
Published in Transactions on Machine Learning Research (12/2025)

Statistical Guarantees for Approximate Stationary Points of
Shallow Neural Networks

Mahsa Taheri mahsa.taheri@uni-hamburg.de
Department of Mathematics
University of Hamburg

Fang Xie∗ fangxie@bnbu.edu.cn
Guangdong Provincial Key Laboratory of IRADS
Beijing Normal-Hong Kong Baptist University

Johannes Lederer johannes.lederer@uni-hamburg.de
Department of Mathematics
University of Hamburg

Reviewed on OpenReview: https: // openreview. net/ forum? id= PNUMiLbLml

Abstract

Since statistical guarantees for neural networks are usually restricted to global optima of
intricate objective functions, it is unclear whether these theories explain the performances
of actual outputs of neural network pipelines. The goal of this paper is, therefore, to bring
statistical theory closer to practice. We develop statistical guarantees for shallow linear
neural networks that coincide up to logarithmic factors with the global optima but apply
to stationary points and the points nearby. These results support the common notion that
neural networks do not necessarily need to be optimized globally from a mathematical
perspective. We then extend our statistical guarantees to shallow ReLU neural networks,
assuming the first layer weight matrices are nearly identical for the stationary network and
the target. More generally, despite being limited to shallow neural networks for now, our
theories make an important step forward in describing the practical properties of neural
networks in mathematical terms.

1 Introduction

Statistical theories for deep learning usually apply to exact, global optima of certain objective functions
(Bartlett, 1998; Bauer & Kohler, 2019; Kohler & Langer, 2021; Lederer, 2022a; Schmidt-Hieber, 2020; Mohades
& Lederer, 2025; Golestaneh et al., 2025). But those objective functions cannot be solved explicitly and
are highly non-convex, so that in practice, exact, global optimization is—at least to date—an open research
question, and we can currently expect only approximate stationary points from current (general) algorithms
(see Figure 1). In other words, it is unclear whether the known theories have any meaning for the outputs of
actual deep-learning pipelines.

Also other parts of machine learning face optimization problems that are challenging to optimize globally and
to full precision. Accordingly, some statistical insights have already been established. For example, Bien
et al. (2018; 2019) solve a non-convex problem in linear regression in a “convex” way and develop statistical
theories for their solution. Some insights on the statistical theory of stationary points for (simple) non-convex
objectives have already been presented: Loh & Wainwright (2015, Theorems 1,2) extract statistical guarantees
for stationary points of non-convex objectives (allowing for non-convexity in both loss and penalty functions)
in a regression-type settings, under a so-called “restricted-strong convexity" condition over the empirical

∗Corresponding author

1

https://openreview.net/forum?id=PNUMiLbLml

Published in Transactions on Machine Learning Research (12/2025)

Parameter

Objective function

approximate stationary points

Figure 1: Since objective functions in deep learning are usually highly non-convex and cannot be solved
explicitly, we can only expect approximate stationary points from practical algorithms.

loss (see their Display (4)). Loh (2017, Theorem 1) studies the behavior of stationary points of penalized
robust estimators in a linear-regression setting. They prove that under a local “restricted-strong convexity"
condition, stationary points within the region of restricted curvature are statistically consistent with the
target. Also Elsener & van de Geer (2018, Theorem 1) derive sharp oracle inequalities for stationary points of
general non-convex objectives made by a non-convex loss plus a convex penalty, under a restrictive condition
called “two point marginal condition" on the theoretical loss. They exemplify their bounds for simple models
like robust regression and binary classification. Their condition is kinda similar to the restricted-strong
convexity but on the theoretical loss (and not on the empirical loss).

However, it remains unclear how to extend these insights to deep learning, as they either apply only to simple
models like linear regression or rely on specific curvature assumptions, while it is not clear if such curvature
properties hold even for simple networks.

This paper develops statistical guarantees for the stationary points of shallow neural networks and for the
points in the vicinity of them. Strikingly, our statistical rates match the rates of global optimizers up
to log-terms (Taheri et al., 2021; Lederer, 2022a; Golestaneh et al., 2025). Thus, our results establish a
mathematical proof of the “empirical fact” that global optimization is not necessary in deep learning. This
complements and contrasts studies about the existence or non-existence of spurious local minima and saddle
points in both linear and non-linear networks (Zhou & Liang, 2018; Fukumizu & Amari, 2000; Safran &
Shamir, 2018; Lederer, 2020; Liu, 2022).

One of the main challenges in the proofs is the complexity, intricacy, and ambiguity of the parameter
space of neural networks. To address this challenge, we introduce scaling tricks (Taheri et al., 2021) and
use particular arguments from empirical-process theory for regularized objectives. Moreover, in strong
contrast to most theory papers, we focus on regression, which is more general and mathematically more
challenging than classification. For example, unbounded losses like least-squares cannot be treated (at
least not directly) with standard techniques like McDiarmid’s inequality (McDiarmid, 1989, Lemma 3.3) or
Rademacher complexities (Mohri et al., 2018, Chapter 3). Thus, our work also contributes considerably on
the technical aspects of deep learning.

Paper contribution The three main technical contribution of this paper are as follows:

1. We show that every (reasonable) stationary point of regularized shallow linear neural networks and
the points nearby generalize essentially as well as the global optima (Theorem 1 and Theorem 2).

2. We extend our theories to shallow ReLU neural networks for specific stationary points (Theorem 3).

3. We determine the optimal rates for the tuning parameter across different networks and noise
distributions (Theorem 4).

Of course, our theoretical framework is still far from the extremely complex pipelines of modern deep
learning. But our paper makes considerable progress in closing the gap between our theoretical understanding
and practical experiences. In particular, it (i) strengthens the statistical foundations of deep learning and

2

Published in Transactions on Machine Learning Research (12/2025)

(ii) gives a first mathematically rigorous proof of the empirical finding that (ii.A) approximate and (ii.B) local
optimization of neural networks is usually sufficient in practice.

Paper outline Section 2 states the statistical guarantees for the stationary points of the shallow linear
neural network (Theorem 1) and the points nearby (Theorem 2). We extend our theories to shallow ReLU
networks in Section 3 (Theorem 3). We support our theories with numerical observations in Section 4.
Section 5 provides an overview of related works. We represent some of our technical results in Section 6 and
extend our theory for heavy-tailed noise in Sections 7. We conclude our paper in Section 8. More technical
results, detailed proofs, and discussion on different assumptions are given in the Appendix.

Notations We use vec(γ, Θ) to generate a vector of length Rw+w·d from a vector γ ∈ Rw and a matrix
Θ ∈ Rw×d (for generating the vector, we first push the elements of γ and then elements of Θ row by row). We
collect first-order partial derivatives (and subdifferentials for ReLU networks) of prediction risk riskX [γ, Θ] and
population risk risk[γ, Θ] with respect to the β ··= vec(γ, Θ) in the gradient vectors ∇riskX [γ, Θ] ∈ Rw+w·d

and ∇risk[γ, Θ] ∈ Rw+w·d, respectively. We use the notation || · || for a general vector norm and ||| · ||| for
a general matrix norm. We also define ||γ||1 ··=

∑w
j=1 |γj | and |||Θ|||1 ··=

∑w
j=1

∑d
k=1 |θjk|. To reduce the

amount of notations, we use some notation slightly differently depending on whether we treat linear or ReLU
networks.

2 Statistical guarantees for shallow linear neural networks

Consider inputs x1, . . . , xn ∈ Rd and corresponding outputs y1, . . . , yn ∈ R that are connected via

yi = f [xi] + ui (1)

for an unknown target function f : Rd → R and unknown stochastic noise u1, . . . , un ∈ R. Deep learning is
about using the available data to approximate the unknown target function f by a neural network. We first
focus on linear neural networks, a well-accepted toy model for more general deep learning pipelines (Saxe
et al., 2013); hence, we consider

x 7→ γ⊤Θx ,

where
(γ, Θ) ∈ B ··=

{
(γ, Θ) ∈ Rw × Rw×d} .

We extend this setup to ReLU activation in the following section.

To avoid unnecessary digression here, we impose three mild assumptions. The assumptions are by no means
necessary and relaxed in the following sections.
Assumption 1 (Model Assumptions). We assume that:

1. The target function can be approximated by such a neural network in the first place: there is a pair
(γ∗, Θ∗) ∈ B such that ||γ∗||1, |||Θ∗|||1 ≤

√
log n and f [x] = γ∗⊤Θ∗x for all x ∈ Rd.

2. The xi’s are independent and centered sub-Gaussian random vectors with independent coordinates.

3. The ui’s are independent centered Gaussian random variables with standard deviation σ and are
independent of xi’s.

The first part of Assumption 1 ensures a sharp focus on statistical guarantees rather than the approximation
properties of neural networks, we assume that the target function is itself a neural network with reasonably
small parameters. A detailed description of the assumption is provided in Section E of the Appendix;
the assumption is relaxed in Theorem 5. Note that the parametrization of neural networks is ambiguous:
there are infinitely many pairs (γ∗, Θ∗) ∈ B that satisfy those conditions—compare to Taheri et al. (2021,
Proposition 1); for further reference, we define β∗ ··= vec(γ∗, Θ∗) for a fixed but arbitrary such pair of
parameters. The second part of the assumption on the input simplifies our theoretical analysis. Although it
may not always strictly hold in practice, it is widely adopted in the literature as a convenient modeling device;

3

Published in Transactions on Machine Learning Research (12/2025)

see, for example Vershynin (2018); Wainwright (2019); van de Geer (2000). Intuitively, each coordinate
of x can be interpreted as a feature extracted from the raw data, and independence is then a simplifying
assumption. Moreover, the mean-zero sub-Gaussian property is often assumed to capture concentration
behavior of feature vectors in high-dimensional models and can be achieved through data preprocessing. The
third part of the assumption, once more, simplifies the presentation here; extensions to other types of noise,
including sub-Gaussian and sub-exponential noise are provided in Section 7.

We assume our regression setup (yi ∈ R) rather than a classification setup (yi ∈ {0, 1} or yi ∈ {1, . . . , k})
because the unbounded outputs make regression considerably more challenging to analyze mathematically. In
other words, our regression results transfer readily to classification. The usual loss function in regression is
least squares. In deep-learning practice, however, least squares (and similarly logistic loss in classification) is
complemented with dropout (Srivastava et al., 2014; Salehinejad & Valaee, 2019), batch normalization (Ioffe &
Szegedy, 2015), low-rank approximation (Denil et al., 2013), and so forth, which yield implicit regularization,
or least squares is even complemented with explicit regularization directly (Alvarez & Salzmann, 2016;
Lemhadri et al., 2021; Hebiri et al., 2025). It is well understood that implicit regularization is related to
explicit regularization (Lütke Schwienhorst et al., 2024). Thus, to mimic deep-learning practice, we consider
least-squares complemented by (elementwise) ℓ1-regularization:

(γ̂, Θ̂) ∈ arg min
(γ,Θ)∈B

{
1
n

n∑
i=1

(
yi − γ⊤Θxi

)2 + r||vec(γ, Θ)||1
}

, (2)

where r ∈ [0, ∞) is a tuning parameter to be calibrated (see Sardy et al. (2020) for some theory insights). Such
estimators are standard in machine learning and statistics (Lederer, 2022b; Eldar & Kutyniok, 2012). Despite
ℓ1-norm is non-smooth, it often poses very little problems in terms of computations (see Friedman et al.
(2010)). Also recently, the ℓ1-norm has been effectively used to promote sparsity in neural networks (Lemhadri
et al., 2021).

As usual, we measure the (in-sample-)prediction risk by

riskX [γ, Θ] ··=
1
n

n∑
i=1

(
yi − γ⊤Θxi

)2

with X ··= (x1, . . . , xn)⊤ ∈ Rn×d and the generalization risk by

risk[γ, Θ] ··= E(x,y)

[(
y − γ⊤Θx

)2
]

with the expectation over a new sample (x, y) (that has the same distribution as x1, . . . , xn and y1, . . . , yn).
We call β̃ ··= vec(γ̃, Θ̃) a stationary point of the objective in equation 2 if it satisfies (Bertsekas, 1997,
Page 194);(Elsener & van de Geer, 2018, Equation 6);(Loh & Wainwright, 2015, Equation 5)(

∇riskX [γ̃, Θ̃]
)⊤(β − β̃) + rz̃⊤(β − β̃) ≥ 0 ∀ β = vec(γ, Θ) with (γ, Θ) ∈ B (3)

for appropriate z̃ ∈ ∂||β̃||1 (where ∂||β̃||1 is the subdifferential of the regularizer at β̃). For an interior point
β̃, our definition of stationary points in equation 3 reduces to the usual zero-subgradient condition.

We call a stationary point β̃ reasonable once ||γ̃||1, |||Θ̃|||1 ≤
√

log n—again to avoid unnecessary complication
(we refer to the Appendix Section F for a detailed description of the reasonability assumption). Due to
the ambiguity of neural networks, there are infinitely many equivalent stationary and reasonable stationary
points; importantly, our guarantees hold for every (reasonable) stationary point and target β∗.

We say that a network indexed by (γ̃, Θ̃) generalizes well if

risk[γ̃, Θ̃] ≈ risk[γ∗, Θ∗] ,

that is, the network generalizes essentially as well as the best network. In the following, we show that not
only the “statistical” network indexed by (γ̂, Θ̂) but also every “practical” network indexed by a reasonable
stationary point (γ̃, Θ̃) of the objective function in equation 2 generalizes well.

4

Published in Transactions on Machine Learning Research (12/2025)

Moreover, we call the total number of parameters in the network p ··= w + w · d the problem’s effective
dimension and

rorc ··= ν(log n)3/2

√
log(np)

n
(4)

the oracle tuning parameter, where ν ∈ (0, ∞) is a constant that depends only on the distributions of the
inputs and noise. It has been shown that rorc is indeed an optimal tuning parameter of equation 2 in some
sense (Taheri et al., 2021).

We then get the following result for a new sample pair (x, y) with the same distribution as x1, . . . , xn and
y1, . . . , yn.
Theorem 1 (Statistical Guarantees for Reasonable Stationary Points of Shallow Linear Networks). Under
the Assumption 1 any reasonable stationary point (γ̃, Θ̃) of the objective function in equation 2 with r ≥ rorc
satisfies the risk bound

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + 5r
√

log n (5)

with probability at least 1 − 1/2n. If r = rorc, the bound becomes

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + ν(log n)2

√
log(np)

n
. (6)

Theorem 1 proves the fact that for properly chosen tuning parameter r and large enough sample sizes, any
reasonable stationary point of equation 2 generalizes essentially as well as β∗. Our results essentially have the
same rates as the ones in the literature (Taheri et al., 2021, Theorem 3);(Lederer, 2022a, Proposition 3), who
prove that the prediction risk is at most of order O((L/2)1/2−L log(p) log(n)/

√
n)) for ℓ1-regularized neural

networks with depth L and p parameters. However, in stark contrast to previous results, our theories apply to
all reasonable stationary points (including saddle points) rather than to the global optimum of the objective
function only. Although works like Kawaguchi (2016) and Zhou & Liang (2018) argue about the absence of
local minima in linear networks, saddle points still exist in linear neural networks (see Zhou & Liang (2018,
Theorem 2)). Furthermore, saddle points continue to pose challenges: Lee et al. (2019) demonstrate that
gradient-based algorithms can escape strict saddle points, but non-strict saddle points are problematic and
also exist in linear neural networks in general (Zhou & Liang, 2018, Paragraph following their Theorem 2).
We refer to our illustrative Example 1 (in the Appendix) to clearly illustrate the presence of sub-optimal
critical points in our considered setup. Also, a recent study by Achour et al. (2024) demonstrates that for
shallow linear neural networks with least squares loss, all saddle points are strict under some assumptions
(see Achour et al. (2024, Assumption 1).

To emphasize the significance of using regularized objectives, it’s worth mentioning that the rate of ordinary
least-squares in linear regression is O(d/n), where d gives the number of parameters and n the number of data
examples (Lederer, 2022b, Equation 1.5). But for high-dimensional settings with d ≫ n, least-squares are
prone to overfitting, so regularization can be employed for improvement. For example, lasso with sufficiently
large tuning parameter (in linear regression) gives predictions bounds at most bounded by

√
log(d)/n (Lederer,

2022b, Page 174). Also, a different prediction bound for lasso called “power-two bound" is presented in Lederer
(2022b, Page 188) that holds under strong conditions but it is far from the context of this paper. Overfitting
is even more problematic for complex models like neural networks with a huge number of parameters p. The
focus has just shifted to networks involving sparsity to improve prediction bounds from p/n to

√
log(p)/n,

which also appears in our results (see equation 6 for example).

Note that in finite time, stationary points can be computed just approximately using gradient-based algorithms.
Now, we extend our results in Theorem 1 to the points that are close but not necessarily equal to a stationary
points. We define a pair (˜̃γ, ˜̃Θ) as a τ−approximate stationary point if it satisfies∣∣riskX [˜̃γ, ˜̃Θ] + r||˜̃β||1 − riskX [γ̃, Θ̃] − r||β̃||1

∣∣ ≤ τ (7)

for a τ ∈ [0, ∞). Our definition of approximate stationary points in equation 7 is closely related to the typical
definitions in the literature that impose some bounds on the norm of the gradient vectors (see Appendix

5

Published in Transactions on Machine Learning Research (12/2025)

Section G for a detailed description). Employing gradient-based algorithms (in finite time), we can expect
to get close to a stationary point in the sense that ˜̃β ≈ β̃ (Ghadimi & Lan, 2013; Lei et al., 2019). Then
also ||˜̃β||1 ≈ ||β̃||1, which means that an approximation of a reasonable stationary point is also reasonable
once τ is small enough. Then, we extract statistical guarantees for every practical network indexed by an
approximate-reasonable stationary as follows:
Theorem 2 (Statistical Guarantees for Approximate Stationary Points of Shallow Linear Networks). Suppose
that (˜̃γ, ˜̃Θ) is a τ−approximate stationary point and that the conditions of Theorem 1 are satisfied. Then, we
have

risk[˜̃γ, ˜̃Θ] ≤ risk[γ∗, Θ∗] + 8r
√

log n + τ (8)

with probability at least 1 − 1/n. If r = rorc, the bound becomes

risk[˜̃γ, ˜̃Θ] ≤ risk[γ∗, Θ∗] + ν(log n)2

√
log(np)

n
+ τ . (9)

The bounds match the earlier ones with only two small differences: 1. a summand τ is added to our
statistical bounds and 2. the factor 5 in equation 5 is replaced by a factor of 8 in equation 8. Let’s note that
gradient-based algorithms with sufficiently many steps O(n2) ensure that τ ≪ 1/

√
n (Ghadimi & Lan, 2013,

Theorem 2.1). We refer to our Appendix Section G for more details regarding the dynamical accessibility of
approximate stationary points. Theorem 2 might look like a simple extension of Theorem 1, but the fact
that equation 7 involves the (in-sample-)prediction risk and the sparsity factors makes the proof considerably
more involved.

3 Statistical guarantees for shallow ReLU neural networks

This section generalizes our theories in Section 2 to shallow ReLU neural networks of the form

x 7→ γ⊤σ(Θx) ,

for (γ, Θ) ∈ B = {(γ, Θ) ∈ Rw × Rw×d}. The activation function σ(·) corresponds to the well-known
ReLU defined as σ(z) ··= (max(0, z1), . . . , max(0, zw)) for z ∈ Rw, which its efficacy has been extensively
studied (Pan & Srikumar, 2016; Raghu et al., 2017). We then approximate the unknown target function f
in equation 1 employing shallow ReLU neural networks. For simplifying the proofs, we assume in this
section that d = w that implies matrix Θ to be squared. We then consider least-squares complemented by
ℓ1-regularization for shallow ReLU neural networks:

(γ̂, Θ̂) ∈ arg min
(γ,Θ)∈B

{
1
n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)2 + r||vec(γ, Θ)||1
}

. (10)

Assumption 2 (Model Assumptions (ReLU)). We assume that the target function can be approximated by
such a neural network, that is, there is a pair (γ∗, Θ∗) ∈ B such that ||γ∗||1, |||Θ∗|||1 ≤

√
log n and active rows

in Θ∗ are approximately perpendicular to each other and that f [x] = γ∗⊤σ(Θ∗x) for all x ∈ Rd.

The term active rows in a matrix Θ are approximately perpendicular to each other in our assumption above
means, for any two distinct active rows Θj,· and Θj′,· (where Θj,·, Θj′,· ̸= 0), their inner product is negligible,
that is ⟨Θj,·, Θj′,·⟩ ≈ 0.0. Assumption 2 stipulates that the target function is itself a shallow ReLU neural
network with reasonably small parameters and that the active rows of the first layer are approximately
orthogonal. Versions of these assumptions are very common in the literature (Hardt & Ma, 2016; Bartlett
et al., 2018b); we discuss this assumption further in the paragraph following Theorem 3. We then define the
(in-sample-)prediction and generalization risk for shallow ReLU neural networks as (we employ the same
notation as used in the linear case)

riskX [γ, Θ] ··=
1
n

n∑
i=1

(
yi − γ⊤σ(Θx)

)2

6

Published in Transactions on Machine Learning Research (12/2025)

and
risk[γ, Θ] ··= E(x,y)

[(
y − γ⊤σ(Θx)

)2
]

.

We then get the following result for a new sample pair (x, y) with the same distribution as x1, . . . , xn and
y1, . . . , yn.
Theorem 3 (Statistical Guarantees for Reasonable Stationary Points of Shallow ReLU Networks). Under
the second and third parts of Assumption 1 and Assumption 2, any reasonable stationary point (γ̃, Θ̃) of the
objective function in equation 10 where active rows of Θ̃ are approximately perpendicular to each other and
that off-diagonal elements of Θ̃Θ∗⊤ and Θ∗Θ̃⊤ are approximately zero (|(Θ̃Θ∗⊤)jj′ | ≈ |(Θ∗Θ̃⊤)jj′ | ≈ 0.0 for
j ̸= j′) with r ≥ rorc satisfies the risk bound

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + 5r
√

log n (11)

with probability at least 1 − 1/2n.

Note that Theorem 3 is an extension of our Theorem 1 for shallow ReLU neural networks under the assumption
that the active rows of the first layer weight matrix (for stationary point and the target) being approximately
orthogonal (one simple example is near-identity matrices). Orthogonal weight matrices is needed mainly
for studying Hessian behavior for shallow ReLU network’s (proof of Proposition 2, Step 2). Employing
this assumption, we can prove that for cases with small correlation between rows and with Gaussian input,
we can find a closed-form solution (approximately) for Ex[σ(Θx)jσ(Θx)j′]. Our Assumption 2 is weaker
than it seems as previous works have studied variants of this assumption for neural networks from different
perspectives: for example, Hardt & Ma (2016) shows that certain networks have a global minimum close to
the identity parameterization. They study the expressiveness of Residual Networks under the assumption that
enough neurons are available (Hardt & Ma, 2016, Theorem 3.2). Interesting is that, since our rates grow just
in log p , our framework is perfectly fit for such wide networks. Additionally, Bartlett et al. (2018a) explore
the representation of smooth functions as compositions of near-identity functions, highlighting implications
for deep network optimization. Bartlett et al. (2018b) prove the rate of convergence of gradient-based
optimization under identity initialization for deep linear networks. Li & Yuan (2017) analyze the convergence
of stochastic gradient descent for shallow ReLU networks, with nearly identity initialization; they state that
“(ReLU) networks with small average spectral norm already have good performance.” Altogether, we believe
that our assumption makes sense not only from an expressivity standpoint (Hardt & Ma, 2016, Theorem 3.2)
but also regarding the optimization landscape (Li & Yuan, 2017). Yet, of course, it would be interesting to
study the subtleties even further. While studies demonstrate the existence of local minima and saddle points
in ReLU networks (Fukumizu & Amari, 2000; Safran & Shamir, 2018; Yun et al., 2019), we argue that some
of those suboptimals still yield satisfactory results. Essentially, Theorem 3 suggests that for a sufficiently
large tuning parameter, the optimization explores locally well-curved network spaces in the vicinity of specific
stationary points, such that any stationary point generalizes as effectively as a global minimum. In fact,
our work concerns local curvature around the ground truth in neural networks, which we believe is valuable
given the infinite number of such ground truths in neural networks, while globally favorable curvature is
far from practical reality in deep learning. We employ our result in Proposition 2 and Remark 1 proving
our Theorem 3. Also, an extension of Theorem 2 to shallow ReLU networks can be obtained by combining
Theorem 3 with additional machinery from empirical process theory, following the same line of reasoning as
in the proof of Theorem 2. However, we omit this extension here to avoid redundancy. Also, we conjecture
that our main theories can be extended to deep neural networks (see our simulations in Section D), provided
that suitable local curvature properties of the corresponding networks can be established. This presents an
intriguing direction for future research.

