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Serverless computing is a popular cloud computing paradigm that has found widespread adoption across various online
workloads. It allows software engineers to develop cloud applications as a set of functions (called serverless functions). However,
accurately measuring the performance (i.e., end-to-end response latency) of serverless functions is challenging due to the
highly dynamic nature of the environment in which they run. To tackle this problem, a potential solution is to apply checks
of performance testing techniques to determine how many repetitions of a given serverless function across a range of inputs
are needed to cater to the performance fluctuation. However, the available literature lacks performance testing approaches
designed explicitly for serverless computing. In this paper, we propose SCOPE, the first serverless computing-oriented
performance testing approach. SCOPE takes into account the unique performance characteristics of serverless functions,
such as their short execution durations and on-demand triggering. As such, SCOPE is designed as a fine-grained analysis
approach. SCOPE incorporates the accuracy check and the consistency check to obtain the accurate and reliable performance
of serverless functions. The evaluation shows that SCOPE provides testing results with 97.25% accuracy, 33.83 percentage
points higher than the best currently available technique. Moreover, the superiority of SCOPE over the state-of-the-art holds
on all functions that we study.

CCS Concepts: • Computer systems organization → Cloud computing; • Software and its engineering → Software
performance.

Additional Key Words and Phrases: serverless computing, performance testing

1 INTRODUCTION
Serverless computing is becoming a mainstream cloud computing paradigm that has been widely adopted in
various online workloads like big data analytics, deep learning, large language models (LLM), and so on [31, 52,
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60, 80–82, 85, 91]. It frees software engineers from tedious and error-prone infrastructure management and allows
them to focus on developing a cloud application as a set of event-driven functions, called serverless functions [75].
To support the execution of serverless functions, mainstream cloud vendors have provided serverless platforms,
such as AWS Lambda [2] and Google Cloud Functions [14]. It is predicted that the market size of serverless
computing is projected to grow significantly, reaching $41 billion in 2028, compared to $19 billion in 2024 [19]. It
indicates that an increasing number of developers will pivot to develop serverless functions.

The surging popularity of serverless computing has led to heightened interest among diverse research com-
munities, including Software Engineering (SE) and Systems [74]. Notably, performance stands out as the most
extensively studied aspect in serverless computing research [74]. However, it is challenging to obtain accurate and
reliable performance (i.e., end-to-end response latency) measurements for serverless functions due to the following
reasons. Serverless platforms, where serverless functions are executed, have a highly dynamic cloud underlying
infrastructure. This introduces various challenges for accurate and reliable performance measurement such as
multi-tenancy, resource management, and networking issues [32, 33, 37, 50, 54, 64, 83]. Serverless functions are
generally short-lived tasks that require a small memory size to be configured to provide the resource [67, 68]. This
results in a high-density deployment environment, increasing the risk of performance fluctuations [63, 77, 89].
Under these circumstances, serverless functions can produce highly fluctuating performance results even with
multiple identical runs when executed on serverless platforms. Moreover, developers design a variety of serverless
functions with different functionalities, possibly with different levels of performance fluctuations.

To alleviate this issue, a straightforward way is to set a fixed number of measurement repetitions for all
evaluated serverless functions, according to experiment repetitions used in prior studies. The results obtained
from measurements are used as the accurate and reliable performance for the serverless function. However,
due to the diversity of serverless functions developed by various developers, it is evident that not all serverless
functions require or benefit from the same level of repetition. Therefore, using a fixed number of repetitions is
unreasonable and ineffective in determining the actual performance for different serverless functions executed
on different platforms. A better strategy would be to devise a method for recommending a customized number of
repetitions for each serverless function, thereby achieving a more accurate and reliable performance evaluation.

To achieve this goal, a possible solution is to use performance testing techniques, standard procedures for
obtaining and evaluating the performance of a software application in SE [24, 35, 90]. Generally, the performance
testing technique is conducted by repeatedly executing the application-under-test with a set of inputs until a
stopping criterion deems that the performance results obtained from the test are accurate [21, 35, 36, 57, 59, 70].
Performance testing techniques are important for serverless computing. Serverless functions can be part of user-
facing features where end-to-end response time directly impacts user experience, thus demanding performance-
critical considerations. Other serverless functions can be invoked infrequently, such as end-of-month reports or
daily reminder emails. Although such functions are often tolerant of cold start latencies, characterizing their
performance remains crucial to ensure that service-level objectives (SLOs) are met and to make informed cost-
benefit decisions regarding their deployment. Given the diversity of use cases, it is necessary for the developers of
serverless functions to employ effective performance testing techniques. However, to the best of our knowledge,
the literature lacks a performance testing approach tailored to serverless functions.

In this paper, we propose SCOPE, the first serverless computing-oriented performance testing approach. SCOPE
takes into account the unique performance characteristics of serverless functions, such as their short execution
durations and on-demand triggering. Our primary goal with SCOPE is to provide a novel stopping criterion
to determine a specific repetition number to obtain highly accurate and reliable performance profiles for each
given serverless function. SCOPE poses a strict requirement on accuracy and utilizes the accuracy check and
the consistency check to determine the stopping criterion for repeated runs. The accuracy check first utilizes
the non-parametric confidence interval to analyze whether a specific performance profile is accurate. For the
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Fig. 1. The process of using serverless computing.

performance result set of the current test, if most of its performance is determined to be accurate, this set is
considered accurate. The consistency check examines whether the performance result set of the current test and
the performance result set obtained from the previous run intervals are both accurate. If this is true, SCOPE deems
that the performance result set of the current test is sufficient to represent the accurate and reliable performance
of the serverless function and terminate the repeated runs.

We evaluate the effectiveness of SCOPE and state-of-the-art techniques developed for traditional cloud applica-
tions by investigating 65 serverless functions from existing work [76]. We use the performance results of 1,000
identical runs (which is the largest number of runs used in the literature) of a serverless function as its ground-
truth performance. The evaluation of the 65 serverless functions shows that SCOPE provides testing results with
97.25% accuracy, 33.83 percentage points higher than the best currently available technique. Furthermore, SCOPE
is widely effective, as it outperforms state-of-the-art techniques on all serverless functions that we consider. In
contrast to the indiscriminate implementation of a fixed repetition strategy, SCOPE shows enhanced flexibility
and efficacy in determining a specific repetition and achieving accurate and reliable performance across diverse
serverless functions.

To the best of our knowledge, our research is the first to explore both (1) a performance testing technique
specifically tailored for serverless computing and (2) an empirical study on the effectiveness of performance
testing techniques in serverless computing. These contributions constitute the novelty of our work. We also
provide a public repository [17] including all the data and code used in this study to facilitate future replication
and extension.

