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Abstract

Early-Exit Deep Neural Networks enable adaptive inference by allowing prediction
at intermediary layers, significantly reducing computational costs and latency. Most
of the early exit strategies greedily exit a sample at an intermediary layer if the
confidence in class prediction exceeds a predefined threshold that is set using a
static validation set. This is problematic as the model might be overconfident
in a wrong class. Also, they are not robust to distribution shifts encountered in
deployment, which can undermine model trustworthiness and accuracy. To address
these challenges, we propose UAT that adapts the threshold for exit decisions using
a Multi-Armed Bandit framework, enabling online, unsupervised adjustment of
exit decisions. UAT makes decisions based on a new reward function that assesses
predictive certainty and its reliability to balance computational efficiency and
prediction quality while penalizing unnecessary late exits. We provide guarantees
on risk achieved by UAT and validate its performance on diverse tasks spanning
vision-language understanding, text generation, and classification. Our framework
demonstrates consistent improvements in speedup (1.70− 2.10×) with a minimal
performance drop (< 2%) as compared to full model performance. Our source
code is available at https://github.com/Div290/UAT.

1 Introduction

As Deep Neural Networks (DNNs) continue to scale in size and complexity, the cost of inference has
become a major bottleneck—manifesting as increased latency, higher energy consumption, and a
growing carbon footprint [37, 39]. These challenges highlight the need for efficient and sustainable
deployment strategies for large models. Moreover, real-world environments often impose dynamic
computational constraints, driven by resource scarcity or energy availability [40]. To remain practical
and responsive, modern DNNs must adapt computational load in real time and consume resources as
much as necessary, as per the complexity of the samples.

Early-Exit DNNs (EEDNNs) [47] offer a compelling solution for adaptive inference under dynamic
computational constraints. EEDNNs can produce intermediate predictions at various depths of the
DNN, allowing the network to ‘exit’ the sample early without passing it through all the layers.
This mechanism enables dynamic resource utilization and significantly reduces computation and
inference latency. This makes EEDNNs well-suited for deployment under resource constraints across
diverse domains, including computer vision [47, 4, 29], natural language processing [12, 9], and
vision-language systems [46]. However, this flexibility comes at a cost: initial layers are more prone
to making riskier predictions, which degrade the trust in the model [36]. Consequently, EEDNNs
face a fundamental trade-off—balancing efficiency gains against potential degradation in predictive
accuracy [30]. This trade-off is governed by the exit decisions that are crucial in EEDNNs.
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In existing methods, the decision to exit depends on two variables: confidence and threshold.
Confidence is usually defined as the entropy of the prediction [50], prediction consistency [52],
or ensemble methods [8, 49]. Threshold is a value against which confidence is compared. If the
confidence value exceeds the threshold, the model is considered confident enough, and the sample is
allowed to exit without further processing (early exit). However, there are some crucial concerns in
existing methods: 1) The confidence is not a reliable metric as the model may get overly confident
at the initial layers on a wrong class, making the sample exit with an incorrect label [36]. Fig. 1
discussed in the Appendix 5.1 shows this phenomenon, where a large number of samples can exit
from the intermediary layer with high confidence on the wrong class. 2) The threshold to make an
exit decision is precomputed using a small validation set, assuming it generalizes well to the inference
dataset distribution. But this assumption does not hold in real-world conditions, where distribution
shifts are common. This defeats the goal of low-risk and reliable inference and necessitates the need
for an improved strategy that incorporates the reliability of model output in the confidence metric and
dynamically adjusts thresholds as per the input data distributions.

During inference, the data arrives in an online fashion. Hence, the exit decisions need to be adapted
in an online and unsupervised manner (a quality also critical for zero-shot tasks). To address these
challenges, we introduce a novel framework for dynamic threshold adaptation in EEDNNs, aimed
at optimizing the trade-off between prediction performance and computational costs. In contrast to
existing methods that rely on confidence at an intermediary layer exceeding a fixed threshold, our
early exit strategy uses a confidence metric that accounts not only for the model’s predictive certainty
but also the reliability of that certainty.

We derive an exit strategy using the Multi-Armed Bandit (MAB) [3] framework, where each arm
represents a candidate exit threshold. The bandit agent aims to learn a threshold that optimizes
a custom reward that involves the confidence metric and a penalty for late exits to discourage
unnecessary computation. We theoretically prove that optimizing this metric aligns with maximizing
the true class probability, providing a principled foundation for early-exit decisions.

Our framework promotes efficient inference without compromising performance, and we demonstrate
its effectiveness across diverse tasks, including vision-language understanding (e.g., image captioning
[34], VQA [20]), text generation (e.g., summarization [25], QA [38]), and classification (e.g., NLI,
sentiment analysis [48]). In summary, our contributions are as follows:

• We introduce the notion of reliability scores on the confidence of the early exit output to
improve the trustworthiness of EEDNNs.

• We propose a dynamic early exit framework that adapts to distributional changes at test time,
enhancing both efficiency and robustness in EEDNNs.

• We apply the bandit framework to learn the optimal strategy. We develop an upper
confidence-based algorithm and establish a theoretical bound on the risk achieved by it.

• We validate our approach on a broad set of tasks, demonstrating consistent gains in both
computational efficiency and predictive accuracy.

2 Related works

Early Exit methods have been applied to various tasks such as image classification, text classification,
text generation and vision language tasks to reduce the computational latency and inference latency.
Below, we discuss some of the works on risk control in EEDNNs.

Early Exits: BranchyNet [47] first proposed the early exit method for image classification tasks. It
uses classification entropy as a confidence metric. Shallow-deep [32] and MSDNet [29] improve
upon BranchyNet by effectively choosing the thresholds based on the confidence threshold. ZTW
[49], JEI-DNN [18] and BEEM [8] propose different methods for assessing the confidence. ZTW
uses multiple classifiers to decide exiting, JEI-DNN learns a gating function during training to decide
exiting, while BEEM builds a confidence measure using ensemble methods. DeeCAP [24], MuE
[46], CapEEN[5] and FREE [10] implement early exits to vision language tasks.

For the Language tasks, and specifically in Large Language Models (LLMs), the EE methods have
been popular [11, 15, 35, 13, 45, 21, 27, 14, 44, 31]. DeeBERT [50] first applied it to the BERT model.
Later, PABEE [52] developed a patience-based method to decide exiting. BERxiT [51] proposes an

2



efficient fine-tuning strategy for EE-based models. LeeBERT [53] performs self-distillation between
exits to effectively share the knowledge across layers with exits. ETFEE [31] adds an adapter on top
of the transformer layer and an entangled frame classifier to make exits learn better. CeeBERT [6]
and DAdEE [7] provide methods to adapt the EEDNN to various domains. CALM [41] extends the
idea of EEs to language generation tasks.

