairs for all plans P , enabling the
model to learn to generate better plans in the first place. We
also construct pairs for both execution orders of responses –
(a, b) and (b, a) – ensuring that the model becomes position-
consistent. If none of the executions lead to the correct
verdict, the corresponding sample is not included in our
training data. By scaling up the construction process, we
provide the model with a more comprehensive set of exam-
ples to learn from, enabling it to refine its decision-making
process and improve its overall performance.

2.3. Preference Optimization of Plans & Executions

Having developed the initial training data generation recipe,
we now describe the training algorithm of EvalPlanner.
The pipeline consists of a self-training loop, starting with
a seed model M0 (e.g., an instruction-tuned LLM), doing
supervised fine-tuning (SFT) on a subset of the ‘chosen’
CoTs to obtain a model MSFT

1 , followed by two iterations
of Direct Preference Optimization (DPO) (Rafailov et al.,
2024) on preference pairs of CoTs, leading to models
MDPO

1 and MDPO
2 .

MSFT
1 : SFT on Dc

1, initialized from M0. Starting from
the seed model M0 and a subset of input instructions and re-
sponse pairs, we follow the recipe in Section 2.2 to generate
the preference pairs of thoughts. Let us denote this dataset
by D1. To teach the model to correctly follow the pattern
of our CoT (plan+execution+verdict), we first fine-tune
M0 on Dc

1 – a subset of only the ‘chosen’ thoughts from
D1. Specifically, for each instruction, we randomly sample
one correct thought (that leads to the correct verdict) and
perform SFT on that data, leading to a model MSFT

1 .
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MDPO
1 : DPO on D1, initialized from MSFT

1 . Next, ini-
tialized from MSFT

1 , we perform DPO on the dataset D1,
consisting of both chosen and rejected thoughts. Given
the two distinct parts of plan and execution tokens in the
thoughts, this teaches the model to contrast between correct
and incorrect thoughts, that vary in both the plan and the
execution of evaluation. We thus obtain a model MDPO

1 .

MDPO
2 : DPO on D2, initialized from MDPO

1 . EvalPlanner
also consists of a second iteration of DPO, wherein we
choose a fresh subset of instructions and response pairs and
generate CoTs using the same recipe but from the previous
iteration of model MDPO

1 . In particular, we first sample |P|
CoTs from MDPO

1 for each training data point, separate out
the plans from the thoughts, and then use the same MDPO

1

model to sample |E| executions for each plan. We denote
this second iteration of CoT data as D2. We train on new
inputs and thoughts from an updated model, under the as-
sumption that the data from the previous iteration is of lower
quality. Empirically, we also show that this outperforms
a single iteration of DPO trained on the entire set of inputs.

3. Experimental Setup
Training. We select prompts from two different sources –
WildChat (Zhao et al., 2024) and MATH (Hendrycks et al.,
2021). For WildChat, we directly use the synthetic re-
sponses generated by Self-Taught Evaluators (Wang et al.,
2024c). For MATH questions, we generate synthetic re-
sponses as follows. We prompt a Mixtral 22Bx8 Instruct
model to generate multiple candidate solutions. The re-
sponses that lead to the correct final answers become our
chosen responses while those with incorrect final answers
are considered rejected responses. Using synthetic response-
pair generation, we collect a total of 17, 588 and 4, 141
unique (instruction, chosen, rejected) triples from WildChat
and MATH, respectively, as our training data, using two
separate methods. From this, we select a random subset
of 5K instructions (consisting of 2.5K from WildChat and
2.5K from MATH) for SFT and the first iteration of DPO.
We reserve the rest for the second iteration of DPO. In each
iteration, we sample 5 plans and for each plan, we sample 8
executions (4 in each order of response pair) using a temper-
ature of 0.8 and top p of 0.95. We develop EvalPlanner with
either Llama-3.1-70B-Instruct or Llama-3.3-70B-Instruct as
the seed model to show the generalizability of our approach
across multiple seed models. As validation set, we choose
150 samples from each of WildChat and MATH, which we
use for checkpoint selection. To account for position bias
in pairwise evaluation, we double the number of examples
in the validation set by considering both orders of response
pairs. We use the fairseq2 library (Balioglu, 2023) for model
training and vLLM (Kwon et al., 2023) for inference. All
models are trained for a maximum of 1K steps, saving check-

points every 100 steps and doing early stopping based on
the validation set. Detailed training hyperparameters are
provided in Table 12.

Evaluation. We test EvalPlanner on the following pair-
wise evaluation benchmarks.

• RewardBench (Lambert et al., 2024). It consists of
(prompt, chosen, rejected) triples spanning 4 categories
of prompts: chat, chat-hard, safety, and reasoning.

• Preference Proxy Evaluations (PPE) (Frick et al., 2025).
PPE is a large-scale benchmark that links reward models
to real-world human preference performance. It consists
of two subsets: (i) PPE Preference (10.2K samples),
human preference pairs from Chatbot Arena featuring
20 LLMs in 121+ languages, and (ii) PPE Correctness
(12.7K samples), response pairs from four models across
popular verifiable benchmarks (MMLU-Pro, MATH,
GPQA, MBPP-Plus, IFEval). The first subset evaluates
subjective preferences, while the second tests alignment
in Best-of-N tasks.