2 BACKGROUND

2.1 Serverless computing
In serverless computing, developers focus on application implementation based on serverless functions. Fig. 1
depicts the process of using serverless computing for developers. (1) First, developers implement event-driven
serverless functions using high-level programming languages, e.g., Python and JavaScript [1, 16, 29, 30]. (2) Second,
developers can define specific rules that bind their functions to the corresponding events, e.g., HTTP requests and
data updates in cloud storage. (3) Then, serverless functions are deployed to the serverless platform along with
dependent libraries, e.g., Numpy. During this phase, developers can provide specific function configurations, e.g.,
memory size and timeout time [34, 74]. (4) When the serverless function is triggered by predefined events, the
serverless platform automatically launches new function instances (e.g., containers or virtual machines) or reuses
existing ones to process requests. (5) Upon completion of executions, the serverless platform logs information
related to function execution, allowing developers to access and review it later. (6) Finally, developers pay for
the cost according to the number of requests and the resources actually allocated or consumed by the serverless
function [48, 74].
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2.2 Serverless function performance
The performance of serverless computing has gained widespread attention in the serverless computing lit-
erature [34, 45, 56, 74]. Researchers have proposed various solutions to optimize serverless function perfor-
mance [27, 48, 49, 67, 68, 84, 86]. Serverless function performance can be classified into two types: cold-start
performance and warm-start performance. When the serverless function is executed on newly launched instances
in the serverless platform, it will produce cold-start performance. If the serverless platform has reusable instances
for the same function to handle requests within a short keep-alive time (e.g., 7 minutes for AWS Lambda [6]), the
serverless function will produce warm-start performance.

The serverless function performance that we focus on is end-to-end response latency, i.e., the time period
between sending a request to invoke a serverless function hosted in the serverless platform and receiving the
execution result of the function. End-to-end response latency is the most common metric used for performance
evaluation and optimization of serverless functions [29, 54, 75, 79, 89]. It contains the serverless platform’s
preparation time, the function’s task processing time, etc. In this paper, we study both cold-start and warm-start
end-to-end response latencies.

2.3 Motivation
We present examples of serverless function performance across multiple runs. For instance, we observe Func52 and
Func30, which are part of our dataset described in Section 4.3. The maximum and minimum values of the cold-start
end-to-end response latencies of Func52 can vary by as much as 45.83% between runs. Similarly, the warm-start
end-to-end response latencies of Func30 can differ by 369.24%, with the maximum value being 4.69 times greater
than the minimum. These examples show the significant variability in serverless function performance, even
with repeated, identical runs. Furthermore, as shown in Fig. 15, the bars represent the number of repetitions
needed to achieve reliable performance across different serverless functions. The results demonstrate that each
serverless function requires a tailored number of repetitions to ensure accuracy and reliability. Overall, these
observations emphasize the need for a method that recommends a customized number of repetitions for each
serverless function to obtain accurate and reliable performance.

3 OUR PERFORMANCE TESTING APPROACH: SCOPE
It is crucial to obtain accurate and reliable performance for serverless functions. However, the existing serverless
computing literature does not offer performance testing techniques specifically for it. Therefore, designing a
performance testing approach for serverless computing is necessary. Generally, the primary goal of a performance
testing approach is to determine whether the tested performance results accurately reflect the actual performance,
guiding the decision on whether additional repeated runs from another run interval are necessary. The run
interval refers to the specific number of repetitions or trials needed for executing the serverless function. Within
each run interval, the serverless function is executed multiple times to acquire new performance data samples.
To motivate our approach design, we first summarize key characteristics of serverless functions.

3.1 Key characteristics
• Serverless functions run for short duration. The response latency of serverless functions is often measured in
milliseconds [67, 89]. However, short-lived serverless functions executed on serverless platforms with highly
dynamic cloud underlying infrastructure can exhibit significant performance fluctuations [63, 76, 89].
• Serverless functions are executed at small run intervals. In one run interval of performance testing, which refers to
the specific number of repetitions required to execute the serverless function, the number of performance results
obtained is generally small. This is because the serverless computing scenario inherently uses small repetitions.
(1) Serverless functions can be triggered at any time, allowing developers and researchers to obtain performance
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Fig. 2. The workflow of SCOPE .

results as needed. Small repetitions serve as the foundation, as developers and researchers pay based on the
number of invocations and resource consumption. Consequently, they tend to invoke serverless functions with
small repetitions on demand. (2) In research work on serverless computing, prior experimental evaluations have
employed a predefined number of runs performed on serverless functions for performance analysis. This number
is generally small repetitions [77], e.g., 3, 10, and 20 times, thus obtaining a small number of performance results.

Based on these key characteristics, there is a pressing need for a fine-grained, high-accuracy performance
testing approach specifically tailored to serverless computing. Such an approach would facilitate accurate and
reliable performance measurements and obtain a specified number of repetitions for serverless functions.

3.2 Overview of SCOPE
Wepropose SCOPE, a performance testing approach for serverless computing. SCOPE is an automated performance
tester that provides accurate and reliable performance for serverless functions. To use SCOPE, developers collect
the performance result set of a function with a given input from the serverless platform and provide it to SCOPE.
SCOPE determines whether this set accurately reflects real performance and whether more repeated runs from
another run interval are necessary. A run interval represents the specific number of repetitions required to trigger
and execute the serverless function. SCOPE provides a fine-grained and high-accuracy guaranteed stopping
criterion to determine if the performance result set of the current test is sufficiently accurate and reliable to
terminate the execution and collection of further repeated runs. If the performance result set of the current test
passes this stopping criterion, it is considered accurate and reliable to represent the actual performance of the
serverless function. Otherwise, developers are notified to collect performance results of the serverless function
by requesting more repeated runs from another run interval.

Fig. 2 gives the workflow of SCOPE. First, developers input a set of end-to-end response latencies generated by
the serverless function to be evaluated. These performance results are denoted as (2DA (Step 1). Second, SCOPE
calculates the required values (e.g., the non-parametric confidence interval for the median [43]) and then performs
the accuracy check (Steps 2 and 3). Note that the non-parametric confidence interval allows us to estimate
percentile performance without relying on strong assumptions about the data distribution. We also provide three
specific methods for calculating these non-parametric confidence intervals in Section 3.4. To ensure the reliability
of the performance result acquired with our approach, SCOPE also conducts the same performance accuracy
analysis for the performance result set obtained from the previous run intervals, denoted as (?A4 . (?A4 is obtained
by removing performance data produced by the last run interval from the end of the (2DA (Step 1*). SCOPE
then calculates the required values for (?A4 and conducts the accuracy check (Step 2* and Step 3*). Next, SCOPE
performs the consistency check of the stopping criterion to check whether the returned results of Step 3 and Step 3*
are both true (Step 4), i.e., satisfying the accuracy check. If yes, SCOPE can give information that the performance
result set of the current test (2DA is available to represent the actual serverless function performance, and no
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further repeated runs are needed. Otherwise, SCOPE waits for developers to collect and provide new end-to-end
response latencies when triggering the serverless function repeatedly (i.e., for the number of repetitions specified
by the run interval). These new performance data are denoted as 30C0=4F and added to (2DA , resulting in an
updated set of performance results for evaluation. SCOPE conducts a new round of performance testing using the
same processing steps.