Further discussion of our Assumption 2 Our results suggest that low correlation between the rows of
the first-layer weight matrix Θ̃ is desirable, as it leads to a well-conditioned Hessian and better generalization.
This observation is closely related to the benefits of random initialization: for large d, random Gaussian
weights yield nearly orthogonal rows with high probability (see Vershynin (2018, Remark 3.2.5)). However,
orthogonality is not only needed at initialization but also for the estimator Θ̃ after training, which motivates
arguments ensuring that training preserves this structure. Related studies show that fixing the first layer at

7

Published in Transactions on Machine Learning Research (12/2025)

its random initialization while only training the last layer can still achieve good generalization (Rosenfeld
& Tsotsos, 2019), suggesting that there exist network configurations where the first-layer rows form an
approximately orthogonal system, leading to favorable error bounds. Finally, while some of the literature
attributes low-rank structure in shallow networks to strong correlations among rows (Kou et al., 2023), in our
norm-one regularized setting low rank instead arises through sparsity: many rows might become inactive,
while the surviving rows remain diverse and nearly orthogonal, which is enough for our results to hold. One
can also considers group lasso to offer an alternative means of promoting structured sparsity. This alternative
path to low-rank structure avoids redundancy, preserves conditioning, and further explains why such solutions
generalize well.

4 Numerical observations

We provide here some numerical observations to clarify theories of Section 2 and Section 3. We minimize a
least-squares complemented by ℓ1-regularization for shallow neural networks with linear and ReLU activation
functions. We set our tuning parameter on the order of log(np)/

√
n based on our experiments. We consider

neural networks with d = w = 10, that are trained over 500 and tested over 300 data sample generated from
a standard normal distribution and labeled by a sparse-target network (having the same structure as the
considered model) plus a Gaussian noise. Note that here, we train the networks in a finite time, that means,
trained networks are just an approximation of a stationary point (due to the non-convexity). We report the
relative training error and the relative test error for a potential global optimum, an approximate stationary
point, and a randomly generated network (a network with randomly assigned weights) for linear and ReLU
networks in Table 1, that is, the training (test) error of the “approximate stationary point” divided by the
training (test) error of the “potential global optimum” (for the corresponding network). Potential global
optimum and approximate stationary point (for each setting, linear or ReLU) are reached over multiple times
of training on a fixed data set and assigned by the trained networks with the lowest and highest training
error, respectively. More precisely, we do the optimization (solving equation 2 and equation 10) from multiple,
diverse initial points (1000 times). We use PyTorch’s default initialization, where weights are drawn from
a uniform distribution in [−1/

√
p, 1/

√
p], with p denoting the number of input features to the layer (see

our results with different initialization methods in our Section D). This helps explore different regions of
the search space and increases the chances of finding different local and global optimum. Note that there
are infinitely many critical points for neural networks in view of the network’s rescaling properties. We use
stochastic gradient descent with a small convergence threshold to ensure that the optimization process does
not stop early. We analyze the distribution of the reached training errors (over the 1000 different optimization
runs with random initialization). For this, we divide the training errors into two clusters via k-means. Then,
we do a t-test over the training errors in the two classes. The t-test reveals a statistically significant difference
between the training errors in two groups (pvalue < 0.0001), which supports the claim that the “potential
global optimum” and “approximate stationary points” differ, that is, the approximate stationary points
are not just other global optima. We then report the parameters that lead to the lowest training error as
a “potential global optimum” and the parameters that lead to the highest training error as “approximate
stationary point”. We reference to Figure 3 in the Appendix Section D for a graphical view of convergence in
training. Results reveal that the test error for a potential global optimum and an approximate stationary
point are very close in both linear and ReLU networks (relative errors for approximate stationary points
are close to one for both linear and ReLU networks). Also note that the reported numbers in Table 1 are
just relative errors to compare between training and test performance of a specific network so, a comparison
between the performance of linear and ReLU networks here is not meaningful.

These observations reveal that: First, global optimization for neural networks is far reaching even for very
simple neural networks. Second, very practical outputs in deep learning (approximate stationary points) can
still generalize well—for linear networks and beyond. We provide the similar result for a larger network in
Table 2 and more detailed experiment explanations in Appendix Section D.

8

Published in Transactions on Machine Learning Research (12/2025)

Table 1: Relative training error and test error for trained shallow neural networks (with d = 10, w = 10) with
linear and ReLU activations in a potential global optimum, an approximate stationary point, and a randomly
generated network.

Linear ReLU
Training Error Test Error Training Error Test Error

Potential Global Optimum 1.000 1.000 1.000 1.000
Approximate Stationary Point 1.001 1.001 1.003 1.004
Randomly Generated Network 79618.240 58198.240 2120.060 1980.060

5 Related literature

Another interesting direction is studying optimization landscape of non-convex objectives in deep learn-
ing (Eftekhari, 2020; Hardt & Ma, 2016; Lederer, 2020; Zhou & Liang, 2018; Zhang et al., 2016; Bah et al.,
2022; Trager et al., 2020). Yun et al. (2017) study the optimization landscape of deep and linear neural
networks. They extract necessary and sufficient conditions for a critical point to be the global optima of
the least-squares loss under some assumptions (input dimensions upper bounded by the number of data
examples, XX⊤ and Y X⊤ have full rank). Kawaguchi (2016, Theorem 2.3) proves that for deep and linear
neural networks and under some assumptions (XX⊤ and XY ⊤ have full rank), every local minimum is a
global minimum and every critical point that is not a global minimum is a saddle point. They also prove that
the same results hold for nonlinear-neural networks but under unrealistic assumptions (Kawaguchi, 2016,
Corollary 3.2). Zhou & Liang (2018, Theorem 2) also prove that linear neural networks with least-squares loss
have no spurious local minimum. Haeffele & Vidal (2017) established sufficient conditions ensuring that any
local minimum of a non-convex factorization problem is also a global minimum. Moreover, they showed that
when the factorization is parameterized with sufficiently large factors, one can always reach a global minimizer
from any feasible initialization using purely local descent methods. Nguyen & Hein (2017) studied the loss
surface of deep and wide neural networks and proved that, under mild overparameterization conditions, every
local minimum is also a global minimum. Nguyen & Hein (2018) analyzed the optimization landscape and
expressivity of deep convolutional neural networks. They established conditions under which all local minima
are globally optimal and characterized how network depth and architecture affect the expressivity of the
network. But in general, the absence of spurious local minima is rejected for non-linear networks (Fukumizu
& Amari, 2000; Safran & Shamir, 2018).

More broadly, non-convexity and computational problems of neural networks have widely been studied in
recent years from different perspectives, including optimization algorithms (Lovas et al., 2020; Bach & Chizat,
2021), theory of overparameterized networks (Chizat & Bach, 2018), and hyperparameter calibration (Yang
et al., 2021). Liang et al. (2018) studied modified neuron activation for an arbitrary deep neural network in
binary classification proving that no bad local-min exists (see also Sun et al. (2020)). Choromanska et al.
(2015) studied the loss landscape of neural networks from a statistical physics perspective, establishing a
connection between neural networks and spin-glass models.

6 Technical results

This section provides technical results needed for proving our main theories. All the proofs as well as more
related auxiliary results are deferred to the Appendix.

Additional notations For vectors β = vec(γ, Θ) ∈ Rp and α ··= (α1, . . . , αw) ∈ Rw with αj ̸= 0 for all
j ∈ {1, . . . , w}, we define βα ··= vec(γα, Θα) ∈ Rp as a rescaled version of β with (γα)j ··= γj · αj and
(Θα)jk ··= θjk/αj for all j ∈ {1, . . . , w} and k ∈ {1, . . . , d}. We tabulate the second order partial derivatives
(subdifferentials) of risk[γ, Θ] with respect to the β = vec(γ, Θ) in a matrix called ∇2risk[γ, Θ] ∈ Rp×p. We
use emin[·] to generate the smallest eigenvalue of a matrix. We use the notation 0 to generate a vector of
zeros.

9

Published in Transactions on Machine Learning Research (12/2025)

6.1 Technical results for shallow linear neural networks

Here, we provide technical results that are essential for proving our main theories for shallow linear networks
but might also be of interest by themselves. We first study the behavior of the Hessian matrix for shallow
linear networks in a rescaled network as follows:
Proposition 1 (Hessian Behavior for Shallow Linear Network). Suppose Assumption 1 is verified and that
(γ, Θ) ∈ B with ΘΘ⊤ invertible. Let a ··= [(a1)⊤, (a2)⊤]⊤ ∈ Rp be a vector with ||a||2 = 1, a1 ∈ Rw, and
a2 ∈ Rw·d. If a1 = 0 or a2 = 0, we have for all α ∈ Rw \ {0}

a⊤∇2risk[γα, Θα]a ≥ 0 ;

Otherwise, above inequality holds for all α ··= (1/c, . . . , 1/c) ∈ Rw with c ∈ [1, ∞) such that

c2 ≥
2
∣∣∣∣γ∣∣∣∣22∣∣∣∣a2

∣∣∣∣2
2 + 4

∣∣∣∣a1
∣∣∣∣

2

∣∣∣∣a2
∣∣∣∣

2

∣∣∣∣γ⊤Θ − γ∗⊤Θ∗
∣∣∣∣

2
emin

[
ΘΘ⊤

]
||a1||22

.

Note that if a1 = 0 or a2 = 0, the quadratic product on the Hessian matrix (in a rescaled network with
parameters (γα, Θα)) is non-negative for all α, otherwise, it is non-negative just for α with large enough c.
Proposition 1 is employed for the proof of Theorem 1.
Lemma 1 (Empirical Processes). Under the Assumption 1 it holds for each reasonable stationary point
β̃ = vec(γ̃, Θ̃) of the objective function in equation 2 that∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣ ≤ rorc||β∗ − β̃||1 + rorc

2n

with probability at least 1 − 1/2n, where rorc is the oracle tuning parameter defined in equation 4.

The result above establishes a bound for the absolute difference between ∇riskX [γ̃, Θ̃] and ∇risk[γ̃, Θ̃] for
every reasonable stationary point (γ̃, Θ̃) ∈ B for shallow linear networks (a similar result can also be reached
for shallow ReLU networks; see Remark 1). We employ Lemma 1 choosing the optimal tuning parameter for
the objective function equation 2.

6.2 Technical results for shallow ReLU neural networks

Now, we study the behavior of the Hessian matrix for shallow ReLU networks in a rescaled network. Since
ReLU networks are non-differentiable at zero, we employ subdifferentials in this section (instead of partial
derivatives) using the same notation as used for linear networks. We suppose that ∄ x with (Θx)j = 0, where
j ∈ {1, . . . , w}, then we have
Proposition 2 (Hessian Behavior for Shallow ReLU Networks). Suppose Assumption 2 and the second
and third parts of Assumption 1 are verified, and that (γ, Θ) ∈ B with active rows of Θ being approximately
perpendicular. Let a ··= [(a1)⊤, (a2)⊤]⊤ ∈ Rp be a vector with ||a||2 = 1, a1 ∈ Rw, and a2 ∈ Rw·d. If a2 = 0,
we have for all α ∈ Rw \ {0}

a⊤∇2risk[γα, Θα]a ≥ 0 ;

Otherwise, above inequality holds for all α ··= (1/c, . . . , 1/c) ∈ Rw with c ∈ [1, ∞) large enough.

Note that Proposition 2 is an extension of our Propostion 1 for ReLU networks, that holds under an extra
assumption over the first layer weight matrix.
Remark 1 (Empirical Processes for Shallow ReLU Neural Networks). Under the Assumption 2 and the
second and third parts of the Assumption 1, almost the same bound (up to a constant and log factor) as
stated in Lemma 1 can hold for each reasonable stationary point β̃ = vec(γ̃, Θ̃) of the objective function
in equation 10.

As stated in Remark 1, the tuning parameter for ReLU networks can be calibrated similarly to linear networks
(although there’s potential for improvement, we omit that to avoid unnecessary complication.)

10

Published in Transactions on Machine Learning Research (12/2025)

7 Heavy-tailed noise

This section puts a focus on heavy-tailed noise. We limit ourselves to linear networks for simplicity, but
the same techniques also work in the ReLU case. More generally, this section illustrates the much larger
generality—and technical difficulty—of our regression setup as compared to the common classification setups,
which are bounded by design.
Definition 1 (Tails). Let I : R → R be an increasing function. The function I captures the right tail of the
random variable z if

P(z > t) ≤ exp
(
−I(t)

)
, ∀t ∈ (0, ∞) .

In this section, we assume that noise is heavy-tailed, having a right tail as defined in Definition 1 with
Iα(t) = cαt1/α for cα ∈ (0, ∞) (for example α = 1 for sub-gaussian noise and α = 2 for sub-exponential noise).
We also define

rorc,α ··= ν(log n)3/2
(
log(np)

)α
√

n
, (12)

where α ∈ [2, ∞) and ν, c ∈ (0, ∞) are constants depending on the distributions of inputs and noise. Now, we
extend our results in Theorem 1 for heavy-tailed noise.
Theorem 4 (Statistical Guarantees for Reasonable Stationary Points for Heavy-tailed Noise). Under the
first two parts of Assumption 1, any reasonable stationary point (γ̃, Θ̃) of the objective function in equation 2
with r ≥ rorc,α satisfies the risk bound

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + 5r
√

log n (13)

with a probability at least 1 − 1/n. If r = rorc,α, the bound becomes

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + ν(log n)2
(
log(np)

)α
√

n
. (14)

The above results show that our theories still hold under heavy tails; the bounds and the optimal tuning
parameter (see Theorem 1) then simply entail a power of α (depending on the noise) for log(np). This is an
important step forward, as usual inputs to neural networks (images, text, ...) are often very noisy.

8 Discussion

We have established statistical guarantees for approximate stationary points of regularized shallow linear
neural networks. We have then extended our theories to shallow ReLU neural networks under the assumption
over the first layer weight matrix. Despite being limited to shallow networks, our theory is a large step
forward in four ways: 1. Several papers consider the existence or non-existence of critical points that are not
global optima in linear neural networks under certain assumptions. In contrast, our theories apply regardless
of whether such local minima or saddle points exist in the objective under consideration. 2. Our extensions
to ReLU neural networks not only provide theoretical insights but also highlight the importance of effective
initialization, such as near-identity initialization, for ReLU networks (Hardt & Ma, 2016). 3. While works
like Bach & Chizat (2021) consider convergence of specific optimization algorithms in deep learning, our
results are agnostic to the optimization algorithm and do not require infinite-width networks, making our
findings more general. 4. And finally, our new statistical approach inspired by high-dimensional statistics is
expected to spark further progress in the mathematical understanding of deep learning.

Acknowledgments

J. Lederer and M. Taheri are grateful for partial funding by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under project numbers 541176257 and 520388526 (TRR391). The authors thank
Ali Mohades for constructive discussions at various stages of the project. F. Xie is supported in part by the
Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515110469), the Guangdong Provincial
Key Laboratory IRADS (No. 2022B1212010006), and the grant of Higher Education Enhancement Plan of
“Rushing to the Top, Making Up Shortcomings and Strengthening Special Features” (No. 2025KTSCX186).

11

Published in Transactions on Machine Learning Research (12/2025)

References
M. Achour, F. Malgouyres, and S. Gerchinovitz. The loss landscape of deep linear neural networks: a

second-order analysis. J. Mach. Learn. Res., 25(242):1–76, 2024.

J. Alvarez and M. Salzmann. Learning the number of neurons in deep networks. In Proc. NIPS, pp. 2270–2278,
2016.

Y. Arjevani, Y. Carmon, J. Duchi, D. Foster, N. Srebro, and B. Woodworth. Lower bounds for non-convex
stochastic optimization. Math. Program., pp. 1–50, 2022.

F. Bach and L. Chizat. Gradient descent on infinitely wide neural networks: Global convergence and
generalization. arXiv:2110.08084, 2021.

B. Bah, H. Rauhut, U. Terstiege, and M. Westdickenberg. Learning deep linear neural networks: Riemannian
gradient flows and convergence to global minimizers. Inf. Inference, 11(1):307–353, 2022.

M. Bakhshizadeh, A. Maleki, and V. de la Pena. Sharp concentration results for heavy-tailed distributions.
arXiv:2003.13819, 2020.

P. Bartlett. The sample complexity of pattern classification with neural networks: The size of the weights is
more important than the size of the network. IEEE Trans. Inform. Theory, 44(2):525–536, 1998.

P. Bartlett, S. Evans, and P. Long. Representing smooth functions as compositions of near-identity functions
with implications for deep network optimization. arXiv:1804.05012, 2018a.

P. Bartlett, D. Helmbold, and P. Long. Gradient descent with identity initialization efficiently learns positive
definite linear transformations by deep residual networks. In Proc. ICML, pp. 521–530. PMLR, 2018b.

B. Bauer and M. Kohler. On deep learning as a remedy for the curse of dimensionality in nonparametric
regression. Ann. Statist., 47(4):2261–2285, 2019.

D. Bertsekas. Nonlinear programming. J. Oper. Res. Soc., 48(3):334–334, 1997.

D. Bertsekas, A. Nedic, and A. Ozdaglar. Convex analysis and optimization, volume 1. Athena Scientific,
2003.

J. Bien, I. Gaynanova, J. Lederer, and C. Müller. Non-convex global minimization and false discovery rate
control for the trex. J. Comput. Graph. Statist., 27(1):23–33, 2018.

J. Bien, I. Gaynanova, J. Lederer, and C. Müller. Prediction error bounds for linear regression with the trex.
Test, 28(2):451–474, 2019.

P. Bühlmann and S. Van De Geer. Statistics for high-dimensional data: methods, theory and applications.
Springer Science & Business Media, 2011.

Y. Carmon, J. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex optimization. SIAM J.
Optim, 28(2):1751–1772, 2018.

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using
optimal transport. In Proc. NIPS, volume 31, 2018.

A. Choromanska, M. Henaff, M. Mathieu, G. Arous, and Y. LeCun. The loss surfaces of multilayer networks.
In Artificial intelligence and statistics, pp. 192–204. PMLR, 2015.

M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas. Predicting parameters in deep learning. In
Proc. NIPS, pp. 2148–2156, 2013.

Y. Drori and O. Shamir. The complexity of finding stationary points with stochastic gradient descent. In
Proc. ICML, pp. 2658–2667, 2020.

12

Published in Transactions on Machine Learning Research (12/2025)

A. Eftekhari. Training linear neural networks: non-local convergence and complexity results. In Proc. ICML,
pp. 2836–2847, 2020.

Y. Eldar and G. Kutyniok. Compressed sensing: theory and applications. Cambridge Univ. Press, 2012.

A. Elsener and S. van de Geer. Sharp oracle inequalities for stationary points of nonconvex penalized
M-estimators. IEEE Trans. Inform. Theory, 65(3):1452–1472, 2018.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate
descent. J. Stat. Softw., 33(1):1, 2010.

K. Fukumizu and S. Amari. Local minima and plateaus in hierarchical structures of multilayer perceptrons.
Neural networks, 13(3):317–327, 2000.

S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming.
SIAM J. Optim, 23(4):2341–2368, 2013.

P. Golestaneh, M. Taheri, and J. Lederer. How many samples are needed to train a deep-relu neural network?
In Proc. ICLR, 2025.

B. Haeffele and R. Vidal. Global optimality in neural network training. In Proc. CVPR, pp. 7331–7339, 2017.

M. Hardt and T. Ma. Identity matters in deep learning. arXiv:1611.04231, 2016.

M. Hebiri, J. Lederer, and M. Taheri. Layer sparsity in neural networks. J. Statist. Plann. Inference, 234:
106195, 2025. ISSN 0378-3758.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In Proc. ICML, pp. 448–456, 2015.

K. Kawaguchi. Deep learning without poor local minima. arXiv:1605.07110, 2016.

M. Kohler and S. Langer. On the rate of convergence of fully connected deep neural network regression
estimates. Ann. Statist., 49(4):2231–2249, 2021.

Y. Kou, Z. Chen, and Q. Gu. Implicit bias of gradient descent for two-layer relu and leaky relu networks on
nearly-orthogonal data. In Proc. NIPS, volume 36, pp. 30167–30221, 2023.

J. Lederer. No spurious local minima: on the optimization landscapes of wide and deep neural networks.
2020.

J. Lederer. Statistical guarantees for sparse deep learning. arxiv:2212.05427, 2022a.

J. Lederer. Fundamentals of High-Dimensional Statistics: with exercises and R labs. Springer Texts in
Statistics, 2022b.

J. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. Jordan, and B. Recht. First-order methods almost
always avoid strict saddle points. Math. Program., 176(1):311–337, 2019.

Y. Lei, T. Hu, G. Li, and K. Tang. Stochastic gradient descent for nonconvex learning without bounded
gradient assumptions. IEEE Trans. Neural Netw. Learn. Syst., 31(10):4394–4400, 2019.

I. Lemhadri, F. Ruan, L. Abraham, and R. Tibshirani. Lassonet: A neural network with feature sparsity. J.
Mach. Learn. Res., 22(127):1–29, 2021.

Y. Li and Y. Yuan. Convergence analysis of two-layer neural networks with relu activation. In Proc. NIPS,
volume 30, 2017.

S. Liang, R. Sun, J. Lee, and R. Srikant. Adding one neuron can eliminate all bad local minima. Proc. NIPS,
31, 2018.

13

Published in Transactions on Machine Learning Research (12/2025)

B Liu. Spurious local minima are common for deep neural networks with piecewise linear activations. IEEE
Trans. Neural Netw. Learn. Syst., 2022.

P. Loh. Statistical consistency and asymptotic normality for high-dimensional robust M-estimators. Ann.
Statist., 45(2):866–896, 2017.

P. Loh and M. Wainwright. Regularized M-estimators with nonconvexity: statistical and algorithmic theory
for local optima. J. Mach. Learn. Res., 16(1):559–616, 2015.

A. Lovas, I. Lytras, M. Rásonyi, and S. Sabanis. Taming neural networks with tusla: non-convex learning via
adaptive stochastic gradient langevin algorithms. arXiv:2006.14514, 2020.

B. Lütke Schwienhorst, L. Kock, N. Klein, and D. Nott. Dropout regularization in extended generalized
linear models based on double exponential families. In ECML PKDD, pp. 320–336. Springer, 2024.

C. McDiarmid. On the method of bounded differences. Surv. Comb., 141(1):148–188, 1989.

A. Mohades and J. Lederer. Cardinality sparsity: Applications in matrix-matrix multiplications and machine
learning. TMLR, 2025.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2018.

Q. Nguyen and M. Hein. The loss surface of deep and wide neural networks. In Proc. ICML, pp. 2603–2612.
PMLR, 2017.

Q. Nguyen and M. Hein. Optimization landscape and expressivity of deep cnns. In Proc. ICML, pp. 3730–3739.
PMLR, 2018.

X. Pan and V. Srikumar. Expressiveness of rectifier networks. In Proc. ICML, pp. 2427–2435. PMLR, 2016.

M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive power of deep neural
networks. In Proc. ICML, pp. 2847–2854. PMLR, 2017.

A. Rosenfeld and J. Tsotsos. Intriguing properties of randomly weighted networks: Generalizing while learning
next to nothing. In Proc. CRV, pp. 9–16, 2019.

I. Safran and O. Shamir. Spurious local minima are common in two-layer relu neural networks. In Proc.
ICML, pp. 4433–4441. PMLR, 2018.

H. Salehinejad and S. Valaee. Ising-dropout: a regularization method for training and compression of deep
neural networks. In ICASSP, pp. 3602–3606. IEEE, 2019.

S. Sardy, N. Hengartner, N. Bonenko, and Y. Lin. What needles do sparse neural networks find in nonlinear
haystacks. arXiv:2006.04041, 2020.

A. Saxe, J. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks. arXiv:1312.6120, 2013.

J. Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation function. Ann.
Statist., 48(4):1875–1897, 2020.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, 2014.

R. Sun, D. Li, S. Liang, T. Ding, and R. Srikant. The global landscape of neural networks: An overview.
IEEE Signal Processing Magazine, 37(5):95–108, 2020.

M. Taheri, F. Xie, and J. Lederer. Statistical guarantees for regularized neural networks. Neural Networks,
142:148–161, 2021.

M. Trager, K. Kohn, and J. Bruna. Pure and spurious critical points: a geometric study of linear networks.
Proc. ICLR, 2020.

14

Published in Transactions on Machine Learning Research (12/2025)

S. van de Geer. Empirical processes in M-estimation. Cambridge Univ. Press, 2000.

S. van de Geer. Estimation and testing under sparsity. Springer, 2016.

R. Vershynin. High-dimensional probability: an introduction with applications in data science. Cambridge
Univ. Press, 2018.

M. Vladimirova, S. Girard, H. Nguyen, and J. Arbel. Sub-weibull distributions: Generalizing sub-gaussian
and sub-exponential properties to heavier tailed distributions. Stat, 9(1):e318, 2020.

M. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge Univ. Press,
2019.

W. Wang and N. Srebro. Stochastic nonconvex optimization with large minibatches. In Algorithmic Learning
Theory, pp. 857–882, 2019.

G. Yang, E. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen, and J. Gao. Tuning
large neural networks via zero-shot hyperparameter transfer. In Proc. NIPS, volume 34, pp. 17084–17097,
2021.

C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. arXiv:1707.02444,
2017.

C. Yun, S. Sra, and A. Jadbabaie. Small nonlinearities in activation functions create bad local minima in
neural networks. Proc. ICLR, 2019.