Risk in EEDNNs: As EEDNNs consist of multiple exit classifiers, the initial layers of the EEDNNs
with low-level features might leave the sample at risk. EERC [30] shows that the threshold, if chosen
properly, can also minimise the risk of EEDNNs. MIE-LAP [36] addresses the overconfidence in
EEDNNs by uncertainty quantification. It proposes an approach for uncertainty-aware decision-
making by leveraging the last layer Laplace approximation implementation.

While existing early-exit approaches determine a fixed confidence threshold using a validation set
and apply it uniformly during inference, this static strategy often permits overconfident yet incorrect
predictions to exit prematurely. In contrast, our method introduces three key innovations: 1) Dynamic
adaptation to test-time distribution: We tailor the exit decisions based on the distributional
characteristics of the test data. 2) Confidence calibrated by reliability: Instead of maximizing
the raw confidence scores, we explicitly account for their reliability, leading to more robust exit
decisions. 3) System-level risk modeling: Rather than comparing early exits against the final layer’s
predictions, we model the overall risk of the complete system, enabling our method to potentially
surpass the performance of the base DNN itself, an important limitation overlooked by prior work.

3 Preliminaries

Consider the input-output space denoted as X × Y . A sample, denoted (x, y), is drawn from an
underlying probability distribution P . For classification tasks, the label space is given by Y =
{1, 2, . . . ,K}, whereas for regression, the output set is a subset of Rd.

3.1 The Notion of Risk

In statistical modeling, risk control mechanisms [2, 16] enhance the reliability of predictive models
by imposing constraints on threshold-based decision processes. Let Ω denote a finite set of thresholds.
Consider a model fτ parameterized by a threshold τ ∈ Ω, which outputs a set of predictions based
on confidence levels. For a classification task, the set-valued predictor fτ : X → 2Y is defined as
fτ (x) = {ŷ ∈ Y | p(ŷ | x) ≥ τ} , where p(ŷ | x) is the probability that model assigns label ŷ to x.
If no class probability exceeds τ , the predictor abstains by returning an empty set (fτ (x) = ∅).
To assess reliability, we define a miscoverage loss that penalizes the exclusion of the true label as
ℓ(fτ (x), y) = 1 [y /∈ fτ (x)] , where 1[·] is the indicator function. The associated risk is the expected
probability of miscoverage:

R(τ) = E(x,y)∼P [ℓ(fτ (x), y)] = E(x,y)∼P [Pr{y /∈ fτ (x)}] .

For a given tolerance, ϵ ∈ (0, 1) and δ ∈ (0, 1), we say that the threshold set Ω̂ controls the risk with
within tolerance ϵ with probability at least 1− δ if

P(R(τ) ≤ ϵ) ≥ 1− δ, ∀τ ∈ Ω̂. (1)

The advantages of risk control frameworks are significant: (i) they require no assumptions on the
data distribution P , making them distribution-free and (ii) they can be applied post-hoc to any model.
These features make them particularly valuable for practical deployment in uncertain environments.

3.2 Early Exit Mechanisms in Deep Neural Networks

Early Exit Deep Neural Networks (EEDNNs) extend the architecture of the DNNs by attaching
Exit Classifiers (ECs) at the intermediate layers. The EC at layer intermediate layer i produces a
probability distribution over Y denoted by pi(·|x) = p(·|x, θi) = ECi(hi) where hi = ϕi(x) is the
hidden representation output by the ith layer of the model with i ∈ {1, 2, . . . , L} and θi is the set
of parameters consisting of the EEDNN parameters till layer i comprising of both ECi and main
model parameters. The final prediction layer, indexed by L, corresponds to the standard DNN where
all layers are utilized for inference. Each ECi estimates the class label as ŷi = argmaxy∈Y p̂i(y|x)
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with a confidence score Ci := Ci(x) = maxy∈Y pi(y|x). Ci measures the certainty associated with
the prediction. However, this confidence might not be very reliable as it provides confidence in the
predicted class, which might be wrong due to overconfident EEDNNs.

During inference, the EEDNN exits from a layer where the confidence of EC exceeds the predefined
threshold τi ∈ [0, 1] for the first time. Following previous works [50, 30], a single global threshold
is considered across all the ECs, i.e., τi = τ for every i ∈ {1, 2, . . . , L}. Then, for a given τ , the
probability that x exits with a label ŷ is given by

pτ (ŷ | x) =
{
pL(ŷ | x), if Ck < τ ∀ k ∈ {1, 2, . . . , L− 1}
pi(ŷ | x) where i = min {k ∈ {1, . . . , L− 1} | Ck ≥ τ} , otherwise

(2)

As the class label assigned by the EEDNNs relies on the confidence score, their reliability is important
for trustworthy predictions. The threshold τ directly influences the balance between computational
cost and model accuracy. Lower values encourage premature exits, reducing computational overhead
but potentially sacrificing performance.

The risk metric defined in the previous subsection can be naturally applied to EEDNNs. As samples
exit if the confidence score exceeds a given threshold, we can associate risk for each threshold and
aim to identify the threshold that yields the least risk. However, the task of the threshold in early exits
is not only limited to minimizing the risk but also reducing the inference latency. Hence, a threshold
that is the smallest from the set Ω̂ is desired. That is, instead of looking for a set Ω̂ that satisfies
Eqn. 1, we aim to identify threshold τ∗ = min{τ ∈ Ω̂}. The proportion of samples that exit earlier
is higher for τ∗ than any other τ in Ω̂.

For a given threshold τ , let pτ (y ̸= ŷ|x) denote the probability that the EEDNNs makes errors on
sample (x, y). Then the risk of the EEDNNs is defined as

R(τ) = E(x,y)∼P [pτ (y ̸= ŷ|x)] .

Our objective is to find a threshold τ for whichR(τ) lies within a given tolerance value with high
probability. The value of τ that meets the requirement is a function of the sample distribution P , and
the distribution seen in real deployment could drift from that of the training samples used to train the
EEDNNs. The best value of τ depends on the distribution of the input sample, and hence needs to
adapt to any drift in the sample distributions. This adaptation requires knowledge of risk. However,
this information cannot be estimated during the inference time as ground truth labels are not available.
To address this challenge, we perform the learning in two stages.