3.3 Stopping criterion of SCOPE
Our stopping criterion includes the accuracy check and the consistency check. The accuracy check is designed to
ensure the high accuracy of the obtained performance result, while the consistency check aims to alleviate the
possible influence of result fluctuations and ensure result stability.

For the accuracy check, we assume that a specific performance can be accurate if there exists a desired non-
parametric confidence interval for that performance. In our work, the presence of such a desired confidence
interval for a given performance is denoted as 328 . Specifically, SCOPE checks if the confidence intervals for
specified metrics (at the given confidence level 2;%), calculated from the performance result set of the current test
((2DA ), lie within the corresponding A% error margins of the observed true value for metrics. If it is yes, there exists
the desired confidence intervals for specified metrics. For example, SCOPE determines whether the calculated
95% confidence interval for the 50th percentile lies within a 1% error margin of the observed true 50th percentile
performance. In other words, SCOPE determines whether 32850Cℎ exists. Adopting such an accuracy check aims to
find the desired and accurate non-parametric confidence interval (CI), where the obtained empirical value of a
specific metric (e.g., 50th percentile) differs from its observed true performance by no more than the A% error at a
given confidence level. To improve the overall accuracy of the performance result acquired with SCOPE, SCOPE
extends the same performance accuracy check to most performance of (2DA . Most performance of a performance
distribution generally includes performance results from the 25th percentile to the 75th percentile [57, 70, 89].
Moreover, the 50th percentile performance represents the midpoint of the performance distribution and plays an
important role in performance analysis [57, 70]. Thus, our accuracy check transforms into whether the CIs for the
25th, 50th, and 75th percentiles, calculated from (2DA , fall within the A% error margin of their respective observed
true percentile performance, referred to Step 3 in Fig. 2. In other words, SCOPE checks whether 32825Cℎ , 32850Cℎ ,
and 32875Cℎ exist. If it is satisfied, (2DA is considered accurate. Thus, the accuracy check is formulated as (1).

AccuracyCheck =

{
True if (32825Cℎ = True) ∧ (32850Cℎ = True) ∧ (32875Cℎ = True)
False otherwise

(1)

Our approach primarily relies on CI since it can achieve a robust analysis in the face of random performance
fluctuations [70]. Moreover, CI has been established as a valuable metric in performance engineering [43, 57, 70].
Consequently, we are based on CI to design and customize our accuracy check for performance testing of
serverless computing in our work.

For the consistency check, SCOPE checks whether both (2DA and the performance result set obtained from the
previous run intervals ((?A4 ) are accurate. This is because potential performance fluctuations could make (2DA get
a temporary result of meeting the accuracy check. However, performance data might be unstable and thus yield
unreliable testing results. Thus, we take the accuracy of (?A4 into account. Our consistency check is to ensure the
accuracy of both (2DA and (?A4 , formulated as (2).

ConsistencyCheck =

{
True if (�22DA02~�ℎ42:(2DA = True) ∧ (�22DA02~�ℎ42:(?A4 = True)
False otherwise

(2)
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Therefore, we deem (2DA to be stable when (?A4 obtained from previous run intervals also exhibits most of its
performance to be accurate. That is to say, for both (2DA and (?A4 , the calculated CIs for the 25th, 50th, and 75th
percentiles all lie within the A% error margin of the observed true 25th percentile performance, 50th percentile
performance, and 75th percentile performance, respectively. This process refers to Step 4 in Fig. 2.

3.4 Implementations of SCOPE
SCOPE relies on the accuracy check, which compares the range of the calculated non-parametric CI with the A%
error margin. Particularly, we consider non-parametric methods to calculate the required CIs in our approach
design.This is because the performance of most serverless functions follows a non-normal distribution in both cold
and warm starts [76]. Non-parametric methods are suitable for the performance analysis of serverless functions.
Moreover, they work for the performance data with a normal distribution [57]. Note that in non-parametric
analysis, the probability distribution of performance data is unknown, and fewer assumptions are required.
Therefore, the metrics related to mean and standard deviation are rarely used because they are not robust when
dealing with non-normal distribution [43]. In our approach, we choose percentile performance metrics because
they do not depend on specific distribution assumptions. Calculating CIs for percentile performance also follows
a non-parametric approach because it is a way to perform statistical analysis without assuming that the data
follow any particular distribution. In Fig. 2, we support three mainstream non-parametric calculations of CIs for
percentile performance (Step 2 and Step 2*). Thus, we obtain the following three implementations of SCOPE to
provide the user with flexibility.

• SCOPE 1: We use the general method [44, 57, 70] to calculate CIs for the percentile. The method involves
sorting performance results in ascending order and then calculating two index values based on the data size, the
given percentile, and the desired confidence level. Values at these two locations are the lower and upper bounds
of the CI for the specified percentile and confidence level.

• SCOPE 2: We use the basic bootstrapping method [5] based on resampling technique to calculate CIs. In this
method, a set of = performance data is randomly sampled with replacement to construct a new set. This selection
process is repeated = times to form one resample. The resampling process is then repeated 2 times (at least 1,000
times [35]) to generate 2 resample sets. For each resample, the performance at a specific percentile is calculated,
and the resulting values are sorted. Finally, the lower and upper bounds of the CI are determined based on the
sorted 2 values and a given confidence level 2;%.

• SCOPE 3: We use the block bootstrapping method [4] to calculate CIs. Unlike the basic bootstrapping method,
in the block bootstrapping method, the data selection of a round resample becomes the selection and combination
of the block data with continuous performance results. We apply the automated selection of block size used
in this work [35] to this method. Conducting 2 times of resamples will obtain the total of 2 values about the
percentile performance. These values are still sorted, and the lower and upper bounds of the CI for this percentile
are generated with a given confidence level 2;%.

3.5 An illustrating example of applying SCOPE
SCOPE ensures scalability without requiring additional manual efforts or modifications to the existing serverless
platforms. It can be seamlessly integrated as an external service or auxiliary analysis tool to assess performance
results. Serverless functions, including complex tasks, are triggered and executed on original serverless platforms.
Developers who employ SCOPE capture and collect performance data from the serverless platform and input
it into SCOPE. Then, SCOPE automatically analyzes performance data and provides insights into the need for
additional repetition runs. This flexibility makes SCOPE highly scalable for various serverless functions.

