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Abstract
It is of great value to answer product questions001
based on heterogeneous information sources002
available on web product pages, e.g., semi-003
structured attributes, text descriptions, user-004
provided contents, etc. However, these sources005
have different structures and writing styles,006
which poses challenges for (1) evidence rank-007
ing, (2) source selection, and (3) answer gen-008
eration. In this paper, we build a benchmark009
with annotations for both evidence selection010
and answer generation covering 6 information011
sources. Based on this benchmark, we con-012
duct a comprehensive study and present a set013
of best practices. We show that all sources are014
important and contribute to answering ques-015
tions. Handling all sources within one sin-016
gle model can produce comparable confidence017
scores across sources and combining multi-018
ple sources for training always helps, even for019
sources with totally different structures. We fur-020
ther propose a novel data augmentation method021
to iteratively create training samples for answer022
generation, which achieves close-to-human per-023
formance with only a few thousand annotations.024
Finally, we perform an in-depth error analysis025
of model predictions and highlight the chal-026
lenges for future research.027

1 Introduction028

Automatic answer generation for product-related029

questions is a hot topic in e-commerce applications.030

Previous approaches have leveraged information031

from sources like product specifications (Lai et al.,032

2018a, 2020), descriptions (Cui et al., 2017; Gao033

et al., 2019) or user reviews (McAuley and Yang,034

2016; Yu et al., 2018; Zhang et al., 2019) to an-035

swer product questions. However, these works036

produce answers from only a single source. While037

a few works have utilized information from mul-038

tiple sources (Cui et al., 2017; Gao et al., 2019;039

Feng et al., 2021), they lack a reliable benchmark040

and have to resort to noisy labels or small-scaled041

human evaluation (Zhang et al., 2020; Gao et al.,042

2021). Furthermore, none of the above make use 043

of pretrained Transformer-based models, which 044

are the current state-of-the-art (SOTA) across NLP 045

tasks (Devlin et al., 2019; Clark et al., 2020). 046

In this work, we present a large-scale benchmark 047

dataset for answering product questions from 6 het- 048

erogeneous sources and study best practices to over- 049

come three major challenges: (1) evidence ranking, 050

which finds most relevant information from each 051

of the heterogeneous sources; (2) source selection, 052

which chooses the most appropriate data source to 053

answer each question; and (3) answer generation, 054

which produces a fluent, natural-sounding answer 055

based on the relevant information. It is necessary 056

since the selected relevant information may not be 057

written to naturally answer a question, and there- 058

fore not suitable for a conversational setting. 059

Most published research on product ques- 060

tion answering is based on the AmazonQA 061

dataset (McAuley and Yang, 2016), which takes 062

the community question-answers (CQAs) as the 063

ground truth. This leads to several problems. (1) 064

CQAs, even the top-voted ones, are quite noisy. 065

Many are generic answers or irrelevant jokes (Gao 066

et al., 2021). (2) CQAs are based more on the opin- 067

ion of the individual customer who wrote the an- 068

swer rather than on accompanying sources such as 069

product reviews and descriptions. As such, CQAs 070

are not reliable references for judging the quality of 071

answers generated from these sources (Gupta et al., 072

2019). (3) There are no annotations for assessing 073

the relevance of the information across multiple 074

data sources. This makes it difficult to evaluate the 075

evidence ranker and generator separately. Some 076

works collect annotations for evidence relevance, 077

but only for a single source and with questions for- 078

mulated post-hoc rather than naturally posed (Lai 079

et al., 2018a; Xu et al., 2019). To address these 080

shortcomings, we collect a benchmark dataset with 081

the following features: (1) It provides clear an- 082

notations for both evidence ranking and answer 083
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generation, enabling us to perform in-depth evalu-084

ation of these two components separately. (2) We085

consider a mix of 6 heterogeneous sources, ranging086

from semi-structured specifications (jsons) to free087

sentences and (3) It represents naturally-occurring088

questions, unlike previous collections that elicited089

questions by showing answers explicitly.090

As sources differ in their volume and contents,091

collecting training data covering all sources of nat-092

ural questions and answers is challenging. To get093

enough positive training signals for each source, we094

propose filtering community questions based on the095

model score of a pretrained QA ranker. Questions096

are only passed for annotation when the confidence097

scores of top-1 evidence lie within some certain098

range. This greatly reduces annotation effort by099

removing most unanswerable questions.100

After collecting the data, we apply SOTA101

Transformer-based models for evidence ranking102

and answer generation, and present a set of data103

augmentation and domain adaptation techniques to104

improve the performance. We show that pretrain-105

ing the model on the AmazonQA corpus can pro-106

vide a better initialization and improve the ranker107

significantly. For evidence ranking, we apply ques-108

tion generation with consistency filtering (Alberti109

et al., 2019) to obtain large amounts of synthetic110

QA pairs from unannotated product sources. For111

answer generation, we propose a novel data aug-112

mentation algorithm that creates training examples113

iteratively. By first training on this augmented data114

and then finetuning on the human annotations, the115

model performance can be further enhanced.116

As for the model design, we homogenize all117

sources by reducing them to the same form of input118

which is fed into a unified pretrained Transformer119

model, similarly to recent work in open-domain120

QA (Oguz et al., 2020). We show that combin-121

ing all sources within a single framework outper-122

forms handling individual sources separately and123

that training signals from different answer sources124

can benefit each other, even for sources with totally125

different structures. We also show that the uni-126

fied approach is able to produce comparable scores127

across different sources which allows for simply128

using the model prediction score for data source129

selection, an approach that outperforms more com-130

plex cascade-based selection strategies. The re-131

sulting system is able to find the correct evidence132

for 69% of the questions in our test set. For an-133

swer generation, 94.4% of the generated answers134

Question: how much weight will it safely hold?

Source Supporting Evidence Relevance

Attribute item_weight:{unit:
pounds,value:2.2} ✖

Bullet Point supports up to 115 pounds ✔
Description weight limit: 115 lbs. ✔

OSP if you’re looking for an inex-
pensive way to change up ... ✖

CQA we put ours on a swingset. ✖
Review it is sturdy and well made. ✖

Annotated Answer: it can support up to 115 pounds.