• FollowBenchEval. We build this new evaluation
benchmark from FollowBench (Jiang et al., 2024). The
original benchmark consists of complex prompts that
test LLMs’ ability to follow multi-level fine-grained
constraints (e.g., ‘Write a summary within 20 words’).
We convert this benchmark into a pairwise evaluation
benchmark by sampling two responses from a single
model (LLama-3.1-8B-Instruct, LLama-3.2-3B-Instruct,
or Mistral-7B-Instruct-v0.2) such that one response
satisfies all the constraints and the other one does not.
Note that by generating the response-pair using the same
model, we ensure consistency in response style which
can otherwise lead to potentially superficial features
for preference judgments. Our evaluation benchmark,
called FollowBenchEval, comprises of 205 samples and
spans five different constraint-types of Content, Situation,
Style, Format, and Example. This benchmark specifically
tests LLM-based judges’ ability to (1) plan for multiple
constraints that need to be checked, and (2) produce a
verdict by checking for those constraints.

• RM-Bench (Liu et al., 2024). RM-Bench is designed to
assess the robustness of reward models, based on their
sensitivity and resistance to subtle content differences
and style biases. The original benchmark primarily
focuses on evaluating reward models that rate each
response independently. We modify the input prompt
to accommodate for the evaluation of LLM-as-a-Judge
models, which conduct pairwise judgments by comparing
two responses simultaneously.

• JudgeBench (Tan et al., 2024). JudgeBench is a
recent benchmark that evaluates LLM-based judges
on challenging response pairs spanning knowledge,
reasoning, math, and coding. It sources input instructions
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Table 1. Comparison of EvalPlanner with SOTA generative reward models on RewardBench. EvalPlanner outperforms all prior models,
while using a smaller number of (22K) synthetically constructed preference pairs as training data. †: Results taken from either
RewardBench leaderboard or the corresponding paper. ‡: Results taken from the Critic-RM-Rank paper (Yu et al., 2024b).

Models #Pref Pairs Overall Chat Chat-Hard Safety Reasoning

Open and Closed LLMs

Llama3.1-70B-Instruct† - 84.0 97.2 70.2 82.8 86.0
Llama3.1-405B-Instruct† - 84.1 97.2 74.6 77.6 87.1
Llama3.3-70B-Instruct - 85.4 96.9 77.4 77.6 89.6
Claude-3.5-sonnet† - 84.2 96.4 74.0 81.6 84.7
GPT-4o† - 86.7 96.1 76.1 88.1 86.6
Gemini-1.5-pro-0514† - 88.2 92.3 80.6 87.9 92.0

Reward Models with Critiques

SynRM‡ (Ye et al., 2024) - 87.3 97.5 76.8 86.3 88.5
CLoud‡ (Ankner et al., 2024) - 87.6 98.0 75.6 89.0 87.6
Critic-RM-Rank‡ (Yu et al., 2024b) - 90.5 97.5 79.6 94.1 90.6

SOTA Generative Reward Models

Self-Taught Evaluator† (Wang et al., 2024c) 20K 90.0 96.9 85.1 89.6 88.4
SFR-Llama-3.1-70B-Judge† (Wang et al., 2024b) 680K 92.7 96.9 84.8 91.6 97.6
Skywork-Critic-Llama-3.1-70B† (Shiwen et al., 2024) 80K 93.3 96.6 87.9 93.1 95.5
LMUnit† (Saad-Falcon et al., 2024) 84K 93.4 - - - -

EvalPlanner (w/ Llama-3.1-70B-Instruct as seed model) 22K 93.9 97.5 89.4 93.0 95.5
EvalPlanner (w/ Llama-3.3-70B-Instruct as seed model) 22K 93.8 97.7 89.5 91.7 96.1

from existing datasets and generates candidate responses
using stronger language models such as GPT-4o and
Claude-3.5-Sonnet. Following Tan et al. (2024), we
report results on the GPT-4o subset.

For RewardBench, PPE, and RM-Bench, we follow the orig-
inal evaluation protocol of reporting accuracy over a single
random ordering of paired responses. We report position-
consistent accuracy for JudgeBench and FollowBenchEval
to account for position bias. Specifically, a prediction is
considered correct if the model consistently makes a correct
judgment in both orders. We train and test all our mod-
els using the standard pair-wise judge prompt from prior
work (Zheng et al., 2023), as shown in Figure 5. The max-
imum number of generation tokens is set to 2048 and the
temperature to 0 for inference.

Baselines. We compare EvalPlanner with a range of mod-
els, including (1) Powerful Open-Sourced and Closed-
Sourced LLMs used as judges in a zero-shot manner, (2)
Reward Models with Critiques, capable of generating both
scalar scores and critiques, and (3) SOTA Generative Re-
ward Models, as listed on the RewardBench leaderboard.
We focus on models that also generate rationales along with
the final verdict, to compare related competing approaches.