To illustrate how SCOPE is used, we provide a real-world example of assessing the performance of a serverless
function. The serverless function is from the dataset described in Section 4.3 of the experimental evaluation. We
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use Func43 from the work [54] executed on AWS Lambda. First, the developer gives a set of performance results
of a serverless function executed on its serverless platform (Step 1), e.g., 180 performance data points regarding
the function Func43. Then, SCOPE calculates the corresponding CIs for the 25th, 50th, and 75th percentiles
(Step 2). Step 3 checks whether these CIs fall within the A% (e.g., 1%) error margin of respective observed true
percentile performance, i.e., actual 25th, 50th, and 75th percentile performance in performance distribution with
180 data points. The result shows that these CIs satisfy the accuracy check. At the same time, SCOPE uses a set
of performance results from Step 1 to get the performance result set from previous run intervals, as outlined in
Step 1*. If the number of repetitions of the run interval is set to 5, the performance result set from previous run
intervals is composed of the first 175 data points, excluding the last 5 data points. Similarly, SCOPE calculates and
checks the accuracy of the newly calculated CIs for the 25th, 50th, and 75th percentiles (Step 2* and Step 3*). The
result shows that these CIs obtained from 175 data points satisfy the accuracy check. Both Step 3 and Step 3*
satisfy the corresponding accuracy checks (Step 4), and then the performance result set given in Step 1 is reported
as the final performance of Func43.

4 EXPERIMENTAL EVALUATION

4.1 Research questions
We explore the following research questions:

RQ1: How general effective is SCOPE for serverless functions compared to the state-of-the-art techniques? This
RQ aims to compare the general effectiveness of SCOPE and state-of-the-art performance testing techniques for
cloud computing on serverless functions.

RQ2: How well do SCOPE and state-of-the-art techniques apply to serverless functions under varying parameters?
The performance testing techniques aim to design the stopping criterion to determine whether the tested
performance result set accurately reflects real performance and whether additional repeated runs from another
run interval are necessary. The number of repetitions within the run interval represents the amount of new
performance data added in each round of testing. Based on this, we investigate the effectiveness of SCOPE
and state-of-the-art techniques under different constraints of the stopping criterion and different numbers of
repetitions within the run interval.

RQ3: How flexible and effective is SCOPE compared to the strategy of setting a fixed number of repetitions for all
evaluated serverless functions? As commonly used in previous studies, a fixed number of repetitions is applied for
all serverless functions. This RQ aims to investigate the flexibility and effectiveness of SCOPE compared to the
strategy of setting a fixed number of repetitions for all evaluated serverless functions.

4.2 Baselines
To answer RQ1 and RQ2, we select state-of-the-art performance testing techniques for comparison. As serverless
computing is a cloud computing paradigm, a straightforward idea is to adopt existing performance testing
techniques designed for cloud applications to serverless functions. Thus, we consider two state-of-the-art perfor-
mance testing techniques designed for cloud applications: PT4Cloud [36] and Metior [35]. These approaches are
non-parametric and have been evaluated to be superior to other techniques for cloud applications [35, 36], e.g.,
detecting repetitiveness of performance data and analyzing coefficient of variation of performance data. The cloud
applications that they test are developed based on IaaS [23], a traditional cloud computing pattern that allows
developers to lease resources and configure and manage the infrastructure. In addition, we also consider another
non-parametric method, CONFIRM [57], for cloud environments. CONFIRM estimates the required number of
repetitions for an experiment.

The stopping criteria of PT4Cloud [36] and Metior [35] rely on the stability assessment of performance
distributions. PT4Cloud and Metior respectively compare the distribution similarity and changes in a performance
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metric. Particularly, PT4Cloud needs to set an objective probability ?0 (e.g., 90%) to represent accuracy requirements.
Metior needs to specify amaximum allowed percentage error 40% (e.g., 3%).The stopping criterion ofCONFIRM [57]
relies on the correctness assessment of CIs. It uses resampling without replacement and CIs for the median to
determine whether the mean CIs fall within a desired error bound 40% (e.g., 3%).

4.3 Dataset
To evaluate the effectiveness of performance testing techniques, we use a representative dataset that has recently
beenmade publicly available for serverless function performance analysis [76].This dataset comprises 65 serverless
functions that have been meticulously sourced from peer-reviewed papers published in top-tier academic venues
spanning the period from 2014 (the year that serverless computing started to be popular [40, 75]) to 2022. The
size of our dataset (i.e., 65 serverless functions) is comparable to and even larger than those used in previous
studies of serverless computing performance [49, 72, 78, 79, 87, 88].

The 65 serverless functions span a wide range of task types, ensuring a diverse representation of workloads.
Specifically, it covers 25 distinct task categories, such as mathematical operations, image processing, face de-
tection, graph network analysis, video processing, and natural language processing. This broad task variety
provides a comprehensive view of real-world serverless computing workloads. Furthermore, the dataset covers
widely-used benchmarks in the serverless computing research community [41, 55, 87] and the industry [3],
e.g., ServerlessBench [15], FunctionBench [13], and FaaSDom [12]. In terms of serverless platforms, the dataset
focuses on AWS Lambda and Google Cloud Functions, which are the most prevalent public serverless platforms
to study [16, 29, 34]. For programming languages, the dataset includes functions written in Python and JavaScript,
which are the dominant programming languages in serverless computing [1, 16, 29, 30].

4.4 Experimental setup
Execution configurations of serverless functions. We execute 65 serverless functions using the original
function configurations and serverless platforms specified in the work [76]. If a configuration is not provided, we
use the default configuration of the platform. At the time of our study, AWS Lambda uses a default memory size
of 128 MB [8] and a timeout of 3 seconds [10], while Google Cloud Functions adopts a default memory size of 256
MB [9] and a timeout of 60 seconds [11]. If the configured memory size or timeout time is insufficient to support
executions, we increase the value of these parameters and test the function again to ensure successful execution.

We repeatedly invoke the serverless function to produce a series of performance data, which are input to
performance testing techniques to check when the repeated runs can be stopped. If the stopping criterion is not
satisfied, we start the next run interval to generate more performance data. Since our goal is to evaluate the
effectiveness of performance testing techniques in the context of serverless computing, by default, we set the
number of repetitions of the run interval to five repetitions, an established number of repetitions commonly used
in the experimental setting of serverless computing papers [22, 38, 61]. This small number allows us to obtain a
fine-grained stop location and reduce the unnecessary overhead of running the function. In RQ2, we investigate
the effect of the size of this number. We evaluate the effectiveness of performance testing techniques using
cold-start and warm-start performance of the serverless functions. The cold-start performance is obtained by
invoking the function after the resources generated by previous invocations have been released. The warm-start
performance is obtained by invoking the function before releasing the resources from previous invocations. We
use a half-hour invocation frequency for cold-start performance and a five-second frequency for warm-start
performance, both after the previous invocation, as they can ensure the serverless function experiences cold and
warm starts. For performance testing techniques, we use the same performance data of the functions to fairly
compare their effectiveness.
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Parameter configurations. In experiment evaluation, we will explore the supported three versions of SCOPE
(i.e., SCOPE 1, SCOPE 2, and SCOPE 3) to demonstrate the flexibility and applicability of our approach across
different non-parametric confidence interval calculations for percentile performance. For the comparison of
evaluation results, we use the version of SCOPE (e.g., SCOPE 1) that is the most effective.