Y. Zhang, J. Lee, and M. Jordan. ℓ1-regularized neural networks are improperly learnable in polynomial
time. In Proc. ICML, pp. 993–1001, 2016.

Y. Zhou and Y. Liang. Critical points of linear neural networks: Analytical forms and landscape properties.
In Proc. ICLR, 2018.

A Appendix: Example and auxiliary results

Here we provide an illustrative and simple example to clearly show the existence of sub-optimal critical points
for the regularized objective functions (equation 2 and equation 10) with linear and ReLU activations.
Example 1 (Existence of sub-optimal critical points for regularized shallow networks). Let consider a toy
linear shallow neural network with just two neurons (a1, a2), and consider the loss function f(a1,a2)(X) =∑n

i=1(a1a2xi−yi)2/2+|a1|+|a2|. Then, we suppose two training samples (x1 = 2, y1 = 2) and (x2 = 4, y2 = 1)
that makes the objective function min(a1,a2) f(a1,a2)(X) non-convex, including local and global minimum
and saddle point. One can confirm that A = (a1 = 0, a2 = 0) is a local min with fA = 2.5, while
A′ = (a1 ≈ 0.55, a2 ≈ 0.55) is a global min with fA′ ≈ 2.1 (see the left panel of Figure 2). This simple
example illustrates that there are critical points even for simple regularized linear neural networks that are not
global optima in our considered setup. Note that if the optimization algorithm (for example gradient descent)
starts with weight initialization close to zero, it is high likely that we stuck in the vicinity of the local min
(0, 0). A similar example also holds for ReLU networks (see the right panel of Figure 2).

Here we provide more technical results that are used to prove our main theorems.

First, we derive a uniform bound on the absolute difference between ∇riskX [γ, Θ] and ∇risk[γ, Θ] for linear
shallow networks. We use the notation |||Θ|||∞ ··= maxj∈{1,...,w}

∑d
k=1 |θjk|.

Lemma 2 (Uniform Bound on the Difference Between ∇riskX [γ, Θ] and ∇risk[γ, Θ] for Linear Networks).
Under the Assumption 1 it holds for each t, η, ϵ ∈ (0, ∞) and β ∈ Cη,ϵ ··= {β = vec(γ, Θ) ∈ Rp : ||β∗ − β||1 ≤
η and ||γ⊤Θ − γ∗⊤Θ∗||1 ≤ ϵ} that

sup
β∈Cη,ϵ

∣∣∣(∇riskX [γ, Θ] − ∇risk[γ, Θ]
)⊤(β∗ − β)

∣∣∣ ≤ 2tη
(
η + max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

15

Published in Transactions on Machine Learning Research (12/2025)

Untitled Graph  Mahsa  Save   

    

powered by



f =
2

+
2

abs absx,y
max y− 22x,0 max y− 22x,0

1

f =
2

+
2

+ abs absx,y 2xy− 2 2xy− 2 4xy− 1 4xy− 1

2


3

4







  







 

Untitled Graph  Mahsa  Save   

    

powered by



f =
2

+
2

abs absx,y
max y− 22x,0 max y− 22x,0

1



f =
2

+
2

+ abs absx,y 2xy− 2 2xy− 2 4xy− 1 4xy− 1

2

3

4







  







 

Figure 2: Non-convex objective function min(a1,a2) f(a1,a2)(X) =
∑n
i=1(a1σ(a2xi) − yi)2/2 + |a1| + |a2| for

two training samples (x1 = 2, y1 = 2) and (x2 = 4, y2 = 1) includes critical points that are not global optima.
The left panel illustrates the objective for linear activation function, and the right panel shows the objective
for the ReLU.

with probability at least 1 − 4d2p exp(−κn min{t2/ν2, t/ν}) with constants ν, κ ∈ (0, ∞) depending only on
the distributions of the inputs and noise.

The set Cη,ϵ contains all parameters in a neighborhood of β∗; in particular, the bound applies to β∗ =
vec(γ∗, Θ∗) itself—without any further assumption on β∗. The lemma is the main ingredient of our proof for
Lemma 1.

We also derive a uniform bound on the absolute difference between riskX [γ, Θ] and risk[γ, Θ] (for linear
shallow networks.)
Lemma 3 (Uniform Bound on the Difference Between riskX [γ, Θ] and risk[γ, Θ] for Linear Networks).
Suppose Assumption 1 is verified and that sup(γ,Θ)∈B ||(γ∗⊤Θ∗ − γ⊤Θ)2||∞ ≤ ϵ′ for an ϵ′ ∈ (0, ∞). Then,
we have for each t ∈ [0, ∞) that

sup
(γ,Θ)∈B

∣∣riskX [γ, Θ] − risk[γ, Θ]
∣∣ ≤ t

(
1 + 4ϵ′ + 4

√
ϵ′
)

with probability at least 1 − 18d2 exp(−κn min{t2/ν2, t/ν}), with constants ν, κ ∈ (0, ∞) depending only on
the distributions of the inputs and noise.

Lemma 3 is the main ingredient of our proof of Theorem 2.

Then, we derive a lemma studying the invertibility of the line segment between two matrices. This lemma is
employed in the proof of Theorem 1.
Lemma 4 (Invertibility of the Line Segment Between Two Matrices). Let’s define H(t) ··= (A+ tC)(A+ tC)⊤

for A, C ∈ Rw′×d′ with w′ ≤ d′ and t ∈ (0, 1), where A has full (row) rank . Then, H(t) is not invertible at
most in finitely many t ∈ (0, 1).

Here, we differentiate the empirical risk riskX [γ, Θ] with respect to the parameters β = vec(γ, Θ). We use
the indices j, k for the first-order partial derivatives and indices j′, k′ for the second-order partial derivatives.
We use the notation 1{·} as an indicator function.
Lemma 5 (First- and Second-Order Partial Derivatives of the Empirical Risk for Linear Networks). It holds
for each j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d} that

∂

∂γj
riskX [γ, Θ] = − 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
(Θxi)j

)
,

∂

∂θjk
riskX [γ, Θ] = − 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
γj(xi)k

)
;

16

Published in Transactions on Machine Learning Research (12/2025)

and

∂2

∂γj′∂γj
riskX [γ, Θ] = 2

n

n∑
i=1

(
(Θxi)j′(Θxi)j

)
,

∂2

∂θj′k′∂θjk
riskX [γ, Θ] = 2

n
γj′γj

n∑
i=1

(
(xi)k′(xi)k

)
.

Moreover, if j′ = j, it holds that

∂2

∂θjk′∂γj
riskX [γ, Θ] = 2

n

n∑
i=1

(
γj(xi)k′(Θxi)j −

(
yi − γ⊤Θxi

)
(xi)k′

)
and

∂2

∂γj∂θjk
riskX [γ, Θ] = 2

n

n∑
i=1

(
γj(xi)k(Θxi)j −

(
yi − γ⊤Θxi

)
(xi)k

)
,

and if j′ ̸= j, it holds that
∂2

∂γj′∂θjk
riskX [γ, Θ] = 2

n
γj

n∑
i=1

(xi)k(Θxi)j′

and
∂2

∂θj′k′∂γj
riskX [γ, Θ] = 2

n
γj′

n∑
i=1

(xi)k′(Θxi)j .

These derivatives are basic tools for us given that we work with stationary points.

The next result is essentially a population version of the partial derivatives in Lemma 5, that is, sums are
replaced by expectations.
Lemma 6 (First- and Second-Order Partial Derivatives of the Population Risk for Linear Networks). It
holds for each j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d} that

∂

∂γj
risk[γ, Θ] = −2E(x,y)

[(
y − γ⊤Θx

)
(Θx)j

]
,

∂

∂θjk
risk[γ, Θ] = −2E(x,y)

[(
y − γ⊤Θx

)
γj(x)k

]
;

and
∂2

∂γj′∂γj
risk[γ, Θ] = 2E(x,y)

[
(Θx)j′(Θx)j

]
,

∂2

∂θj′k′∂θjk
risk[γ, Θ] = 2γj′γjE(x,y)

[
(x)k′(x)k

]
.

Moreover, if j′ = j, it holds that

∂2

∂θjk′∂γj
risk[γ, Θ] = 2E(x,y)

[
γj(x)k′(Θx)j −

(
y − γ⊤Θx

)
(x)k′

]
and

∂2

∂γj∂θjk
risk[γ, Θ] = 2E(x,y)

[
γj(x)k(Θx)j −

(
y − γ⊤Θx

)
(x)k

]
,

and if j′ ̸= j, it holds that
∂2

∂γj′∂θjk
risk[γ, Θ] = 2γjE(x,y)

[
(x)k(Θx)j′

]
and

∂2

∂θj′k′∂γj
risk[γ, Θ] = 2γj′E(x,y)

[
(x)k′(Θx)j

]
.

17

Published in Transactions on Machine Learning Research (12/2025)

We use these results in the proofs of Theorem 1 and Proposition 1.
Lemma 7 (First- and Second-Order Subdifferentials of the Empirical Risk for ReLU Networks). It holds for
each j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d} that

∂

∂γj
riskX [γ, Θ] = − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

)
,

∂2

∂γj′∂γj
riskX [γ, Θ] = 2

n

n∑
i=1

(
(σ(Θxi)j′σ(Θxi)j

)
.

And
∂

∂θjk
riskX [γ, Θ] = − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

)
with

κ(xi, j) ··=
{

1{(Θxi)j > 0}, if (Θxi)j ̸= 0.

[0, 1], otherwise.

If j = j′ and ∃ i ∈ {1, . . . , n} with (Θxi)j = 0 then, ∂2riskX [γ, Θ]/∂θj′k′∂θjk doesn’t exists otherwise,

∂2

∂θj′k′∂θjk
riskX [γ, Θ] = 2

n
γjγj′

n∑
i=1

(
(xi)k′(xi)kκ(xi, j′)κ(xi, j)

)
.

For j′ = j

∂2

∂θjk′∂γj
riskX [γ, Θ] = 2

n

n∑
i=1

(
γj(xi)k′σ(Θxi)jκ(xi, j) −

(
yi − γ⊤σ(Θxi)

)
(xi)k′κ(xi, j)

)
and if j′ ̸= j

∂2

∂θj′k′∂γj
riskX [γ, Θ] = 2

n
γj′

n∑
i=1

(
(xi)k′σ(Θxi)jκ(xi, j′)

)
.

The next result is essentially a population version of the subdifferentials in Lemma 7, that is, sums are
replaced by expectations.
Lemma 8 (Second-Order Subdifferentials of the Population Risk for ReLU Networks). It holds for each
j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d}

∂2

∂γj′∂γj
risk[γ, Θ] = 2Ex

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
.

If j = j′ and ∃ x with (Θx)j = 0 then, ∂2risk[γ, Θ]/∂θj′k′∂θjk doesn’t exists otherwise,

∂2

∂θj′k′∂θjk
risk[γ, Θ] = 2γjγj′Ex

[
(x)k′(x)kκ(x, j′)κ(x, j)

]
,

where

κ(x, j) ··=
{

1{(Θx)j > 0}, if (Θx)j ̸= 0.

[0, 1], otherwise.

For j′ = j, it holds that

∂2

∂θjk′∂γj
risk[γ, Θ] = 2Ex,y[γj(x)k′σ(Θx)jκ(x, j) −

(
y − γ⊤σ(Θx)

)
(x)k′κ(x, j)] ,

and if j′ ̸= j, it holds that

∂2

∂θj′k′∂γj
risk[γ, Θ] = 2γj′Ex[(x)k′σ(Θx)jκ(x, j′)] .

18

Published in Transactions on Machine Learning Research (12/2025)

Lemma 9 (Expected Value of the Joint Density Over Two Half Spaces). For two mean-zero Gaussian
random variables Z and Z ′ with unit variance and with small enough ρ = E[ZZ ′] (|ρ| ≤ 0.2) we have

E[ZZ ′1{Z > 0}1{Z ′ > 0}] ≈ 1
2π

(
1 + πρ

2 − 3ρ2

2

)
.

The proof is based on computing the integral using the joint density. We then apply a change of variables
and switch to polar coordinates, evaluate the radial integral, and approximate the angular integral via a
binomial expansion under the assumption that the correlation is small. We skip the detailed proof as it just
involves linear algebra.

B Appendix: Proofs for shallow linear networks

Here, we provide the proofs of our main claims for linear networks.

B.1 Proof of Theorem 1

Proof. The proof approach is based on Taylor’s theorem and the definition of stationary points.

Let’s introduce some notations: We use the notation γ⊤ΘAx̄ ··= γ⊤[Θ, A]x̄ to generate an extended
network indexed by (γ, ΘA) with x̄ ··= (x⊤, x̃⊤)⊤ ∈ Rd+w−1, x̃ having the same distribution as x, and
A = [v1, . . . , vw−1] ∈ Rw×w−1, with v1, . . . , vw−1 ∈ Rw, is a matrix whose columns are basis of Rw−1 such
that γ⊤v1 = · · · = γ⊤vw−1 = 0. It means, the input’s dimension of the network is extended from d to
d + w − 1 and so the inner-layer matrix need also to be extended from Θ ∈ Rw×d to [Θ, A] ∈ Rw×(d+w−1).
We also use the notation γ⊤

αΘα,Ax̄ to make an extended network that is also rescaled across the layers
by a suitable α. Note that the notation Θα,A is equivalent with (ΘA)α, both means we rescale a matrix
ΘA ∈ Rw×(d+w−1) with a vector α ∈ Rw (see more details about rescaled networks in Section 6). Using the
above definitions, it is easy to see that γ⊤

αΘα,Ax̄ = γ⊤Θx, which means, the output of the extended and
rescaled network is the same as the original network (using the definition of A and rescaled weights). In other
words, we have a network that is first extended and then rescaled while the output of the network is still the
same as the original one. We use the notation risk[γα, Θα,A] ··= E(x̄,y)[(y − γ⊤

αΘα,Ax̄)2] to compute the
population risk in an extended and rescaled network. We also define p′ ··= w + w · (d + w − 1) as the effective
dimension of the extended network.

Now, let’s start the proof by writing a second-order Taylor expansion of risk[γ∗
α, Θ∗

α,A′] (the risk in an
extended and rescaled version of the target with β∗

α,A′ = vec(γ∗
α, Θ∗

α,A′) ∈ Rp′) around an extended
and rescaled version of a reasonable stationary β̃α,A = vec(γ̃α, Θ̃α,A) ∈ Rp′ with suitable α ∈ Rw and
A, A′ ∈ Rw×w−1 (we see later how to assign suitable value for α) to get

risk[γ∗
α, Θ∗

α,A′] = risk[γ̃α, Θ̃α,A] + ∇risk[γ̃α, Θ̃α,A]⊤(β∗
α,A′ − β̃α,A)

+ 1
2(β∗

α,A′ − β̃α,A)⊤∇2risk[γ̃α + t(γ∗
α − γ̃α), Θ̃α,A + t(Θ∗

α,A′ − Θ̃α,A)]

(β∗
α,A′ − β̃α,A)

for some t ∈ (0, 1) (Bertsekas et al., 2003, Proposition 1.1.13.a), where we use the notation ∇risk[γ̃α, Θ̃α,A] ∈
Rp′ and ∇2risk[γ̃α, Θ̃α,A] ∈ Rp′×p′ to collect the first and second order partial derivatives of risk[γ̃α, Θ̃α,A]
with respect to the β̃α,A, respectively (note that we have no assumption on (γ∗

α, Θ∗
α,A′) nor (γ̃α, Θ̃α,A) to

have bounded norms).

Then, we employ the property of extended and rescaled networks that is risk[γ̃α, Θ̃α,A] = risk[γ̃, Θ̃] and
risk[γ∗

α, Θ∗
α,A′] = risk[γ∗, Θ∗], and use the shorthand notation

m ··= (β∗
α,A′ − β̃α,A)⊤∇2risk[γ̃α + t(γ∗

α − γ̃α), Θ̃α,A + t(Θ∗
α,A′ − Θ̃α,A)](β∗

α,A′ − β̃α,A)

to obtain
risk[γ∗, Θ∗] = risk[γ̃, Θ̃] + ∇risk[γ̃α, Θ̃α,A]⊤(β∗

α,A′ − β̃α,A) + 1
2m .

19

Published in Transactions on Machine Learning Research (12/2025)

Now, we are motivated to show that ∇risk[γ̃α, Θ̃α,A]⊤(β∗
α,A′ − β̃α,A) = ∇risk[γ̃, Θ̃]⊤(β∗ − β̃). To do so,

we use 1. our Lemma 6 (for an extended and rescaled network), 2. the property of extended and rescaled
networks, 3. linearity of expectations, 4. our assumption on x̄, 5. some rewriting, 6. linearity of expectations,
7. our assumption on x̄ (let’s recall that x̄ = (x⊤, x̃⊤)⊤ ∈ Rd+w−1 with x̃ having the same distribution as x
and independent of x) that makes the second expectation zero, and 8. some rewriting to obtain that

∂

∂(γ̃α)j
risk[γ̃α, Θ̃α,A] = −2E(x̄,y)

[(
y − γ̃α

⊤Θ̃α,Ax̄
)(

Θ̃α,Ax̄
)
j

]
= −2E(x̄,y)

[(
y − γ̃⊤Θ̃x

)(
Θ̃α,Ax̄

)
j

]
= −2E(x̄,y)

[
y
(
Θ̃α,Ax̄

)
j

]
+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

)(
Θ̃α,Ax̄

)
j

]
= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

)(
Θ̃α,Ax̄

)
j

]
= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

) d+w−1∑
k=1

(
Θ̃α,A

)
jk

(x̄)k

]

= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

) d∑
k=1

(
Θ̃α,A

)
jk

(x̄)k

]

+ 2E(x̄,y)

[(
γ̃⊤Θ̃x

) d+w−1∑
k=d+1

(
Θ̃α,A

)
jk

(x̄)k

]

= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x,y)

[(
γ̃⊤Θ̃x

) d∑
k=1

(
Θ̃α

)
jk

(x)k

]
= −2E(x,y)

[
y
(
Θ̃αx

)
j

]
+ 2E(x,y)

[(
γ̃⊤Θ̃x

)(
Θ̃αx

)
j

]
.

Then, we 1. imply our result above for all j ∈ {1, . . . , w}, 2. use the definition of rescaled parameters and
linearity of expectations to cancel α’s, and 3. use our results in Lemma 6 to obtain

(
∂

∂γ̃α
risk[γ̃α, Θ̃α,A]

)⊤(
γ∗

α − γ̃α

)
= 2
(

−E(x,y)

[
y
(
Θ̃αx

)
j

]
+ E(x,y)

[(
γ̃⊤Θ̃x

)(
Θ̃αx

)])⊤(
γ∗

α − γ̃α

)
= 2
(

−E(x,y)

[
y
(
Θ̃x
)
j

]
+ E(x,y)

[(
γ̃⊤Θ̃x

)(
Θ̃x
)])⊤(

γ∗ − γ̃
)

=
(

∂

∂γ̃
risk[γ̃, Θ̃]

)⊤

(γ∗ − γ̃) .

Implying a similar argument as above for all partial derivatives, we conclude that ∇risk[γ̃α, Θ̃α,A]⊤(β∗
α,A′ −

β̃α,A) = ∇risk[γ̃, Θ̃]⊤(β∗ − β̃) (we omit the detailed proof). Tabulating this observation in the earlier display
we obtain

risk[γ∗, Θ∗] = risk[γ̃, Θ̃] + ∇risk[γ̃, Θ̃]⊤(β∗ − β̃) + 1
2m .

Rearranging the display above we obtain

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) = risk[γ̃, Θ̃] − risk[γ∗, Θ∗] + 1
2m .

Now, let’s recall the definition of stationary points in equation 3 which implies

∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + rz̃⊤(β∗ − β̃) ≥ 0 .

20

Published in Transactions on Machine Learning Research (12/2025)

We 1. rearrange above inequality and expand the bracket, 2. use Hölder’s inequality and the fact that
z̃⊤β̃ = ||β̃||1 (recall that z̃ ∈ ∂||β̃||1), and 3. use ||z̃||∞ ≤ 1 to obtain

−∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) ≤ rz̃⊤β∗ − rz̃⊤β̃

≤ r
∣∣∣∣z̃∣∣∣∣∞||β∗||1 − r||β̃||1

≤ r||β∗||1 − r||β̃||1 ,

which rearranging implies
∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 ≥ 0 .

The display above demonstrates the positivity of the terms on its left-hand side, enabling us to obtain

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) ≤ −∇risk[γ̃, Θ̃]⊤(β∗ − β̃) + ∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 ,

that is,

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) ≤
(
∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 .

Now, let’s use our display earlier (obtained by Taylor expansion) to rewrite the left-hand side of the display
above as

risk[γ̃, Θ̃] − risk[γ∗, Θ∗] + 1
2m ≤

(
∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 .

Rearranging the display above we obtain

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + r||β∗||1 +
(
∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃) − r||β̃||1 − 1
2m .

For the right-hand side of the inequality above we 1. get an absolute value of the third term, 2. add a
zero-valued factor, 3. use triangle inequality, and 4. use our results in Lemma 1 to obtain

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣− r||β̃||1 − 1

2m

= risk[γ∗, Θ∗] + 2r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣− r

(
||β̃||1 + ||β∗||1

)
− 1

2m

≤ risk[γ∗, Θ∗] + 2r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣− r||β∗ − β̃||1 − 1

2m

≤ risk[γ∗, Θ∗] + 2r||β∗||1 + rorc||β∗ − β̃||1 + rorc

2n
− r||β∗ − β̃||1 − 1

2m

with probability at least 1 − 1/2n.

The third and fifth terms in the last inequality above can be canceled if we choose the tuning parameter
large enough. Hence, we obtain

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + 2r||β∗||1 + rorc

2n
− 1

2m

for r ≥ rorc.

The rest of the proof is analyzing the behavior of m. Let’s rewrite m = ||β∗
α,A′ − β̃α,A||22 m′ with

m′ ··=
(β∗

α,A′ − β̃α,A)⊤

||β∗
α,A′ − β̃α,A||2

∇2risk[γ̃α + t(γ∗
α − γ̃α), Θ̃α,A + t(Θ∗

α,A′ − Θ̃α,A)] (β∗
α,A′ − β̃α,A)

||β∗
α,A′ − β̃α,A||2

.

Now, we are motivated to employ our results in Proposition 1. To do so, we need to make sure about the
invertibility of the matrix (Θ̃A + t(Θ∗

A′ − Θ̃A))(Θ̃A + t(Θ∗
A′ − Θ̃A))⊤. Using the definition of the extended

21

Published in Transactions on Machine Learning Research (12/2025)

networks, it is easy to see that Θ̃A and Θ∗
A′ have full row rank. Then, using Lemma 4, we obtain that the

line segment between two matrices Θ̃A and Θ∗
A′ is not invertible at most in finitely many t. It means, if we

shift t by a tiny value ς ≈ 0 then, we can make sure that in the new point t′ = t − ς the corresponding matrix
is invertible, that is,

m′ ··=
(β∗

α,A′ − β̃α,A)⊤

||β∗
α,A′ − β̃α,A||2

∇2risk[γ̃α + (t − ς + ς)(γ∗
α − γ̃α), Θ̃α,A + (t − ς + ς)(Θ∗

α,A′ − Θ̃α,A)]

(β∗
α,A′ − β̃α,A)

||β∗
α,A′ − β̃α,A||2

≈ (β∗
α,A′ − β̃α,A)⊤

||β∗
α,A′ − β̃α,A||2

∇2risk[γ̃α + (t − ς)(γ∗
α − γ̃α), Θ̃α,A + (t − ς)(Θ∗

α,A′ − Θ̃α,A)]

(β∗
α,A′ − β̃α,A)

||β∗
α,A′ − β̃α,A||2

= (β∗
α,A′ − β̃α,A)⊤

||β∗
α,A′ − β̃α,A||2

∇2risk[γ̃α + t′(γ∗
α − γ̃α), Θ̃α,A + t′(Θ∗

α,A′ − Θ̃α,A)] (β∗
α,A′ − β̃α,A)

||β∗
α,A′ − β̃α,A||2

,

where the second equation is reached by assuming ς is very close to zero and so we can ignore the remaining
terms. Then, we have (Θ̃A + t′(Θ∗

A′ − Θ̃A))(Θ̃A + t′(Θ∗
A′ − Θ̃A))⊤ as an invertible matrix.

Implying Proposition 1 (with a = (β∗
α,A′ − β̃α,A)/||β∗

α,A′ − β̃α,A||2 and d + w − 1 and p′ as the dimension
of the input and the effective dimension, respectively) we obtain that m′ ∈ [0, ∞) for appropriate α, that
is, α with large enough c). The observation that m′ ∈ [0, ∞) together with the definition of m implies that
m ∈ [0, ∞) as well.

Tabulating this observation to the display earlier together with our assumption on β∗ (||β∗||1 = ||γ∗||1 +
|||Θ∗|||1 ≤ 2

√
log n) and the fact that 1/2n ≤

√
log n, we obtain for all r ≥ rorc that

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + 2r||β∗||1 + rorc

2n
− 1

2m

≤ risk[γ∗, Θ∗] + 2r||β∗||1 + rorc

2n

≤ risk[γ∗, Θ∗] + 5r
√

log n

with probability at least 1 − 1/2n.