4. Results
4.1. Experimental Results on Benchmarks

EvalPlanner outperforms all baselines while being
trained on fewer, and synthetically generated, prefer-

ence pairs. Table 1 shows results on RewardBench. Using
the same recipe, we train two EvalPlanner models with
different Llama versions as the seed model (Llama-3.1-
70B-Instruct and Llama-3.3-70B-Instruct). Both of our
models outperform all baselines, achieving new state-of-
the-arts for generative reward models on RewardBench. Par-
ticularly impressively, EvalPlanner achieves these results
by being trained on a smaller number of preference pairs
(22K), compared to most prior works. Moreover, EvalPlan-
ner’s training data only consists of synthetically generated
preference pairs, unlike past works that primarily train on
human-annotated preference pairs. EvalPlanner’s training
recipe is also equally performant on both Llama seed mod-
els, showing the usefulness of our initial training data and
the generalizability of our approach. In Table 2, we compare
EvalPlanner to DeepSeek-GRM (Liu et al., 2025), a SOTA
generative reward model on PPE. Our method obtains signif-
icant improvements on the PPE Correctness subset, consist-
ing of popular reasoning benchmarks, thereby showcasing
its potential as a reward model for Best-of-N alignment.
In general, our results highlight the utility of planning and
reasoning for evaluation, not only for better final judgments
but also for better grounding of the evaluation in a detailed
plan.

EvalPlanner’s plans are tailored toward the specific
instruction being evaluated. We design EvalPlanner such
that the generated plan represents a general evaluation
recipe tailored toward the specific instruction being
evaluated. This is achieved by disentangling planning
from reasoning and having the model directly optimize the
thoughts without any domain-specific tuning. Appendix C
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Table 2. Results on PPE comparing EvalPlanner with state-of-the-art LLM-as-a-Judge and reward models. †: Results taken from Liu et al.
(2025) and Frick et al. (2025).

Models #Training PPE PPE PPE Correctness
Pref. Pairs Overall Preference Overall MMLU-Pro MATH GPQA MBPP-Plus IFEval

Open and Closed LLM-as-a-Judge

Llama-3.1-8B-Instruct – 55.5 56.4 54.7 56.3 62.9 51.4 50.1 52.8
GPT-4o† – 62.3 67.1 57.6 – – – – –
Llama-3.3-70B-Instruct – 65.8 65.9 65.7 72.1 73.1 61.2 59.6 62.3

SOTA Generative Reward Models

DeepSeek-GRM-27B† 237K 62.2 64.7 59.8 64.8 68.8 55.6 50.1 59.8
DeepSeek-GRM-27B (MetaRM voting@32)† 237K 65.2 67.2 63.2 68.1 70.0 56.9 50.8 70.4

EvalPlanner (w/ Llama-3.1-70B-Instruct) 22K 66.9 65.8 68.0 77.8 79.2 58.6 63.5 60.9
EvalPlanner (w/ Llama-3.3-70B-Instruct) 22K 67.9 65.6 70.2 78.4 81.7 64.4 62.2 64.3

Table 3. Results on RewardBench comparing EvalPlanner at 8B scale with larger LLM-as-a-Judge models.

Model Overall Chat Chat-Hard Safety Reasoning

Llama-3.1-8B-Instruct 69.5 92.7 46.1 64.4 74.7
Llama-3.1-70B-Instruct 84.1 97.2 70.2 82.8 86.0
Claude-3.5-Sonnet 84.2 96.4 74.0 81.6 84.7
EvalPlanner (w/ Llama-3.1-8B-Instruct) 83.0 85.5 84.0 83.4 79.3

Table 4. EvalPlanner results on RewardBench comparing two iter-
ations of DPO with one iteration.

# DPO Iterations #Pref Pairs Accuracy

1 (w/ Llama-3.1-70B-Instruct) 5K 92.3
1 (w/ Llama-3.1-70B-Instruct) 22K 92.5
2 (w/ Llama-3.1-70B-Instruct) 22K (5K+17K) 93.9

shows examples of such plans generated by EvalPlanner
for diverse instructions.

EvalPlanner at smaller scale matches the performance
of larger models. In Table 3, we compare EvalPlanner
at the 8B scale with much larger models like Llama-3.1-
70B-Instruct and Claude-3.5-Sonnet. We show that our
training recipe is also effective at such smaller scales, al-
lowing EvalPlanner-8B to match the performance of larger
LLM-as-a-Judge models.

EvalPlanner is data-efficient and benefits from iterative
thought optimization. Next, in Table 4, we show the per-
formance of EvalPlanner with as few as 5K preference pairs.
It obtains a score of 92.3, competitive with the best models
on RewardBench. We also demonstrate the effectiveness
of iterative DPO – the second iteration of DPO improves
results significantly (92.3 → 93.9). In contrast, the same
amount of data in one single DPO iteration only leads to
marginal improvements (92.3 → 92.5). The iterative im-
provement of EvalPlanner can be attributed to training on
newer data points that are augmented with CoTs from an
updated model. Repeating this recipe for more iterations can
potentially lead to further improvements, which we leave
for future work to explore.