Table 1: Annotation example. Relevance annotation: Given
one question and evidence from heterogeneous sources, judge
if each one is relevant to the question. Answer elicitation:
annotators produce a natural-sounding answer given the ques-
tion and the evidence that was marked as relevant.

are faithful to the extracted evidence and 95.5% of 135

them are natural-sounding. 136

In summary, our contributions are four-fold: (1) 137

We create a benchmark collections of natural prod- 138

uct questions and answers from 6 heterogeneous 139

sources covering 309,347 question-evidence pairs, 140

annotated for both evidence ranking and answer 141

generation. This collection will be released as open 142

source. (2) We show that training signals from dif- 143

ferent sources can complement each other. Our 144

system can handle diverse sources without source- 145

specific design, (3) We propose a novel data aug- 146

mentation method to iteratively create training sam- 147

ples for answer generation, which achieves close- 148

to-human performance with only a few thousand 149

annotations and (4) We perform an extensive study 150

of design decisions for input representation, data 151

augmentation, model design and source selection. 152

Error analysis and human evaluation are conducted 153

to suggest directions for future work. 154

2 Benchmark test set collection 155

We begin by explaining how we collect a bench- 156

mark test set for this problem. The benchmark 157

collection is performed in 4 phases: question sourc- 158

ing, supporting evidence collection, relevance an- 159

notation, and answer elicitation. An annotation 160

example in shown in Table 1. 161

Question sourcing To create a question set that 162

is diverse and representative of natural user ques- 163

tions, we consider two methods of question sourc- 164

ing. The first method collects questions through 165

Amazon Mechanical Turk, whereby annotators are 166

shown a product image and title and instructed to 167

ask 3 questions about it to help them make hypo- 168

thetical purchase decisions. This mimics a scenario 169
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in which customers see a product for the first time,170

and questions collected in this way are often gen-171

eral and exploratory in nature. The second method172

samples questions from the AmazonQA corpus.173

These are real customer questions posted in the174

community forum and tend to be more specific and175

detailed, since they are usually asked after users176

have browsed, or even purchased, a product. We177

then filter duplicated and poorly-formed questions.178

This yields 914 questions from AmazonQA and179

1853 questions from Mturk. These are combined180

to form the final question set.181

Collecting Supporting Evidence We gather “sup-182

porting evidence” from 6 heterogeneous sources:183

(1) Attributes: Product attributes in json format ex-184

tracted from the Amazon product database 1. (2)185

Bullet points: Product summaries from the prod-186

uct page. (3) Descriptions: Product descriptions187

from the manufacturer and Amazon. (4) On-site-188

publishing (OSP): Publications about products (for189

example here). (5) CQA: Top-voted community190

answers. Answers directly replying to questions191

in our question set are discarded and (6) Review:192

User reviews written for the product.193

Relevance Annotation Annotators are presented194

with a question about a product and are instructed195

to mark all the items of supporting evidence that are196

relevant to answering the product question. Such197

evidence is defined as relevant if it implies an an-198

swer, but it does not need to directly address or199

answer a question. For evidence items from source200

1, we directly present the attribute json to annota-201

tors. For sources 2∼6, we split the evidence into202

sentences and present each sentence as a separate203

item to be considered. There can be a very large204

number of CQA and Reviews for each product.205

As manual annotation of these would be impracti-206

cal, we annotate only the top 40 and 20 evidence207

from each collection, respectively, as determined208

by a deep passage ranker pretrained on general-209

domain QA. Each item of evidence is inspected210

by 3 annotators and is marked as relevant if sup-211

ported by at least two of them. In this way, items212

of evidence are paired with questions for review213

by annotators. Overall, annotators have inspected214

309,347 question-evidence pairs, of which 20,233215

were marked as relevant.216

Answer Elicitation In the answer elicitation stage,217

annotators are presented with a question and an218

1We select 320 unique attributes that have diverse struc-
tures and hierarchies without standard schema.

Source #words available answerable N/P
Attribute 5.84 100% 36.10% 22.88
Bullet 12.55 100% 24.95% 5.59
Desc 12.86 98.37% 38.59% 23.97
OSP 17.75 18.98% 4.54% 11.16
CQA 13.32 99.39% 70.61% 13.85
Review 18.37 95.64% 61.16% 2.28

93.72% questions are answerable from at least 1 source.

Table 2: Benchmark statistics: average number of words
per evidence (#words), percentage of questions for which
the source is available (available), percentage of answerable
questions (answerable) and the negative-positive ratio (N/P).

item of supporting evidence that has been marked 219

as relevant. They are required to produce a fluent, 220

natural-sounding and well-formed sentence (not 221

short span) that directly answers the question. We 222

sample 500 positive question-evidence pairs from 223

each source for answer elicitation (if that many are 224

available). The annotated answers are evaluated by 225

another round of annotation to filter invalid ones. In 226

the end, we obtain 2,319 question-evidence-answer 227

triples for answer generation. 228

Table 2 shows the collection statistics. Availabil- 229

ity differs across sources. Only 19% of questions 230

have available OSP articles, but all products have 231

corresponding Attributes and Bullet Points. 93.72% 232

of questions are answerable from at least 1 out of 233

the 6 sources, indicating these sources are valuable 234

as a whole to address most user questions. 235

3 Training data collection 236

For training data collection, a complete annotation 237

of each set of evidence is not necessary; we need 238

only a rich set of contrastive examples. Therefore, 239

we propose to select questions for annotation based 240

on the confidence score of a pretrained ranker (the 241

same ranker we used to select top evidence for 242

CQA and review). We sample 50k community 243

questions about products in the toys and games 244

domain. We first select questions whose top-1 item 245

of supporting evidence returned by the pretrained 246

ranker has a prediction score of > 0.8. In this 247

way the selected questions have a good chance 248

of being answerable from the available evidence 249

and the approach should also yield enough positive 250

samples from all sources to train the ranker. This 251

selection step is crucial to ensure coverage of low- 252

resource sources, like OSP, which otherwise might 253

have zero positive samples. To avoid a selection 254

process that is biased towards easy questions we 255

further include questions whose top-1 evidence has 256
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a score within the range of 0.4∼0.6. Intuitively257