The second claim is a trivial consequence of the first claim by 1. using r = rorc and 2. absorbing the constant
5 in ν and simplifying to obtain

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + ν(log n)3/2

√
log(np)

n

(
5
√

log n
)

= risk[γ∗, Θ∗] + ν(log n)2

√
log(np)

n
,

with probability at least 1 − 1/2n, which completes the proof.

B.2 Proof of Theorem 2

Proof. The main ingredients of the proof are the definition of τ−approximate stationary point and our
Lemma 3.

We start the proof using the definition of a τ−approximate stationary point in equation 7 that implies

riskX [˜̃γ, ˜̃Θ] + r||˜̃β||1 ≤ riskX [γ̃, Θ̃] + r||β̃||1 + τ .

22

Published in Transactions on Machine Learning Research (12/2025)

We add zero-valued terms to the both sides of the inequality above to obtain

riskX [˜̃γ, ˜̃Θ] − risk[˜̃γ, ˜̃Θ] + risk[˜̃γ, ˜̃Θ] + r||˜̃β||1 ≤ riskX [γ̃, Θ̃] − risk[γ̃, Θ̃] + risk[γ̃, Θ̃] + r||β̃||1 + τ .

Then, we 1. rearrange the terms, get an absolute value of the two terms, and use the properties of absolute
values, 2. get a supremum over the reasonable parameter space Bres using our assumptions that (˜̃γ, ˜̃Θ), (γ̃, Θ̃) ∈
Bres ··= {(γ, Θ) ∈ B : ||γ||1, |||Θ|||1 ≤

√
log n} (we use our assumption that the stationary is reasonable and

our argument in the paragraph above Theorem 2 to reach that (˜̃γ, ˜̃Θ) is reasonable as well), 3. simplify, and
4. leave a negative term to obtain

risk[˜̃γ, ˜̃Θ] ≤ risk[γ̃, Θ̃] +
∣∣∣riskX [˜̃γ, ˜̃Θ] − risk[˜̃γ, ˜̃Θ]

∣∣∣+
∣∣∣riskX [γ̃, Θ̃] − risk[γ̃, Θ̃]

∣∣∣+ r||β̃||1 − r||˜̃β||1 + τ

≤ risk[γ̃, Θ̃] + sup
(γ,Θ)∈Bres

∣∣riskX [γ, Θ] − risk[γ, Θ]
∣∣+ sup

(γ,Θ)∈Bres

∣∣riskX [γ, Θ] − risk[γ, Θ]
∣∣

+ r||β̃||1 − r||˜̃β||1 + τ

= risk[γ̃, Θ̃] + 2 sup
(γ,Θ)∈Bres

∣∣riskX [γ, Θ] − risk[γ, Θ]
∣∣+ r||β̃||1 − r||˜̃β||1 + τ

≤ risk[γ̃, Θ̃] + 2 sup
(γ,Θ)∈Bres

∣∣riskX [γ, Θ] − risk[γ, Θ]
∣∣+ r||β̃||1 + τ .

Then, we use 1. our result above, 2. Lemma 3 bounding the second term with t = ν
√

log(32nd2)/κn and
B = Bres (with probability at least 1 − 1/2n), 3. the definition of Bres to replace sup(γ,Θ)∈Bres

∣∣∣∣γ∗⊤Θ∗ −
γ⊤Θ

∣∣∣∣2
∞ ≤ sup(γ,Θ)∈Bres 2||γ||2∞|||Θ|||21 ≤ 2(log n)2 =·· ϵ′, 4. our Theorem 1 upper bounding the first term (for

r ≥ rorc with probability at least 1 − 1/2n), 5. our assumption that stationary is reasonable, 6. simplifying,
7. an assumption that n ≥ 3 (just for simplifying the terms), and 8. the assumption that r ≥ rorc and the
definition of rorc (note that for simplicity, we absorb all the constants in ν) to obtain

risk[˜̃γ, ˜̃Θ] ≤ risk[γ̃, Θ̃] + 2 sup
(γ,Θ)∈Bres

∣∣riskX [γ, Θ] − risk[γ, Θ]
∣∣+ r||β̃||1 + τ

≤ risk[γ̃, Θ̃] + 2ν

√
log(32nd2)

κn

(
1 + 4ϵ′ + 4

√
ϵ′
)

+ r||β̃||1 + τ

≤ risk[γ̃, Θ̃] + 2ν

√
log(32nd2)

κn

(
1 + 8(log n)2 + 8 log n

)
+ r||β̃||1 + τ

≤ risk[γ∗, Θ∗] + 5r
√

log n + 2ν

√
log(32nd2)

κn

(
1 + 8(log n)2 + 8 log n

)
+ r||β̃||1 + τ

≤ risk[γ∗, Θ∗] + 5r
√

log n + 2ν

√
log(32nd2)

κn

(
1 + 8(log n)2 + 8 log n

)
+ 2r

√
log n + τ

= risk[γ∗, Θ∗] + 7r
√

log n + 2ν

√
log(32nd2)

κn

(
1 + 8(log n)2 + 8 log n

)
+ τ

≤ risk[γ∗, Θ∗] + 7r
√

log n + 34ν

√
log(32nd2)

κn
(log n)2 + τ

≤ risk[γ∗, Θ∗] + 8r
√

log n + τ

with probability at least 1 − (1 + 1)/2n, which is obtained by the fact that if a ≤ z1 + z2

P(a ≤ c1 + c2) ≥ P(z1 + z2 ≤ c1 + c2)
= 1 − P(z1 + z2 > c1 + c2)
≥ 1 −

(
P(z1 > c1) + P(z2 > c2)

)
,

where a, z1, z2 are random variables and c1, c2 are constants, as desired.

23

Published in Transactions on Machine Learning Research (12/2025)

The second claim is a trivial consequence of the first claim by 1. using r = rorc and 2. absorbing the constant
8 in ν to obtain

risk[γ̃, Θ̃] risk[γ∗, Θ∗] + ν(log n)3/2

√
log(np)

n

(
8
√

log n
)

+ τ

= risk[γ∗, Θ∗] + ν(log n)2

√
log(np)

n
+ τ ,

with probability at least 1 − 1/n, which completes the proof.

B.3 Proof of Proposition 1

Proof. The proof is based on basic algebra and property of scaling weights across the layers in neural
networks. Without loss of generality, we assume that xi ∈ N (0, Id×d) (the proof for independent and centered
sub-Gaussian random vectors xi with independent coordinates is the same, just some constants may change,
which doesn’t affect the main results).

Let’s consider all the network parameters as a vector of length p (recall that p = w + w · d). Then, we
can tabulate the second-order partial derivatives of risk[γ, Θ] in a matrix called ∇2risk[γ, Θ] ∈ Rp×p (for
notational simplicity, we focus on ∇2risk[γ, Θ] for the moment and then we move to ∇2risk[γα, Θα] at the
end of the proof) of the form

∇2risk[γ, Θ] =
[

A C
B D

]
with A ∈ Rw×w, B ∈ R(w·d)×w, C ∈ Rw×(w·d), and D ∈ R(w·d)×(w·d), where

Aj′,j ··=
∂2

∂γj′∂γj
risk[γ, Θ] ,

B(j′−1)d+k′,j ··=
∂2

∂θj′k′∂γj
risk[γ, Θ] ,

Cj′,(j−1)d+k ··=
∂2

∂γj′∂θjk
risk[γ, Θ] ,

D(j′−1)d+k′,(j−1)d+k ··=
∂2

∂θj′k′∂θjk
risk[γ, Θ]

for j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d}.

Applying the block-wise structure of ∇2risk[γ, Θ], we are motivated to analyze the behavior of

a⊤∇2risk[γ, Θ]a = (a1)⊤Aa1 + (a1)⊤Ca2 + (a2)⊤Ba1 + (a2)⊤Da2 .

Note that C = B⊤ (see Lemma 6), so, we are left to analyze the behavior of

a⊤∇2risk[γ, Θ]a = (a1)⊤Aa1 + 2(a1)⊤Ca2 + (a2)⊤Da2

for all a ∈ Rp with ||a||2 = 1.

We do the proof in steps: We start by going through the three terms on the right-hand side of the display
above separately, to write them in a mathematically nice formulation (Steps 1:3). In Step 4, we sum up the
results calculated in Steps 1:3. Finally in Step 5, we use our results in Steps 1:4 to prove the main claims of
the proposition.

Step 1: We show that for a2 ∈ Rw·d and D ∈ R(w·d)×(w·d),

(a2)⊤Da2 = 2
d∑
k=1

(
γ⊤(a2)k

)2
,

24

Published in Transactions on Machine Learning Research (12/2025)

where we denote (a2)k :=
(
(a2)k, (a2)d+k, . . . , (a2)(w−1)d+k

)⊤ ∈ Rw (as a sub-vector of a2) for each k ∈
{1, . . . , d}.

We start by writing matrix product in the form of sums and fill the entries of matrix D with the corresponding
values from the definition to get

(a2)⊤Da2

=
w∑
j=1

d∑
k=1

(
w∑
j′=1

d∑
k′=1

(
(a2)(j′−1)d+k′

∂2

∂θj′k′∂θjk
risk[γ, Θ]

)
(a2)(j−1)d+k

)
.

By Lemma 6 we have
∂2

∂θj′k′∂θjk
risk[γ, Θ] = 2γj′γjE(x,y)

[
(x)k(x)k′

]
,

which using our assumption on x (identity covariance matrix) implies

∂2

∂θj′k′∂θjk
risk[γ, Θ] = 2γj′γj

for k = k′ and zero otherwise (for k ̸= k′). We use 1. our display earlier, 2. the result above, 3. the linearity
of sums, 4. some rewriting (using multinomial theorem), and 5.implying our notation (a2)k for writing the
sum in the form of product to obtain

(a2)⊤Da2 =
w∑
j=1

d∑
k=1

(
w∑

j′=1

d∑
k′=1

(
(a2)(j′−1)d+k′

∂2

∂θj′k′∂θjk
risk[γ, Θ]

)
a2

(j−1)d+k

)

= 2
w∑
j=1

d∑
k=1

(
w∑

j′=1

(
(a2)(j′−1)d+kγj′γj

)
a2

(j−1)d+k

)

= 2
w∑
j=1

d∑
k=1

w∑
j′=1

(
(a2)(j′−1)d+kγj′γja

2
(j−1)d+k

)
= 2

d∑
k=1

(
w∑
j=1

(a2)(j−1)d+kγj

)2

= 2
d∑
k=1

(
γ⊤(a2)k

)2
.

Step 2: We prove that for a1 ∈ Rw and A ∈ Rw×w,

(a1)⊤Aa1 = 2
d∑
k=1

(
(Θ.,k)⊤a1

)2
,

where Θ.,k denotes the k-th column of Θ.

For each j, j′ ∈ {1, . . . , w}, we use 1. the result of Lemma 6, 2. the definition of covariance, 3. the fact that
Cov(Θx) = ΘCov(x)Θ⊤, 4. the assumption on x (identity covariance), and 5. rewriting to obtain

∂2

∂γj′∂γj
risk[γ, Θ] = 2E(x,y)

[
(Θx)j′(Θx)j

]
= 2
(
Cov(Θx)

)
j′j

= 2
(
ΘCov(x)Θ⊤)

j′j

= 2
(
ΘΘ⊤)

j′j

= 2
d∑
k=1

θj′kθjk .

25

Published in Transactions on Machine Learning Research (12/2025)

We use 1. the definition of sub-matrix A to write the matrix product in the form of a sum, 2. tabulating above
result and using the linearity of sums, 3. some rewriting (using the multinomial theorem), and 4. writing the
sum in the form of product to obtain

(a1)⊤Aa1 =
w∑
j=1

w∑
j′=1

(
(a1)j′

∂2

∂γj′∂γj
risk[γ, Θ](a1)j

)

=
d∑
k=1

w∑
j=1

w∑
j′=1

2(a1)j′θj′kθjk(a1)j

= 2
d∑
k=1

(
w∑
j=1

(
θjk(a1)j

))2

= 2
d∑
k=1

(
(Θ.,k)⊤a1

)2
.

Step 3: We show that for a1 ∈ Rw, a2 ∈ Rw·d, and C ∈ Rw×(w·d),

(a1)⊤Ca2 = 2
d∑
k=1

(
γ⊤(a2)k

)(
(Θ.,k)⊤a1

)
+ 2

d∑
k=1

(((
γ⊤Θ − γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

])
(a1)⊤(a2)k

)
.

Expanding (a1)⊤Ca2 yields

(a1)⊤Ca2 =
w∑
j=1

d∑
k=1

(
w∑
j′=1

(
(a1)j′

∂2

∂γj′∂θjk
risk[γ, Θ]

)
(a2)(j−1)d+k

)
.

Now, we need to consider two different cases:

Case 1: (j ̸= j′)

We use 1. the result of Lemma 6, 2. writing matrix product in the form of a sum, 3. linearity of sums and
expectations, and 4. our assumption on x to get for each j, j′ ∈ {1, . . . , w} and k ∈ {1, . . . , d} with j ̸= j′

that

∂2

∂γj′∂θjk
risk[γ, Θ] = 2γjE(x,y)

[
(x)k(Θx)j′

]
= 2γjE(x,y)

[
(x)k

d∑
k′=1

(
θj′k′(x)k′

)]

= 2γj

d∑
k′=1

(
θj′k′E(x,y)

[
(x)k(x)k′

])
= 2γjθj′k .

Case 2: (j = j′)

We use 1. the result of Lemma 6, 2. linearity of expectations, 3. linearity of expectations and our assumption
on x (same argument as above), 4. linearity of expectations, 5. linearity of expectations and our assumption on
x, 6. adding a zero-valued term, and 7. again linearity of expectations, our assumption on x, and rearranging
to obtain

∂2

∂γj∂θjk
risk[γ, Θ] = 2E(x,y)

[
γj(x)k(Θx)j −

(
y − γ⊤Θx

)
(x)k

]
26

Published in Transactions on Machine Learning Research (12/2025)

= 2E(x,y)
[
γj(x)k(Θx)j

]
+ 2E(x,y)

[(
γ⊤Θx

)
(x)k − y(x)k

]
= 2γjθjk + 2E(x,y)

[(
γ⊤Θx

)
(x)k − y(x)k

]
= 2γjθjk + 2E(x,y)

[(
γ⊤Θx

)
(x)k

]
− 2E(x,y)

[
y(x)k

]
= 2γjθjk + 2

(
γ⊤Θ

)
k

− 2E(x,y)
[
y(x)k

]
= 2γjθjk + 2

(
γ⊤Θ

)
k

− 2E(x,y)
[(

y + γ∗⊤Θ∗x − γ∗⊤Θ∗x)(x)k
]

= 2γjθjk + 2
(
γ⊤Θ − γ∗⊤Θ∗)

k
− 2E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

]
.

Now, we 1. use our earlier expansion, 2. separate the innermost sum in two cases, 3. use the result above
(Case 1 and Case 2), 4. rearranging, 5. use linearity of sums and some rewriting, and 6. write sums in the
form of vector products and rearranging to obtain

(a1)⊤Ca2

=
w∑
j=1

d∑
k=1

(
w∑
j′=1

(
(a1)j′

∂2

∂γj′∂θjk
risk[γ, Θ]

)
(a2)(j−1)d+k

)

=
w∑
j=1

d∑
k=1

(
w∑

j′=1,j′ ̸=j

(
(a1)j′

∂2

∂γj′∂θjk
risk[γ, Θ]

)
(a2)(j−1)d+k

)

+
w∑
j=1

d∑
k=1

(
(a1)j

∂2

∂γj∂θjk
risk[γ, Θ](a2)(j−1)d+k

)

= 2
w∑
j=1

d∑
k=1

w∑
j′=1,j′ ̸=j

(
(a1)j′γjθj′k(a2)(j−1)d+k

)

+ 2
w∑
j=1

d∑
k=1

(
(a1)j

(
γjθjk +

(
γ⊤Θ − γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

])
(a2)(j−1)d+k

)

= 2
w∑
j=1

d∑
k=1

w∑
j′=1

(
(a1)j′γjθj′k(a2)(j−1)d+k

)

+ 2
w∑
j=1

d∑
k=1

(
(a1)j

((
γ⊤Θ − γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x

)
(x)k

])
(a2)(j−1)d+k

)

= 2
d∑
k=1

(
w∑
j′=1

(a1)j′θj′k

)(
w∑
j=1

γj(a2)(j−1)d+k

)

+ 2
d∑
k=1

((
γ⊤Θ − γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x

)
(x)k

])(w∑
j=1

(a1)j(a2)(j−1)d+k

)

= 2
d∑
k=1

(
γ⊤(a2)k

)(
(Θ.,k)⊤(a1)

)
+ 2

d∑
k=1

((
γ⊤Θ − γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x

)
(x)k

])
(a1)⊤(a2)k .

Step 4: We prove that for any a = [(a1)⊤, (a2)⊤]⊤ ∈ Rp and (γ, Θ) ∈ B, it holds that

a⊤∇2risk[γ, Θ]a = 2
d∑
k=1

(
(Θ.,k)⊤(a1) + γ⊤(a2)k

)2
+ 4

d∑
k=1

(
γ⊤Θ − γ∗⊤Θ∗)

k
(a1)⊤(a2)k

− 4
d∑
k=1

E(x,y)
[(

y − γ∗⊤Θ∗x)(x)k
]
(a1)⊤(a2)k .

27

Published in Transactions on Machine Learning Research (12/2025)

We use 1. the block-wise structure of the Hessian matrix and rearranging, 2. our results in Steps 1:3, and
3. multinomial theorem to obtain

a⊤∇2risk[γ, Θ]a = (a1)⊤Aa1 + (a2)⊤Da2 + 2(a1)⊤Ca2

= 2
d∑
k=1

(
γ⊤(a2)k

)2
+ 2

d∑
k=1

(
(Θ.,k)⊤a1

)2
+ 4

d∑
k=1

(
γ⊤(a2)k

)(
(Θ.,k)⊤a1

)
+ 4

d∑
k=1

(((
γ⊤Θ − γ∗⊤Θ∗)

k
− E(x,y)

[(
y − γ∗⊤Θ∗x)(x)k

])
(a1)⊤(a2)k

)

= 2
d∑
k=1

(
(Θ.,k)⊤a1 + γ⊤(a2)k

)2
+ 4

d∑
k=1

(
γ⊤Θ − γ∗⊤Θ∗)

k
(a1)⊤(a2)k

− 4
d∑
k=1

E(x,y)
[(

y − γ∗⊤Θ∗x)(x)k
]
(a1)⊤(a2)k .

Step 5: Now, we employ our results in Steps 1–4 to prove the main claims of the proposition.

Claim 1: (a1 = 0 and a2 ̸= 0)

We use 1. the block-wise structure of the Hessian, 2. the assumption that a1 = 0, 3. our result in Step 1, and
4. the fact that sum of non-negative terms is also non-negative to obtain

a⊤∇2risk[γ, Θ]a = (a1)⊤Aa1 + 2(a1)⊤Ca2 + (a2)⊤Da2

= (a2)⊤Da2

= 2
d∑
k=1

(
γ⊤(a2)k

)2

≥ 0 .

The above display can also reveal that for all α ∈ Rw \ {0} (moving to a scaled version of the parameters)

a⊤∇2risk[γα, Θα]a = 2
d∑
k=1

(
(γα)⊤(a2)k

)2
≥ 0 ,

as desired.

Claim 2: (a1 ̸= 0 and a2 = 0)

The proof is similar to Claim 1 so we omit the proof.

Claim 3: (a1 ̸= 0 and a2 ̸= 0)

We use our results in Step 4 together with getting an absolute value of the two last terms to obtain

a⊤∇2risk[γ, Θ]a = 2
d∑
k=1

(
(Θ.,k)⊤a1 + γ⊤(a2)k

)2
+ 4

d∑
k=1

(
γ⊤Θ − γ∗⊤Θ∗)

k
(a1)⊤(a2)k

− 4
d∑
k=1

E(x,y)
[(

y − γ∗⊤Θ∗x)(x)k
]
(a1)⊤(a2)k

≥ 2
d∑
k=1

(
(Θ.,k)⊤a1 + γ⊤(a2)k

)2
− 4

∣∣∣∣∣
d∑
k=1

(
γ⊤Θ − γ∗⊤Θ∗)

k
(a1)⊤(a2)k

∣∣∣∣∣
− 4

∣∣∣∣∣
d∑
k=1

E(x,y)
[(

y − γ∗⊤Θ∗x)(x)k
]
(a1)⊤(a2)k

∣∣∣∣∣ .
28

Published in Transactions on Machine Learning Research (12/2025)

First, let’s concentrate on the second term of display above and 1. use the triangle inequality and properties of
absolute values, 2. use Hölder inequality, 3. get a factor ||a1||2 out of the summation, 4. use Cauchy–Schwarz
inequality, and 5. some rewriting to obtain

4

∣∣∣∣∣
d∑
k=1

(
γ⊤Θ − γ∗⊤Θ∗)

k
(a1)⊤(a2)k

∣∣∣∣∣ ≤ 4
d∑
k=1

∣∣∣(γ⊤Θ − γ∗⊤Θ∗)
k

∣∣∣∣∣∣(a1)⊤(a2)k
∣∣∣

≤ 4
d∑
k=1

∣∣∣(γ⊤Θ − γ∗⊤Θ∗)
k

∣∣∣∣∣∣∣a1∣∣∣∣
2

∣∣∣∣(a2)k
∣∣∣∣

2

= 4
∣∣∣∣a1∣∣∣∣

2

d∑
k=1

∣∣∣(γ⊤Θ − γ∗⊤Θ∗)
k

∣∣∣∣∣∣∣(a2)k
∣∣∣∣

2

≤ 4
∣∣∣∣a1∣∣∣∣

2

√√√√ d∑
k=1

∣∣∣(γ⊤Θ − γ∗⊤Θ∗
)
k

∣∣∣2
√√√√ d∑
k=1

∣∣∣∣(a2)k
∣∣∣∣2

2

= 4
∣∣∣∣a1∣∣∣∣

2

∣∣∣∣a2∣∣∣∣
2

∣∣∣∣γ⊤Θ − γ∗⊤Θ∗∣∣∣∣
2 .

Then, we use 1. our assumption that y = γ∗⊤Θ∗x + u, 2. independence of u and x, and 3. our assumption
that E[x] = 0 (also we have E[u] = 0) to obtain

4

∣∣∣∣∣
d∑
k=1

E(x,y)
[(

y − γ∗⊤Θ∗x)(x)k
]
(a1)⊤(a2)k

∣∣∣∣∣ = 4

∣∣∣∣∣
d∑
k=1

E(x,y)
[
u(x)k

]
(a1)⊤(a2)k

∣∣∣∣∣
= 4

∣∣∣∣∣
d∑
k=1

E(x,y)
[
u
]
E(x,y)

[
(x)k

]
(a1)⊤(a2)k

∣∣∣∣∣
= 0 .

Tabulating two observations above in the previous display we obtain

a⊤∇2risk[γ, Θ]a ≥ 2
d∑
k=1

(
(Θ.,k)⊤a1 + γ⊤(a2)k

)2
− 4
∣∣∣∣a1∣∣∣∣

2

∣∣∣∣a2∣∣∣∣
2

∣∣∣∣γ⊤Θ − γ∗⊤Θ∗∣∣∣∣
2 .

Now, let’s define for each k ∈ {1, . . . , d} that Ak ··= (Θ.,k)⊤a1, Bk ··= γ⊤(a2)k, and using the fact (Ak+Bk)2 ≥
1
2 (Ak)2 − (Bk)2 to obtain

a⊤∇2risk[γ, Θ]a

≥ 2
d∑
k=1

(Ak + Bk)2 − 4
∣∣∣∣a1∣∣∣∣

2

∣∣∣∣a2∣∣∣∣
2

∣∣∣∣γ⊤Θ − γ∗⊤Θ∗∣∣∣∣
2

≥
d∑
k=1

(Ak)2 − 2
d∑
k=1

(Bk)2 − 4
∣∣∣∣a1∣∣∣∣

2

∣∣∣∣a2∣∣∣∣
2

∣∣∣∣γ⊤Θ − γ∗⊤Θ∗∣∣∣∣
2 .

Now, we analyze the first two terms on the right-hand side of the last inequality above. We use 1. the
definition of Ak, 2. some rewritings, 3. the linearity of sums, 4. the definition of matrix product, 5. property
of eigenvalues (emin[ΘΘ⊤] denotes the smallest eigenvalue of ΘΘ⊤), and 6. the norm definition to obtain

d∑
k=1

(Ak)2 =
d∑
k=1

(
(Θ.,k)⊤a1

)2

=
d∑
k=1

(a1)⊤Θ.,k(Θ.,k)⊤a1

29

Published in Transactions on Machine Learning Research (12/2025)

= (a1)⊤

(
d∑
k=1

Θ.,k(Θ.,k)⊤

)
a1

= (a1)⊤ΘΘ⊤a1

≥ emin
[
ΘΘ⊤](a1)⊤a1

= emin
[
ΘΘ⊤]||a1||22 .