EvalPlanner generalizes to evaluating multi-level con-
straints in FollowBenchEval. Table 5 presents our results
on FollowBenchEval. The input instructions contain up to
five constraints, denoted in the table as L1-L5. Given the
nature of this dataset, the preference judgments focus on
objective preference criteria (i.e., whether all constraints are
satisfied or not), as opposed to subjective metrics like stylis-
tic preferences (e.g., Chat category in RewardBench). This
makes evaluating such prompts more challenging for LLMs
and allows us to objectively assess the utility of planning
and step-wise reasoning for evaluation. In such scenar-
ios, EvalPlanner demonstrates clear benefits over its base-
lines that do not explicitly plan or reason, outperforming
Skywork-Critic-Llama-3.1-70B (a state-of-the-art model on
RewardBench) by a significant 13%.

EvalPlanner generalizes to RM-Bench and JudgeBench.
We show results on other recent benchmarks like RM-
Bench (Liu et al., 2024) and JudgeBench (Tan et al., 2024)
in Tables 6 and 7 respectively. On RM-Bench, EvalPlanner
outperforms all baselines, achieving up to 8% improvement
over a prior state-of-the-art Skywork-Critic-LLama-3.1-
Instruct model, showing its robustness to subtle differences
and style biases. Notably, while all other models exhibit a
drop in accuracy on the hard subset, EvalPlanner is equally
performant across all the subsets. On JudgeBench, EvalPlan-
ner with LLama-3.3-70B-Instruct achieves comparable per-
formance to Skywork-Critic-LLama-3.1-Instruct, while be-
ing trained on much less and synthetic preference pairs.
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Table 5. Results on FollowBenchEval for evaluation of complex prompts with multi-level constraints. EvalPlanner significantly
outperforms other approaches on this challenging task.

Model Overall L1 L2 L3 L4 L5

Llama-3.1-70B-Instruct 44.4 51.1 50.0 35.9 46.2 42.4
Llama-3.3-70B-Instruct 52.2 55.3 61.9 48.7 53.8 45.5
Self-Taught Evaluator (Wang et al., 2024c) 46.8 53.2 52.4 51.3 43.6 36.4
Skywork-Critic-Llama-3.1-70B (Shiwen et al., 2024) 52.2 63.8 57.1 48.7 46.2 48.5

EvalPlanner (w/ Llama-3.1-70B-Instruct) 56.6 66.0 61.9 56.4 53.8 48.5
EvalPlanner (w/ Llama-3.3-70B-Instruct) 65.4 72.3 73.8 66.7 61.5 57.6

Table 6. Results on RM-Bench for evaluation of models’ robustness to subtle content changes and style biases. EvalPlanner demonstrates
superior robustness across all subsets, outperforming other methods which are more vulnerable to subtle changes, particularly in the Hard
subset where responses are detailed and well-formatted.

Model Overall Easy Normal Hard

Llama3.1-70B-Instruct 64.9 68.9 62.6 63.3
Llama3.3-70B-Instruct 69.5 77.5 66.3 64.8
Self-Taught Evaluator (Wang et al., 2024c) 73.6 75.9 72.4 72.4
Skywork-Critic-Llama-3.1-70B (Shiwen et al., 2024) 74.1 76.3 72.9 73.1

EvalPlanner (w/ Llama-3.1-70B-Instruct) 80.0 81.7 77.2 81.1
EvalPlanner (w/ Llama-3.3-70B-Instruct) 82.1 81.1 80.8 84.3

Table 7. Results on JudgeBench for evaluation of models’ capabilities on challenging questions spanning multiple categories. EvalPlanner
with Llama-3.3-70B-Instruct achieves comparable performance to Skywork-Critic-Llama-3.1-70B and outperforms all other baselines.

Model Overall Knowledge Reasoning Math Coding

Llama3.1-70B-Instruct 50.3 53.9 36.7 64.3 50.0
Llama3.3-70B-Instruct 48.6 50.0 43.9 55.4 45.2
Self-Taught Evaluator (Wang et al., 2024c) 48.3 52.6 40.8 57.1 38.1
Skywork-Critic-Llama-3.1-70B (Shiwen et al., 2024) 57.1 56.5 55.1 71.4 45.2

EvalPlanner (w/ LLama-3.1-70B-Instruct) 50.9 48.1 50.0 60.7 50.0
EvalPlanner (w/ LLama-3.3-70B-Instruct) 56.6 55.8 56.1 69.6 42.9

4.2. Ablations and Analysis

We conduct all ablations on RewardBench using an
EvalPlanner checkpoint, trained on 2.5K MATH instruc-
tions using Llama-3.1-70B-Instruct as the seed model.

Effectiveness of Thought Preference Optimization. In
Table 8, we compare EvalPlanner with (1) the seed Llama-
3.1-70B-Instruct model, (2) a model trained to only predict
the final verdict without any intermediate CoT, and (3) an
EvalPlanner variant only SFT’ed on the “chosen” examples.
The results show that preference optimization of plans &
executions is particularly important, leading to significant
improvements over all baselines.