To answer RQ1, the confidence level 2;% and the error margin A% in SCOPE use by default the values that
have been widely adopted by previous work on performance analysis [57, 70]. 2;% and A% are set to 95% and 1%,
respectively. The resample times in SCOPE 2 and SCOPE 3 are by default set to 1,000, consistent with previous
work [35]. For PT4Cloud andMetior , we use the default settings provided in their open-sourced code. For PT4Cloud ,
we use the default objective probability (?0) of 90%, i.e., expecting the accuracy of testing results to be at least
90%. For Metior , we use the maximum allowed percentage error (40%) of 3% for the median performance and the
confidence level of 95%. For CONFIRM , we use the same error 40% of 3% for the CIs for the median performance
and the confidence level of 95%, as in Metior .

To answer RQ2, we adjust key parameters. (1) First, we adjust A% of SCOPE to 5%, 4%, 3%, 2%, and 1% to
investigate the characteristics of the stopping criterion. We also adjust the key parameters for the stopping
criterion of the state-of-the-art techniques: ?0 of PT4Cloud and 40% of Metior and CONFIRM . We set ?0 to values
of 90%, 92%, 94%, 96%, and 98%, where 92%, 94%, 96%, and 98% are stricter constraints that have not been used
in previous evaluations of PT4Cloud [36]. We set 40% to values of 5%, 4%, 3%, 2%, and 1%, where 2% and 1% are
also stricter constraints not used in previous evaluations of Metior [35, 57]. (2) Second, we adjust the number
of repetitions within the run interval to 3, 4, 5, 10, and 20, which are commonly used in serverless computing
papers [20, 22, 32, 38, 61, 64, 71] for the total experimental repetitions. Serverless computing scenario generally
uses small repetitions. The possible reason is that serverless functions can be triggered at any time, which makes
it convenient to obtain any number of performance results. Thus, in the serverless computing scenario, developers
tend to use a small run interval to invoke serverless functions on demand at any time without needing to lease
resources in advance. Taking these values as the number of repetitions of one run interval, we could investigate
if adding a cycle of performance data affects testing results and if the repetitions specified in previous work are
sufficient to obtain accurate serverless function performance. We use default configurations for other parameters
of SCOPE, PT4Cloud , Metior , and CONFIRM .

To answer RQ3, we evaluate the strategy of indiscriminately setting a fixed number of repetitions for all tested
serverless functions, in the same way used in prior serverless computing studies. This strategy is different from
our compared baselines. We evaluate different values from small to large, including 20 [69], 50 [62], 100 [42],
300 [54], and 500 [25]. They had been used in serverless computing papers.
Evaluation strategy and metrics. We use the performance data of the serverless function being repeatedly
executed 1,000 times as the ground truth performance for identifying the effectiveness of testing results. To
establish the ground truth, we require a relatively large number of performance tests that can capture all potential
impacts of the serverless platform. We observe that 1,000 repetitions are the largest number found in existing
serverless computing literature [46, 72, 76]. To confirm whether 1,000 repetitions are sufficient, we execute
each serverless function for an additional 500 runs, and the results, discussed in Section 6.2, show consistent
effectiveness compared to 1,500 repetitions. Therefore, 1,000 executions provide a trustworthy ground truth. We
apply performance testing techniques to determine the termination of the repeated runs for the serverless function,
i.e., the stop location. The performance data tested in the stop location is deemed to be the accurate performance
distribution of this function acquired with performance testing techniques. We compare this distribution with
the performance distribution of the ground truth of this function using the following evaluation metrics.

• Accuracy: He et al. [36] define the accuracy of performance testing results as the similarity between the
performance distribution acquired with performance testing techniques and the corresponding ground truth
distribution. The value of the similarity metric ranges from 0 to 100%, where 100% indicates the same distribution.
We calculate the mean accuracy of the testing results obtained for all tested functions.
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Table 1. RQ1: The results of performance testing for 65 serverless functions using SCOPE , PT4Cloud , Metior , and CONFIRM.

Mean accuracy #Functions: reliability at 25th/50th/75th/90th percentile
SCOPE 1 - cold start 97.39% 89.23% 93.85% 90.77% 92.31%
SCOPE 1 - warm start 97.12% 86.15% 92.31% 93.85% 89.23%
SCOPE 1 (Mean) 97.25% 87.69% 93.08% 92.31% 90.77%
SCOPE 2 - cold 95.94% 84.62% 86.15% 73.85% 73.85%
SCOPE 2 - warm 94.19% 75.38% 80.00% 75.38% 84.62%
SCOPE 2 (Mean) 95.07% 80.00% 83.08% 74.62% 79.23%
SCOPE 3 - cold start 95.05% 84.62% 78.46% 70.77% 67.69%
SCOPE 3 - warm start 93.22% 66.15% 78.46% 81.54% 83.08%
SCOPE 3 (Mean) 94.13% 75.38% 78.46% 76.15% 75.38%
PT4Cloud - cold 61.12% 12.31% 10.77% 18.46% 29.23%
PT4Cloud - warm 43.45% 16.92% 20.00% 18.46% 12.31%
PT4Cloud (Mean) 52.28% 14.62% 15.38% 18.46% 20.77%
Metior - cold start 69.38% 26.15% 21.54% 20.00% 27.69%
Metior - warm start 57.47% 24.62% 23.08% 23.08% 21.54%
Metior (Mean) 63.42% 25.38% 22.31% 21.54% 24.62%
CONFIRM - cold start 68.93% 24.62% 21.54% 23.08% 16.92%
CONFIRM - warm start 51.91% 13.85% 16.92% 29.23% 21.54%
CONFIRM (Mean) 60.42% 19.23% 19.23% 26.15% 19.23%

• Reliability: Previous work [70] defines the reliability of the obtained performance result as whether its specific
percentile performance is accurate. When a percentile performance obtained from the performance distribution
acquired with performance testing techniques falls within the 95% confidence interval for this percentile obtained
from the corresponding ground truth distribution, it indicates a 95% probability that this percentile performance
is reliable [70]. It also indicates that the performance testing techniques enable the tested serverless function to get
this reliable percentile performance. This previous work [70] has focused on the performance at the 50th and 90th
percentiles to assess the result reliability. To obtain more comprehensive results, we investigate the reliability of
testing results from different performance perspectives by extending the percentiles to include the 25th, 50th,
75th, and 90th percentiles. We respectively calculate the percentage of the serverless functions with reliable
performance at different percentiles.
Experimental environment. We implemented and ran SCOPE, PT4Cloud , Metior , CONFIRM and the invocation
scripts for serverless functions on an Ubuntu 18.04.4 LTS server with an Intel Xeon (R) 4-core processor and
24GiB of memory.