Also, using 1. the definition of Bk, 2. the Cauchy–Schwarz inequality, 3. the linearity of sums, and 4. the
definition of norms we obtain

2
d∑
k=1

(Bk)2 = 2
d∑
k=1

(
γ⊤(a2)k

)2 ≤ 2
d∑
k=1

∣∣∣∣γ∣∣∣∣22∣∣∣∣(a2)k
∣∣∣∣2

2 = 2
∣∣∣∣γ∣∣∣∣22 d∑

k=1

∣∣∣∣(a2)k
∣∣∣∣2

2 = 2
∣∣∣∣γ∣∣∣∣22∣∣∣∣a2∣∣∣∣2

2 .

Collecting two displays above together with the earlier one we obtain

a⊤∇2risk[γ, Θ]a ≥ emin
[
ΘΘ⊤]||a1||22 − 2

∣∣∣∣γ∣∣∣∣22∣∣∣∣a2∣∣∣∣2
2 − 4

∣∣∣∣a1∣∣∣∣
2

∣∣∣∣a2∣∣∣∣
2

∣∣∣∣γ⊤Θ − γ∗⊤Θ∗∣∣∣∣
2 .

Now, it is time to concentrate on the Hessian behavior of ∇2risk[γα, Θα] (and not ∇2risk[γ, Θ]). We use the
known fact in neural networks that weights can be rescaled across the layers once activations are nonnegative-
homogeneous. It says for a neural network parameterized by (γ, Θ), there is another network with the same
objective value such that the covariates of γ are multiplied by the covariates of α and the covariates in each
column of Θ are divided by the covariates of α. We use this fact with αj = 1/c for all j ∈ {1, . . . , w}, which
c ∈ (1, ∞), together with the above result to analyze the behavior of Hessian in (γα, Θα) and get

a⊤∇2risk[γα, Θα]a ≥ emin
[
ΘαΘα

⊤]||a1||22 − 2
∣∣∣∣γα

∣∣∣∣2
2

∣∣∣∣a2∣∣∣∣2
2 − 4

∣∣∣∣a1∣∣∣∣
2

∣∣∣∣a2∣∣∣∣
2

∣∣∣∣γα
⊤Θα − γ∗

α
⊤Θ∗

α

∣∣∣∣
2

= c2emin
[
ΘΘ⊤]||a1||22 − 2

c2

∣∣∣∣γ∣∣∣∣22∣∣∣∣a2∣∣∣∣2
2 − 4

∣∣∣∣a1∣∣∣∣
2

∣∣∣∣a2∣∣∣∣
2

∣∣∣∣γ⊤Θ − γ∗⊤Θ∗∣∣∣∣
2 ,

where for the last line we use factorizing and the definition of scaled parameters. Using above display, we can
guarantee positive semidefinite Hessian once c is selected large enough because, the first term can dominate
the other two terms. So, we use c ∈ [1, ∞) and our assumption on ΘΘ⊤ to obtain that for

c2 ≥
2
∣∣∣∣γ∣∣∣∣22∣∣∣∣a2

∣∣∣∣2
2 + 4

∣∣∣∣a1
∣∣∣∣

2

∣∣∣∣a2
∣∣∣∣

2

∣∣∣∣γ⊤Θ − γ∗⊤Θ∗
∣∣∣∣

2
emin

[
ΘΘ⊤

]
||a1||22

,

we can guarantee positive semidefinite Hessian, as desired.

B.4 Proof of Lemma 1

Proof. The proof idea is inspired by Elsener & van de Geer (2018, Lemma 14) and main ingredients are our
Lemma 2 and union bounds.

Let’s define r̃(t) ··= 2t for t ∈ (0, ∞), sCη,ϵ
··= (η + max{||γ∗||∞, |||Θ∗|||∞})(1 + ϵ), which is basically defined by

parameters ϵ and η of Cη,ϵ (recall that Cη,ϵ = {β = vec(γ, Θ) ∈ Rp : ||β∗ − β||1 ≤ η and ||γ⊤Θ − γ∗⊤Θ∗||1 ≤
ϵ}), and Z(β, β∗) as a function of two vectors β and β∗ (with β = vec(γ, Θ)) defined as

Z(β, β∗) ··=
∣∣∣(∇riskX [γ, Θ] − ∇risk[γ, Θ]

)⊤(β∗ − β)
∣∣∣ .

Using Lemma 2 and notations above and with assuming β̃ ∈ Cη,ϵ (specific values of ϵ and η be assigned at
the end of the proof) we obtain for each t ∈ (0, ∞) that

P
(

Z(β̃, β∗) ≥ ηr̃(t)sCη,ϵ

)
≤ P

(
sup

β∈Cη,ϵ

Z(β, β∗) ≥ ηr̃(t)sCη,ϵ

)
≤ 4d2p exp(−κn min{t2/ν2, t/ν})

30

Published in Transactions on Machine Learning Research (12/2025)

with ν, κ ∈ (0, ∞) constants depending only on the distributions of the inputs and noise.

We assume without loss of generality that 1/n ≤ η and continue the proof in two different cases:

Case 1: (||β̃ − β∗||1 ≤ 1/n)

In this case, we use 1. the fact that ||β̃ −β∗||1r̃(t)sCη,ϵ ≥ 0, 2. our assumption that 1/n ≤ η and the definition
of sCη,ϵ , and 3. our assumption that ||β̃ − β∗||1 ≤ 1/n, which implies that β̃ ∈ C1/n,ϵ and our argument
above to obtain for each t ∈ (0, ∞) that

P
(

Z(β̃, β∗) ≥ 2||β̃ − β∗||1r̃(t)sCη,ϵ
+ r̃(t)

n
sCη,ϵ

)
≤ P

(
Z(β̃, β∗) ≥ r̃(t)

n
sCη,ϵ

)
≤ P

(
Z(β̃, β∗) ≥ r̃(t)

n
sC1/n,ϵ

)
≤ 4d2p exp(−κn min{t2/ν2, t/ν}) .

Case 2: (1/n < ||β̃ − β∗||1 ≤ η)

In this case, we use 1. the fact that for mutually exclusive events H1, . . . , Hn: P(∪ni=1Hi) =
∑n
i=1 P(Hi),

2. lower bound of ||β̃ − β∗||1, 3. the fact that r̃(t)sCη,ϵ
/n ≥ 0 and removing the lower bound, 4. the fact that

2i+1/n ≤ η, and 5. the fact that β̃ ∈ sC2i+1/n,ϵ
and our earlier argument to obtain for each t ∈ (0, ∞) that

P
(

Z(β̃, β∗) ≥ 2||β̃ − β∗||1r̃(t)sCη,ϵ
+ r̃(t)

n
sCη,ϵ

for 1
n

< ||β̃ − β∗||1 ≤ η

)

=
⌈log2 (nη)⌉−1∑

i=0
P
(

Z(β̃, β∗) ≥ 2||β̃ − β∗||1r̃(t)sCη,ϵ
+ r̃(t)

n
sCη,ϵ

for 2i

n
< ||β̃ − β∗||1 ≤ 2i+1

n

)

≤
⌈log2 (nη)⌉−1∑

i=0
P
(

Z(β̃, β∗) ≥ 2i+1

n
r̃(t)sCη,ϵ + r̃(t)

n
sCη,ϵ for 2i

n
< ||β̃ − β∗||1 ≤ 2i+1

n

)

≤
⌈log2 (nη)⌉−1∑

i=0
P
(

Z(β̃, β∗) ≥ 2i+1

n
r̃(t)sCη,ϵ

for ||β̃ − β∗||1 ≤ 2i+1

n

)

≤
⌈log2 (nη)⌉−1∑

i=0
P
(

Z(β̃, β∗) ≥ 2i+1

n
r̃(t)sC2i+1/n,ϵ

for ||β̃ − β∗||1 ≤ 2i+1

n

)
≤ 4⌈log2 (nη)⌉d2p exp(−κn min{t2/ν2, t/ν}) .

We collect all pieces of the proof (Case 1 and Case 2), set t = ν
√

log (8nd2p⌈log2 (nη)⌉)/(κn) (we use the
notation log as natural logarithm), and use the union bounds to obtain (we also need to assume n is large
enough to get rid of the min operator)

P

Z(β̃, β∗) ≥ 2||β̃ − β∗||1r̃
(

ν
√

log
(
8nd2p⌈log2 (nη)⌉

)
/(κn)

)
sCη,ϵ

+
r̃
(

ν
√

log
(
8nd2p⌈log2 (nη)⌉

)
/(κn)

)
n

sCη,ϵ


≤ 4⌈log2 (nη)⌉d2p exp(− log(8nd2p⌈log2 (nη)⌉))

= 1
2n

.

31

Published in Transactions on Machine Learning Research (12/2025)

Now, we use the results above and the definitions of Z(β̃, β∗) and r̃(t) to obtain

P

∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]
)⊤(β∗ − β̃)

∣∣∣ ≥ 4νsCη,ϵ ||β̃ − β∗||1

√
log
(
8nd2p⌈log2 (nη)⌉

)
κn

+ 2νsCη,ϵ

√
log
(
8nd2p⌈log2 (nη)⌉

)
κn3


≤ 1

2n
.

Then, we use our assumption that the stationary point (γ̃, Θ̃) is reasonable to obtain: ||γ̃⊤Θ̃ −
γ∗⊤Θ∗||1 ≤ ||γ̃⊤Θ̃||1 + ||γ∗⊤Θ∗||1 ≤ ||γ̃||1|||Θ̃|||∞ + ||γ∗||1|||Θ∗|||∞ ≤ 2 log n (using triangle inequality,
Hölder’s inequality, and our assumption on reasonable target and stationary) and ||β̃ − β∗||1 ≤ ||β̃||1 +
||β∗||1 = ||γ̃||1 + |||Θ̃|||1 + ||γ∗||1 + |||Θ∗|||1 ≤ 4

√
log n (using triangle inequality, our definition of norm, and

our assumption on reasonable target and stationary), which means we can assign ϵ = 2 log n and η = 4
√

log n
(for n ≥ 2 we can make sure that 1/n ≤ η is satisfied).

Now, we plug in the values of ϵ = 2 log n, η = 4
√

log n, and sCη,ϵ
= (η + max{||γ∗||∞, |||Θ∗|||∞})(1 +

ϵ) ≤ (5
√

log n)(1 + 2 log n) ≤ 15(log n)3/2 (for n ≥ 2) to conclude that

P
(∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣

≥ 60√
κn

ν||β̃ − β∗||1(log n)3/2
√

log
(
8nd2p⌈log2 (4n

√
log n)⌉

)
+ 30√

κn3
ν(log n)3/2

√
log
(
8nd2p⌈log2 (4n

√
log n)⌉

))
≤ 1

2n
.

Then, we use the fact that d ≤ p and simplifying display above to obtain

P
(∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣

≥ 180√
κn

ν||β̃ − β∗||1(log n)3/2
√

log(np) + 90√
κn3

ν(log n)3/2
√

log(np)
)

≤ 1
2n

.

We finally absorb all the constants (180/
√

κ) in ν and use the definition of rorc to complete the proof.

B.5 Proof of Lemma 2

Proof. We start the proof with Hölder’s inequality and the definition of Cη,ϵ, which implies ||β∗ − β||1 ≤ η
for all β ∈ Cη,ϵ to obtain

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣(∇riskX [γ, Θ]−∇risk[γ, Θ]
)⊤(β∗ − β)

∣∣∣
≤ sup

β=vec(γ,Θ)∈Cη,ϵ

(∣∣∣∣∇riskX [γ, Θ] − ∇risk[γ, Θ]
∣∣∣∣

∞||β∗ − β||1
)

≤ η sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ, Θ] − ∇risk[γ, Θ]
∣∣∣∣

∞ .

32

Published in Transactions on Machine Learning Research (12/2025)

The rest of the proof is using our Lemma 5 and Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3)
to find an upper bound for supβ=vec(γ,Θ)∈Cη,ϵ

||∇riskX [γ, Θ] − ∇risk[γ, Θ]||∞. Note that for simplifying the
notation, we use E[·] as a shorthand notation of E(x1,y1),...,(xn,yn)[·] throughout this proof.

We use 1. our result in Lemma 5 and i.i.d. assumption on the data, 2. equation 1 and our assumption that
f [x] = γ∗⊤Θ∗x, zero-mean noise, linearity of expectations, and factorizing, 3. the definition of sup-norm,
triangle inequality, and Hölder’s inequality, 4. the definition of Cη,ϵ, which implies ||γ∗⊤Θ∗ − γ⊤Θ||1 ≤ ϵ,
5. adding a zero-valued term and rewriting, and 6. the triangle inequality and the definition of Cη,ϵ, which
implies ||γ − γ∗||1 ≤ ||β − β∗||1 ≤ η, to obtain for each j ∈ {1, . . . , w} and k ∈ {1, . . . , d} that∣∣∣ ∂

∂θjk
riskX [γ, Θ] − ∂

∂θjk
risk[γ, Θ]

∣∣∣
=
∣∣∣∣− 2

n

n∑
i=1

(yi − γ⊤Θxi)γj(xi)k + E
[

2
n

n∑
i=1

(yi − γ⊤Θxi)γj(xi)k
]∣∣∣∣

= 2|γj |
∣∣∣∣ 1n

n∑
i=1

(
ui(xi)k + (γ∗⊤Θ∗ − γ⊤Θ)

(
xi(xi)k − E[xi(xi)k]

))∣∣∣∣
≤ 2||γ||∞

(∣∣∣∣ 1n
n∑
i=1

ui(xi)k
∣∣∣∣+ ||γ⊤Θ − γ∗⊤Θ∗||1

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
E[xi(xi)k] − xi(xi)k

)∣∣∣∣∣∣∣∣
∞

)

≤ 2||γ||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
E[xi(xi)k] − xi(xi)k

)∣∣∣∣∣∣∣∣
∞

)

= 2||γ − γ∗ + γ∗||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

)

≤ 2(η + ||γ∗||∞)
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

)
.

We continue to work on the absolute value and sup-norm term in the last inequality above separately. For
each i ∈ {1, . . . , n} and k ∈ {1, . . . , d}, we use our assumptions on xi and ui to obtain that zi ··= ui(xi)k are
independent and sub-exponential random variables with zero-mean (Vershynin, 2018, Lemma 2.7.7) and so,
we can employ Bernstein’s inequality in Vershynin (2018, Corollary 2.8.3) to obtain for each t ∈ [0, ∞) that

P
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣ ≥ t

)
≤ 2 exp(−κ min{t2/ν2, t/ν}n)

with κ ∈ (0, ∞) an absolute constant and ν ··= maxi∈{1,...,n} ||ui(xi)k||ψ1 ∈ (0, ∞) a constant that depends on
the distributions of x and u (for a sub-exponential random variable z, we define ||z||ψ1

··= inf{q ∈ (0, ∞) :
E exp((|z|/q)) ≤ 2}).

Now we study the behavior of the sup-norm term in the last inequality of the earlier display. Let’s rewrite
the sup-norm in the form of a max as∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

= max
k′∈{1,...,d}

∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ .
Following the same argument as earlier and for each i ∈ {1, . . . , n} and k, k′ ∈ {1, . . . , d}, we use our
assumption on xi to obtain that z′

i
··= (xi)k′(xi)k − E[(xi)k′(xi)k] are independent sub-exponential random

variables with zero-mean and again we can employ Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3)
to obtain for each t′ ∈ [0, ∞) that

P

(∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ ≥ t′

)
≤ 2 exp(−κ′ min{t′2/ν′2, t′/ν′}n)

33

Published in Transactions on Machine Learning Research (12/2025)

with κ′ ∈ (0, ∞) an absolute constant and ν′ ··= maxi∈{1,...,n} ||(xi)k′(xi)k − E[(xi)k′(xi)k]||ψ1 ∈ (0, ∞) a
constant that depends on the distribution of x.

Then, we use our result above together with the fact that if P(|bi| ≥ t) ≤ a holds for all i ∈ {1, . . . p}, then
we also have P(maxi∈{1,...p} |bi| ≥ t) ≤ pa to obtain

P

(
max

k′∈{1,...,d}

∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ ≥ t′

)
≤ 2d exp(−κ′ min{t′2/ν′2, t′/ν′}n) .

Collecting all pieces above together with considering t = t′, we obtain for each j ∈ {1, . . . , w} and k ∈ {1, . . . , d}
that ∣∣∣ ∂

∂θjk
riskX [γ, Θ] − ∂

∂θjk
risk[γ, Θ]

∣∣∣ ≤ 2t(η + ||γ∗||∞)(1 + ϵ)

with probability at least 1 − 2 exp(−κ min{t2/ν2, t/ν}n) − 2d exp(−κ′ min{t2/ν′2, t/ν′}n), which is obtained
using the fact that

P (A + bD ≤ t + bt) = 1 − P (A + bD > t + bt) ≥ 1 − P (A > t) − P (D > t)

for any b ∈ (0, ∞) and t ∈ R.

Then, we follow the same argument as earlier and use 1. our result in Lemma 5 and i.i.d. assumption on the
data, 2. the properties of absolute values and linearity of expectations, 3. some rewriting, 4. Hölder’s inequality,
5. equation 1 and our assumptions that f [x] = γ∗⊤Θ∗x, zero-mean noise, and definition of sup-norm, 6. triangle
inequality, compatible norms (for a matrix A ∈ Rd×d, we define |||A|||∞,1 ··= maxk∈{1,...,d}

∑d
k′=1 |Ak′,k|)),

and the definition of Cη,ϵ, which implies ||γ∗⊤Θ∗ − γ⊤Θ||1 ≤ ϵ, 7. adding a zero-valued term, 8. the triangle
inequality and the definition of Cη,ϵ, which implies ||Θ−Θ∗||1 ≤ ||β−β∗||1 ≤ η to obtain for each j ∈ {1, . . . , w}
that ∣∣∣ ∂

∂γj
riskX [γ, Θ] − ∂

∂γj
risk[γ, Θ]

∣∣∣
=
∣∣∣∣− 2

n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j

)
+ E

[
2
n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j

)]∣∣∣∣
=
∣∣∣∣ 2n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j − E[(yi − γ⊤Θxi)(Θxi)j]

)∣∣∣∣
=
∣∣∣∣ 2n

n∑
i=1

(
(yi − γ⊤Θxi)xi⊤Θj,· − E[(yi − γ⊤Θxi)xi⊤Θj,·]

)∣∣∣∣
≤
∣∣∣∣∣∣∣∣ 2n

n∑
i=1

(
(yi − γ⊤Θxi)xi⊤ − E[(yi − γ⊤Θxi)xi⊤]

)∣∣∣∣∣∣∣∣
∞

||Θj,·||1

≤ 2|||Θ|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
uixi

⊤ + (γ∗⊤Θ∗ − γ⊤Θ)(xixi⊤ − E[xixi⊤])
)∣∣∣∣∣∣∣∣

∞

≤ 2|||Θ|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣

∞
+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi⊤ − E[xixi⊤])
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1

)

≤ 2|||Θ − Θ∗ + Θ∗|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣

∞
+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi⊤ − E[xixi⊤])
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1

)

≤ 2(η + |||Θ∗|||∞)
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣

∞
+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi⊤ − E[xixi⊤])
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1

)
.

Then, we use the same argument as earlier to treat the sup-norm terms above (we use our assumptions on xi
and ui and application of Bernstein’s inequality) to obtain that∣∣∣ ∂

∂γj
riskX [γ, Θ] − ∂

∂γj
risk[γ, Θ]

∣∣∣ ≤ 2t(η + |||Θ∗|||∞)(1 + ϵ)

34

Published in Transactions on Machine Learning Research (12/2025)

with probability at least 1 − 2d exp(−κ min{t2/ν2, t/ν}n) − 2d2 exp(−κ′ min{t2/ν′2, t/ν′}n) (κ, ν, κ′, ν′ are
constants depending only on the distributions of the inputs and the noise).

Collecting all the pieces above, we obtain that for each i ∈ {1, . . . , p} the corresponding gradient difference is
bounded (|(∇riskX [γ, Θ] − ∇risk[γ, Θ])i| ≤ 2t(η + max{||γ∗||∞, |||Θ∗|||∞})(1 + ϵ)) with probability at least
1 − 4d2 exp(−κu,x min{t2/(νu,x)2, t/νu,x}n) with νu,x ··= max{ν, ν′} and κu,x ··= min{κ, κ′} (νu,x and κu,x
are constants depending only on the distributions of the inputs and noise).

Now we use 1. the definition of sup-norm and 2. our results above together with our earlier argument about
implying max operator (note that the gradient vector is of dimension p) to obtain for each t ∈ [0, ∞) that

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ, Θ] − ∇risk[γ, Θ]
∣∣∣∣

∞

= sup
β=vec(γ,Θ)∈Cη,ϵ

max
i∈{1,...,p}

∣∣(∇riskX [γ, Θ] − ∇risk[γ, Θ]
)
i

∣∣
≤ 2t

(
η + max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1 − 4d2p exp(−κu,x min{t2/(νu,x)2, t/νu,x}n).

Collecting all pieces of the proof, we obtain for each t ∈ [0, ∞) that

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣(∇riskX [γ, Θ] − ∇risk[γ, Θ]
)⊤(β∗ − β)

∣∣∣
≤ η sup

β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ, Θ] − ∇risk[γ, Θ]
∣∣∣∣

∞

≤ 2tη
(
η + max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1 − 4d2p exp(−κu,x min{t2/(νu,x)2, t/νu,x}n), where for the ease of notations we
replace κu,x and νu,x with ν and κ (constants depending only on the distributions of the inputs and noise)
in the statement of the lemma.

B.6 Proof of Lemma 3

Proof. The main ingredients of the proof are symmetrization of probabilities (van de Geer, 2016, Lemma 16.1)
and Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3).

We note that for simplifying the notations, we use E[·] as a shorthand notation of E(x1,y1),...,(xn,yn)[·]
throughout this proof.

Let’s start the proof and use 1. the definition of riskX [γ, Θ] and risk[γ, Θ], 2. the i.i.d. assumption on the
data and that yi = γ∗⊤Θ∗xi + ui, 3. expanding the squared-terms and rearranging, and 4. the triangle
inequality to obtain

sup
(γ,Θ)∈B

∣∣riskX [γ, Θ] − risk[γ, Θ]
∣∣

= sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
yi − γ⊤Θxi

)2
)

− E(x,y)

[(
y − γ⊤Θx

)2
]∣∣∣∣

= sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi + ui − γ⊤Θxi

)2 − E
[(

γ∗⊤Θ∗xi + ui − γ⊤Θxi
)2
])∣∣∣∣

= sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)2 − E
[(

γ∗⊤Θ∗xi − γ⊤Θxi
)2
])

+ 2
((

γ∗⊤Θ∗xi − γ⊤Θxi
)
ui − E

[(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui
])

+
(
ui

2 − E[ui2]
)∣∣∣∣

≤ sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)2 − E
[(

γ∗⊤Θ∗xi − γ⊤Θxi
)2
])∣∣∣∣

35

Published in Transactions on Machine Learning Research (12/2025)

+ 2 sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui − E

[(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui
])∣∣∣∣

+
∣∣∣∣ 1n

n∑
i=1

(
ui

2 − E[ui2]
)∣∣∣∣ .

Now, we continue to work on each term in the last inequality above separately in steps:

Step 1: Using Vershynin (2018, Corollary 2.8.3) together with our assumption on noise, which implies the
squared of Gaussian noise is sub-exponential, we obtain for each t̄ ∈ [0, ∞) that

P
(∣∣∣∣ 1n

n∑
i=1

(ui2 − E[ui2])
∣∣∣∣ ≥ t̄

)
≤ 2 exp(−κ min{t̄2/ν2, t̄/ν}n) ,

where κ, ν ∈ (0, ∞) are constants depending only on the distribution of the noise (our constants κ and ν may
change from line to line in this proof, but they constantly depend just on the distribution of the inputs or
noise or both).

Step 2: We now prepare the application of van de Geer (2016, Lemma 16.1). Let’s 1. define R2 and 2. use
Hölder’s inequality and factorizing to obtain

R2 ··= sup
(γ,Θ)∈B

1
n

n∑
i=1

E
[(

γ∗⊤Θ∗xi − γ⊤Θxi
)4
]

≤ sup
(γ,Θ)∈B

∣∣∣∣γ∗⊤Θ∗ − γ⊤Θ
∣∣∣∣4

1
1
n

n∑
i=1

E
[
||xi||4∞

]
.

We also employ some linear algebra together with compatible norms (for a matrix A ∈ Rd×d, we define
|||A|||∞,1 ··= maxk∈{1,...,d}

∑d
k′=1 |Ak′,k|)) to obtain∣∣∣∣ 1n

n∑
i=1

ζi
(
γ∗⊤Θ∗xi − γ⊤Θxi

)2
∣∣∣∣ =

∣∣∣∣ 1n
n∑
i=1

(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ζi
(
γ∗⊤Θ∗xi − γ⊤Θxi

)⊤
∣∣∣∣

=
∣∣∣∣ 1n

n∑
i=1

(
γ∗⊤Θ∗ − γ⊤Θ

)
xiζixi

⊤(γ∗⊤Θ∗ − γ⊤Θ
)⊤
∣∣∣∣

≤
∣∣∣∣(γ∗⊤Θ∗ − γ⊤Θ)2∣∣∣∣

∞

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

ζixixi
⊤
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1
.