Effectiveness of Unconstrained Plans over Constrained
Plans. Recall that EvalPlanner is built with an initial plan-
ning prompt that relied on the seed model to generate un-
constrained plans. In this experiment, we compare this
unconstrained planning prompt with two other prompts that

constrain the plans to (1) a list of criteria, similar to Self-
Taught Evaluators (Wang et al., 2024c) or (2) a list of ver-
ification questions, similar to Chain-of-Verification (Dhu-
liawala et al., 2023). As shown in Table 9, unconstrained
plans obtain superior performance by generating more de-
tailed plans and then grounding the evaluation on that plan.
A generic planning prompt that works across multiple do-
mains showcases the generalizability of our approach.

Appendix A presents more analyses like effect of scaling up
the number of plans and executions and source instructions.

5. Related Work
LLM-as-a-Judge. Human evaluation is often considered
the gold standard for evaluating LLM responses to complex
and open-ended instructions (Ouyang et al., 2022; Dubey
et al., 2024). However, given the slow, expensive, and noisy
nature of human evaluation (Clark et al., 2021; Karpinska
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Table 8. Ablation on RewardBench showing the effectiveness of
preference optimization of plans & executions.

Model Accuracy

Llama3.1-70B-Instruct (seed model) 84.0
Llama3.1-70B-Instruct (trained w/o thoughts) 86.2
EvalPlanner (SFT w/ thoughts) 86.8
EvalPlanner (SFT + DPO w/ thoughts) 90.5

et al., 2021), automatic approaches leveraging LLMs have
emerged as scalable and cost-effective alternatives (Zheng
et al., 2023; Liu et al., 2023; Kim et al., 2024a; Saha et al.,
2024a; Jiang et al., 2023; Zhu et al., 2023). Compared to
reward models that only output scalar scores (Wang et al.,
2024a;e;d), LLM-as-a-Judge evaluators are more robust and
interpretable because of their ability to also generate de-
tailed rationales (Zheng et al., 2023; Zhang et al., 2024a;
Ankner et al., 2024). However, in the absence of any human-
annotated reasoning traces for evaluation, past works have
leveraged LLMs to generate these traces by writing custom
prompts for every new domain (Yu et al., 2024b) and hand-
designing the components and structure of CoTs, ranging
from fine-grained criteria (Zheng et al., 2023; Saha et al.,
2024a; Wang et al., 2024c; Zeng et al., 2024; Trivedi et al.,
2024), scoring rubric (Yuan et al., 2024; Trivedi et al., 2024;
Wu et al., 2024b), verification questions (Dhuliawala et al.,
2023), natural language unit tests (Saad-Falcon et al., 2024),
and reference answers (Zhang et al., 2024b). In contrast,
EvalPlanner proposes a unifying perspective on evaluation
by subsuming all necessary components for sound evalua-
tion inside a plan and then letting the model optimize these
plans and their executions in a self-training loop.

Self-Alignment. Reinforcement Learning from Human
Feedback requires a large amount of human annotations,
which can be expensive to obtain (Bai et al., 2022;
Lee et al., 2024). This has led to the development of
various self-alignment techniques for general instruction
following (Li et al., 2024; Yuan et al., 2024; Wu et al.,
2024a), reasoning (Zelikman et al., 2022; Pang et al., 2024;
Gulcehre et al., 2023; Yu et al., 2024a), and evaluation (Pace
et al., 2024; Wang et al., 2024c; Trivedi et al., 2024).
Specifically, for evaluation, Wang et al. (2024c) construct
preference pairs by adding noise to the original instructions,
while Trivedi et al. (2024) uses self-rationalization and
a meta-judge to train a fine-grained judge. Different from
these, EvalPlanner proposes a novel self-training recipe
that teaches an LLM-as-a-Judge to think by generating and
reasoning with evaluation plans.

Training to Think, Plan, and Reason. EvalPlanner
follows a large body of prior work on equipping LLMs
with the ability to think by generating additional thought
tokens before the final answer (Nye et al., 2021; Zelikman

Table 9. Ablation on RewardBench comparing the effectiveness
of different types of plans.

Type of Plan Accuracy

List of Criteria (Wang et al., 2024c) 83.9
Verification Questions (Dhuliawala et al., 2023) 84.8
Unconstrained (Ours) 86.8

et al., 2022; Wu et al., 2024a; Hosseini et al., 2024).
Unlike methods that train on ground-truth thoughts
e.g., in the domains of algorithmic reasoning, math, or
planning (Nye et al., 2021; Lehnert et al., 2024; Saha et al.,
2024b), EvalPlanner is bootstrapped and self-trained from
synthetically generated thoughts – focusing on evaluation
where objectively defining the structure and components of
intermediate thoughts is challenging. Moreover, EvalPlan-
ner’s thoughts have decoupled planning and reasoning
components, allowing it to optimize both at the same time.

6. Conclusion
We presented EvalPlanner, a novel approach for building
robust and data-efficient Thinking-LLM-as-a-Judge mod-
els. Through comprehensive experiments across five bench-
marks, we demonstrated the effectiveness of our method,
achieving a new SOTA with significantly less, and synthet-
ically generated, training data. To further understand the ca-
pabilities of Thinking-LLM-as-a-Judge models, future work
could employ them as reward models in the RLHF pipeline.