5 RESULTS

5.1 RQ1: General Effectiveness of SCOPE
This section explores the general effectiveness of SCOPE compared to PT4Cloud , Metior , and CONFIRM when
testing serverless function performance. Results show that SCOPE is highly effective. Table 1 shows the results
of three variants of SCOPE and state-of-the-art techniques in cold-start and warm-start performance testing
for serverless functions. On average, the mean accuracy obtained by SCOPE 1, SCOPE 2, and SCOPE 3 is 97.25%,
95.07%, and 94.13%, respectively. PT4Cloud , Metior , and CONFIRM provide testing results with 52.28%, 63.42%,
and 60.42% mean accuracy, respectively. Compared to PT4Cloud , Metior , and CONFIRM , SCOPE can improve
the mean accuracy by 44.97, 33.83, and 36.83 percentage points, respectively. Moreover, SCOPE outperforms
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PT4Cloud , Metior , and CONFIRM on all serverless functions that we consider, thus indicating the feasibility and
effectiveness of SCOPE.

For the reliability, SCOPE 1 provides the reliable 25th, 50th, 75th, and 90th percentile performance for 87.69%,
93.08%, 92.31%, and 90.77% of the serverless functions, respectively. SCOPE 2 provides the reliable 25th, 50th, 75th,
and 90th percentile performance for 80.00%, 83.08%, 74.62%, and 79.23% of the functions, respectively. SCOPE 3
provides similar reliability to SCOPE 2. For PT4Cloud , on average, it enables 14.62%, 15.38%, 18.46%, and 20.77%
of the functions to get the reliable 25th, 50th, 75th, and 90th percentile performance, respectively. Compared
to PT4Cloud , SCOPE provides the reliable 25th, 50th, 75th, and 90th percentile performance for an additional
87.69% - 14.62% = 73.07%, 93.08% - 15.38% = 77.70%, 92.31% - 18.46% = 73.85%, and 90.77% - 20.77% = 70.00% of the
functions, respectively. For Metior , it provides the reliable 25th, 50th, 75th, and 90th percentile performance for
25.38%, 22.31%, 21.54%, and 24.62% of the functions, respectively. Compared to Metior , SCOPE provides the reliable
25th, 50th, 75th, and 90th percentile performance for an additional 87.69% - 25.38% = 62.31%, 93.08% - 22.31% =
70.77%, 92.31% - 21.54% = 70.77%, and 90.77% - 24.62% = 66.15% of the functions, respectively. For CONFIRM , it
provides the reliable 25th, 50th, 75th, and 90th percentile performance for 19.23%, 19.23%, 26.15%, and 19.23%
of the functions, respectively. Compared to CONFIRM , SCOPE provides the reliable 25th, 50th, 75th, and 90th
percentile performance for an additional 87.69% - 19.23% = 68.46%, 93.08% - 19.23% = 73.85%, 92.31% - 26.15% =
66.16%, and 90.77% - 19.23% = 71.54% of the functions, respectively. These results show that most of the testing
results produced with SCOPE are accurate and reliable.

For three implementations of SCOPE, we summarize the following points. (1) SCOPE 1 outperforms the
other two, indicating that the CI calculation method of SCOPE 1 has high accuracy on performance testing for
serverless functions. This could be because the other two implementations use bootstrapping methods, which
adopt the resampling strategy. The resampling process may break the original data distribution and introduce
potential noises. In contrast, SCOPE 1 is based on the original performance data to calculate CI. (2) SCOPE 2 and
SCOPE 3 show comparable effectiveness. This indicates that our approach design is insensitive to internal data
dependency and has a similar effectiveness for the same type of CI calculation method. (3) All implementations
show comparable effectiveness in both cold and warm starts, indicating the stability of SCOPE in performance
testing for serverless functions.

Result discussion.We observe that state-of-the-art techniques (PT4Cloud ,Metior , and CONFIRM ) perform poorly
in evaluating serverless functions.This ineffectiveness stems from fundamental differences in their approach: these
techniques rely on stability or correctness assessments for specific performance. However, serverless functions,
characterized by short durations and small run intervals, make it difficult for these methods to detect significant
stability changes or undesired confidence intervals. The minor fluctuations exhibited in performance distributions
cause these methods to reach their stopping criterion too early, undermining their ability to accurately assess
the need for additional repetitions. This limitation highlights the need for a novel performance testing approach
tailored to serverless functions that allows for finer-grained analysis.

However, the assessment strategy of PT4Cloud , Metior , and CONFIRM may be effective for traditional cloud
applications or environments [35, 36, 57]. This may be because, traditional cloud applications or task executions
have long-lived and minute-level duration, and previous work in cloud computing [23, 35, 36] adopted a period
of time of runs to constantly invoke them for execution. This time is often several weeks or days, thus yielding a
large number of performance results. Therefore, in state-of-the-art techniques, these characteristics of traditional
cloud applications or environments lead to significant changes in stability or undesired confidence intervals on
performance distributions, making them effective.

Serverless functions have distinctive performance features from traditional cloud applications or environments.
Moreover, state-of-the-art techniques are not effective when applied to serverless function performance. In this
paper, we present SCOPE, which introduces a novel stopping criterion, incorporating accuracy and consistency
checks. These checks enable fine-grained analysis and high accuracy guarantees for performance distributions
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Fig. 3. RQ2: Changes in metric values under different constraints A% for SCOPE 1 (mean results in cold and warm starts for
tested functions).
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Fig. 4. RQ2: Changes in metric values under different constraints A% for SCOPE 2 (mean results in cold and warm starts for
tested functions).
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Fig. 5. RQ2: Changes in metric values under different constraints A% for SCOPE 3 (mean results in cold and warm starts for
tested functions).

with these characteristics of serverless functions. This makes SCOPE more effective in the performance testing of
serverless functions.

Ans. to RQ1: SCOPE provides testing results with 97.25% accuracy, 44.97, 33.83, and 36.83 percentage points
higher than PT4Cloud , Metior , and CONFIRM , respectively. Moreover, SCOPE outperforms all compared
baselines on all serverless functions that we consider, thus indicating its feasibility and effectiveness.

5.2 RQ2: Effectiveness under varying parameters
In this section, we investigate the effectiveness of SCOPE and state-of-the-art techniques under varying parameters,
including different constraints of the stopping criterion and different numbers of repetitions within the run
interval.

We compare the effectiveness of SCOPE and state-of-the-art techniques under different constraints of the
stopping criterion. For SCOPE, evaluation metric values have improvements as A% is limited from 5% to 1%.
PT4Cloud , Metior , and CONFIRM have different sensitivities to the constraint of their stopping criteria. While the
effectiveness of PT4Cloud does not significantly improve with increasing constraints, Metior and CONFIRM show
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Fig. 6. RQ2: Changes in metric values under different ?0 for PT4Cloud .
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Fig. 7. RQ2: Changes in metric values under different 40% for Metior .
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Fig. 8. RQ2: Changes in metric values under different 40% for CONFIRM.

improvement in accuracy from 54.47% to 87.60% and from 55.33% to 82.41%, respectively. However, under the
strictest constraint of Metior and CONFIRM , the obtained accuracy does not exceed 90%, which can be obtained
by SCOPE. Overall, stopping criteria of state-of-the-art techniques may be insufficient for serverless computing.