Then, we use 1. symmetrization of probabilities (van de Geer, 2016, Lemma 16.1) with R as defined earlier,
2. the display above, 3. our assumption that sup(γ,Θ)∈B ||(γ∗⊤Θ∗ − γ⊤Θ)2||∞ ≤ ϵ′ and rearranging, 4. the
definition of ℓ∞,1-norm for a matrix above, 5. the fact that if P(|bi| ≥ t) ≤ a holds for all i ∈ {1, . . . d},
then we also have P(maxi∈{1,...d} |bi| ≥ t) ≤ da (for k ∈ {1, . . . , d}), 6. the fact that for a vector
a ∈ Rd, P(

∑d
i=1 |ai| ≥ t) ≤ d maxk∈{1,...,d} P(|ak| ≥ t), and 7. our assumption on x (to get rid of max

term) together with Vershynin (2018, Corollary 2.8.3) to obtain for each t ∈ [0, ∞) that

P

(
sup

(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)2 − E
[(

γ∗⊤Θ∗xi − γ⊤Θxi
)2
])∣∣∣∣ ≥ 4R

√
2t

n

)

≤ 4P
(

sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

ζi
(
γ∗⊤Θ∗xi − γ⊤Θxi

)2
∣∣∣∣ ≥ R

√
2t

n

)

≤ 4P
(

sup
(γ,Θ)∈B

∣∣∣∣(γ∗⊤Θ∗ − γ⊤Θ)2∣∣∣∣
∞

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

ζixixi
⊤
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1
≥ R

√
2t

n

)

≤ 4P
(∣∣∣∣∣∣∣∣∣∣∣∣ 1n

n∑
i=1

ζixixi
⊤
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1
≥ R

ϵ′

√
2t

n

)

36

Published in Transactions on Machine Learning Research (12/2025)

≤ 4P
(

max
k∈{1,...,d}

d∑
k′=1

∣∣∣∣ 1n
n∑
i=1

ζi(xi)k′(xi)k
∣∣∣∣ ≥ R

ϵ′

√
2t

n

)

≤ 4dP

(
d∑

k′=1

∣∣∣∣ 1n
n∑
i=1

ζi(xi)k′(xi)k
∣∣∣∣ ≥ R

ϵ′

√
2t

n

)

≤ 4d2 max
k′∈{1,...,d}

P

(∣∣∣∣ 1n
n∑
i=1

ζi(xi)k′(xi)k
∣∣∣∣ ≥ R

ϵ′

√
2t

n
=·· t′′

)
≤ 8d2 exp(−κ min{t′′2/ν2, t′′/ν}n) ,

where κ, ν ∈ (0, ∞) are constants depending only on the distribution of the inputs.

Collecting results above, we obtain for each t′′ ∈ [0, ∞) that

P

(∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)2 − E
[(

γ∗⊤Θ∗xi − γ⊤Θxi
)2
])∣∣∣∣ ≥ 4ϵ′t′′

)
≤ 8d2 exp(−κ min{t′′2/ν2, t′′/ν}n) .

Step 3: Let’s define (R′)2 and use Hölder’s inequality to obtain

(R′)2 ··= sup
(γ,Θ)∈B

1
n

n∑
i=1

E
[((

γ∗⊤Θ∗xi − γ⊤Θxi
)
ui

)2]
≤ sup

(γ,Θ)∈B

∣∣∣∣γ∗⊤Θ∗ − γ⊤Θ
∣∣∣∣2

1
1
n

n∑
i=1

E
[
||xiui||2∞

]
.

Then, we use 1. symmetrization of probabilities (van de Geer, 2016, Lemma 16.1) with R′ defined as above,
2. Hölder’s inequality, 3. our assumption that sup(γ,Θ)∈B ||(γ∗⊤Θ∗ − γ⊤Θ)2||∞ ≤ ϵ′, the fact that for a
vector a ∈ Rd, P(||a||1 ≥ t) ≤ d maxi∈{1,...,d} P(|ai| ≥ t) ≤ d2P(|ai| ≥ t), and the assumption on inputs
(for k ∈ {1, . . . , d}), and 4. Vershynin (2018, Corollary 2.8.3) together with our assumptions on the input and
noise to obtain for each t′ ∈ [0, ∞) that

P

(
sup

(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui − E

[(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui

])∣∣∣∣ ≥ 4R′
√

2t′

n

)

≤ 4P
(

sup
(γ,Θ)∈B

∣∣∣∣ 1n
n∑
i=1

ζi
(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui

∣∣∣∣ ≥ R′
√

2t′

n

)

≤ 4P
(

sup
(γ,Θ)∈B

∣∣∣∣γ∗⊤Θ∗ − γ⊤Θ
∣∣∣∣

∞

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

ζixiui

∣∣∣∣∣∣∣∣
1

≥ R′
√

2t′

n

)

≤ 4d2 P

(∣∣∣∣ 1n
n∑
i=1

ζi(xi)kui

∣∣∣∣ ≥ R′
√

2t′

ϵ′n
=·· t′′′

)
≤ 8d2 exp(−κ min{t′′′2/ν2, t′′′/ν}n) ,

where κ, ν ∈ (0, ∞) are constants depending only on the distributions of the inputs and noise.

Collecting results above we obtain that

P

(∣∣∣∣ 1n
n∑
i=1

((
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui−E

[(
γ∗⊤Θ∗xi − γ⊤Θxi

)
ui
])∣∣∣∣ ≥ 4

√
ϵ′t′′′

)
≤ 8d2 exp(−κ min{t′′′2/ν2, t′′′/ν}n) ,

where κ, ν ∈ (0, ∞) are constants depending only on the distributions of the inputs and noise.

37

Published in Transactions on Machine Learning Research (12/2025)

Collecting all the pieces of the proof in steps 1:3, we obtain for each t ∈ [0, ∞) that

sup
(γ,Θ)∈B

∣∣riskX [γ, Θ] − risk[γ, Θ]
∣∣ ≤ t

(
1 + 4ϵ′ + 4

√
ϵ′
)

with probability at least 1 − (2 + 8d2 + 8d2) exp(−κ min{t2/ν2, t/ν}n) or by rewriting as 1 − 18d2

exp(−κ min{t2/ν2, t/ν}n) (using the assumption that d ≥ 1), where we consider t = t̄ = t′′ = t′′′

and κ, ν ∈ (0, ∞) are constants depending only on the distributions of the inputs and noise.

B.7 Proof of Lemma 4

Proof. The proof follows just basic linear algebra.

Since H(t) is invertible exactly when (A + tC)⊤ has full (column) rank, we are left to study the rank of
(A + tC)⊤ = A⊤ + tC⊤. To do so, we employ the Singular Value Decomposition (SVD) of AT ∈ Rd′×w′ , that
is, A⊤ = UDV ⊤ with U ∈ Rd′×w′ , V ∈ Rw′×w′ , and D ∈ Rw′×w′ that U, V are semi-orthogonal matrices and
D has the same rank as A, in this case, full rank. Now, we are motivated to make a squared matrix as

U⊤(A⊤ + tC⊤)V = U⊤(UDV ⊤ + tC⊤)V = D + tU⊤C⊤V = tD(t−1Iw′ + D−1U⊤C⊤V) ,

where we used the SVD form of matrix A, orthogonal property of U, V , and some rewriting. Since matrices U
and V have rank w, for studying the rank of A⊤ + tC⊤ it is enough to study determinant of U⊤(A⊤ + tC⊤)V .
We then use our display above, properties of determinants for squared matrices, and characteristic polynomials
to obtain

det
(
U⊤(A⊤ + tC⊤)V) = det

(
tD(t−1Iw′ + D−1U⊤C⊤V)

)
= det(tD) det

(
t−1Iw′ + D−1U⊤C⊤V

)
= tw

′
det(D)pZ··=D−1U⊤C⊤V (−t−1) .

Since, det(D) ̸= 0 and t ̸= 0, then the t which H(t) is singular are the roots of pZ(−t−1), where Z =
D−1U⊤C⊤V . Since the roots of pZ are the eigenvalues of Z, we have found that the only t for which H(t)
fails to be invertible are the negative reciprocals of the (nonzero) eigenvalues of Z. Since, any w′ × w′

matrix has at most w′ distinct eigenvalues, there are just finitely many t such that H(t) is not invertible, as
desired.

B.8 Proof of Lemma 5

Proof. The proof consists of basic algebra.

Claim 1: We use 1. the definition of riskX [γ, Θ], 2. the chain rule, and 3. taking the derivatives to obtain

∂

∂γj
riskX [γ, Θ] = ∂

∂γj

(
1
n

n∑
i=1

(
yi − γ⊤Θxi

)2
)

= − 2
n

n∑
i=1

((
yi − γ⊤Θxi

) ∂

∂γj

(
γ⊤Θxi

))
= − 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
(Θxi)j

)
,

as desired.

38

Published in Transactions on Machine Learning Research (12/2025)

Claim 2: We use 1. the definition of riskX [γ, Θ], 2. the chain rule, and 3. taking the derivatives to obtain

∂

∂θjk
riskX [γ, Θ] = ∂

∂θjk

(
1
n

n∑
i=1

(
yi − γ⊤Θxi

)2
)

= − 2
n

n∑
i=1

((
yi − γ⊤Θxi

) ∂

∂θjk

(
γ⊤Θxi

))
= − 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
γj(xi)k

)
,

as desired.

Claim 3: We 1. use Claim 1 and 2. remove the term with zero derivatives and use the chain rule to obtain

∂2

∂γj′∂γj
riskX [γ, Θ] = ∂

∂γj′

(
− 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
(Θxi)j

))

= 2
n

n∑
i=1

(
(Θxi)j′(Θxi)j

)
,

as desired.

Claim 4: We 1. use Claim 2, 2. remove the term with zero derivatives, and 3. compute the derivative of the
bracket, and 4. rearranging to obtain

∂2

∂θj′k′∂θjk
riskX [γ, Θ] = ∂

∂θj′k′

(
− 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
γj(xi)k

))

= ∂

∂θj′k′

(
2
n

γj

n∑
i=1

((
γ⊤Θxi

)
(xi)k

))

= 2
n

γj

n∑
i=1

(
γj′(xi)k′(xi)k

)
= 2

n
γj′γj

n∑
i=1

(
(xi)k′(xi)k

)
,

as desired.

Claims 5 and 6: We only show the results for ∂2

∂θj′k′∂γj
riskX [γ, Θ]. The results for ∂2

∂γj′∂θjk
riskX [γ, Θ] can be

obtained using the same arguments.

We consider two cases:

Case 1: if j′ = j, we use 1. Claim 1, 2. the chain rule, and 3. taking the derivatives and simplifying to obtain

∂2

∂θjk′∂γj
riskX [γ, Θ] = ∂

∂θjk′

(
− 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
(Θxi)j

))

= − 2
n

n∑
i=1

(
(Θxi)j

∂

∂θjk′

(
yi − γ⊤Θxi

)
+
(
yi − γ⊤Θxi

) ∂

∂θjk′
(Θxi)j

)

= 2
n

n∑
i=1

(
γj(xi)k′(Θxi)j −

(
yi − γ⊤Θxi

)
(xi)k′

)
.

39

Published in Transactions on Machine Learning Research (12/2025)

Case 2: if j′ ̸= j, we use 1. Claim 1, 2. the chain rule, and 3. taking the derivatives and rearranging to obtain

∂2

∂θj′k′∂γj
riskX [γ, Θ] = ∂

∂θj′k′

(
− 2

n

n∑
i=1

((
yi − γ⊤Θxi

)
(Θxi)j

))

= − 2
n

n∑
i=1

(
(Θxi)j

∂

∂θj′k′

(
yi − γ⊤Θxi

)
+
(
yi − γ⊤Θxi

) ∂

∂θj′k′
(Θxi)j

)

= 2
n

γj′

n∑
i=1

(xi)k′(Θxi)j ,

as desired.

B.9 Proof of Lemma 6

Proof. The proof for this lemma follows the same steps as in Lemma 5, just sums are replaced by expectations
and so we omit the proof.

C Appendix: Proofs for shallow ReLU networks

C.1 Proof of Theorem 3

Proof. The proof approach follows almost the same line as in Theorem 1.

We use the notation γ⊤
ασ(Θαx) to make a rescaled networks using a suitable α (see more details about

rescaled networks in Section 6.) Using the above definitions, it is easy to see that γ⊤
ασ(Θαx) = γ⊤σ(Θx),

that means, the output of the rescaled network is the same as the original network (using the definition of
rescaled weights and Lipschitz property of ReLU networks with Lipschitz constant one).

Now, let’s start the proof by writing a second-order Taylor expansion of risk[γ∗
α, Θ∗

α] (the risk in a rescaled
version of the target with β∗

α = vec(γ∗
α, Θ∗

α) ∈ Rp) around a rescaled version of a reasonable stationary
β̃α = vec(γ̃α, Θ̃α) ∈ Rp with suitable α ∈ Rw to get

risk[γ∗
α, Θ∗

α] = risk[γ̃α, Θ̃α] + ∇risk[γ̃α, Θ̃α]⊤(β∗
α − β̃α)

+ 1
2(β∗

α − β̃α)⊤∇2risk[γ̃α + t(γ∗
α − γ̃α), Θ̃α + t(Θ∗

α − Θ̃α)](β∗
α − β̃α)

for some t ∈ (0, 1) (Bertsekas et al., 2003, Proposition 1.1.13.a).

Then, we employ the property of rescaled networks that is risk[γ̃α, Θ̃α] = risk[γ̃, Θ̃] and risk[γ∗
α, Θ∗

α] =
risk[γ∗, Θ∗], and use the shorthand notation

m ··= (β∗
α − β̃α)⊤∇2risk[γ̃α + t(γ∗

α − γ̃α), Θ̃α + t(Θ∗
α − Θ̃α)](β∗

α − β̃α)

to obtain
risk[γ∗, Θ∗] = risk[γ̃, Θ̃] + ∇risk[γ̃α, Θ̃α]⊤(β∗

α − β̃α) + 1
2m .

It is also straightforward to show that ∇risk[γ̃α, Θ̃α]⊤(β∗
α − β̃α) = ∇risk[γ̃, Θ̃]⊤(β∗ − β̃) (we omit the

detailed proof). Tabulating this observation in the earlier display we obtain

risk[γ∗, Θ∗] = risk[γ̃, Θ̃] + ∇risk[γ̃, Θ̃]⊤(β∗ − β̃) + 1
2m .

Rearranging the display above we obtain

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) = risk[γ̃, Θ̃] − risk[γ∗, Θ∗] + 1
2m .

40

Published in Transactions on Machine Learning Research (12/2025)

Now, let’s recall the definition of stationary points in equation 3 that implies

∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + rz̃⊤(β∗ − β̃) ≥ 0 .

We 1. rearrange the above inequality and expand the bracket, 2. use Hölder’s inequality and the fact that
z̃⊤β̃ = ||β̃||1 (recall that z̃ ∈ ∂||β̃||1), and 3. use ||z̃||∞ ≤ 1 to obtain

−∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) ≤ rz̃⊤β∗ − rz̃⊤β̃

≤ r
∣∣∣∣z̃∣∣∣∣∞||β∗||1 − r||β̃||1

≤ r||β∗||1 − r||β̃||1 ,

which rearranging implies
∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 ≥ 0 .

Display above reveals the positiveness of the terms on its left-hand side and we can obtain

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) ≤ −∇risk[γ̃, Θ̃]⊤(β∗ − β̃) + ∇riskX [γ̃, Θ̃]⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 ,

that is,

−∇risk[γ̃, Θ̃]⊤(β∗ − β̃) ≤
(
∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 .

Now, let’s use our display earlier (obtained by Taylor expansion) to rewrite the left-hand side of the display
above as

risk[γ̃, Θ̃] − risk[γ∗, Θ∗] + 1
2m ≤

(
∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃) + r||β∗||1 − r||β̃||1 .

Rearranging the display above we obtain

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + r||β∗||1 +
(
∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃) − r||β̃||1 − 1
2m .

For the right-hand side of the inequality above we 1. get an absolute value of the third term, 2. add a
zero-valued factor, 3. use triangle inequality, and 4. Remark 1 to obtain

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣− r||β̃||1 − 1

2m

= risk[γ∗, Θ∗] + 2r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣− r

(
||β̃||1 + ||β∗||1

)
− 1

2m

≤ risk[γ∗, Θ∗] + 2r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣− r||β∗ − β̃||1 − 1

2m

≤ risk[γ∗, Θ∗] + 2r||β∗||1 + rorc||β∗ − β̃||1 + rorc

2n
− r||β∗ − β̃||1 − 1

2m

with probability at least 1 − 1/2n.

The third and fifth terms in the last inequality above can be canceled if we choose the tuning parameter
large enough. Hence, we obtain

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + 2r||β∗||1 + rorc

2n
− 1

2m

for r ≥ rorc (see Remark 1).

The rest of the proof is analyzing the behavior of m. Let’s rewrite m = ||β∗
α − β̃α||22 m′ with

m′ ··=
(β∗

α − β̃α)⊤

||β∗
α − β̃α||2

∇2risk[γ̃α + t(γ∗
α − γ̃α), Θ̃α + t(Θ∗

α − Θ̃α)] (β∗
α − β̃α)

||β∗
α − β̃α||2

.

41

Published in Transactions on Machine Learning Research (12/2025)

Now, we are motivated to employ our results in Proposition 2. To do so, we need to make sure about matrix
(Θ̃ + t(Θ∗ − Θ̃)) to verify our required condition, namely, active rows being approximately perpendicular.
Employing our assumption that the stationary point Θ̃ and Θ∗ have approximately perpendicular (active) rows
and they have negligible cross-alignment (off-diagonal elements of Θ̃Θ∗⊤ and Θ∗Θ̃⊤ are approximately zero),
we can show that the line-segment between the two endpoints also verifies the assumption of Proposition 2
(active rows are approximately perpendicular) and so ensures the Hessian exhibits well behavior. To be
more precise, (Θ̃ + t(Θ∗ − Θ̃))(Θ̃ + t(Θ∗ − Θ̃))⊤ = (1 − t)2Θ̃Θ̃⊤ + t2Θ∗Θ∗⊤ + t(1 − t)(Θ̃Θ∗⊤ + Θ∗Θ̃⊤) will
be approximately diagonal, assuming two end-points having approximately perpendicular rows and that
off-diagonal elements of Θ̃Θ∗⊤ and Θ∗Θ̃⊤ are approximately zero.

Implying Proposition 2 (with a = (β∗
α − β̃α)/||β∗

α − β̃α||2) we obtain that m′ ∈ [0, ∞) for appropriate α,
that is, α with large enough c. The observation that m′ ∈ [0, ∞) together with the definition of m implies
that m ∈ [0, ∞) as well.

Tabulating this observation to the display earlier together with our assumption on β∗ (||β∗||1 = ||γ∗||1 +
|||Θ∗|||1 ≤ 2

√
log n) and the fact that 1/2n ≤

√
log n, we obtain for all r ≥ rorc that

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + 2r||β∗||1 + rorc

2n
− 1

2m

⪅ risk[γ∗, Θ∗] + 2r||β∗||1 + rorc

2n

≤ risk[γ∗, Θ∗] + 5r
√

log n

with probability at least 1 − 1/2n, which completes the proof.

C.2 Proof of Proposition 2

Proof. The proof is based on basic algebra and the property of scaling weights across the layers in neural
networks. Without loss of generality, we assume that xi ∈ N (0, Id×d) (the proof for independent and centered
sub-Gaussian random vectors x with independent coordinates is the same, just some constants may change,
which doesn’t affect the main results).

Let’s consider all the network parameters as a vector of length p (recall that p = w + w · d). Then, we can
tabulate the second order subdifferentials of risk[γ, Θ] in a matrix called ∇2risk[γ, Θ] ∈ Rp×p (for notational
simplicity, we focus on ∇2risk[γ, Θ] for the moment and then we move to ∇2risk[γα, Θα] at the end of the
proof) of the form

∇2risk[γ, Θ] =
[

A C
B D

]
with A ∈ Rw×w, B ∈ R(w·d)×w, C ∈ Rw×(w·d), and D ∈ R(w·d)×(w·d), where

Aj′,j ··=
∂2

∂γj′∂γj
risk[γ, Θ] ,

B(j′−1)d+k′,j ··=
∂2

∂θj′k′∂γj
risk[γ, Θ] ,

Cj′,(j−1)d+k ··=
∂2

∂γj′∂θjk
risk[γ, Θ] ,

D(j′−1)d+k′,(j−1)d+k ··=
∂2

∂θj′k′∂θjk
risk[γ, Θ]

for j, j′ ∈ {1, . . . , w} and k, k′ ∈ {1, . . . , d}.

Applying the block-wise structure of ∇2risk[γ, Θ], we are motivated to analyze the behavior of

a⊤∇2risk[γ, Θ]a = (a1)⊤Aa1 + (a1)⊤Ca2 + (a2)⊤Ba1 + (a2)⊤Da2 .

Note that C = B⊤ (by symmetry), so, we are left to analyze the behavior of

a⊤∇2risk[γ, Θ]a = (a1)⊤Aa1 + 2(a1)⊤Ca2 + (a2)⊤Da2

42

Published in Transactions on Machine Learning Research (12/2025)

for all a ∈ Rp with ||a||2 = 1.

We do the proof in steps: We start by going through the three terms on the right-hand side of display above
separately, to write them in a mathematically nice formulation (Steps 1:3). In Step 4, we sum up the results
computed in Steps 1:3 to prove the main claims of the proposition.

Step 1: On a high level, we prove that the entries of the matrix D are a function of γ.

Employing our results in Lemma 8, the symmetry over the input, and our assumption over Θ for k = k′ and
j ̸= j′, we obtain ∂2

∂θj′k′∂θjk
risk[γ, Θ] = γjγj′/2, and for k = k′ and j = j′ we obtain ∂2

∂θjk∂θjk
risk[γ, Θ] = γj

2.
For other cases (k ̸= k′) we use 1. our results in Lemma 8, 2. cauchy-schwarz inequality, and 3. our assumption
on the input (symmetry) to obtain

∂2

∂θj′k′∂θjk
risk[γ, Θ] = 2γjγj′Ex

[
(x)k′(x)k1{(Θx)j > 0, (Θx)j′ > 0}

]
≤ 2|γj ||γj′ |

√
Ex

[
((x)k1{(Θx)j > 0})2

]
Ex

[
((x)k′1{(Θx)j′ > 0})2

]
≤ |γj ||γj′ | .

Step 2: We prove that for a1 ∈ Rw and A ∈ Rw×w,

(a1)⊤Aa1 ≈
(

1 − 1
π

)
||a1||22 +

(w∑
j=1

1√
π

(a1
j)
)2

.

For ReLU networks and according to Lemma 8, we have

(a1)⊤Aa1 =
w∑
j=1

w∑
j′=1

a1
jAj′ja

1
j′ ,

in which Ajj′ = 2Ex[(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}]. Employing some basic linear algebra implies

(a1)⊤Aa1 =
w∑
j=1

(a1
j)2Ajj +

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jAj′ja

1
j′

= 2
w∑
j=1

(a1
j)2Ex

[
(Θx)j(Θx)j1{(Θx)j > 0}

]
+ 2

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′

= 2
w∑
j=1

(a1
j)2Ex

[(
(Θx)j − Ex[(Θx)j]

)21{(Θx)j > 0}
]

+ 2
w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′

=
w∑
j=1

(a1
j)2Ex

[(
(Θx)j − Ex[(Θx)j]

)2]
+ 2

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′

=
w∑
j=1

(a1
j)2(ΘΘ⊤)jj + 2

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′ .

43

Published in Transactions on Machine Learning Research (12/2025)

We can prove that for cases with small |ρjj′ | (roughly about |ρjj′ | ≤ 0.2), where ρjj′ is the correlation between
the (Θx)j and (Θx)j′ with Gaussian x, we can approximate

Ex

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
≈
(

1
2π

+ ρjj′

4 −
3ρ2
jj′

4π

)
||Θj ||||Θj′ ||.

To be more specific, we can reach above result from scaling properties of Gaussian distributions and the
homogeneity of the ReLU function together with Lemma 9

Ex[σ(Θjx)σ(Θj′x)] = Ex

[
||Θj ||σ

(Θj

||Θj ||
x
)

||Θj′ ||σ
(Θj′

||Θj′ ||
x
)]

= ||Θj ||||Θj′ ||Ex

[
σ
(Θj

||Θj ||
x
)

σ
(Θj′

||Θj′ ||
x
)]

.