these questions will pose more of a challenge in258

ranking the evidence and their annotation should259

provide an informative signal.260

From each out of the 6 sources, we sample 500261

questions with prediction score > 0.8 and another262

500 questions with scores in the range of 0.4∼0.6.263

For each question, we then annotate the top-5 (if264

available) evidence items returned by the pretrained265

ranker. This reduces annotation cost relative to266

the complete annotation that was done for the test267

set. The final dataset contains 6000 questions with268

27,026 annotated question-evidence pairs being an-269

notated, 6,667 of which were positive. We then270

submit the positive question-evidence pairs for an-271

swer elicitation. After filtering invalid annotations272

as was done for the benchmark collection, we ob-273

tain a set of 4,243 question-evidence-answer triples274

to train the answer generator. For both evidence275

ranking and answer generation, we split the col-276

lected data by 9:1 for train/validation.277

4 Model278

4.1 Evidence Ranking279

Evidence ranking aims to get the best evidence280

from each of the sources. We build our evidence281

ranker with the Electra-base model (Clark et al.,282

2020). The question and evidence are concatenated283

together and fed into the model. We flatten the json284

structured from the attribute source into a string285

before feeding it to the encoder, whereas we split286

evidence from other sources into natural sentences,287

so it can be encoded as plain text (training detail288

in appendix G). We present comparison studies in289

figure 1 with the best model configuration. Due290

to space constraints we report only p@1 scores in291

Fig 1, with full results in appendix F.292

Pre-tuning on AmazonQA Pre-tuning the evi-293

dence ranker on similar domains has shown to be294

important when limited in-domain training data is295

available (Hazen et al., 2019; Garg et al., 2020).296

For our product-specific questions, the AmazonQA297

corpus is a natural option to pre-tune the model (Lai298

et al., 2018b). The corpus contains 1.4M question-299

answer pairs crawled from the CQA forum. We300

remove answers containing “I don’t know” and301

“I’m not sure”, and filter questions of more than302

32 words and answers of more than 64 words. We303

construct negative evidence with answers to differ-304

ent questions for the same product. The filtered305

corpus contains 1,065,407 community questions306

Figure 1: Ablation studies of evidence ranker. From up to
down (1) effects of pre-tuning on AmazonQA, mix/separate
sources, (2) effects of linearization methods of attributes, and
(3) Effects of data augmentation by question generation.

for training. In the training stage, we first finetune 307

the Electra-base model on the filtered AmazonQA 308

corpus and then finetune on our collected training 309

data. As can be seen, pre-tuning on the AmazonQA 310

corpus improves the p@1 on all sources. The con- 311

clusion holds for both training on mixed sources 312

and individual sources separately. 313

Mixed sources vs split sources We investigate 314

whether different sources conflict with each other 315

by (1) training a single model on the mixed data 316

from all sources, and (2) training a separate model 317

for each individual source. For the second case, we 318

obtain 6 different models, one from each source. 319

The resulting models are tested on 6 sources indi- 320

vidually. We can observe that mixing all answer 321

sources into a single training set improves the per- 322

formance on each individual source. The training 323

signals from heterogeneous sources complement 324

each other, even for sources with totally different 325

structures. p@1 on the semi-structured attribute 326

improves consistently through adding training data 327

of unstructured text. This holds for models with 328

and without pre-tuning on AmazonQA. 329

Linearization methods In the above experiment, 330

we use a simple linearization method that flattens 331

the json-formatted attributes into a string. We also 332

compare it with 3 other different linearization meth- 333

ods: (1) key-value pairs: Transform the hierar- 334

chical json format into a sequence of key-value 335

4



selector
ranker BM25 AmazonQA our best

perfect 0.4709 0.7546 0.8338
best-score-based 0.2880 0.5370 0.6986

highest-score 0.2696 0.5089 0.6888
cascade 1 0.2653 0.5298 0.6791
cascade 2 0.2638 0.5110 0.6715

Table 3: p@1 using different rankers and source selectors.