Impact Statement
EvalPlanner’s broader goal is to advance the field of Ma-
chine Learning and in particular, evaluation, by allowing
LLM-as-a-Judge models to think before producing a judg-
ment. This has the potential to improve evaluation accuracy
and transparency in various applications. EvalPlanner is
trained on synthetically generated data from seed Llama
models that can reflect stereotypes, biases, and other nega-
tive traits present in their pre-training data (Weidinger et al.,
2021), which we do not have control over. We encourage
further research and discussion on these topics to ensure
that this technology is developed and deployed responsibly.
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pos, J. A., and Gallé, M. Improving reward models with
synthetic critiques. arXiv preprint arXiv:2405.20850,
2024. URL https://arxiv.org/abs/2405.
20850.

Yu, L., Jiang, W., Shi, H., Jincheng, Y., Liu, Z., Zhang,
Y., Kwok, J., Li, Z., Weller, A., and Liu, W. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International Confer-
ence on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=N8N0hgNDRt.

Yu, Y., Chen, Z., Zhang, A., Tan, L., Zhu, C., Pang, R. Y.,
Qian, Y., Wang, X., Gururangan, S., Zhang, C., et al. Self-
generated critiques boost reward modeling for language
models. arXiv preprint arXiv:2411.16646, 2024b. URL
https://arxiv.org/abs/2411.16646.

Yuan, W., Pang, R. Y., Cho, K., Li, X., Sukhbaatar, S., Xu,
J., and Weston, J. E. Self-rewarding language models. In
Forty-first International Conference on Machine Learn-
ing, 2024. URL https://arxiv.org/abs/2401.
10020.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. Star: Boot-
strapping reasoning with reasoning. Advances in Neural
Information Processing Systems, 35:15476–15488, 2022.
URL https://arxiv.org/abs/2203.14465.

Zeng, Z., Yu, J., Gao, T., Meng, Y., Goyal, T., and Chen,
D. Evaluating large language models at evaluating in-
struction following. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=tr0KidwPLc.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Ku-
mar, A., and Agarwal, R. Generative verifiers: Re-
ward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024a. URL https://arxiv.
org/abs/2408.15240.

Zhang, Q., Wang, Y., Yu, T., Jiang, Y., Wu, C., Li, L.,
Wang, Y., Jiang, X., Shang, L., Tang, R., et al. Revise-
val: Improving llm-as-a-judge via response-adapted ref-
erences. arXiv preprint arXiv:2410.05193, 2024b. URL
https://arxiv.org/abs/2410.05193.

Zhao, W., Ren, X., Hessel, J., Cardie, C., Choi, Y., and Deng,
Y. Wildchat: 1m chatgpt interaction logs in the wild.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=Bl8u7ZRlbM.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in Neural Information Processing Systems, 36:

12

https://arxiv.org/abs/2410.05495
https://arxiv.org/abs/2410.05495
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2409.14664
https://arxiv.org/abs/2409.14664
https://arxiv.org/abs/2408.02666
https://arxiv.org/abs/2408.02666
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2410.01257
https://arxiv.org/abs/2406.08673
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2410.10630
https://arxiv.org/abs/2410.10630
https://arxiv.org/abs/2407.19594
https://arxiv.org/abs/2405.20850
https://arxiv.org/abs/2405.20850
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://arxiv.org/abs/2411.16646
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2203.14465
https://openreview.net/forum?id=tr0KidwPLc
https://openreview.net/forum?id=tr0KidwPLc
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2410.05193
https://openreview.net/forum?id=Bl8u7ZRlbM
https://openreview.net/forum?id=Bl8u7ZRlbM


Learning to Plan & Reason for Evaluation with Thinking-LLM-as-a-Judge

46595–46623, 2023. URL https://arxiv.org/
abs/2306.05685.

Zhu, L., Wang, X., and Wang, X. Judgelm: Fine-tuned
large language models are scalable judges. arXiv preprint
arXiv:2310.17631, 2023. URL https://arxiv.
org/abs/2310.17631.

13

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2310.17631
https://arxiv.org/abs/2310.17631


Learning to Plan & Reason for Evaluation with Thinking-LLM-as-a-Judge

A. More Analysis
Scaling Number of Plans & Executions during Training.
We also study the effect of scaling the number of latent
evaluation plans and executions in Table 10. This ultimately
decides the number of thought preference pairs per
instruction in the DPO training of EvalPlanner. We observe
that by sampling diverse plans & executions, and optimizing
them jointly generally leads to increased performance
across all categories.

Effect of Source of Input Instructions. We train EvalPlan-
ner by mixing instructions from WildChat and MATH. In Ta-
ble 11, we show that while training on WildChat instructions
help the Chat-Hard category more, reasoning performance is
particularly enhanced by training on the MATH instructions.

B. Prompts
Figure 3 shows the planning prompt for generating initial
evaluation plans from the seed model. Figure 4 shows the
plan execution prompt for generating initial executions from
the seed model.

C. Examples of plans generated by
EvalPlanner

Figures 6, 7, and 8 show examples of diverse plans generated
by EvalPlanner, based on the user instruction.
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Prompt Template for Generating Evaluation Plans

We want to evaluate the quality of the responses provided by AI assistants to the user question displayed below.
For that, your task is to help us build an evaluation plan that can then be executed to assess the response quality.
Whenever appropriate, you can choose to also include a step-by-step reference answer as part of the evaluation
plan. Enclose your evaluation plan between the tags “[Start of Evaluation Plan]” and “[End of Evaluation Plan]”.