Then, we have

w∑
j=1

(a1
j)2
(d∑
k=1

θjk
2
)

+ 2
w∑
j=1

w∑
j′=1,j′ ̸=j

a1
jEx

[
(Θx)j′(Θx)j1{(Θx)j′ > 0, (Θx)j > 0}

]
a1

j′

≈
w∑
j=1

(a1
j)2||Θj ||2 + 2

w∑
j=1

w∑
j′=1,j′ ̸=j

a1
ja

1
j′ ||Θj ||||Θj′ ||

(
1

2π
+ ρjj′

4 −
3ρ2
jj′

4π

)

=
w∑
j=1

(a1
j)2||Θj ||2 − 1

π

w∑
j=1

(a1
j)2||Θj ||2 + 1

π

w∑
j=1

(a1
j)2||Θj ||2

+
w∑
j=1

w∑
j′=1,j′ ̸=j

a1
ja

1
j′ ||Θj ||||Θj′ ||

(
1
π

+ ρjj′

2 −
3ρ2
jj′

2π

)

=
w∑
j=1

(a1
j)2||Θj ||2

(
1 − 1

π

)
+
(w∑
j=1

1√
π

(a1
j)||Θj ||

)2

+
w∑
j=1

w∑
j′=1,j′ ̸=j

a1
ja

1
j′ ||Θj ||||Θj′ ||

(
ρjj′

2 −
3ρ2
jj′

2π

)
.

In the last equality above, the first two terms are our desired terms, while the last term still needs care. But
we can argue that for small correlation values, we can ignore this term as it is a function of ρjj′ employing
our assumption (rows are approximately perpendicular). Also note that for inactive rows, we are already
good, since related factors will disappear from bounds.

Step 3: On a high level, we prove that the entries of the matrix C are a function of the product over Θ and γ.

Expanding (a1)⊤Ca2 yields

(a1)⊤Ca2 =
w∑
j=1

d∑
k=1

(
w∑

j′=1

(
(a1)j′

∂2

∂θj′k′∂γj
risk[γ, Θ]

)
(a2)(j−1)d+k

)
.

Now, we need to consider two different cases:

Case 1: (j ̸= j′)

We use 1. Lemma 8, 2. rewriting the ReLU function, 3. rewriting the product in the form of sum, 4. linearity
of expectations, 5. again linearity of expectation and rewriting, 6. using the assumption over the input, and
7. the same argument as above to obtain,

∂2

∂θj′k′∂γj
risk[γ, Θ] = 2γj′Ex[(x)k′σ(Θx)jκ(x, j′)]

44

Published in Transactions on Machine Learning Research (12/2025)

= 2γj′Ex[(x)k′(Θx)j1{(Θx)j′ > 0}1{(Θx)j > 0}]

= 2γj′Ex

[
(x)k′

(d∑
k=1

(θjkxk)
)

1{(Θx)j′ > 0}1{(Θx)j > 0}
]

= 2γj′

d∑
k=1

Ex

[
(x)k′(θjkxk)1{(Θx)j′ > 0}1{(Θx)j > 0}

]
= 2γj′θjk′Ex

[
(xk′)21{(Θx)j′ > 0}1{(Θx)j > 0}

]
+ 2γj′

d∑
k=1,k ̸=k′

θjkEx

[
xk′xk1{(Θx)j′ > 0}1{(Θx)j > 0}

]
= 1

2γj′θjk′ + 2γj′

(d∑
k=1,k ̸=k′

θjkEx

[
xk′1{(Θx)j′ > 0}1{(Θx)j > 0}

]
Ex

[
xk1{(Θx)j′ > 0}1{(Θx)j > 0}

])
= 1

2γj′θjk′ + 1
4π

γj′

d∑
k=1,k ̸=k′

θjk .

Case 2: (j = j′)

We use 1. the result of Lemma 8, 2. linearity of expectations, almost the same proof as above for simplifying
the first term, replacing y with its definition, and the assumption over noise to obtain

∂2

∂θjk′∂γj
risk[γ, Θ] = 2Ex,y

[
γj(x)k′σ(Θx)jκ(x, j) −

(
y − γ⊤σ(Θx)

)
(x)k′κ(x, j)

]
= γj′θjk′ + 1

2π
γj′

d∑
k=1,k ̸=k′

θjk

+ 2Ex,y

[(
γ⊤σ(Θx) − γ∗⊤σ(Θ∗x)

)
(x)k′1{(Θx)j) > 0}

]
.

Then, we use the linearity of expectations to obtain

Ex

[(
γ⊤σ(Θx) − γ∗⊤σ(Θ∗x)

)
(x)k′1{(Θx)j) > 0}

]
= Ex

[(
γ⊤σ(Θx)

)
(x)k′1{(Θx)j) > 0}

]
− Ex

[(
γ∗⊤σ(Θ∗x)

)
(x)k′1{(Θx)j) > 0}

]
and

Ex

[(
γ⊤σ(Θx)

)
(x)k′1{(Θx)j) > 0}

]
=

w∑
j′=1

Ex

[(
γj′
(
σ(Θx)

)
j′(x)k′1{(Θx)j) > 0}

]

=
w∑
j′=1

(
γj′θjk′ + 1

2π

d∑
k=1,k ̸=k′

γj′θj′k

)
.

The same argument can also hold for the other term. Looking at the extracted entries of the matrix C above,
it is clear that the entries are a function of the product over parameters of the first and second layers.

Step 4 Collecting the results from Steps 1–3, we can easily approve the first claim. For the second claim,
we realize that by employing the same scaling trick as in the linear case, that is considering parameters of
the first layer large enough (by selecting θ large enough) and dividing γ by the same value, the result from
Step 2 (that the squared of the scaling parameter θ will appear in the front) can dominate all the other terms.
According to Step 1, the entries of the matrix D are a function of γ and also according to Step 3, matrix C
involves a product of first and last layer parameters, which in this case cancel out the scaling parameter and

45

Published in Transactions on Machine Learning Research (12/2025)

so, the result from Step 2 can dominate all other parts, as long as θ is selected large enough. To be more
precise we have

a⊤∇2risk[γα, Θα]a = (a1)⊤Aa1 + 2(a1)⊤Ca2 + (a2)⊤Da2

⪆ (a1)⊤Aa1 + (a2)⊤Da2 − 2||a1||2|||C|||2||a2||2
≥ (a1)⊤Aa1 − ||a2||22|||D|||2 − 2|||C|||2

≥
(

1 − 1
π

)
||a1||22θ2 +

(w∑
j=1

1√
π

(a1
j)θ
)2

− |||D|||2 − 2|||C|||2

for all a ∈ Rp with ||a||2 = 1. For large enough θ, the first term in the last inequality above can dominate the
last two terms, which involve the product of parameters that cancel out the scaling constant or they are just
dependent over γ. For the special case of a1 = 0, if we consider a large enough θ, the entries of the matrix D
can go to zero (so implying its norm |||D|||2 going to zero) and so we can reach our desired results.

C.3 Proof of Lemma 7

Proof. The proof consists of basic linear algebra.

Claim 1: We use 1. the definition of riskX [γ, Θ], 2. the chain rule, and 3. differentiating to obtain

∂

∂γj
riskX [γ, Θ] = ∂

∂γj

(
1
n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)2
)

= − 2
n

n∑
i=1

((
yi − γ⊤σ(Θxi)

) ∂

∂γj

(
γ⊤σ(Θxi)

))
= − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

)
,

as desired.

Claim 2: We 1. use Claim 1, and 2. remove the term with zero derivative and use the chain rule to obtain

∂2

∂γj′∂γj
riskX [γ, Θ] = ∂

∂γj′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

))

= 2
n

n∑
i=1

(
(σ(Θxi)j′σ(Θxi)j

)
,

as desired.

Claim 3: We use 1. the definition of riskX [γ, Θ], 2. the chain rule, and 3. differentiating to obtain

∂

∂θjk
riskX [γ, Θ] = ∂

∂θjk

(
1
n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)2
)

= − 2
n

n∑
i=1

((
yi − γ⊤σ(Θxi)

) ∂

∂θjk

(
γ⊤σ(Θxi)

))
= − 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

)
.

Claim 4: We 1. use Claim 3 and 2. differentiate the bracket to obtain for

46

Published in Transactions on Machine Learning Research (12/2025)

∂2

∂θj′k′∂θjk
riskX [γ, Θ] = ∂

∂θj′k′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

))

= ∂

∂θj′k′

(
2
n

γj

n∑
i=1

((
γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

))

− ∂

∂θj′k′

(
2
n

γj

n∑
i=1

(
yi(xi)kκ(xi, j)

))
.

We obtain then for j′ ̸= j that

∂2

∂θj′k′∂θjk
riskX [γ, Θ] = ∂

∂θj′k′

(
2
n

γj

n∑
i=1

((
γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

))

= 2
n

γjγj′

(n∑
i=1

(xi)k′(xi)kκ(xi, j′)κ(xi, j)
)

and for j′ = j with (Θxi)j ̸= 0 for all i ∈ {1, . . . , n}

∂2

∂θj′k′∂θjk
riskX [γ, Θ] = ∂

∂θj′k′

(
2
n

γj

n∑
i=1

((
γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

))

− ∂

∂θj′k′

(
2
n

γj

n∑
i=1

(
yi(xi)kκ(xi, j)

))

= 2
n

γjγj′

n∑
i=1

(xi)k′(xi)kκ(xi, j)κ(xi, j) ,

otherwise, the corresponding subdifferential doesn’t exist, as desired.

Claims 5 and 6: We only show the results for ∂2

∂θj′k′∂γj
riskX [γ, Θ]. The result for ∂2

∂γj′∂θjk
riskX [γ, Θ] can be

obtained using the same arguments.

We consider two cases:

Case 1: for j′ = j we use 1. Claim 1, 2. the chain rule, and 3. differentiating and simplifying to obtain

∂2

∂θjk′∂γj
riskX [γ, Θ] = ∂

∂θjk′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

))

= − 2
n

n∑
i=1

(
σ(Θxi)j

∂

∂θjk′

(
yi − γ⊤σ(Θxi)

)
+
(
yi − γ⊤σ(Θxi)

) ∂

∂θjk′
σ(Θxi)j

)

= 2
n

n∑
i=1

(
γj(xi)k′σ(Θxi)jκ(xi, j) −

(
yi − γ⊤σ(Θxi)

)
(xi)k′κ(xi, j)

)
.

Case 2: For j′ ̸= j we use 1. Claim 1, 2. the chain rule, and 3. differentiating to obtain

∂2

∂θj′k′∂γj
riskX [γ, Θ] = ∂

∂θj′k′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

))

= − 2
n

n∑
i=1

σ(Θxi)j
∂

∂θj′k′

(
yi − γ⊤σ(Θxi)

)
= 2

n
γj′

n∑
i=1

(xi)k′σ(Θxi)jκ(xi, j′) .

47

Published in Transactions on Machine Learning Research (12/2025)

A similar approach can give us

∂2

∂γj′∂θjk
riskX [γ, Θ] = ∂

∂γj′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

))
.

For j = j′ we obtain

∂2

∂γj′∂θjk
riskX [γ, Θ] =

(
− 2

n

n∑
i=1

((
yi
)
(xi)kκ(xi, j)

))

+
(

2
n

n∑
i=1

((
σ(Θxi)jγj + γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

))
.

And for j ̸= j′ we have

∂2

∂γj′∂θjk
riskX [γ, Θ] = ∂

∂γj′

(
− 2

n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

))

= 2
n

n∑
i=1

σ(Θxi)j′γj(xi)kκ(xi, j) ,

as desired.

C.4 Proof of Remark 1

Proof. The proof can be followed almost in the same line as in Lemma 2 and Lemma 1; so we just provide a
high-level proof here. The only difference with linear case is how to treat the ReLU function in subdifferentials.
To do so, we study here the behavior of the absolute difference between the subdifferentials of the in-sample
risk and population risk for ReLU networks, showing that they almost behave the same as linear networks
despite minor changes in the constants and some log terms. First, we use the definition and employ some
linear algebra to obtain∣∣∣ ∂

∂θjk
riskX [γ, Θ] − ∂

∂θjk
risk[γ, Θ]

∣∣∣
=
∣∣∣∣− 2

n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j) + E

[
2
n

n∑
i=1

(
yi − γ⊤σ(Θxi)

)
γj(xi)kκ(xi, j)

]∣∣∣∣
≤ 2|γj |

∣∣∣∣ 1n
n∑
i=1

(
ui + γ∗⊤σ(Θ∗xi) − γ⊤σ(Θxi)

)
(xi)kκ(xi, j)

− E
[(

γ∗⊤σ(Θ∗xi) − γ⊤σ(Θxi)
)(

xi)kκ(xi, j)
]∣∣∣∣

≤ 2||γ||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣+
∣∣∣∣ 1n

n∑
i=1

(
γ∗⊤σ(Θ∗xi)

)
(xi)kκ(xi, j) − E

[(
γ∗⊤σ(Θ∗xi)

)
(xi)kκ(xi, j)

]∣∣∣∣
+
∣∣∣∣ 1n

n∑
i=1

(
γ⊤σ(Θxi)

)
(xi)kκ(xi, j) − E

[(
γ⊤σ(Θxi)

)(
xi)kκ(xi, j)

]∣∣∣∣) .

The first term in the last inequality above was already treated in Lemma 2. So, we continue with the second
term. We use 1. Hölder’s inequality, 2. symmetrization (Bühlmann & Van De Geer, 2011, Theorem 14.3)
with ζi as Rademacher random variables, and 3. an extension of contraction principle to obtain∣∣∣∣ 1n

n∑
i=1

(
γ∗⊤σ(Θ∗xi)

)
(xi)kκ(xi, j) − E

[(
γ∗⊤σ(Θ∗xi)

)
(xi)kκ(xi, j)

]∣∣∣∣
48

Published in Transactions on Machine Learning Research (12/2025)

≤ ||γ∗||1
∣∣∣∣∣∣ 1

n

n∑
i=1

(
σ(Θ∗xi)(xi)kκ(xi, j) − E

[
σ(Θ∗xi)(xi)kκ(xi, j)

])∣∣∣∣∣∣
∞

≤ 2||γ∗||1
∣∣∣∣∣∣ 1

n

n∑
i=1

(
σ(Θ∗xi)(xi)kκ(xi, j)ζi

∣∣∣∣∣∣
∞

≤ 4||γ∗||1
∣∣∣∣∣∣ 1

n

n∑
i=1

(
σ(Θ∗xi)(xi)kζi

∣∣∣∣∣∣
∞

.

Then we consider zi = σ(Θ∗xi)(xi)kζi as independent and mean-zero sub-exponential random vectors and
the proof can be followed same line by the proof of Lemma 2. Also for |∂riskX [γ, Θ]/∂γj − ∂risk[γ, Θ]/∂γj |
we obtain∣∣∣ ∂

∂γj
riskX [γ, Θ] − ∂

∂γj
risk[γ, Θ]

∣∣∣
=
∣∣∣∣ 2n

n∑
i=1

((
yi − γ⊤σ(Θxi)

)
σ(Θxi)j − E

[(
yi − γ⊤σ(Θxi)

)
σ(Θxi)j

])∣∣∣∣
=
∣∣∣∣ 2n

n∑
i=1

((
ui + γ∗⊤σ(Θ∗xi) − γ⊤σ(Θxi)

)
σ(Θxi)j − E

[(
γ∗⊤σ(Θ∗xi) − γ⊤σ(Θxi)

)
σ(Θxi)j

])∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ui(Θxi)j
∣∣∣∣+
∣∣∣∣ 2n

n∑
i=1

((
γ∗⊤σ(Θ∗xi) − γ⊤σ(Θxi)

)
σ(Θxi)j

− E
[(

γ∗⊤σ(Θ∗xi) − γ⊤σ(Θxi)
)
σ(Θxi)j

])∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ui(Θxi)j
∣∣∣∣+
∣∣∣∣ 4n

n∑
i=1

((
γ∗⊤σ(Θ∗xi) − γ⊤σ(Θxi)

)
σ(Θxi)jζi

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

ui(Θxi)j
∣∣∣∣+
∣∣∣∣ 4n

n∑
i=1

(
γ∗⊤σ(Θ∗xi)

)
σ(Θxi)jζi

∣∣∣∣+
∣∣∣∣ 4n

n∑
i=1

(
γ⊤σ(Θxi)

)
σ(Θxi)jζi

∣∣∣∣ .
Treating the last two terms: we use Hölder’s inequality to obtain∣∣∣∣ 4n

n∑
i=1

(
γ⊤σ(Θxi)

)
σ(Θxi)jζi

∣∣∣∣ ≤ ||γ||1
∣∣∣∣∣∣ 4

n

n∑
i=1

σ(Θxi)σ(Θxi)jζi
∣∣∣∣∣∣

∞
,

where zi = σ(Θxi)σ(Θxi)jζi are, mean-zero and independent sub-exponential random vectors (again can be
followed as in Lemma 2).

The same is also true for∣∣∣∣ 4n
n∑
i=1

(
γ∗⊤σ(Θ∗xi)

)
σ(Θxi)jζi

∣∣∣∣ ≤ ||γ∗||1
∣∣∣∣∣∣ 4

n

n∑
i=1

σ(Θ∗xi)σ(Θxi)jζi
∣∣∣∣∣∣

∞

with zi = σ(Θ∗xi)σ(Θxi)jζi again as independent with zero mean sub-exponential random vectors.

as desired.

D Appendix: Complementary simulations

We show the log-training error for shallow linear and shallow ReLU neural networks in Figure 3. To extend the
simulations in Section 4, we show the relative error and test error for a different setting (with d = 100, w = 20)
in Table 2. Moreover, we run our experiments in the numerical observations section 200 times (each time
we run 100 runs to compute the potential global optimum and approximate stationary point) to reach the

49

Published in Transactions on Machine Learning Research (12/2025)

0 5 10 15 20 25 30 35 40
Iteration count

−1

0

1

2

3

Tr
ai

ni
ng

 e
rr

or

Shallow-Linear Network

0 200 400 600 800 1000
Iteration count

−2.75

−2.50

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

Tr
ai
ni
ng
 e
rr
or

Shallo -ReLU Network

Figure 3: Log-training error for neural networks (with d = w = 10) with linear (left panel) and ReLU (right
panel) activations in 10 different runs (allocated with different colors). Due to the non-convexity of neural
networks, optimization algorithms may end up in different approximate stationary points.

mean and standard deviation of the relative error for the approximate stationary point. For the network with
d = w = 10 and linear activation function, we reach the relative training error 1.0013 ± 0.0003 and relative
test error 1.0011 ± 0.0003. For the ReLU activation function, we reach the relative training error 1.004 ± 0.001
and relative test error 1.005±0.001. The same experiment for the larger network (d = 100, w = 20), concludes
1.04±0.01, 1.03±0.008, 1.89±0.07, and 1.40±0.08 for the relative training and test error of linear and ReLU
activations, respectively. These results show that our empirical observations are stable. All the simulations
were executed on a local computer (Apple M2, 16GB memory), with an average run time of less than 10
minutes per individual run in Python. For optimization, we employed SGD with the learning rate 0.02.

Table 2: relative training error and test error for trained neural networks (with d = 100, w = 20) with linear
and ReLU activations in a potential global optimum, an approximate stationary point, and a randomly
generated network.

Linear ReLU
Training Error Test Error Training Error Test Error

Potential Global Optimum 1.00 1.00 1.00 1.00
Approximate Stationary Point 1.04 1.03 1.85 1.10
Randomly Generated Network 1146373.94 1095543.69 5062.83 3626.28

In Tables 3 and 4 , we repeat the experiment from Section 4, this time employing different initialization
strategies—namely the random Gaussian initialization and its scaled variant. For the random Gaussian
initialization, weights are drawn independently from a standard normal distribution. In the scaled version,
the weights are subsequently rescaled so that the ℓ1-norm of each layer individually satisfies ||W ||1 ≤

√
log n.

Results in Table 4 perfectly match our previous observations in Section 4. Thanks to our initialization
technique, we now expect the weight matrices to also satisfy the required assumption for ReLU networks
(see further discussion following Theorem 3 that random Gaussian weights yield nearly orthogonal rows
with high probability). Our results in Table 3 show that, since the weights are not scaled and their norm
bounds are large, the behavior of approximate stationary points does not closely match that of the global
minimum. This clearly indicates that initializing weights with small values significantly aids the optimization
(supporting the need for our reasonability assumption). We also conducted experiments with a larger tuning
rate, namely of the order log(np)/n1/4, as shown in Table 5. Comparing these results with Table 1 clearly
demonstrates the optimality of the tuning rate log(np)/

√
n (vs log(np)/n1/4) supporting our proposed oracle

tuning in equation 4. We also examined the relative error of the regularized estimator (same setting as
Section 4) across a range of tuning parameters, obtained by multiplying a base tuning value by different
factors, as shown in Figure 4 for both linear and ReLU networks. The results clearly illustrate a bias–variance
trade-off when the tuning parameter is either too large or too small.

50

Published in Transactions on Machine Learning Research (12/2025)

Figure 4: Relative error versus tuning parameter for shallow networks. Left: linear activation; right: ReLU
activation. The results clearly illustrate a bias–variance trade-off when the tuning parameter is either too
large or too small.

Table 3: Relative training error and test error for trained shallow neural networks (with d = 10, w = 10) with
linear and ReLU activations in a potential global optimum, an approximate stationary point, and a randomly
generated network employing random Gaussian initialization.

Linear ReLU
Training Error Test Error Training Error Test Error

Potential Global Optimum 1.00 1.00 1.00 1.00
Approximate Stationary Point 1.13 1.15 3.69 3.61
Randomly Generated Network 22576.49 17970.63 4157.68 2835.71

Beyond SGD: For the sake of completeness, we have now included further simulations to assess the impact
of changing the optimization method. Specifically, we replaced SGD with Adam, using a learning rate of
0.005, to analyze its effect on the simulation outcomes in Table 1. Our results are reported in Table 6. These
results show that the performance of SGD appears to be more aligned with our case (compare results in
Table 6 with Table 1) which is high likely due to the verification of our assumptions for the corresponding
approximate stationary point, but in general, approximate sub-optimal solutions remain still satisfactory.

Conjecture for deep neural networks: We have now extended our simulations in Table 1 employing neural
networks with 4 layers. Our numerical observations make this conjecture that our theory can also hold for
deep networks (with possibly minor different rates), given we reached the results in Table 7.

Conjecture beyond regression: We have now extended our simulations by employing more complex networks
and testing beyond our regression simulated data. We applied our method to the MNIST, fashion-MNIST,
and K-MNIST dataset using cross-entropy loss, with a neural network consisting of 10-layer weight matrices
and ReLU activations, with network width 50. Our results continue to support the same conclusion we aim
to demonstrate for approximate sub-optimal in Table 8. This observation can support the conjecture that
our results can be extended for classification settings and even for deep neural networks in further studies.

E Appendix: Relaxing the ℓ1-norm bound

In fact, the bound
√

log n is merely for convenience: it can be replaced by any fixed constant or another
function that is increasing slowly in the sample size n. It basically means that ℓ1-norm bound can be
replaced by c

√
log n (with c ∈ (0, ∞) an arbitrary constant) or q(n) that the function q(·) is just mildly

increasing in the sample size n. What we end up by moving to these bounds is that our rates change to
O((log n)2

√
(log(pn))/n) or O((q(n))4

√
(log(pn))/n), respectively that makes sense once c and q(n) are mild.

51

Published in Transactions on Machine Learning Research (12/2025)

Table 4: Relative training error and test error for trained shallow neural networks (with d = 10, w = 10) with
linear and ReLU activations in a potential global optimum, an approximate stationary point, and a randomly
generated network employing scaled random Gaussian initialization.

Linear ReLU
Training Error Test Error Training Error Test Error

Potential Global Optimum 1.000 1.0000 1.00 1.00
Approximate Stationary Point 1.001 1.0003 1.02 1.05
Randomly Generated Network 79618.240 58198.240 4130.04 3650.06

Table 5: Relative training error and test error for trained shallow neural networks (with d = 10, w = 10) with
linear and ReLU activations in a potential global optimum, an approximate stationary point, and a randomly
generated network employing larger tuning parameter (log(np)/n1/4).

Linear ReLU
Training Error Test Error Training Error Test Error

Potential Global Optimum 1.00 1.00 1.00 1.00
Approximate Stationary Point 1.01 1.009 1.10 1.06
Randomly Generated Network 11498.68 8271.43 4157.68 2835.71

More explicitly, let’s define

rorc,q ··= c′(q(n)
)3
√

log(np)
n

(15)

the oracle tuning parameter, where c′ ∈ (0, ∞) is a constant that depends only on the distributions of the
inputs and noise. Then, we get the following result:
Theorem 5 (Statistical Guarantees for Norm-Bounded Stationary Points of Shallow Linear Networks).
Suppose that the second and the third part of Assumption 1 are satisfied and that ||γ∗||1, |||Θ∗|||1 ≤ q(n)
for a fixed function q(n) ∈ (0, ∞). Then, any reasonable stationary point (γ̃, Θ̃) of the objective function
in equation 2 with r ≥ rorc,q satisfies the risk bound

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + 5rq(n) (16)

with probability at least 1 − 1/2n.

In the theorem above, 1. (γ∗, Θ∗) is a pair that approximates the target function and 2. by reasonable
stationary, we mean that ||γ̃||1, |||Θ̃|||1 ≤ q(n). The proof of this theorem follows the same steps as our
Theorem 1 and so we omit the proof.