In the first stage, we perform offline training of the EEDNN and a linear layer network that will allow
us to express the risk without knowing the ground truth labels. This training involves estimating the
reliability of the confidence scores output by the exit classifiers. In the second phase, we use this
proxy for risk and learn the best threshold τ by maximizing a reward function using the Multi-Armed
Bandit (MAB) framework. The following Lemma gives a simple relation that we use to obtain a
proxy for a risk function.
Lemma 3.1. Given a threshold τ , let ŷ be the label predicted by EEDNNs on sample (x, y). Define
pτ (y = ŷ|ŷ, x) be the probability that the predicted label is the true label. Then pτ (y = ŷ|x) =
pτ (ŷ|x) · pτ (y = ŷ|x, ŷ)

The proof is straightforward and is given in the Appendix A.1. pτ (y = ŷ|x, ŷ) is the probability
that the model’s prediction is correct. Note that pτ (ŷ|x) can be estimated during inference as it
does not depend on the label. Then, the lemma suggests that we can compute risk by estimating
pτ (y = ŷ|x, ŷ). The next subsection discusses training a neural network to estimate it in an offline
fashion.

3.3 Exit and risk function training

We train a reliability function (neural network) g that assigns a reliability score to the class proba-
bilities output by the exit classifiers. We use a modified loss function that is used to train the exit
classifiers in EEDNNs to train g. In the conventional EEDNNs, the objective at each exit is to
maximize the probability of the correct label using cross-entropy loss. We augment this objective
with the reliability function g. For a sample (x, y) ∼ P , we define a modified loss is as:
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Li = LCE(pi(·|x), y)(1 + g(pi(·|x), i) + Φ(c− ϕ(g)). (3)

The LCE(pi(·|x), y) in the first term is the standard cross-entropy loss that encourages the model
to correctly classify the input. It is multiplied by a factor 1 + g(·), to link the sample-wise loss
with the reliability function g, which estimates the confidence of the model’s prediction. The
minimization of Li causes g to assign high values to samples with low cross-entropy (i.e., correctly
and confidently classified), and low values to those with high loss (i.e., ambiguous or misclassified
samples). Intuitively, this creates a competitive dynamic where g is penalized for activating on
high-loss (uncertain) samples and is incentivized to concentrate its high values on low-loss samples.

When g(·) ≥ 0.5, it indicates that the model output is reliable. ϕ(g) in the second term denotes the
fraction of samples for which the model’s output is reliable. Φ(c − ϕ(g)) acts as a regularizer to
enforce that the model is reliable for at least c fraction of samples. The function Φ(a) = max(0, a)2

penalizes the model when the coverage ϕ(g) falls short of the desired threshold ci. This regularizer
restricts g from giving a trivial solution g ≡ 0, as such a solution would provide no meaningful
discrimination between easy and hard samples. The role of Φ(c− ϕ(g)) is to prevent this collapse by
ensuring that the model is reliable on at least c-fraction of the training samples. c can be a function
of the exit layer that can be chosen based on validation dataset (see Appendix B.2). We empirically
observe that our loss does not impact the model’s predictive performance (see Appendix B.9).

Once trained, g can be used as a proxy for the model’s correctness probability p(y = ŷ | x, ŷ). To
account for the cost associated with deeper exits [32], the final loss across all exits is computed as
a weighted average L =

∑L
i=1 i·Li∑L

i=1 i
, which assigns higher weights to exits at deeper layers where

inference cost is higher.

3.4 Dynamic thresholding during inference

We first describe the MAB setup to dynamically adapt to the threshold during inference. In a MAB
setup, a decision-maker iteratively selects actions, adapting to an unknown environment. The goal is
to identify an action that gives the highest reward. In our setup, the actions are the set of thresholds.

We next define the reward for each threshold. For a given threshold/action τ , let Ci
τ denote the

confidence model has in the predicted class when the sample exits from ECi. We define Ci
g =

1 − g(pi(·|x)) as a score of underlying risk (unreliable) in the confidence score of the model at
ECi. We set 1 − Ci

g as an approximation of pτ (y = ŷ|x, ŷ). Then Lemma 3.1 indicates that the
pτ (y = ŷ|x) can be well approximated as Ci

τ (1− Ci
g) when sample x exits from ECi. However, a

threshold that maximizes Ci
τ · (1− Ci

g) may result in suboptimal efficiency gains as it will penalize
the thresholds that are forcing the sample to move to deeper layers. To account for this fact, we define
reward for a threshold τ ∈ Ω on a sample as follows:

r(τ) =

{
Ci

τ · (1− Ci
g)− ψ(i), if (Ci

τ · (1− Ci
g) ≥ τ) ∩ (i < L)

Ci
τ · (1− Ci

g)− ψ(L), if i = L
(4)

where ψ(·) is a penalty to disincentivize the sample from moving to a deeper layer unnecessarily. In
our setup, we define ψ(i) = λ · i where λ could be interpreted as the processing cost per layer.

The expected reward for arm τ ∈ Ω is E[r(τ)] =
∑L

i=1 E[Ci
τ (1−Ci

g)−λ · i]P (i) where P (i) is the
probability that the sample exits from ith layer and expectation is with respect to the randomness of
confidence and reliability scores. Let τ∗ = argmaxτ∈Ω E[r(τ)] denote the optimal threshold for a
given λ. Now consider a policy π that selects the threshold τt ∈ Ω based on past observations. For a
given number of rounds, the performance of policy π is evaluated using the expected cumulative regret
defined as R(π, T ) =

∑T
t=1 E(r(τ∗)− r(τt)), where the expectation is with respect to randomness

in the selection of thresholds induced by the past sample. A policy π that satisfies R(π, T )/T → 0
is said to be sub-linear and plays most of the time the optimal threshold. Our goal is to develop an
algorithm that is sub-linear and has a small linear component. As we will show later, this translates
to achieving a small empirical risk defined as R̂(π) = 1−

∑T
t=1 pτt (yt=ŷ|xt,ŷt)

T where (xt, yt) is the
input sample, ŷt is the predicted label, and τt is the threshold selection by π in round t.
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4 Algorithm

We develop an algorithm named UAT. Its pseudo-code is given in 1. The inputs to the algorithm are
the exploration constant γ and the penalizing term ψ(i). For the first |Ω| samples, the algorithm plays
each arm once. In the subsequent rounds, it plays arm with the highest Upper Confidence Bound
(UCB) index denoted as τt. UCB indices are obtained by taking the weighted sum of the empirical
average rewards and the confidence bonuses with γ as the weight factor. If Ci

τ (1 − Ci
g) at the ith

layer is greater than τt, then the sample exits; otherwise, the sample is passed to the next layer in the
backbone. If the sample does not exit at any intermediate classifier, then it is inferred at the final layer.
Finally, the algorithm updates the number of pulls (N(τt)) and the empirical mean (Q(τt)) of the
played arm. Note that the algorithm is applied in the inference phase. In Table 6, we empirically show
how different components contribute to the reward function and discuss in Appendix B.1. We also
show in Appendix B.8 that UAT has negligible computational cost. The following result establishes
the average risk achieved by UAT.