pairs. For example, the attribute in Table 1 will336

be transformed into “item_weight unit pounds |337

item_weight value 2.2”. (2) templates: Transform338

the json by pre-defined templates, e.g. “The [at-339

tribute_name] of it is [value] [unit]” and (3) NLG:340

Transform the json into a sentence by a neural data-341

to-text model. Details of the template and NLG342

model are in appendix C D. The results show that343

the best performance is achieved by simply lineariz-344

ing the json into a string. Although applying the345

template or neural data-to-text model is closer to346

a natural sentence, this did not lead to an improve-347

ment in p@1. Nonetheless, all these methods have348

rather similar performance, suggesting the model349

can adapt quickly to different representations by350

finetuning on limited training data and that more351

complex linearization methods are unnecessary.352

Question Generation Question generation has353

been a popular data augmentation technique in354

question-answering. We collect ∼50k unannotated355

pieces of evidence from the 6 sources and apply a356

question generator to generate corresponding ques-357

tions. The question generator is finetuned first on358

the AmazonQA corpus and then on our collected359

training data. We apply nucleus sampling with360

p = 0.8 to balance the diversity and generation361

quality (Sultan et al., 2020). We further filter the362

generated questions with our evidence ranker by363

only keeping those with model prediction scores of364

> 0.5, which has been shown crucial to get high-365

quality augmented data (Alberti et al., 2019). We366

try different finetuning methods and report the re-367

sults on the bottom of Fig 1, where the “+” means368

the finetuning order. As can be observed, finetuning369

on the augmented data brings further improvement370

to the model. A three-step finetuning to gradually371

bring the model to our interested domain leads to372

the best performance over all sources.373

4.2 Source Selection374

Source aims to select the best source to answer af-375

ter we obtain the top-1 item of evidence from each376

source. We show results for the following source 377

selectors: (1) perfect selector: oracle selection of 378

the correct item of evidence (if any) in the top-1 379

pieces of evidence provided from the 6 sources. 380

(2) best-score: evidence item with the highest em- 381

pirical accuracy in its score range which should 382

yield the upper-bound performance for a selector 383

based on model prediction scores. (3) highest- 384

score: evidence with the highest model prediction 385

score. (4) cascade 1: prioritizes evidence from the 386

attribute/bullet sources since they have the high- 387

est p@1 scores. If the top-1 evidence item from 388

those two sources has a score of more than ϵ, it 389

is selected. Otherwise, the evidence item with 390

the highest prediction score is selected from the 391

remaining sources and (5) cascade 2: prioritizes 392

evidence from attribute, bullet, and descriptions 393

sources since these have better official provenance 394

than user-generated data sources. The selection 395

logic is the same as cascade 1. highest-score is the 396

most straightforward choice but relies on a compa- 397

rable score across sources. cascades 1/2 are also 398

commonly used to merge results from sub-systems. 399

For the best-score selector, we split the prediction 400

score range into 100 buckets and estimate the em- 401

pirical accuracy on the test data. For example the 402

prediction score of 0.924 for the top-1 evidence 403

from an attribute source will fall into the bucket 404

0.92∼0.93. In our test set, evidence items from 405

each source will have an empirical accuracy within 406

each score bin 2. This will lead to an upper-bound 407

approximation of a selector based on prediction 408

scores since we explicitly “sneak a peep” at the 409

test set accuracy. We combine these selectors with 410

3 evidence rankers: BM25, Electra-based tuned 411

on AmazonQA, and our best ranker (AmazonQA 412

+ QG + Real in Figure 1). The results are in Ta- 413

ble 3. The thresholds for cascade 1/2 are tuned to 414

maximize the p@1 on the testset. 415

As our best “fair” ranker, the highest-score selec- 416

tor performs remarkably well, with p@1 only 1% 417

lower than that of the best-score-based selectors. It 418

also outperforms the two cascade-based selectors 419

which prioritize official and high-precision sources. 420

This implies the the prediction scores across differ- 421

ent sources are comparable in our model, which 422

might be because our model is trained on a com- 423

bination of all sources with the same representa- 424

tion. For the model tuned on AmazonQA, where 425

2By continuing to split the confidence range into more
buckets we can make an arbitarily exact approximation to the
perfect selector for the test set, but with significant over-fitting.
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evidence comes solely from the CQA source, the426

highest-score selector is not as effective as the cas-427

cade selectors. For all rankers, even with the best-428

score-based selector, there is still a large p@1 gap429

with the perfect selector, suggesting a further im-430

provement must take into account evidence content,431

in addition to the prediction scores.432

Figure 2: Answer source distribution as the threshold changes
when using the cascade selection. Yellow line is with highest-
score selector and red line is with a perfect selector.

In Figure 2, we visualize the distribution of se-433

lected sources by varying the threshold of two434

cascade-based selectors. We also show the dis-435

tribution by using the highest-score selector (score)436

on the left. As the threshold grows, model pre-437

cision first grows and then degrades, suggesting438

all sources can contribute to answering product439

questions. There is no single source that dominates.440

Although the cascade selection strategy underper-441

forms the highest-confidence selector, it provides442

us with a flexible way to adjust the source distri-443

bution by threshold tuning. In practice, one may444

want to bias the use of information from official445

providers, even with a slight reduction in precision.446

4.3 Answer Generation447

After selecting an evidential item from one source,448

the role of answer generation is to generate a449

natural-sounding answer based on both the ques-450

tion and the evidence. We build our answer genera-451

tor with the Bart-large model (Lewis et al., 2020).452

Similar to the evidence ranker, we take a unified453

approach for all sources by concatenating both the454

question and the evidence together (split by the to-455

ken “|”) as the model input. The model is then fine-456

tuned on the collected question-evidence-answer457

(q-e-a) triples. As in training the ranker, we flatten458

the json structures into strings and process them in459

the same way as the other sources.460

Mixed sources vs split sources We experimented461

with training the generative model on each individ-462

ual source separately as well as mixing the training463

data from all sources and training a unified model.464

Figure 3: Ablation studies of answer generation. copy evi-
dence vs separate sources/combine sources vs our best model.