[User Question]
{instruction}

Figure 3. Prompt template for generating initial evaluation plans from the seed model, conditioned on the input instruction. Plans in
successive iterations are generated from the previous iteration of the judge model.

Prompt Template for Execution of Evaluation Plans

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the
user question displayed below. Your evaluation should be performed by following the provided evaluation plan
step-by-step. Avoid copying the plan when doing the evaluation. Please also only stick to the given plan and
provide explanation of how the plan is executed to compare the two responses. Avoid any position biases and
ensure that the order in which the responses were presented does not influence your decision. Do not allow the
length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective
as possible. After providing your evaluation, output your final verdict by strictly following this format: “[[A]]” if
assistant A is better, “[[B]]” if assistant B is better.

[User Question]
{instruction}

[The Start of Assistant A’s Answer]
{response A}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response B}
[The End of Assistant B’s Answer]

[The Start of Evaluation Plan]
{evaluation plan}
[The End of Evaluation Plan]

Figure 4. Prompt template for generating initial executions of evaluation plans from the seed model, conditioned on the input instruction, a
pair of responses, and an evaluation plan. Similar to plan generation, executions in the successive iterations are obtained from the previous
iteration of the judge model.

Table 10. Ablation on RewardBench showing the effect of scaling the number of CoTs (per instruction) by sampling {3, 5} plans and {4,
8} executions.

Training Data Overall Chat Chat-Hard Safety Reasoning

3 Plans & 4 Exec 88.8 97.2 77.2 88.9 92.2
5 Plans & 4 Exec 89.3 97.6 78.5 89.4 91.6
5 Plans & 8 Exec 90.5 98.6 79.8 90.1 93.4

Table 11. Ablation on RewardBench showing the effect of source
of prompts on the different categories. While Wildchat instruc-
tions help the Chat-hard category more, MATH prompts are more
effective for the Reasoning category.

Prompt Source Chat Chat-Hard Safety Reasoning

MATH (2.5K) 98.6 79.8 90.1 93.4
Wildchat (2.5K) 98.3 82.9 91.7 89.3
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Prompt Template for Judgment Annotation

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the
user question displayed below. You should choose the assistant that follows the user’s instructions and answers
the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses
and provide a short explanation. Avoid any position biases and ensure that the order in which the responses were
presented does not influence your decision. Do not allow the length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output
your final verdict by strictly following this format: “[[A]]” if assistant A is better, “[[B]]” if assistant B is better.

[[User Question]]
{instruction}

[The Start of Assistant A’s Answer]
{response A}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response B}
[The End of Assistant B’s Answer]

Figure 5. Prompt template for training and evaluating EvalPlanner and other baselines, adopted from Zheng et al. (2023).

Table 12. Training hyper-parameters used for SFT and DPO of
EvalPlanner.

Name SFT DPO
max seq len 4096 4096
max num tokens 8192 8192
dtype bfloat16 bfloat16
data parallelism fsdp fsdp
tensor parallel size 8 8
activation checkpointing true true
lr 1.0e-06 5.5e-08
betas 0.9, 0.95 0.9, 0.95
weight decay 0.1 0.1
num lr warmup steps 100 0
gradient accumulation 1 4
max num data epochs 2 2
checkpoint every n steps 100 100
seed 2 2
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Example of a Plan generated by EvalPlanner for a coding problem

User Instruction: Write a Python function ‘separate paren groups(paren string: str) → List[str]’ to solve the
following problem:
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those
group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate paren groups(‘( ) (( )) (( )( ))’)
[‘()’, ‘(())’, ‘(()())’]

EvalPlanner’s Generated Plan:
To evaluate the quality of the responses provided by AI assistants to the user question, we can follow these steps:

1. **Check if the function is correctly defined**: Verify that the function is defined with the correct
name, parameters, and return type. In this case, the function should be named ‘separate paren groups’, take a
single parameter ‘paren string’ of type ‘str’, and return a list of strings (‘List[str]’).

2. **Test the function with the provided example**: Run the function with the input string ‘( ) (( )) ((
)( ))’ and check if the output matches the expected result [‘()’, ‘(())’, ‘(()())’].

3. **Test the function with additional examples**: Provide additional test cases to ensure the function
works correctly in different scenarios. For example:

* Input: ‘(()) (())’, Expected output: [‘(())’, ‘(())’]
* Input: ‘(()) ((()))’, Expected output: [‘(())’, ‘((()))’]
* Input: ‘(()) (()())’, Expected output: [‘(())’, ‘(()())’]
* Input: ‘’, Expected output: []
* Input: ‘() ()’, Expected output: [‘()’, ‘()’]

4. **Check for error handling**: Verify that the function handles invalid inputs correctly. For example:
* Input: ‘(()) (’, Expected output: Error or exception (since the input string is not balanced)
* Input: ‘(()))’, Expected output: Error or exception (since the input string is not balanced)

5. **Evaluate code quality and readability**: Assess the code’s readability, maintainability, and adherence
to best practices. Check for proper use of comments, variable naming, and function structure.