Theorem 4.1. Let (1− Ci
g) approximates the value of pτ (ŷ = y|x, ŷ) with probability (1− δ1). Let

the risk associated with τ∗ be bounded by ϵ∗. Then, for sufficiently large T and given tolerance ϵ,
UAT achieves P(R̂(π) ≤ ϵd) ≥ (1− δ1)(1− δ′). where ϵd = ϵ+ ϵ∗, λ ≤ ϵ

L and δ′ is a constant.

The detailed proof is given in the appendix. Note from the theorem that ϵ∗ is equivalent to the full
model risk (that is always there), and the additional risk of EEDNN due to early exits is ϵ. Then
the risk in EEDNN performance is ϵd = ϵ+ ϵ∗. This theorem also suggests that a lower value of λ
can lead to lower risks, which is true based on our reward function. If λ is chosen small, then more
emphasis is given to the Ci

τ (1− Ci
g) value which maximizes p(y = ŷ|x, ŷ). The proof also provides

us a way to fix the λ value, as we want the maximum λ value such that the risk levels are below
ϵ. Hence we choose λ = ϵ

L in this work. This theorem bounds the risk of the EEDNN where the
threshold to decide exiting is chosen based on the policy π given by algorithm 1. Also, observe from
the proof outline that it suggests that the risk of the EEDNN will be greater than ϵ∗, which denotes
the optimal risk. The proof steps also provide the link of risk with the regret.

5 Experiments

In this section, we provide empirical results of our work on various tasks such as text classification,
language modelling and vision language tasks.

Algorithm 1 UCB-based Adaptive Thresholds (UAT)

1: Input: ψ(i), γ ≥ 1
2: Initialize: Play each threshold once. Observe r(τ) and set Q(τ)← 0, N(τ)← 1,∀τ ∈ Ω.
3: for t = |Ω|+ 1, |Ω|+ 2, · · · do
4: Observe an instance xt

5: τt ← argmax
τ∈Ω

(
Q(τ) + γ

√
ln(t)

N(τ)

)
6: for i = 1 to L do
7: Pass xt till layer i and apply threshold τt and observe Sτt = Ci

τt · (1− C
i
g)

8: if Si
τt ≥ τt and i < L then

9: Infer at layer i and exit

10: rt(τt)← Si
τt − ψ(i), Nt(τt)← Nt−1(τt) + 1, Qt(τt)←

∑t
j=1 rj(τj)1{τj=τt}

Nt(τt)

11: break
12: else if i = L then
13: Process and infer at the last layer.

14: rt(τt)← SL
τt − ψ(L)), Nt(τt)← Nt−1(τt) + 1, Qt(τt)←

∑t
j=1 rj(τj)1{τj=τt}

Nt(τt)

15: end if
16: end for
17: end for
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Model/Datasets SST-2 MNLI RTE QNLI QQP SQuAD Speedup
Full model 95.2 86.0 67.7 92.0 72.5 83.0 1.00×

EE models
PABEE 94.8 85.0 67.2 91.1 72.3 82.0 1.53×
ZTW 94.5 85.1 66.9 90.6 72.0 81.7 1.70×
MuE 94.9 85.5 67.3 91.3 72.3 82.2 1.59×
JEI-DNN 95.1 85.6 67.5 91.5 72.2 82.3 1.49×
BEEM 95.4 86.1 67.6 91.9 72.4 82.4 1.79×

Risk-based methods on EE models
CALM 95.5 85.9 67.7 91.6 72.3 82.2 1.39×
MIE LAP 95.3 85.8 67.5 91.7 72.1 81.8 1.45×
EERC 95.0 85.6 67.3 91.5 71.9 81.6 1.50×
Ours 95.8 86.6 68.3 92.4 73.0 83.2 1.85×

Table 1: Results on the BERT-large model showcasing accuracy and average speedup (Speedup).

Summarization QA MT Speedup
Model SamSum CNN Multi-News BIGPAT. SQuAD IWSLT
Full model 48.82 41.15 37.62 49.68 90.63 39.19 1.00×

EE-based methods
PABEE 42.25 37.54 32.97 43.71 87.39 35.80 1.90×
ZTW 43.96 39.07 33.62 45.38 88.02 36.75 1.83×
MuE 43.48 38.11 33.73 45.02 87.53 36.32 1.82×
JEI-DNN 44.45 37.78 34.52 45.39 88.14 36.94 2.05×
BEEM 45.19 39.82 35.07 47.43 88.28 37.06 1.97×

Risk-based EE methods
CALM 46.73 40.29 36.14 48.02 88.79 37.84 1.70×
MIP LAP 44.87 39.58 35.92 47.16 88.47 37.91 1.76×
EERS 46.79 40.52 36.83 47.96 89.02 37.68 1.63×
Ours 48.09 40.97 37.10 48.74 90.59 38.62 2.10×

Table 2: Results on the T5-large model showcasing task metrics with average speedup (Speedup).

Datasets: For text classification tasks, we use the standard GLUE [48] datasets that consist of
three types of classification tasks: 1) Sentiment analysis (SST-2), 2) Text entailment (RTE, QQP)
and 3) Natural Language Inference (MNLI, QNLI). For Question-Answering tasks, we use the
SQuAD 2.0 [38] dataset. For text summarization tasks, we use a diverse set of datasets covering
different domains and styles: 1) Dialogue summarization (SAMSum) [25], 2) Long-form technical
summarization (BIGPATENT) [43], 3) Multi-document summarization (MultiNews) [23], and 4)
News summarization (CNN/DailyMail) [28]. For machine translation tasks, we use the IWSLT De-En
dataset [17], which consists of translated transcripts from German to English. It serves as a standard
benchmark for evaluating translation quality on spoken language content. For vision language tasks,
we use the COCO [34] and NoCaps [1] datasets for Image captioning, VQAv2 [26] dataset for visual
question answering and VisDial [20] for visual dialogue.

Metrics: We report key metrics such as accuracy for text classification, F1 score for Question
answering tasks, Rouge-L score for text summarization, BLEU-4 (B4), CiDER (C), Spice (S) and
Meteor (M) for image captioning. VQA accuracy for VQA tasks and Mean Reciprocal Rank
(MRR) for visual dialogue. Following existing baselines [22, 46], speedup is calculated as the
acceleration of average inference time per token compared to the full model. We note that the metrics
reported in [30], such as performance gap risk, which is EE model performance subtracted from full
model performance, can easily be calculated using existing performance metrics, hence, we do not
specifically report. Also, performance metrics are preferred for better and fair comparison.