Figs. 3, 4, and 5 show mean changes for three implementations of SCOPE under cold and warm starts. The
mean accuracy improves from 78.38% to 97.25% for SCOPE 1, from 63.23% to 95.07% for SCOPE 2, and from 62.73%
to 94.13% for SCOPE 3. For the reliability, with the use of SCOPE 1, the proportion of serverless functions that get
the reliable 25th, 50th, 75th, and 90th percentile performance increases from 34.62% to 87.69%, from 42.31% to
93.08%, from 39.23% to 92.31%, and 36.92% to 90.77%, respectively. SCOPE 2 and SCOPE 3 show the same trends
for the reliability as SCOPE 1. These results show that the effectiveness of SCOPE is influenced by the constraints
of the designed stopping criterion. Performance testing for serverless functions requires strict error constraints
due to the short duration of the test. Using a strict error constraint enhances accuracy, but also may increase
runtime costs. SCOPE offers the advantage of achieving accurate performance without the need for excessive
repetitions, thereby avoiding unnecessary runtime costs. In real-world scenarios, SCOPE provides developers
with the flexibility to adjust the error constraint, allowing them to make desired trade-offs in line with specific
requirements.

Fig. 6 illustrates the mean changes in metric values obtained by PT4Cloud when evaluating the cold-start and
warm-start performance of the serverless functions under varying ?0. The mean accuracy changes from 52.28% to
59.03%. Although PT4Cloud makes more functions to obtain reliable percentile performance, the improvement is
insignificant. Even if ?0 is constrained to 98%, only 21.54%, 23.85%, 20.77%, and 24.62% of the serverless functions
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Fig. 9. RQ2: Changes in metric values under different numbers of repetitions of the run interval for SCOPE 1 (mean results
in cold and warm starts for tested functions).

can get the reliable 25th, 50th, 75th, and 90th percentile performance, respectively. Thus, for PT4Cloud , we do not
observe significant improvement in evaluation metrics as ?0 increases from 90% to 98%.

Fig. 7 shows the mean changes in metric values obtained by Metior under different 40%. The mean accuracy
improves from 54.47% to 87.60% as 40% becomes stricter, indicating that using a stricter 40% can improve the
effectiveness of Metior . However, even if 40% is limited to 1%, the obtained mean accuracy (87.60%) does not
exceed 90%. Moreover, the percentage of serverless functions with reliable performance is low. For example,
for the 25th percentile performance, when 40% = 1%, Metior enables 59.23% of the functions to get this reliable
performance, while when 40% = 5%, only 20.00% of the functions get this reliable performance.

Fig. 8 shows the mean changes in metric values obtained by CONFIRM under different 40%. The mean accuracy
improves from 55.33% to 82.41% as 40% becomes stricter, indicating that using a stricter 40% can improve the
effectiveness of CONFIRM . However, even if 40% is limited to 1%, the obtained mean accuracy (82.41%) does not
exceed 90%. Moreover, the percentage of serverless functions with reliable performance is low. For example, for
the 90th percentile performance, when 40% = 1%, CONFIRM enables 53.08% of the functions to get this reliable
performance, while when 40% = 5%, only 17.69% of the functions get this reliable performance.

We further investigate the effectiveness of SCOPE, PT4Cloud , Metior , and CONFIRM under varying numbers of
repetitions of the run interval. For SCOPE, evaluation results do not show significant changes as the number of
repetitions of the run interval increases from 3 to 20. SCOPE can obtain accuracy results that remain between
96.96% and 97.53%, showing a small variation of about 0.50%. For PT4Cloud , Metior , and CONFIRM , we observe a
positive effect of the run interval on their effectiveness. However, the accuracy never reaches 80%.

Figs. 9, 10, and 11 show the mean results obtained by SCOPE under cold and warm starts. The mean accuracy
obtained by SCOPE 1, SCOPE 2, and SCOPE 3 ranges from 96.96% to 97.53%, from 93.56% to 96.72%, and from
93.70% to 95.82%, respectively. This indicates a negligible change in accuracy. The reliability at the percentile
performance is also stable. As the number of repetitions of the run interval increases, SCOPE 1 produces the
reliable 25th, 50th, 75th, and 90th percentile performance for the functions falling within the following ranges:
84.62% to 87.69%, 90.00% to 93.85%, 88.46% to 92.31%, and 85.38% to 91.54%. SCOPE 2 produces the reliable 25th,
50th, 75th, and 90th percentile performance for the functions falling within the following ranges: 78.46% to 83.08%,
76.92% to 86.15%, 72.31% to 82.31%, and 73.08% to 86.92%. The reliability results of SCOPE 3 are highly similar to
SCOPE 2. Overall, the effectiveness of SCOPE is not affected by the number of repetitions of the run interval.

Fig. 12 shows the mean changes obtained by PT4Cloud in cold-start and warm-start performance testing. The
obtained mean accuracy increases from 44.05% to 75.99%, as the number of repetitions of the run interval increases
from 3 to 20. This indicates a positive effect of the run interval on the effectiveness of PT4Cloud . However, while
increasing the number of repetitions of the run interval enables more functions to get reliable performance,
PT4Cloud still does not enable over 60% of the serverless functions to achieve it.

Fig. 13 shows the mean results obtained by Metior in cold-start and warm-start performance testing. As the
number of repetitions of the run interval increases from 3 to 20, the obtained mean accuracy increases from
54.09% to 77.15%. This also indicates a positive effect of the run interval on the effectiveness of Metior . However,
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Fig. 10. RQ2: Changes in metric values under different numbers of repetitions of the run interval for SCOPE 2 (mean results
in cold and warm starts for tested functions).
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Fig. 11. RQ2: Changes in metric values under different numbers of repetitions of the run interval for SCOPE 3 (mean results
in cold and warm starts for tested functions).
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Fig. 12. RQ2: Changes in metric values under different numbers of repetitions of the run interval for PT4Cloud .
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Fig. 13. RQ2: Changes in metric values under different numbers of repetitions of the run interval for Metior .

the accuracy of testing results is still no more than 80%, similar to the results obtained by PT4Cloud . In terms of
reliability, for example, Metior enables only 36.92% of the serverless functions to get the reliable 50th percentile
performance when the number of repetitions of the run interval is set to 20. As a result, 63.08% of the functions
still cannot get this reliable performance.

Fig. 14 shows the mean results obtained by CONFIRM . As the number of repetitions of the run interval increases
from 3 to 20, the obtained mean accuracy increases from 59.18% to 66.29%. This also indicates a positive effect
of the run interval on the effectiveness of CONFIRM . However, the accuracy of testing results is still no more
than 70%. In terms of reliability, for example, CONFIRM enables only 26.92% of the serverless functions to get the
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Fig. 14. RQ2: Changes in metric values under different numbers of repetitions of the run interval for CONFIRM.
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Fig. 15. The comparison of the strategy of blindly setting a uniform number of repetitions and SCOPE in each tested serverless
function (cold starts).

reliable 75th percentile performance when the number of repetitions of the run interval is set to 20. As a result,
73.08% of the functions still cannot get this reliable performance.