Another interesting and practical point in the training process of deep learning is that neural network
weights are usually initialized by near-zero values. For example, PyTorch by default initializes weights as
uniform(−1/

√
p, 1/

√
p) (p refers to the number of parameters in the network), that means the ℓ1−norm of

the matrix and vector weights are very small. Then, in the training process, the optimization algorithm
looks for a stationary point around the initialized network (and not too far from this space). So, it is more
likely that the computed (approximate) stationary point has a small norm, while there might also exist
other stationeries with larger norms. This argument shows that even from a practical point of view, the
reasonability assumption on stationary points and the points nearby makes sense.

F Appendix: On the reasonability assumption on the stationary points and the
points nearby

It is stated in the text that the reasonability assumption on the stationary points makes sense. Here, we
prove that claim by showing that the reasonability assumption on the target also implies reasonability on the
stationary points.

52

Published in Transactions on Machine Learning Research (12/2025)

Table 6: Relative training error and test error for trained shallow neural networks (with d = 10, w = 10) with
linear and ReLU activations in an approximate stationary point employing Adam.

Linear ReLU
Training Error Test Error Training Error Test Error

Approximate Stationary Point 1.0007 1.003 1.20 1.27

Table 7: Relative training error and test error for trained neural networks (with d = 10, w = 10, and depth 4)
with linear and ReLU activations in an approximate stationary point.

Linear ReLU
Training Error Test Error Training Error Test Error

Approximate Stationary Point 1.002 1.004 1.16 1.21

Following the same lines as in the proof of Theorem 1, we have

risk[γ̃, Θ̃] ≤ risk[γ∗, Θ∗] + r||β∗||1 +
∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣− 1

2r||β̃||1

− 1
2r||β̃||1 − 1

2m

= risk[γ∗, Θ∗] + 3
2r||β∗||1 +

∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]
)⊤(β∗ − β̃)

∣∣∣
− 1

2r
(
||β̃||1 + ||β∗||1

)
− 1

2r||β̃||1 − 1
2m

≤ risk[γ∗, Θ∗] + 3
2r||β∗||1 +

∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]
)⊤(β∗ − β̃)

∣∣∣− 1
2r||β∗ − β̃||1

− 1
2r||β̃||1 − 1

2m

≤ risk[γ∗, Θ∗] + 3
2r||β∗||1 + rorc||β∗ − β̃||1 + rorc

2n
− 1

2r||β∗ − β̃||1 − 1
2r||β̃||1 − 1

2m .

Moreover,

risk[γ̃, Θ̃] + 1
2r||β̃||1 ≤ risk[γ∗, Θ∗] + 3

2r||β∗||1 + rorc||β∗ − β̃||1 + rorc

2n
− 1

2r||β∗ − β̃||1 − 1
2m .

Then, by considering r ≥ 2rorc we have

risk[γ̃, Θ̃] + 1
2r||β̃||1 ≤ risk[γ∗, Θ∗] + 3

2r||β∗||1 + rorc

2n
− 1

2m .

Following the same argument for m as in the proof of Theorem 1, we obtain

risk[γ̃, Θ̃] + 1
2r||β̃||1 ≤ risk[γ∗, Θ∗] + 3

2r||β∗||1 + rorc

2n

and
1
2rorc||β̃||1 ≤ risk[γ∗, Θ∗] + 3

2rorc||β∗||1 + rorc

2n
.

Finally, by assuming a small variance in the noise and reasonability assumptions on the target, we can
conclude (for large n) that

||β̃||1 ⪅ 3||β∗||1 + 1
n

≤ 4||β∗||1 ≤ 4
√

log n .

The above display reveals that having a reasonability assumption on the target can also imply reasonability
on the stationary points as well, once tuning is selected large enough, which also implies reasonability on the
points nearby.

53

Published in Transactions on Machine Learning Research (12/2025)

Table 8: Relative training error and test error for trained neural networks (with w = 50 and depth 10) with
ReLU activations in an approximate stationary point.

ReLU
Training Error Test Error

Approximate Stationary Point (MNIST) 1.0004 1.39
Approximate Stationary Point (Fashion-MNIST) 1.00005 1.40
Approximate Stationary Point (K-MNIST) 1.00003 1.18

G Appendix: Dynamical accessibility of approximate stationary points

In this section, we argue that τ -approximate stationary points can be reached in practice (in a reasonable
time) once gradient-based algorithms iterate sufficiently.

For non-convex and differentiable objectives ℓ(β) with gradient-based methods, dynamical accessibility of
approximate stationaries ˜̃β ∈ B (points with small gradients ||∇ℓ(˜̃β)|| ≤ τ ′ that τ ′ ∈ (0, ∞)) have widely been
studied (Ghadimi & Lan, 2013; Carmon et al., 2018; Wang & Srebro, 2019; Lei et al., 2019; Drori & Shamir,
2020; Arjevani et al., 2022).

Here, we provide some results from Ghadimi & Lan (2013) and Lei et al. (2019). Before going through the
main results, we impose some assumptions:

Ez[g(β, z)] = ∇ℓ(β) , ∃ σg ∈ (0, ∞) : Ez||g(β, z) − ∇ℓ(β)||2 ≤ σ2
g , (17)

where g(β, z) is an estimator of ∇ℓ(β) computed using a subsets of samples called z. And

∃ ∆, Lg ∈ (0, ∞) : ℓ(β(0)) − inf
β∈B

ℓ(β) ≤ ∆ , ||∇ℓ(β) − ∇ℓ(β′)|| ≤ Lg||β − β′|| ∀β, β′ ∈ B , (18)

where ℓ(β(0)) is the value of the objective function in the initialized step. Then, Ghadimi & Lan (2013,
Theorem 2.1) prove that SGD finds an estimator such that E[||∇ℓ(β(R))||] ≤ τ ′ for a randomly selected
R ∈ {1, . . . , T} (according to a certain probability distribution, see Ghadimi & Lan (2013, Equation 2.3)),
where the expectation is taken over R and the randomness of SGD, using O(∆Lgσ2

g/(τ ′)4) oracle queries.
Above result also imply mint∈{1,...,T} E[||∇ℓ(β(t))||] ≤ τ ′ using O(∆Lgσ2

g/(τ ′)4) oracle queries.

We can argue that Assumptions equation 17 and equation 18 can hold in the setting of our paper: for
Assumption equation 17 and the first part of Assumption equation 18 (objective has bounded initial
suboptimality), we can use the reasonability assumption over the parameter space. For twice-differentiable
objectives, the second part of Assumption equation 18 means that the eigenvalues of the objective’s Hessian
are bounded above by Lg, which is typically a reasonable assumption.

Important here is that E[||∇ℓ(β(R))||] ≤ τ ′ and our definition of approximate stationary points in equation 7
are in a sense similar. Using 1. the definition of the objective function, 2. a first order Taylor expansion of ℓ(β̃)
around ℓ(˜̃β) (with ˜̃β ··= βR), 3. Hölder’s inequality, 4 our definition of ˜̃β, result above, and the reasonability
of approximate stationary and exact stationary we obtain

riskX [˜̃γ, ˜̃Θ] + r||˜̃β||1 − riskX [γ̃, Θ̃] − r||β̃||1 = ℓ(˜̃β) − ℓ(β̃)

≈
(

∇ℓ(˜̃β)
)⊤

(β̃ − ˜̃β)

≤
∣∣∣∣∇ℓ(˜̃β)

∣∣∣∣||β̃ − ˜̃β||

≤ cτ ′
√

log n

for a constant c ∈ (0, ∞). It means that having a small norm on the gradients of approximate stationary
can also imply a small difference between the objective function of the approximate stationary and exact
stationary. The results of Ghadimi & Lan (2013) imply that gradient-based algorithms with sufficiently many
steps, let’s say O(n2), can guarantee small τ ∈ O(1/

√
n).

54

Published in Transactions on Machine Learning Research (12/2025)

Lei et al. (2019, Theorem 3) prove that for differentiable loss functions with α-Hölder continuous gradients:

∃ Lg,α ∈ (0, ∞) : ||∇ℓ(β) − ∇ℓ(β′)|| ≤ Lg,α||β − β′||α ∀β, β′ ∈ B (19)

where α ∈ (0, 1] and Lg,α ∈ (0, ∞), SGD gets

min
t∈{1,...,T}

E
[
||∇ℓ(β(t))||2

]
≤ C

(T∑
i=1

ηt

)−1
=·· τ ′′ ,

where C is a constant independent of t, ηt are stepsizes satisfying
∑∞
t=1 η1+α

t < ∞, and the expectation is
taken over the randomness of SGD. Lei et al. (2019, Theorem 3) reveal a rate of convergence 1/T for the
smallest gradient. As a comparison, the convergence rate in Lei et al. (2019, Theorem 3) only holds for the
minimum of the first T iterates, while the convergence rate in Ghadimi & Lan (2013, Theorem 2.1) holds for
E[||∇ℓ(β(R))||] that is more practical (we also used Ghadimi & Lan (2013, Theorem 2.1)).

H Appendix: Heavier-tailed noise

In this section, we are motivated to provide materials proving our Theorem 4.

First, we present an adapted version of the result in Bakhshizadeh et al. (2020, Corollary 2):
Lemma 10 (Empirical Processes for Heavy-Tailed Data). Suppose z1, . . . , zn are centered i.i.d. random
variables whose tail is captured by Iα(t) = cαt1/α for some α ∈ [1, ∞) and cα ∈ (0, ∞). Moreover, assume
E[z21(z ≤ 0)] = (σα)2 < ∞. Then, for all t ∈ [0, ∞) we have

P

(∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣ > t

)
≤ 6n exp(−c min{nt2, (nt)1/α}) , (20)

where c is a constant depending on the distribution of zi.

Proof of Lemma 10. The lemma is just an adapted version of Bakhshizadeh et al. (2020, Corollary 2) and
reached in three steps:

Step 1: We use the result in Bakhshizadeh et al. (2020, Corollary 2) that gives

P

(
1
n

n∑
i=1

zi > t

)
≤ exp

(
− nt2

2v̄(nt, β)

)
+ exp(−β max{ct, 0.5}cα(nt)1/α) + n exp(−cα(nt)1/α) , (21)

where β ∈ (0, 1) is arbitrary, ct ∈ (0, 1) is a constant depending on n and t, and

v̄(nt, β) ··= (σα)2 + Γ(2α + 1)(
(1 − β)cα

)2α + (nt)(1/α)−1 βcαΓ(3α + 1)
3
(
(1 − β)cα

)3α .

Step 2: Since the factors ct ∈ (0, 1) and v̄(nt, β) depend on n and t, we need to remove this dependence,
otherwise we are in trouble. We can easily remove the constant ct from equation 21 because there is a max
function there. Also, the factor v̄(nt, β) in the rate above is basically bounded from above. For example, for
large enough n (t > 1/n) and specific β = 1/2 we have

v̄(nt, β) ≤ vα ··= σα
2 + Γ(2α + 1)

c2α
1

+ cαΓ(3α + 1)
3c3α

1
,

where c1 ∈ (0, ∞) is a constant. Then, we reach

P

(
1
n

n∑
i=1

zi > t

)
≤ 3n exp(−c min{nt2, (nt)1/α}) ,

55

Published in Transactions on Machine Learning Research (12/2025)

where c ··= min{1/2vα, cα/4, cα}.

Step 3: We use the symmetry of random variables zi moving to a two-sided tail by paying a factor of two as
desired.

Using the above lemma, we derive a uniform bound on the absolute difference between riskX [γ, Θ] and
risk[γ, Θ] for heavier-tailed noise.
Lemma 11 (Difference Between ∇riskX [γ, Θ] and ∇risk[γ, Θ] for Heavier-tailed Noise). Under the first two
parts of Assumption 1, it holds for each t, η, ϵ ∈ (0, ∞) and β ∈ Cη,ϵ ··= {β = vec(γ, Θ) ∈ Rp : ||β∗ − β||1 ≤
η and ||γ⊤Θ − γ∗⊤Θ∗||1 ≤ ϵ} that

sup
β∈Cη,ϵ

∣∣∣(∇riskX [γ, Θ] − ∇risk[γ, Θ]
)⊤(β∗ − β)

∣∣∣ ≤ 2tη
(
η + max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1 − 12d2pn exp(−c min{nt2, (nt)1/α}) with constants c ∈ (0, ∞) and α ∈ [2, ∞)
depending only on the distributions of the inputs and noise.

Proof of Lemma 11. The proof follows almost the same steps as in the proof of Lemma 2. The only difference
is handling the empirical processes parts.

We start the proof with Hölder’s inequality and the definition of Cη,ϵ, which implies ||β∗ − β||1 ≤ η for all
β ∈ Cη,ϵ to obtain

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣(∇riskX [γ, Θ]−∇risk[γ, Θ]
)⊤(β∗ − β)

∣∣∣
≤ sup

β=vec(γ,Θ)∈Cη,ϵ

(∣∣∣∣∇riskX [γ, Θ] − ∇risk[γ, Θ]
∣∣∣∣

∞||β∗ − β||1
)

≤ η sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ, Θ] − ∇risk[γ, Θ]
∣∣∣∣

∞ .

The rest of the proof employs our Lemma 5 and Lemma 10 to find an upper bound for
supβ=vec(γ,Θ)∈Cη,ϵ

||∇riskX [γ, Θ] − ∇risk[γ, Θ]||∞. Note that for simplifying the notation, we use E[·] as
a shorthand notation of E(x1,y1),...,(xn,yn)[·] throughout this proof.

We use 1. our result in Lemma 5 and i.i.d. assumption on the data, 2. equation 1 and our assumption that
f [x] = γ∗⊤Θ∗x, zero-mean noise, linearity of expectations, and factorizing, 3. the definition of sup-norm,
triangle inequality, and Hölder’s inequality, 4. the definition of Cη,ϵ, which implies ||γ∗⊤Θ∗ − γ⊤Θ||1 ≤ ϵ,
5. adding a zero-valued term and rewriting, and 6. the triangle inequality and the definition of Cη,ϵ, which
implies ||γ − γ∗||1 ≤ ||β − β∗||1 ≤ η, to obtain for each j ∈ {1, . . . , w} and k ∈ {1, . . . , d} that∣∣∣ ∂

∂θjk
riskX [γ, Θ] − ∂

∂θjk
risk[γ, Θ]

∣∣∣
=
∣∣∣∣− 2

n

n∑
i=1

(yi − γ⊤Θxi)γj(xi)k + E
[

2
n

n∑
i=1

(yi − γ⊤Θxi)γj(xi)k
]∣∣∣∣

= 2|γj |
∣∣∣∣ 1n

n∑
i=1

(
ui(xi)k + (γ∗⊤Θ∗ − γ⊤Θ)

(
xi(xi)k − E[xi(xi)k]

))∣∣∣∣
≤ 2||γ||∞

(∣∣∣∣ 1n
n∑
i=1

ui(xi)k
∣∣∣∣+ ||γ⊤Θ − γ∗⊤Θ∗||1

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
E[xi(xi)k] − xi(xi)k

)∣∣∣∣∣∣∣∣
∞

)

≤ 2||γ||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
E[xi(xi)k] − xi(xi)k

)∣∣∣∣∣∣∣∣
∞

)

= 2||γ − γ∗ + γ∗||∞
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

)

56

Published in Transactions on Machine Learning Research (12/2025)

≤ 2(η + ||γ∗||∞)
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣+ ϵ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

)
.

We continue to work on the absolute value and sup-norm term in the last inequality above separately. For
each i ∈ {1, . . . , n} and k ∈ {1, . . . , d}, we use our assumptions on xi and ui to obtain that zi = ui(xi)k
are i.i.d. random variables with zero-mean and their tail is captured by cα(t)1/α for some α ∈ [2, ∞) and
cα ∈ (0, ∞), depending on the noise and input distributions. We are using the fact that the product of two
random variables with tail parameters α1 and α2 has the tail parameter α1 + α2 (Vladimirova et al., 2020,
Proposition 2.3). And since we are assuming heavier-tailed noise it implies zi be at least sub-exponential with
α = 2 (recall that we assumed xi are sub-gaussian). Employing Lemma 10, we obtain for each t ∈ [0, ∞) that

P
(∣∣∣∣ 1n

n∑
i=1

ui(xi)k
∣∣∣∣ ≥ t

)
≤ 6n exp(−c min{nt2, (nt)1/α}) .

Now, we study the behavior of the sup-norm term in the last inequality of the earlier display. Let’s rewrite
the sup-norm in the form of max as∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
xi(xi)k − E[xi(xi)k]

)∣∣∣∣∣∣∣∣
∞

= max
k′∈{1,...,d}

∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ .
Following the same argument as earlier and for each i ∈ {1, . . . , n} and k, k′ ∈ {1, . . . , d}, we can employ
Lemma 10 with zi = (xi)k′(xi)kto obtain for each t′ ∈ [0, ∞) that

P

(∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ ≥ t′

)
≤ 6n exp(−c′ min{nt′2, (nt′)1/α′

}) ,

for some α′ ∈ [1, ∞) and c′ ∈ (0, ∞), depending on the input distribution. Then, we use our result
above together with the fact that if P(|bi| ≥ t) ≤ a holds for all i ∈ {1, . . . p}, then we also have
P(maxi∈{1,...p} |bi| ≥ t) ≤ pa to obtain

P

(
max

k′∈{1,...,d}

∣∣∣∣ 1n
n∑
i=1

(
(xi)k′(xi)k − E[(xi)k′(xi)k]

)∣∣∣∣ ≥ t′

)
≤ 6dn exp(−c′ min{nt′2, (nt′)1/α′

}) .

Collecting all pieces above together with considering t = t′, we obtain for each j ∈ {1, . . . , w} and k ∈ {1, . . . , d}
that ∣∣∣ ∂

∂θjk
riskX [γ, Θ] − ∂

∂θjk
risk[γ, Θ]

∣∣∣ ≤ 2t(η + ||γ∗||∞)(1 + ϵ)

with probability at least 1−6n exp(−c min{nt2, (nt)1/α})−6dn exp(−c′ min{nt′2, (nt′)1/α′}), which is obtained
using the fact that

P (A + bD ≤ t + bt) = 1 − P (A + bD > t + bt) ≥ 1 − P (A > t) − P (D > t)

for any b ∈ (0, ∞) and t ∈ R.

Then, we follow the same argument as earlier and use 1. our result in Lemma 5 and i.i.d. assumption on the
data, 2. the properties of absolute values and linearity of expectations, 3. some rewriting, 4. Hölder’s inequality,
5. equation 1 and our assumptions that f [x] = γ∗⊤Θ∗x, zero-mean noise, and definition of sup-norm, 6. triangle
inequality, compatible norms (for a matrix A ∈ Rd×d, we define |||A|||∞,1 ··= maxk∈{1,...,d}

∑d
k′=1 |Ak′,k|)),

and the definition of Cη,ϵ, which implies ||γ∗⊤Θ∗ − γ⊤Θ||1 ≤ ϵ, 7. adding a zero-valued term, 8. the triangle
inequality and the definition of Cη,ϵ, which implies ||Θ−Θ∗||1 ≤ ||β−β∗||1 ≤ η to obtain for each j ∈ {1, . . . , w}
that ∣∣∣ ∂

∂γj
riskX [γ, Θ] − ∂

∂γj
risk[γ, Θ]

∣∣∣
57

Published in Transactions on Machine Learning Research (12/2025)

=
∣∣∣∣− 2

n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j

)
+ E

[
2
n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j

)]∣∣∣∣
=
∣∣∣∣ 2n

n∑
i=1

(
(yi − γ⊤Θxi)(Θxi)j − E[(yi − γ⊤Θxi)(Θxi)j]

)∣∣∣∣
=
∣∣∣∣ 2n

n∑
i=1

(
(yi − γ⊤Θxi)xi⊤Θj,· − E[(yi − γ⊤Θxi)xi⊤Θj,·]

)∣∣∣∣
≤
∣∣∣∣∣∣∣∣ 2n

n∑
i=1

(
(yi − γ⊤Θxi)xi⊤ − E[(yi − γ⊤Θxi)xi⊤]

)∣∣∣∣∣∣∣∣
∞

||Θj,·||1

≤ 2|||Θ|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

(
uixi

⊤ + (γ∗⊤Θ∗ − γ⊤Θ)(xixi⊤ − E[xixi⊤])
)∣∣∣∣∣∣∣∣

∞

≤ 2|||Θ|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣

∞
+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi⊤ − E[xixi⊤])
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1

)

≤ 2|||Θ − Θ∗ + Θ∗|||∞
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣

∞
+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi⊤ − E[xixi⊤])
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1

)

≤ 2(η + |||Θ∗|||∞)
(∣∣∣∣∣∣∣∣ 1n

n∑
i=1

uixi
⊤
∣∣∣∣∣∣∣∣

∞
+ ϵ

∣∣∣∣∣∣∣∣∣∣∣∣ 1n
n∑
i=1

(xixi⊤ − E[xixi⊤])
∣∣∣∣∣∣∣∣∣∣∣∣

∞,1

)
.

Then, we use the same argument as earlier to treat the sup-norm terms above (we use our assumptions on xi
and ui and application of Lemma 10) to obtain that∣∣∣ ∂

∂γj
riskX [γ, Θ] − ∂

∂γj
risk[γ, Θ]

∣∣∣ ≤ 2t(η + |||Θ∗|||∞)(1 + ϵ)

with probability at least 1 − 6dn exp(−c min{nt2, (nt)1/α}) − 6d2n exp(−c′ min{nt′2, (nt′)1/α′}).

Collecting all the pieces above, we obtain that for each i ∈ {1, . . . , p} the corresponding gradient difference is
bounded (|(∇riskX [γ, Θ] − ∇risk[γ, Θ])i| ≤ 2t(η + max{||γ∗||∞, |||Θ∗|||∞})(1 + ϵ)) with probability at least
1 − 12d2n exp(−c′ min{nt2, (nt)1/α′}) for some α′ ∈ [2, ∞) and c′ ∈ (0, ∞), depending on the distributions of
inputs and noise.

Now we use 1. the definition of sup-norm and 2. our results above together with our earlier argument about
implying max operator (note that the gradient vector is of dimension p) to obtain for each t ∈ [0, ∞) that

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ, Θ] − ∇risk[γ, Θ]
∣∣∣∣

∞

= sup
β=vec(γ,Θ)∈Cη,ϵ

max
i∈{1,...,p}

∣∣(∇riskX [γ, Θ] − ∇risk[γ, Θ]
)
i

∣∣
≤ 2t

(
η + max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1 − 12d2pn exp(−c min{nt2, (nt)1/α}), where for the ease of notations we replace c′

and α′ with c and α (constants depending only on the distributions of the inputs and noise).

Collecting all pieces of the proof, we obtain for each t ∈ [0, ∞) that

sup
β=vec(γ,Θ)∈Cη,ϵ

∣∣∣(∇riskX [γ, Θ] − ∇risk[γ, Θ]
)⊤(β∗ − β)

∣∣∣
≤ η sup

β=vec(γ,Θ)∈Cη,ϵ

∣∣∣∣∇riskX [γ, Θ] − ∇risk[γ, Θ]
∣∣∣∣

∞

≤ 2tη
(
η + max{||γ∗||∞, |||Θ∗|||∞}

)(
1 + ϵ)

with probability at least 1 − 12d2pn exp(−c min{nt2, (nt)1/α}) for some α ∈ [2, ∞) and c ∈ (0, ∞), depending
on the distributions of inputs and noise.

58

Published in Transactions on Machine Learning Research (12/2025)

Now, we are ready to use our Lemma 11 for extending Lemma 2 for heavier-tailed noise. First, recall

rorc,α = ν(log n)3/2
(
log(np)

)α
√

n
(22)

where α ∈ [2, ∞) and ν, c ∈ (0, ∞) are constants depending on the distributions of inputs and noise. Then,
we obtain
Lemma 12 (Empirical Processes for Heavier-tailed Noise). Under the first two parts of Assumption 1, it
holds for each reasonable stationary point β̃ = vec(γ̃, Θ̃) of the objective function in equation 2 that∣∣∣(∇riskX [γ̃, Θ̃] − ∇risk[γ̃, Θ̃]

)⊤(β∗ − β̃)
∣∣∣ ≤ rorc,α||β∗ − β̃||1 + rorc,α

2n

with probability at least 1 − 1/2n.

Proof of Lemma 12. The proof follows almost the same steps as in the proof of Lemma 1. The only difference is
employing Lemma 11 and the assignment of t = (log (8n2d2p⌈log2 (nη)⌉))α/cα

√
n with different constants.

59

	Introduction
	Statistical guarantees for shallow linear neural networks
	Statistical guarantees for shallow ReLU neural networks
	Numerical observations
	Related literature
	Technical results
	Technical results for shallow linear neural networks
	Technical results for shallow ReLU neural networks

	Heavy-tailed noise
	Discussion
	Appendix: Example and auxiliary results
	Appendix: Proofs for shallow linear networks
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Appendix: Proofs for shallow ReLU networks
	Proof of Theorem 3
	Proof of Proposition 2
	Proof of Lemma 7
	Proof of Remark 1

	Appendix: Complementary simulations
	Appendix: Relaxing the 1-norm bound
	 Appendix: On the reasonability assumption on the stationary points and the points nearby
	Appendix: Dynamical accessibility of approximate stationary points
	Appendix: Heavier-tailed noise