Setup: For the training phase, we augment the pre-trained models with a linear output layer to serve
as an exit. For the architecture of the g, we use a single linear layer with shared parameters across the
exits that serves as a risk predictor. Following the existing methods [8], the inference is performed
on a per-instance basis, setting the batch size to 1. The value of λ is fixed to ϵ

L , while the set of
candidate thresholds is chosen as ten equally spaced values between 0.5 and 1.0 (including 1.0). An
ablation study over different λ values is also performed in Appendix B.3. It aligns with scenarios
where low-latency is critical, such as processing individual requests from different users [42]. Similar
to other baselines [30], we also choose ϵ = 0.01 for all the experiments. An ablation study over ϵ
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Models COCO Karpathy test VQAv2 VisDial Spd.
B4 C S M Acc MRR

BLIP-2-V-F 44.0 145.8 25.3 31.9 81.8 45.9 1.00×
EE-based models

PABEE-BLIP 35.8 122.6 21.9 26.5 75.2 36.7 1.55×
ZTW 36.3 121.1 21.7 26.0 76.9 37.8 1.59×
MuE 37.5 126.8 22.4 27.7 78.0 38.4 1.49×
JEI-DNN 38.2 128.4 22.6 28.0 78.4 38.1 1.63×
BEEM 40.7 135.9 23.8 28.9 79.6 39.6 1.68×

Risk-based models
CALM 41.8 139.3 24.4 29.1 79.8 41.9 1.46×
MIP LAP 41.2 137.4 24.1 28.9 78.6 40.2 1.55×
EERS 42.5 140.3 24.7 29.5 80.0 42.6 1.38×
Ours 43.3 142.9 25.0 31.1 81.1 42.9 1.72×

Table 3: Results on vision-language tasks (Visual Question Answering (VQA), test split of COCO
and VisDial for visual dialogue) on BLIP-2-ViT-FlanT5-xl model with average speedup (Speedup).

Models in-domain near-domain out-domain full-dataset Speedup
C S C S C S C S

BLIP-2 ViT FT5 123.7 16.3 120.2 15.9 124.8 15.1 121.6 15.8 1.00×
EE-based models

PABEE-BLIP 117.6 15.2 114.2 14.6 117.4 14.2 113.2 14.5 1.48×
ZTW 119.1 15.5 115.4 14.8 119 14.4 115.9 14.8 1.35×
MuE 118.3 15.3 114.8 14.7 119.5 14.4 115.6 14.7 1.62×
JEI-DNN 119.8 15.5 116.2 15.0 119.9 14.6 116.1 14.9 1.58×
BEEM 120.2 15.7 117.5 15.3 119.6 14.5 116.8 15.1 1.51×

Risk-based EE methods
CALM 121.0 15.9 117.8 15.5 119.8 14.7 117.1 15.2 1.47×
MIP LAP 120.6 15.8 117.2 15.2 119.3 14.3 116.9 15.1 1.53×
EERS 121.4 16.0 117.6 15.4 120.2 14.7 117.3 15.3 1.38×
Ours 122.5 16.2 118.9 15.7 122.7 15.0 119.5 15.6 1.75×

Table 4: Results of BLIP-2-ViT-FlanT5-xl model on Nocaps dataset.

can be found in Appendix B.5. More hyperparameter details can be found in Table 11 and 12 in the
Appendix.

Baselines: We consider three types of baselines to compare our model: 1) Full model: This is the
baseline showing conventional DNN performance. 2) Early Exit models: These are the baselines
where we consider various early exit methods, such as PABEE [52], patience-based exiting, and
ZTW [49], on the other hand, uses aggregation of confidence scores across the exits. MuE [46] uses
the similarity score of the hidden representations to decide exiting. JEI-DNN [18] learns a gating
function to performs an exit. Finally, BEEM [8] is a method that utilizes ensemble methods to decide
exiting. 3) Risk-based methods for EEs: In this, we consider methods that consider the risk factor in
the EE models. CALM [41] considers the risk of the T5-large model with EEs for text generation
tasks, we extend this to other tasks as well. MIE LAP [36] considers aggregating the scores across
exits to minimize risk and fix the overconfidence issue in the image classification tasks; we extend
this to other tasks as well. Finally, we have EERC [30] that theoretically provides a simple extension
of EE models to provide a method to choose the value of the exit threshold such that the risk is
minimized. We use the same code and hyperparameters without any changes to get the results of the
baselines.

Results on Text classification: In Table 1, we provide results on the text classification tasks (GLUE
datasets) and the Question answering task over the BERT-large model. We observe that our method
performs better than all the existing methods, where sometimes the performance of our method is
better than the full model performance due to the impact of overthinking [32, 52]. The EE-based
methods have more focus on the speedup part while having a higher loss in accuracy. An important
observation is that BEEM, the EE-based method, outperforms risk-based methods due to its ensemble
methods for performing an inference. However, this is only observed in easier tasks such as text
classification. On the other hand, the risk-based methods have a lower loss in accuracy but observe a
hit in speedup as their focus is solely on reducing the risk, while achieving minimal efficiency gains.
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Model Noise = 0.1 Noise = 0.5 Noise = 1.0
B4 C Speed B4 C Speed B4 C Speed

Full model 43.1 142.5 1.00× 39.8 133.2 1.00× 36.4 128.6 1.00×
EE-based methods

JEI-DNN 36.7 128.9 1.58× 31.2 107.5 1.68× 26.1 93.9 1.74×
BEEM 38.6 132.0 1.60× 34.7 122.3 1.71× 30.6 104.5 1.82×

Risk-based methods
CALM 39.1 131.5 1.55× 34.8 122.7 1.63× 31.5 110.3 1.72×
EERS 39.6 134.3 1.47× 36.0 126.4 1.54× 32.7 116.9 1.68×
Ours 41.3 139.7 1.70× 38.2 130.5 1.77× 35.0 125.5 1.81×

Table 5: Results on the COCO test split by adding different levels of distortions to the test images.

Our method balances risk and efficiency using the reward function and minimizes the risk while
getting improved efficiency.

Results on Language Modeling: In Table 2, we report the results on tasks such as text summarization,
Question-answering and Machine translation. Our method consistently outperforms existing baselines
both in terms of performance and speedup, due to its dynamic adjustments of thresholds based on
the test dataset. One key observation from the existing tasks is that a very high static threshold was
also getting a 2 points ROUGE-L score drop with a higher loss in efficiency. Due to this fact, there
is a performance drop in the risk-based as well as EE-based methods shown in Table 2. Risk-based
methods have a lower drop in performance as compared to EE-based methods. Our method, on the
other hand, dynamically adjusts the threshold and has an option to switch from a hard criterion to exit
to a soft one, helping it balance accuracy and efficiency.

Results on the vision-language tasks: In Table 3 and 4, we report the results on various vision-
language tasks using the BLIP-2 backbone with ViT-g as the encoder and FlanT5-xl as the decoder.
We observe that the efficiency gains of our method are the highest with minimal performance drop
as compared to other risk-based as well as EE-based methods. The results on the Nocaps dataset
in Table 4 suggest that our method is robust to distribution changes as compared to other methods
as its performance dip is minimal when the images are from near-domain or out-of-domain. This
is an advantage of the online adaptation of the threshold, where it learns the threshold based on the
incoming dataset distribution.