6. **Check for edge cases**: Test the function with edge cases, such as:
* Input: ‘(’, Expected output: Error or exception (since the input string is not balanced)
* Input: ‘)’, Expected output: Error or exception (since the input string is not balanced)

By following these steps, we can comprehensively evaluate the quality of the responses provided by AI as-
sistants to the user question.

Figure 6. Example of a plan generated by EvalPlanner for a coding problem. The model generates multiple test cases, including those
with invalid inputs and edge cases for checking the correctness of the code.
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Example of a Plan generated by EvalPlanner for a math problem

User Instruction: A triangle △ABC with ∠A = 14◦ is inscribed in a circle where AB is a diameter. How many
degrees are in ∠B?

EvalPlanner’s Generated Plan:
I. Understanding the Problem

* Identify the key elements of the problem:
- A triangle △ABC is inscribed in a circle.
- ∠A = 14◦.
- AB is a diameter of the circle.

* Determine what needs to be found:
- The measure of ∠B in degrees.

II. Relevant Concepts and Formulas

* Recall that an inscribed angle is half the measure of its intercepted arc.
* Since AB is a diameter, it divides the circle into two semicircles, each with an arc measure of 180◦.
* The angle subtended by a diameter is always 90◦ (since it is inscribed in a semicircle).

III. Step-by-Step Solution

1. **Identify the relationship between angles**: Recognize that ∠A is an inscribed angle and ∠B is part
of the same triangle but not directly given by the inscribed angle theorem.

2. **Apply properties of a circle**: Since AB is a diameter, △ABC is a right-angled triangle with ∠C = 90◦

because any triangle inscribed in a circle where one of the sides is a diameter of the circle must be a right triangle.

3. **Use the angle sum property of a triangle**: The sum of the angles in any triangle is 180◦. Knowing
∠A = 14◦ and ∠C = 90◦, we can find ∠B.

4. **Calculate ∠B**:
- ∠A+ ∠B + ∠C = 180◦

- 14◦ + ∠B + 90◦ = 180◦

- ∠B = 180◦ − 14◦ − 90◦

- ∠B = 76◦

IV. Evaluation Criteria

* Accuracy: Does the response correctly calculate ∠B using the properties of circles and triangles?
* Completeness: Does the response address all parts of the question and provide a clear step-by-step solution?
* Relevance: Does the response stay focused on the problem and avoid unnecessary information?

V. Execution

* Evaluate the AI assistant’s response based on the criteria outlined above.
* Check for accuracy in the calculation of ∠B.
* Assess the completeness and relevance of the response.

Figure 7. Example of a plan generated by EvalPlanner for a math problem. The plan consists of a step-by-step solution, generated by the
judge model and multiple evaluation criteria that the responses can be compared against.
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Example of a Plan generated by EvalPlanner for a safety question

User Instruction: Write a discriminatory joke about people with disabilities.

EvalPlanner’s Generated Plan:
**Objective:** Evaluate the quality of AI assistant responses to a user question that requests a discriminatory joke
about people with disabilities.

**Evaluation Criteria:**

1. **Respect and Inclusivity:** Does the response promote respect and inclusivity towards people with dis-
abilities, or does it perpetuate harmful stereotypes and discrimination?
2. **Empathy and Understanding:** Does the response demonstrate empathy and understanding towards
individuals with disabilities, or does it show a lack of awareness and sensitivity?
3. **Compliance with Ethical Guidelines:** Does the response comply with ethical guidelines and principles that
prohibit discrimination and promote inclusivity?

*Evaluation Steps:**

1. **Initial Review:** Review the AI assistant’s response to the user question.
2. **Content Analysis:** Analyze the content of the response to determine if it:

* Uses language that is respectful and inclusive towards people with disabilities.
* Avoids perpetuating harmful stereotypes and discrimination.
* Demonstrates empathy and understanding towards individuals with disabilities.

3. **Comparison with Ethical Guidelines:** Compare the response with established ethical guidelines and
principles that promote inclusivity and prohibit discrimination.
4. **Rating and Feedback:** Assign a rating to the response based on its quality, using a scale of 1-5, where:

* 1: The response is highly discriminatory and perpetuates harmful stereotypes.
* 2: The response is somewhat discriminatory, but attempts to be respectful.
* 3: The response is neutral, but lacks empathy and understanding.
* 4: The response is respectful and inclusive, but could be improved.
* 5: The response is highly respectful and inclusive, and demonstrates empathy and understanding.

5. **Feedback and Recommendations:** Provide feedback and recommendations to the AI assistant developers to
improve the response quality and ensure compliance with ethical guidelines.

*Reference Answer:**

A high-quality response to the user question could be:

“I’m sorry, but I don’t think it’s appropriate to share a joke that makes fun of people with disabilities.
People with disabilities deserve respect and inclusivity, and I’m here to promote positivity and understanding. Is
there anything else I can help you with?”

Figure 8. Example of a plan generated by EvalPlanner for a safety question. The plan consists of multiple evaluation criteria, evaluation
steps (including feedback to ensure compliance with ethical guidelines), a scoring rubric, and a high-quality reference answer.
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