We measured the BLEU scores of these systems 465

with results shown in Figure 3, where we also in- 466

clude the results of directly copying the evidence. 467

We can see that training a unified model to han- 468

dle all sources improves the performance on all 469

sources, as is consistent with our findings in evi- 470

dence ranking. This is not surprising since previous 471

research on data-to-text has also found that text-to- 472

text generative models are quite robust to different 473

variants of input formats (Kale and Rastogi, 2020; 474

Chang et al., 2021). Directly copying the evidence 475

as the answer leads to very low BLEU scores, espe- 476

cially for json-formatted attributes. This indicates 477

we must significantly rewrite the raw evidence to 478

produce a natural answer. 479

Conditional Back-translation (CBT) In our sce- 480

nario, the AmazonQA contains a large amount 481

of q-a pairs but these do not have corresponding 482

evidence. We can apply a similar idea as back- 483

translation (Sennrich et al., 2016) but further “con- 484

dition” on the question. Firstly, we train an ev- 485

idence generator based on our annotated q-e-a 486

triples. The model is trained to generate the ev- 487

idence by taking the q-a pairs as input. We then ap- 488

ply the model to generate pseudo-evidence e′ from 489

the q−a pairs in AmazonQA. The answer generator 490

is then first finetuned on the pseudo q−e′−a triples 491

and then finetuned further on the real q − e − a 492

annotations. It can be considered as a “conditional” 493

version of back-translation where the model is ad- 494

ditionally conditioned on the questions. We use 495

nucleus sampling with p=0.8 to generate the evi- 496

dence e′ since a diversity of inputs is important for 497

back-translation (Edunov et al., 2018). The results 498

are displayed in Table 4. We can see that adding 499

the conditional back-translation step improves the 500

BLEU score by nearly 3 points. 501

Noisy Self-training (NST) Self-training is an- 502

other popular technique in semi-supervised learn- 503

ing (Scudder, 1965). It uses a trained model to 504

generate outputs for unlabeled data, then uses the 505

generated outputs as the training target. In our 506
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Method BLEU B-1 B-2 B-3 B-4
Copy 4.0 47.3 22.4 15.9 12.6
Bart-large 30.9 57.6 36.1 24.9 17.6
CBT 33.5 60.3 39.0 27.6 20.5
NST 32.5 59.5 37.3 26.2 19.2
NST + noise 33.2 59.8 38.0 26.9 19.9
Iteration-1 34.3 61.1 39.4 28.0 20.8
Iteration-2 34.9 61.1 39.8 28.3 21.4
Iteration-3 34.9 61.3 39.7 28.6 21.6
Iteration-4 34.7 61.3 39.8 28.5 21.3

Table 4: BLEU scores on different methods: copying the
input evidence as the answer (copy), finetuning Bart-large on
training samples (Bart-large), Bart-large + conditional back-
translation (CBT) and Bart-large + noisy self-training (NST).

scenario, however, the unlabeled input data is not507

readily available since it requires positive question-508

evidence pairs. We first apply the same question509

generation model used for evidence ranking to cre-510

ate “noisy” q′ − e pairs. The current model then511

generates an answer a′ based on the q′−e pairs. We512

use beam search with beam size 5 to generate the513

answers as the generation quality is more important514

than diversity in self-training (He et al., 2020). A515

new model is then initialized from Bart-large, first516

finetuned on the q′ − e− a′ triples, then finetuned517

on the real training data. We also experimented518

with adding noise to the input side when training519

on the q′ − e − a′ triples, which has shown to be520

helpful for the model robustness (He et al., 2020) 3.521

As shown in Table 4, NST improves the model per-522

formance by over 1 BLEU point. Adding the noise523

to the input further brings slight improvement.524

Iterative Training We further investiated combin-525

ing the proposed CBT and NST into an iterative526

training pipeline. The intuition is that CBT can im-527

prove the answer generator which then helps NST528

to generate higher-quality pseudo answers. The529

higher-quality triples from NST can in turn be used530

to ‘warm up’ the evidence generator for CBT. Al-531

gorithm 1 details the process. It can be considered532

a variant of iterative back-translation (Hoang et al.,533

2018) with an additional condition on the ques-534

tion and the noisy self-training process inserted in535

between. It essentially follows a generalized EM al-536

gorithm (Cotterell and Kreutzer, 2018; Graça et al.,537

2019) where the evidence generator and the answer538

generator are guaranteed to improve iteratively. We539

show the results after each iteration in Table 4. As540

can be seen, the iterative training pipeline further541

3We apply a similar noise function as in Edunov et al.
(2018) that randomly deletes replaces a word by a filler token
with probability 0.1, then swaps words up to the range of 3.

(Inilialization) Ge = Ga = Bart-large;
for i=1 to N do

finetune Ge on {q − a− e}real;
Generate e′ with Ge from {q − a}AmazonQA;
finetune Ga on generated
{q − e′ − a}AmazonQA;

finetune Ga on {q − e− a}real;
Noisy Self-training (Ga);
Generate a′ with Ga from {q′ − e}QG;
finetune Ge on generated {q′ − a′ − e}QG;

end
Algorithm 1: Iterative Training Process. Ge is the

evidence generator and Ga is the answer generator. {q −
a−e}real,{q−a}AmazonQA and {q′−e}QG indicate the

data from the real annotation, AmazonQA and question

generation respectively.

Evaluated Faithfulness (%) Naturalness (%)

copied evidence - 15.44
our best 94.39 95.51

human reference 97.00 95.82

Table 5: Human evaluation results.

improves generation quality. Most gains are found 542

in the first iteration and the model saturates at iter- 543

ation 3 with a BLEU score of 34.9. 544

Human Evaluation We run a human evaluation 545

to assess generation quality of our best generator 546

(iteration-3 from Table 4), human reference and the 547

copied evidence. We evaluate from two perspec- 548

tives: (1) Faithfulness: A sentence is unfaithful to 549

the evidence if it contains extra or contradictory 550

information, and (2) Naturalness: A sentence is 551

unnatural if it is not fluent; contains additional in- 552

formation that not relevant as an answer; or does 553

not directly reply to the question. 554

We show the results in Table 5. We can observe 555

that copying the evidence directly leads to a natu- 556

ralness score of only 0.15, which further confirms 557

that an answer generator is needed for a natural 558

presentation. The generations from our best model 559

improve the naturalness score to 0.9551 and are 560

faithful to the evidence in 94.39% of the cases, 561

only slightly lower than the human references. 562

4.4 Best Practices 563

To summarize the best practices, the attribute json 564

strings can be directly flattened and all sources are 565

mixed together and trained with a single unified en- 566

coder. The ranker is finetuned on AmazonQA, aug- 567

mented data obtained by question generation and 568

manually annotated training data in order. Source 569

selection can be performed based solely on the 570
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Subjectivity of Relevance

Question: what is the snow made of?
Predicted: kind of cotton like.

Noise in Attribute Value

Question: is it dark green or brown?
Predicted: color: { value:“as shown” }

Overfit to String Match

Q: what is the length of the solder?
Predicted: coil of solder is about 1-3/4 long and ...

Uncertain Evidences

Q: can it be machine washed?
Predicted: not sure if it is machine washable.

Table 6: Common errors of evidence relevance ranking.