Robustness to distribution changes: In Table 5, we provide the BLEU-4 scores for image captioning
tasks, where additional noise is added to the test split of the dataset. The model, BLIP-2-FlanT5-
xl, was trained on pristine (undistorted) images, and during inference, we add different levels of
distortions in terms of Gaussian noise with mean zero and standard deviation σ; a higher standard
deviation will have more noise in the image. Noise in images is a common real-world scenario where
the model suffers with a loss in performance as shown in the Table 5, when it is trained on pristine
images. The results from Table 5 suggest that our method’s performance loss is small compared to
other methods. The risk-based methods, specifically the EERS method, show some robustness to the
noise, but due to their assumption that the test dataset is representative of the validation dataset, their
performance is also significantly low. The reason for our method performing better is its dynamic
adaptation of the threshold based on the incoming dataset distribution instead of a fixed threshold as
done by other methods.

5.1 Ablation Study

Analysis of the overconfidence issue In Figure 1, we provide the box plots for the true class
confidence values across the layers of the BERT-large model on QNLI dataset; we only plot the initial
12 layers out of 24 layers. Observe from the figure that the initial 3 layers have not learnt much
information, hence mostly distributed around 0.5. After that, we see that the box plots are raised to a
higher value. However, observe that there are around 12% samples at the 4th layer that are highly
confident (more than probability 0.7 assigned to the wrong class as it is a binary classification task)
on the wrong class, i.e., the model assigns a higher weight in output probability to the wrong class.
This necessitates checking the reliability of the confidence. If not properly monitored these many
samples with exit the backbone due to this high fake confidence and cause overall performance drop
to be significant.
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Figure 1: True class confidence on QNLI dataset across number of layers. The number on top of the
plots show the percentage of samples below 0.3 true class confidence. As it is a binary classification
task, any sample below 0.3 has a high confidence on the wrong class.

6 Conclusion

In this work, we introduced a risk-tolerant approach for Early-Exit Deep Neural Networks (EEDNNs)
that balances accuracy and efficiency under dynamic test-time conditions. We first designed a
reliability-driven confidence metric that quantifies the trustworthiness of exit predictions, and seam-
lessly integrated it into a reward-based formulation. To optimize this reward, we proposed an upper
confidence bound based algorithm UAT, which dynamically selects the optimal exit threshold during
inference, enabling the model to adapt to distributional shifts without requiring labels. We established
a theoretical bound on the risk achieved by UAT. Experimental results on various tasks such as text
classification, language modeling, and vision-language tasks further prove the effectiveness of our
method. In this work, we considered a uniform exit threshold across all the exit layers. It is interesting
to quantify the gains achievable by allowing the threshold to adapt to each layer.

7 Limitations

While our method effectively adapts exit thresholds based on prediction reliability, it relies on the
quality of the learned confidence function g. Although all the existing methods use a global threshold
across all the exits to assess the confidence, there is scope to have a local threshold for individual
exits, then the model can be more efficient.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code to implement is given in an anonymized repository with the link in the
supplementary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the hyperparameter details are given in Table 11, 12 and Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: The stability of our proposed algorithm can assessed from the figure 2a. However, similar
to existing methods [33, 19], we have not provided the error bars for the other tasks that require heavy
computation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Given in Appendix B.7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We abide by NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?
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Answer: [NA]

Justification: Our method is mostly about minimizing risk and improving efficiency, it does not add to
any societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: We do not release any new model or data, and use only models and datasets that are
open-source for research purposes.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have cited all the owners of assets that we have used and properly respected the
license and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: We introduce no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: We have not done any crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
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Justification: We have used LLM only for writing and phrasing.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Appendix

A.1 Proof of Lemma 3.1

Let p(y|x) denote the probability of the true label y given an input x. Consider an early-exit model that outputs a
probability distribution p(·) over the set of classes for every threshold τ . Let pτ (y|x) be the true class probability
given by the model, pτ (ŷ|x) be the probability of prediction given by the model and pτ (y = ŷ) be the probability
that predicted class is the true class.

For a fixed τ , we can write the probability that the prediction made by the model is correct as:

pτ (y = ŷ | x) = pτ (y = ŷ | ŷ, x) · pτ (ŷ | x)

= pτ (ŷ|x) · pτ (y = ŷ|x, ŷ)

=⇒ argmax
τ∈Ω

pτ (y = ŷ|x) = argmax
τ∈Ω

pτ (ŷ|x) · pτ (y = ŷ|x, ŷ)

Hence, we prove that the threshold τ that maximizes pτ (ŷ|x) · pτ (y = ŷ|x, ŷ) value maximizes the chances of
getting the prediction correct.

Proof of Theorem 4.1:

Before moving to prove the theorem, we will first bound the single-run regret of the UAT algorithm.

At each round t = 1, 2, . . . , T , the algorithm selects an arm τt and receives a reward r(τt).

Regret Definition: We define the realized (actual) regret for a single run as:

R(T ) =

T∑
t=1

(µ∗ − µAt) =

K∑
i=1

∆iNi(T ),

where Ni(T ) is the number of times arm i was pulled up to time T .

The UAT Algorithm: At each time t, the UAT algorithm selects the arm

τt = argmax
i

(
µ̂i(t) +

√
2 log T

Ni(t)

)
,

where: µ̂i(t) is the empirical mean reward of arm i up to time t. Ni(t) is the number of times arm i has been
pulled until time t.

High-Probability Bound Using Hoeffding’s Inequality: By Hoeffding’s inequality, for any n ≥ 1 and any ϵ > 0:

P [|µ̂i − µi| ≥ ϵ] ≤ 2 exp(−2nϵ2).

Define the confidence interval:

CIi(t) =

[
µ̂i(t)−

√
2 log T

Ni(t)
, µ̂i(t) +

√
2 log T

Ni(t)

]
.

In one particular round, true reward mean for ith arm lies in this interval with probability 1− δ where δ = 1/T 2

Using the union bound over all arms and times, with probability at least 1− 1/T that the true reward mean lies
in the interval over all the rounds.

Bounding the Number of Suboptimal Pulls: Let us bound Ni(T ) for any suboptimal arm i with ∆i > 0.

Suppose arm i is selected at time t. For this to happen, the UAT index for arm i must be at least as large as that
for the optimal arm i∗:

µ̂i(t) +

√
2 log T

Ni(t)
≥ µ̂i∗(t) +

√
2 log T

Ni∗(t)
.

If all confidence intervals are valid (which occurs with high probability), then:

µi + 2

√
2 log T

Ni(t)
≥ µ∗.
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Rearranging, √
2 log T

Ni(t)
≥ ∆i

2
⇒ Ni(t) ≤

8 log T

∆2
i

.

Thus, the number of times arm i is pulled is at most:

Ni(T ) ≤
⌈
8 log T

∆2
i

⌉
+ 1.

Total Regret Bound: Using R(T ) =
∑

i:∆i>0 ∆iNi(T ), we obtain:

R(T ) ≤
∑

i:∆i>0

∆i

(
8 log T

∆2
i

+ 1

)
=

∑
i:∆i>0

(
8 log T

∆i
+∆i

)
.

Finally: With probability at least 1−O(1/T ), the realized regret of UAT satisfies:

R(T ) ≤
∑

i:∆i>0

(
8 log T

∆i
+∆i

)
= β(T )

Let pτ (ŷ|x) denote the model’s confidence and pτ (y = ŷ|x, ŷ) its calibrated correctness probability. The
empirical risk could be written as:

R̂(π) ≜ 1− 1

T

T∑
t=1

pτ (y = ŷ|x, ŷ)

The UAT algorithm that provides a threshold τt = π(xt) using the policy π, for simplicity, we drop the index t.
With probability atleast δ

′
= 1− 1

T
, the single run regret of UAT algorithm can be bounded as:

R(T ) ≤ β(T )

where the reward r(τ) = Ci
τ · (1 − Ci

g) − λ · i = pτ (ŷ|x) · pτ (y = ŷ|x, ŷ) − λi as we consider (1 − Ci
g)

approximates the pτ (y = ŷ|x, ŷ) with probability δ1. Choose δ = (1− δ1)(1− δ
′
) then with probability δ:

T∑
t=1

[pτ∗(ŷ|x)pτ∗(y = ŷ|x, ŷ)− pτ (ŷ|x)pτ (y = ŷ|x, ŷ)− λ(i− i∗)] ≤ β(T ) (5)

Rearranging terms and bounding exit differences |i− i∗| ≤ L:
T∑

t=1

(pτ∗(·)− pτ (·)) ≤ β(T ) + λLT (6)

where pτ (·) ≜ pτ (ŷ|x)pτ (y = ŷ|x, ŷ).

Using pτ (ŷ|x) ≤ 1:
T∑

t=1

pτ (y = ŷ|x, ŷ) ≥
T∑

t=1

pτ (·) ≥
T∑

t=1

pτ∗(·)− β(T )− λLT

Dividing by T and substituting into the risk definition:

R̂(π) ≤ 1− 1

T

T∑
t=1

pτ∗(·) + β(T )

T
+ λL

As we assume that R∗ = 1− 1
T

∑T
t=1 pτ∗(·) ≤ ϵ0

R̂(π) ≤ ϵ∗ +
β(T )

T
+ λL

For large T , β(T )
T

→ 0 (since β(T ) = O(log T )). To ensure R̂(π) ≤ ϵ:

λL ≤ ϵd − ϵ0 =⇒ λ ≤ ϵd − ϵ∗

L
=

ϵ

L

Therefore, if we select λ ≤ ϵ
L
, then with probability at least δ = (1− δ)(1− δ

′
), the empirical risk R̂(π) is

bounded by ϵ. This completes the proof.
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Model SamSum COCO SQuAD
ROUGE-L Speedup B4 Speedup F1 Speedup

Ci
τ 46.49 1.43× 40.72 1.62× 81.9 1.57×

Ci
τ − λ · i 44.81 1.70× 39.24 1.79× 80.6 1.62×

1− Ci
g 48.16 1.29× 43.38 1.35× 82.3 1.48×

(1− Ci
g)− λ · i 47.92 1.68× 42.27 1.56× 81.7 1.68×

Ci
τ (1− Ci

g) 48.34 1.35× 43.51 1.48× 83.3 1.60×
Ci

τ (1− Ci
g)− λ · i 48.09 1.98× 43.32 1.79× 83.2 1.82×

Table 6: Performance using different components in the reward function.

ϵ-values ϵ=0.01 ϵ=0.05 ϵ=0.1
Model Risk Speed Risk Speed Risk Speed
CALM 04.3 1.37× 04.9 1.54× 05.3 1.92×
MIPLAP 08.1 1.76× 08.6 1.87× 09.7 2.04×
EERS 04.2 1.68× 04.4 1.79× 05.8 2.13×
Ours 01.5 2.08× 02.3 2.25× 03.1 2.52×

Table 7: The impact on performance gap risk (in %) and speedup when the values of ϵ are varied.

B More Ablation study

B.1 Importance of components of reward function

In Table 6, we show the performance of our model on different tasks and datasets when different components of
the reward function given in equation 4 are used. The tasks used are summarization on the SamSum dataset
using T5-large, image captioning on the COCO test split using BLIP-2-FlanT5-xl and Question Answering
task using SQuAD on the BERT-large model. We observe that simply maximizing the prediction confidence
term Ci

τ might lower the performance due to riskier exits while maximizing only the correctness probability
(1 − Ci

g) has better improvements, but causes underconfident exits as in such cases the model might be less
confident, increasing the chances of wrong predictions even with good correctness probability. However, when
we maximize the product, it becomes more robust as model confidence and reliability on confidence are both
maximized, giving us better performance. As we add the penalty term, there is a slight drop in performance but
a boost in efficiency, due to which we select it as the final objective in our setup.

B.2 The value of c

The choice of coverage threshold c depends on the prior knowledge of how complicated the dataset is based on
the given distribution and model, as its task is to make g produce higher values for a fraction of samples that are
easy for the model. We do not a priori know this information, hence we rely on a validation dataset to assess
the task complexity. Also, as the exits might find the sample easy or hard based on its information that might
be different for different exits. Hence we choose a c dependent on i, denoted as ci. During training of the first
epoch, we do not have any a prior knowledge of the task complexity hence we set ci to be 0 for all i, but after
the first epoch we define ci =

1
N

∑N
j=1 1{ŷij=y} where ŷij , i.e., the fraction of samples for which the exit is

correct. This assesses the task complexity, making the g function produce higher scores based on complexity.

B.3 Risk-Efficiency trade-off

In Figure 2b, we show the risk-efficiency trade-off by plotting the percentage of performance drop as compared
to the final layer vs Speedup for the SQuAD dataset on the BERT-large model by changing the parameter
λ. For other baselines, we change their trade-off parameter and plot the results. The results suggest that our
method consistently has lower risk while having a higher speedup. While we keep the value of ϵ = 0.01, i.e, the
percentage of RG ≤ ϵ. Our method keeps the risk lower than 1% till a speedup of 2.3× after which the risk
crosses the desired bound, while other risk-based methods are very less tolerant to keep risk below 1% when we
increase in speedup even when we restrict their permissible risk limit to 1% similar to ours.