Number accuracy

Q: what’s the size of the house?
E: item_dimensions: {width:... height:{unit:centimeters,
normalized_value:{unit:inches, value:15.35},value:39.}}
G: The house is 10.24× 30.31× 39 inches

Hallucination when Inference needed

Q: are the dolls with it?
E: included_components:{value:“my dreamy doll-
house”}
G: Yes, it comes with a doll.

Sensitivity to typographical errors

Q: for he many players?
E: ages 7 and up, 2-12 players
G: this game is for ages 7 and up.

Table 7: Common errors of answer generations.

model confidence score and the answer generator571

can be trained as in Algorithm 1.572

5 Error analysis573

Based on the human evaluation, we identified the574

following key problems that exist in the current sys-575

tem. For evidence ranking, the major problems are:576

(1) subjectivity of relevance: It can be subjective577

to define whether a piece of evidence is enough578

to answer a given question. The model will some-579

times pick a somewhat relevant piece of evidence,580

even though there could be other, better options that581

support a more comprehensive answer. (2) noise582

in attribute value: When an attribute value con-583

tains uninformative data due to the noise of data584

sources, the model still may choose it based on585

its attribute name. (3) overfitting to string match:586

The model tends to select strings similar to the ques-587

tion while ignoring their fine semantics, a common588

problem from the bias to ‘shortcut learning’ of neu-589

ral networks (Geirhos et al., 2020). (4) uncertain590

evidence: The model ranks evidence highly, even591

if this evidence is an uncertain expression. This592

can be viewed as a special case of over-fitting to 593

string match. We show examples in Table 6. We 594

can attempt to alleviate errors of type 1 by provid- 595

ing finer-grained labels in the training data instead 596

of only binary signals (Gupta et al., 2019). Error 597

types 2 and 4 could be mitigated by data augmenta- 598

tion, constructing negative samples by corrupting 599

the attribute values or making evidences uncertain. 600

Error type 3 is more challenging. One possible 601

solution is to automatically detect spurious correla- 602

tions and focus the model on minor examples (Tu 603

et al., 2020). Nevertheless, a fundamental solution 604

to fully avoid Error 3 is still an open question. 605

For answer generation, we identify the major 606

problems as: (1) Number accuracy: The model 607

cannot fully understand the roles of numbers from 608

the limited training examples. (2) Hallucination 609

if inference is needed: when it is not possible to 610

generate an answer by simple rephrasing, the model 611

can hallucinate false information. (3) Sensitivity 612

to typos: The model is not robust to typos in the 613

question. A tiny typo can easily break the system. 614

We provide examples of these errors in Table 7. 615

Error types 1 and 3 could be alleviated through data 616

augmentation. We can create new samples to let the 617

model learn to copy numbers properly and learn to 618

be robust to common typos. Another way to reduce 619

number sensitivity could to delexicalize numbers 620

in the inputs, a common strategy in data to text 621

generation (Wen et al., 2015; Gardent et al., 2017). 622

Error type 2 is a challenging open problem in neu- 623

ral text generation. Many techniques have been 624

proposed such as learning latent alignment (Shen 625

et al., 2020), data refinement with NLU (Nie et al., 626

2019), etc. These could potentially be applied to 627

our task, which we leave for future work. 628

6 Conclusion 629

To the best of our knowledge, this work is the first 630

comprehensive study of product answer generation 631

from heterogeneous sources including both semi- 632

structured attributes and unstructured text. We col- 633

lect a benchmark dataset with annotations for both 634

evidence ranking and answer generation. It will be 635

released to benefit relevant study. We find that the 636

best practice is to leverage a unified approach to 637

handle all sources of evidence together and further 638

experimented with a set of data augmentation tech- 639

niques to improve the model performance. Error 640

analysis is provided to illustrate common errors, 641

which we hope will lead to inspire future work. 642
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Figure 4: The ngram distribution of prefixes of questions.

A Collected Data837

All our collected data have also been manually838

verified to remove sample with private or offensive839

information.840

In Figure 4, we show the ngram distribution of841

question prefixes i our collected data. As can be842

seen, a large proportion of questions are boolean843

questions starting with “is”, “does”, “can”, “are”,844

“do” and “will”. The rest are mostly factual ques-845

tions like “how many/tall/long ...” and “what ...”.846

Most of them should be able to answer with a short847

span since there are not many opinion questions848

like “how is ...”, “why ...”.849

B Instruction for Human Annotation850

All annotators are based on the US. We first per-851

form in-house annotation and then estimate the852

time needed for each annotation. We then set the853

payment to be roughly 15 USD per hour. The pay-854

ment is decided based on the average payment level855

in the US. All annotators are informed that their col-856

lection will be made public for scientific research857

according to the Amazon Mechanical Turk code858

of rules. The data collection protocol has been859

approved by an ethics review board.860

B.1 Question Collection861

Read the given product name and image, imagine862

you are a customer and are recommended this prod-863

uct. Write one question about it to decide whether864

or not to purchase this product.865

Examples of questions: is it energy efficient?866

does it require a hub? can I watch sports on this867

TV? will the plug work with an extension cord?868

B.2 Evidence Selection 869

At the start of each task, the workflow application 870

will present a product, a question about the product 871

and a set of candidates which describe the prod- 872

uct. Your annotation task is to mark the proper 873

candidate that contains information to answer the 874

question from the attribute set. If none of the pro- 875

vided candidates contain the information, select 876

”None of the above”. 877

B.3 Answer Generation 878

Read the raised product question and provided in- 879

formation, write a natural, informative, complete 880

sentence to answer this question. If the provided 881

information cannot address the question, write 882

”none”. Make sure the answer is a natural, in- 883

formative and complete sentence. Do not write 884

short answers like ”Yes”, ”Right”, ”It is good”, etc. 885

Provide enough information to help the asker un- 886

derstand more about the question. If the provided 887

information can only partially answer the question, 888

only reply to the answerable part. 889

Good Examples: 890

question: what age range is this product designed 891

for? 892

Provided information: age_range_description: 893

value:”3 - 8 years 894

Answer: It is designed for the age range of 3 - 8 895

years old. 896

question: how many people can play at one time? 897

provided information: number_of_players: 898

value:”8 899

answer: It is designed for 8 players at one time. 900

Bad Examples: 901

question: what age range is this product designed 902

for? 903

Provided information: age_range_description: 904

value:”3 - 8 years 905

Answer: 3 - 8 years. 906

question: how many people can play at one time? 907

provided information: number_of_players: 908

value:”8 909

answer: 8. 910

C Template Data-to-Text System 911

When designing the template system, we aim to 912

capture general rules across different attribute types 913

so that one template can be reusable to other similar 914

attributes. We define each template should contain 915

(1) a precondition specializing when to apply the 916

template, (2) one or several corresponding text with 917
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gaps to fill, and (3) a set of rules defining which918

text to select and how to fill in the gaps. For exam-919

ple, the following is a template defined from the920

attribute type ARE_BATTERIES_REQUIRED:921

P r e c o n d i t i o n : a p p l i e s i f t h e POS922

t a g o f t h e a t t r i b u t e923

name f o l l o w s t h e p a t t e r n o f924

be_NOUN_VERBed .925

Rule : ( 1 ) I f t h e v a l u e i s ’ ’Y’ ’926

or ’ ’ yes ’ ’ o r ’ ’ True ’ ’ :927

o u t p u t ’ ’ I t VERBs t h e NOUN’ ’ .928

( 2 ) O t h e r w i s e : o u t p u t ’ ’ I t does929

n o t VERB t h e NOUN’ ’ .930

where VERBs and VERBed mean the third person931

singular and past particle form of the verb. For the932

attribute ARE_BATTERIES_REQUIRED, VERBs933

would be “requires” and VERBed is “required”.934

It can also apply to other attribute types follow-935

ing the same pattern like “is_assembly_required”,936

“is_software_included”, etc.937

During template construction, we maintain a938

template bank starting from empty. As we see more939

attribute types, we check if any template from the940

bank can be applied, and if so, whether it generates941

the correct text or whether we need to manually942

update the template. Otherwise, we create a new943

template for this attribute type. This process is re-944

peated until we go over all the 320 attribute types945

three times, to refine, merge and fix the template946

bank and rules. After these rounds, we end up with947

a total of 23 distinct templates.948

Nevertheless, during the construction process,949

we realize it is nearly impossible to devise a tem-950

plate system to cover all cases well, even for the951

limited 320 attribute types that we focus on. The952

difficulty lies in the following two diversities in the953

data:954

1. linguistic diversity: The attribute values do955

not follow any strict rule. They can be free956

text as long as it conveys the meaning, which957

makes it hard to design general rules even for958

a single attribute type.959

2. structural diversity: The json format is a loose960

structure. The same semantic meaning can be961

organized in different ways and hierarchies.962

Applying one rule for different structures can963

easily lead to parsing errors.964

We show an example in Table 8. Even for this965

single attribute, it requires many verbalizing rules966

Attribute value Text
{ value:”gas-powered”} The product is gas-

powered.
{ value:”batteries”} It runs on batteries.
{ value:”Manual” } This doesn’t have power.
{ value:”NA” } This doesn’t run on any

power.

Table 8: Different instances of the attribute type
“power_source_type” and human annotated text.

to handle different structures and attribute values, 967

let alone extending the template rules to multiple 968

attribute types. 969

D Neural Data-to-Text 970

To avoid pre-defined rules and to generalise to un- 971

seen attributes, we train a neural generator model 972

initialized with T5-large (Raffel et al., 2020). As 973

input, we feed the linearized json-formatted data 974

and the output is the annotated text. 975

To get the training data, we obtain the semi- 976

structured attributes of product information from a 977

product database. These attributes are aggregated 978

from different providers with varied schema. We 979

select 320 unique attribute types from it 4, filter 980

out information only for internal use and indicator 981

tags containing no actual information like ”lan- 982

guage_tag”, ”attribute_id” etc. For each of the 320 983

attribute types, we randomly sample 20 products 984

containing such attribute from 5M products sold 985

in the US market (The 5M products are randomly 986

sampled from different categories), then extract 987

their attribute instances. After removing duplicate 988

ones, we get 3,316 unique attribute instances in the 989

end. We then preprocess them to lower-case all 990

characters, remove emojis and normalize all floats 991

to contain at most 2 decimals, since customers will 992

barely need overly precise decimal numbers. 993

We hire annotators from Amazon Mechanical 994

Turk 5 to write a natural sentence for each attribute 995

instance. We restrict to US-based annotators who 996

completed >500 tasks, out of which more than 97% 997

had been accepted. Before the formal annotation, 998

we did a pilot study with 100 samples. Without 999

extra information, we find 16% of attributes are not 1000

understandable to humans, which indicates proper 1001

context is necessary to understand the meanings of 1002

4We manually check the product attributes, select 320
types of them which contain meaningful information about the
products and exclude those only used for internal management,
metadata, etc.

5https://www.mturk.com/
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#Annotated attributes 3191
#unique attribute types 320
#Tokens per attribute 7.93
#Tokens per text 7.52
Vocab size of attribute 4567
Vocab size of text 4334

Table 9: Dataset Statistics. Each annotated attribute has one
text describing its content.