B.4 Regret Analysis

In Figure 2a, we plot the average cumulative regret while choosing the thresholds during inference using different
policies on the QNLI dataset. The results are average across 5 runs where in every run the dataset was randomly
reshuffled and fed to the algorithm. We plot the cumulative regret of final layer when all the samples always
exit from the final layer, randomly selected, where a random threshold was assigned to each sample and fixed
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Figure 2: Comparative plots showing (a) cumulative regret for different threshold selection policies
and (b) the risk-speedup trade-off.

threshold where a static threshold was utilized similar to existing EE and risk based methods. Our method
observed the smallest regret as compared to others. This indicates the importance of learning a policy for the
threshold selection instead of fixing it to a constant value.

B.5 Changing ϵ values

In Table 7, we provide results on changing the ϵ that guides RG ≤ ϵ on the SamSum dataset with T5-large
model, note that, changing ϵ value changes the value of λ, allowing riskier samples to make an early exit. We
report the percentage of increase in RG as compared to the final layer. Observe from the table that even when
more risky samples were allowed to exit early, our method’s drop in performance is very low. This is due to an
upgraded confidence metric that allows for an early exit only when it is confident and the confidence is also
reliable. While imposing a hard criterion of ϵ = 0.01, all the risk methods have violated that, while our being
the closest to the required threshold. After relaxing the criteria, all methods except MIPLAP do not violate it,
still, our method had the lowest performance gap risk as compared to other methods.

B.6 Some important examples

In Table 10, we provide some examples on the classification datasets such as, SST-2 and QNLI, where we report
the True label, Fake confidence (average model confidence over the true class), and risk score (average Ci

g).
Observe from the Table that as the sample gets more ambiguous, the chances are high that the model outputs a
wrong prediction. In such cases, it becomes important to flag those samples that is done by the Ci

g value in our
case. For instance, consider the sample “the under-7 crowd”, which means that the review is negative, but the
model probably understands the numbers as ratings and develops high confidence over the wrong class.

B.7 Computational setup

Model SamSum QA MT
T5-large 1035s 664s 846s
T5-large w UAT 1048s 672s 855s

Table 8: Comparison of inference times (in sec-
onds) across tasks on T5-large model.

In our experiments, we have used a setup of 5
NVIDIA A6000 GPUs. The highest run time was
observed during training the BLIP-2 model for im-
age captioning, which took 15 hours to train for 15
epochs. The average GPU runtime for the BLIP-2
model across tasks was 9 hours. The inference time
for BLIP-2 was less than 20 minutes across all the
tasks. For the T5-large model, the average runtime
observed was 6 hours, with the highest on the Ques-
tion Answering dataset due to a large number of epochs. For inference, it required less than 15 minutes across
all datasets and tasks. Finally for the BERT-large model, the maximum runtime was on MNLI dataset with 1
hour of GPU runtime across epochs. The average runtime across GLUE tasks was 25 minutes. The average
inference runtime was less than 2 minutes for all the tasks.
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Model SamSum (T5) COCO (BLIP-2) QNLI (BERT)
CE loss performance 48.84 43.9 90.6
Our loss performance 48.82 44.0 90.5
Table 9: Model performance trained using Conventional loss vs our loss.

Example True lbl. Fake Conf. Ci
g

SST-2
mysterious and brutal nature positive 0.79 0.68
the under-7 crowd negative 0.91 0.95
seems endless negative 0.90 0.82
a movie with two stars positive 0.82 0.86

QNLI
Where was war fought? The war was fought primarily along the ... entailment 0.70 0.88
What university donated the land ...? A site chosen in Houston, ... entailment 0.76 0.72

Table 10: Examples of samples achieving fake confidence, the table shows an example, its true label
(True lbl.), the average confidence of the model on the wrong class (Fake Conf.) and the (1− Ci

g)
score that abstains the sample early.

B.8 Computational Complexity of UAT

Our method learns a policy to decide the exit threshold that is learned over time based on the data distribution.
However, the computational complexity of UAT is negligible as it does not involve any big operations. In every,
step, it requires maximizing over a small finite set (set of 10 elements) and maintain a list of reward functions.
In Table 8, we perform experiment to show the additional complexity of our method. In this experiment exit
was fixed to the final layer, i.e., there was no early exiting. We implement the UAT algorithm and do not
change anything else, i.e., the exit is still from the final layer, but the only thing changed is that there is some
additional computation happening due to UAT. So the time wall-clock time added to T5-large with UAT will be
the computational complexity of UAT. Observe from Table 8, the computational complexity of UAT is negligible
as the additional time is less than 15 seconds, further proving UAT’s contribution during inference.

B.9 Loss observations

In Table 9, we provide results of the final layer when the conventional cross-entropy loss is used to train the
EEDNN i.e., just use the first term LCE from Equation 3 and if you use the full loss function given in our method
in Equation 3. The Table 9 suggests that adding the other components in the loss function does not impact the
overall model performance. We check the final layer performance, as that would have been the most affected by
the additional components. However, the effect was very insignificant, and we safely use the loss function given
in Equation 3.

Model BLIP-2-FlanT5-xl BERT-large
Tasks Image captioning VQA GLUE
Finetuning epochs 15 5 5
Finetuning dataset Train Split Train split Train split
Warmup steps 1000 1000 1000
Learning rate 1e-5 1e-5 1e-5
Batch size 16 16 32
AdamW beta (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Weight decay 0.05 0.05 0.05
Drop path 0 0 _
Image resolution 360 490 _
Prompt “a photo of” “Question:{} Answer” _
Inference beam size 5 5 _

Table 11: Hyperparameter details of the BLIP-2-FlanT5-xl and BERT-large model on various tasks.

25



Model T5-large
Tasks Summarization MT QA
Finetuning epochs 5 5 10
Finetuning dataset Train Split Train Split Train Split
Warmup steps 1000 1000 1000
Learning rate 1e-4 1e-4 1e-4
Batch size 8 8 16
AdamW beta (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Weight decay 0.05 0.05 0.05
Drop path 0 0 0
Image resolution _ _ _
Prompt summarize: translate german to english _
Inference beam size 5 5 5
Table 12: Hypereparameters details on the T5-large model for various tasks.

26


	Introduction
	Related works
	Preliminaries
	The Notion of Risk
	Early Exit Mechanisms in Deep Neural Networks
	Exit and risk function training
	Dynamic thresholding during inference

	Algorithm
	Experiments
	Ablation Study

	Conclusion
	Limitations
	Appendix
	Proof of Lemma 3.1

	More Ablation study
	Importance of components of reward function
	The value of c
	Risk-Efficiency trade-off
	Regret Analysis
	Changing  values
	Some important examples
	Computational setup
	Computational Complexity of UAT
	Loss observations