attributes. Therefore, we also provide the product1003

image and title in the second round of pilot study.1004

By adding the extra information, only 4% of them1005

are not understandable. We then continue with1006

this setting and get all attributes annotated. We1007

also remove all attributes that are not understand-1008

able to annotators (usually those that rely on other1009

information to interpret), and end up with 3,1911010

attribute instances annotated with their description1011

text. Table 9 lists the statistics of the dataset.1012

We further normalize the numbers in both the1013

attribute and text to keep them in a consistent form,1014

to help the model learn their correspondence in the1015

generation task. For example, we turn forms like1016

“1.”, “1.0” and “1.00” into 1, and normalize words1017

to numeric values (“one” → “1” etc).1018

We consider two test scenarios, one containing1019

only seen attributes with unseen values, and the1020

other containing only unseen attributes to test the1021

model generalization capability. For the unseen1022

scenario, we randomly sample 30 attribute types1023

from all 320 types. We sample 58 instances from1024

them and add into the dev set, while the rest are1025

used as test set. For the seen scenario, we ran-1026

domly sample 440 instances from the remaining1027

290 attribute types. 220 of them are added into1028

the dev set and the rest serve as the test set. We1029

use one fixed dev set containing both seen (220)1030

attributes and unseen (58) attributes. All remaining1031

instances serve as training set. Due to the small1032

data size, we perform cross validation to get more1033

reliable results. We repeat the above process ten1034

times with different seeds to get 10 different splits,1035

then train/evaluate on them and average the results.1036

E Human Evaluation on Data-to-Text1037

We conduct a human evaluation of the generated1038

texts, focusing the following three dimensions:1039

1. Faithfulness, whether the text is faithful to1040

the attribute. 1 for faithful and 0 if the text1041

contains any wrong information that does not1042

exist in the attribute.1043

2. Coverage, whether the text covers all contents 1044

in the attribute. 1 if covers all and 0 if it misses 1045

any information contained in the attribute. 1046

3. Naturalness, whether the text is a natural sen- 1047

tence rather than a machine-generated rigid 1048

one. 4-ary score from 1(rigid), 2(slightly 1049

rigid), 3(slightly natural) to 4(natural) 1050

On seen attributes, we evaluate the T5-large, the 1051

template system and the annotated reference. On 1052

unseen attributes, we only evaluate T5-large and 1053

the reference since handcrafted templates cannot 1054

be applied to unseen attributes at all. 1055

From each of 10 data splits, we randomly sample 1056

50 attributes from it such that each model has 500 1057

attribute-text pairs being evaluated. Each pair is 1058

evaluated by three annotators. The final scores are 1059

averaged over the 500 pairs for each model. We 1060

show the results and the agreement score among 1061

annotators in Table 10 and Table 11 respectively. 1062

Overall, the evaluation has a rather high agree- 1063

ment score. Naturalness has the lowest agreement 1064

since it is 4-ary. We also calculate the binary score 1065

for naturalness by combining natural and slightly 1066

natural into one bucket, and combining rigid and 1067

slightly rigid into the other bucket. The agreement 1068

score grows to over 0.92 by this means. We then 1069

manually checked and corrected all attribute-text 1070

pairs that do not have an agreement score of 1 for 1071

faithfulness and coverage. 1072

Overall all models have high scores on both faith- 1073

fulness and coverage, and differences are small. 1074

For naturalness, as expected, templates have the 1075

lowest score. 1076

Model Faithfulness Coverage Naturalness
Performance on Seen Attributes

Template 0.9612 0.9546 3.20266
T5-large 0.9731 0.97761 3.65672

Performance on Unseen Attributes
T5-large 0.9125 0.9231 3.6103

Reference 0.9401 0.9513 3.5203

Table 10: Human Evaluation Results for Answer Presentation

Faithful Coverage Natural-4nary Natural-binary
0.97762 0.97402 0.80499 0.92569

Table 11: Agreement Score for Answer Presentation Evalua-
tion
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Source MAP MRR NDCG P@1 HIT@5

Attribute 0.965 0.966 0.974 0.943 0.996
Bullet 0.935 0.935 0.952 0.890 0.993
Description 0.648 0.708 0.747 0.611 0.822
OSP 0.667 0.708 0.763 0.579 0.873
Review 0.796 0.860 0.875 0.778 0.966
CQA 0.643 0.750 0.766 0.636 0.897

Table 12: Performance of our best ranker on different sources.

F Full Results of Ranker1077

We show the full results of our best-performed1078

ranker in Table 12. As can be seen, different1079

sources have different accuracy score. The attribute1080

and bullet point source have the highest accuracy1081

score because the former is more structured, and1082

the latter has a consistent writing style with only1083

a few sentences. User reviews also have a high1084

accuracy score. This might be because the candi-1085

dates of reviews are already the top ones selected1086

by our pretrained ranker. Many of them are al-1087

ready relevant and the negative-positive ratio is low.1088

The model does not have extreme difficulty in han-1089

dling the user reviews. The model performs worst1090

on the description, OSP and CQA answer source.1091

This might result from the diversity of their writing1092

styles and the high negative-positive ratio, which1093

increase the difficulty. Moreover, these two sources1094

usually depend more on the context to interpret the1095

evidence than other sources. The text description is1096

extracted from the multi-media web page. Simply1097

extracting the text part might lose richer context1098

to interpret the extracted text. Similarly, the CQA1099

usually depends on the community question. If we1100

only extract a sentence from the answer, it might1101

contains references that is not self-contained.1102

G Training details1103

For both the generative Bart-large model and the1104

discriminative Electra-base model, we we truncate1105

the total input length to 128 subword tokens and1106

select the learing rate from [5e − 6, 1e − 5, 3e −1107

5, 5e − 5, 1e − 4]. The warm-up step is selected1108

from [5%, 10%, 20%, 50%] of the whole training1109

steps. For the discriminative model, we choose the1110

best configuration based on the F1 score on the vali-1111

dation set. For the generative model, we choose the1112

best configuration based on the perplexity on the1113

validation set. In the end, we set the learning rate1114

of Electra-base as 3e− 5 and that of Bart-large as1115

1e− 5. The warm-up step is set as 20% for Electra-1116

base and 10% for Bart-large. The batch size is set 1117

as 64 for Electra-base and 16 for Bart-large. For 1118

Electra-base, we measure the validation F1 score 1119

after finishing every 1% of the whole training steps 1120

and stop the model when the valitaion F1 score 1121

does not increase for 30% of the whole training 1122

steps. For Bart-large, we measure the validation 1123

loss every 200 steps and stop the model when the 1124

validation loss stops decreasing for 1000 steps. All 1125

models are trained once on 8 Nvidia V100 GPUs 1126

and the random seed is set as 42. 1127
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