The slight increase in the metric values for PT4Cloud , Metior , and CONFIRM may also be due to the fact that
when the number of repetitions in the run interval increases, the number of data points in the performance
distribution for the initial comparison also increases. Overall, the effectiveness of baselines are sensitive to
the number of repetitions of the run interval, with improved accuracy and reliability as the number increases.
However, even if the number of repetitions of the run interval is set to 20, the maximum accuracy obtained by
PT4Cloud , Metior , and CONFIRM is 75.99%, 77.15%, and 66.29%, respectively. These results cannot reach 80%.
Moreover, over 60% of the functions still cannot get reliable percentile performance.

Ans. to RQ2: Using a strict error constraint as the stopping criterion can improve the accuracy of SCOPE.
Even when PT4Cloud , Metior , and CONFIRM apply the strictest constraints, the results obtained are inferior to
those of SCOPE. SCOPE is insensitive to the number of repetitions of the run interval. As this number increases
from 3 to 20, SCOPE can provide testing results with accuracy ranging from 96.96% to 97.53%, exhibiting
a trivial difference of about 0.50%. PT4Cloud , Metior , and CONFIRM exhibit sensitivity to the number of
repetitions of the run interval. However, even with a large number, the maximum accuracy obtained by
PT4Cloud , Metior , and CONFIRM cannot reach 80%. Moreover, over 60% of the tested serverless functions
cannot get reliable percentile performance.

5.3 RQ3: Flexibility of SCOPE
We compare SCOPE with the strategy of indiscriminately setting a fixed number of repetitions for all evaluated
serverless functions. The results show that SCOPE is more flexible and effective than this strategy in determining
the accurate performance and providing repetitions across various serverless functions.
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Fig. 15 shows their comparison results in each tested serverless function under cold starts. Multiple polylines
represent the accuracy results obtained on each serverless function when using the strategy of indiscriminately
setting a fixed number of repetitions and SCOPE. Specifically, when the fixed number of repetitions is blindly set
to 20, 50, and 100, the obtained accuracy for more than 95% of serverless functions is not as high as the accuracy
obtained by SCOPE for these serverless functions. When this fixed number is set to 300, the accuracy results
(green polyline) are comparable to those of SCOPE. When this fixed number is set to 500, the accuracy results
(blue polyline) may be higher than those of SCOPE for most serverless functions.

However, the requirement for repetitions to achieve accurate performance can vary significantly among
serverless functions. The bars in the figure represent the stop location of each serverless function determined
by SCOPE. Some functions may achieve accurate performance with fewer than 100, while others might need
over 300 repetitions. It indicates that each serverless function requires a customized repetition to obtain accurate
performance. It is impractical to rely on a fixed number of repetitions (e.g., 300 or 500) for all evaluated functions.
For example, serverless functions that do not require 300 repetitions may require fewer repetitions to obtain
accurate performance, then incurring extra running overhead (e.g., 225 additional runs for Func22). Some
functions may require more than 300 repetitions, which makes the results less accurate (e.g., 79.96% accuracy
at 300 repetitions for Func37 ). For 500-fixed repetitions, although the accuracy results may be higher than
those of SCOPE on many functions, most serverless functions do not require 500 repetitions to obtain accurate
performance, thus incurring significant running overhead. We measure the overhead by evaluating the total
number of repetitions used, which directly correlates with overhead. In Fig. 15, the strategy of 500 fixed repetitions
necessitates 500*65 = 32,500 repetitions. SCOPE requires 18,345 repetitions. Thus, the 500-fixed repetition strategy
uses 77.16% more repetitions of the running overhead than SCOPE, which makes SCOPE become a cost-efficient
option.

Ans. to RQ3: Contrasted with the strategy of indiscriminately setting a fixed number of repetitions, SCOPE
is more flexible and effective in determining specific repetitions and obtaining accurate performance across
various serverless functions.

5.4 Effectiveness to other situations
In this section, we explore the effectiveness of SCOPE in other situations, including mixed cold and warm
conditions, serverless applications composed of multiple functions, varying input conditions, functions with other
types of triggers, highly bursty workloads, and functions executed across different platforms. We also explore
the effectiveness of SCOPE when incorporating additional critical performance metrics, such as tail latency and
outlier behavior.

We explore the effectiveness of SCOPE on performance data from serverless functions under mixed cold and
warm start conditions. For this purpose, we select two serverless functions: Func4 and Func10. Each function is
invoked, with the next invocation occurring after a randomly determined time, producing a mix of cold and warm
starts, as typically observed in production applications. To establish the ground truth, we collect performance
data for each function under 1,000 random executions, thereby capturing a realistic blend of cloud and warm start
behavior. Table 2 shows the results. Specifically, SCOPE achieves an accuracy of 99.47% for Func4 and 95.85% for
Func10, showing high accuracy. Further, SCOPE provides reliable 25th, 50th, 75th, and 90th percentile performance
for these functions. These results demonstrate the effectiveness of our approach in handling mixed cold and
warm start performance data for serverless functions.

We explore the effectiveness of SCOPE in analyzing serverless applications composed of multiple functions
that interact with each other. For this purpose, we implement two serverless applications based on examples
provided in the platforms’ official documentation. The first serverless application, from the AWS platform [7],
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Table 2. The results of other situations using SCOPE .

Accuracy Reliability at 25th/50th/75th/90th percentile
Func4 - a mix of cold and warm starts 99.47% Ø Ø Ø Ø
Func10 - a mix of cold and warm starts 95.85% Ø Ø Ø Ø

App1 from AWS - cold start 99.43% Ø Ø Ø Ø
App1 from AWS - warm start 98.82% Ø Ø Ø Ø
App2 from Google - cold start 98.55% Ø Ø Ø ×
App2 from Google - warm start 99.77% Ø Ø Ø Ø

Func6 - multiple inputs 96.37% Ø Ø Ø Ø
Func7 - multiple inputs 97.02% Ø Ø Ø Ø

Func5 - file upload 98.98% Ø Ø Ø Ø
Func34 - message queue 96.04% Ø Ø Ø ×
Func61 - database insert 97.63% Ø Ø Ø Ø

Func32 - bursty workloads 99.63% Ø Ø Ø Ø
Func52 - bursty workloads 99.55% Ø Ø Ø Ø

NewFunc1 - Azure - cold start 93.61% Ø Ø Ø Ø
NewFunc2 - Azure - cold start 99.68% Ø Ø Ø Ø
NewFunc3 - Alibaba - cold start 97.32% Ø Ø Ø ×
NewFunc4 - Alibaba - cold start 96.68% Ø Ø × Ø
Cold start (Mean) 96.82% 4/4 4/4 3/4 3/4
NewFunc1 - Azure - warm start 93.48% Ø Ø Ø Ø
NewFunc2 - Azure - warm start 97.01% Ø Ø Ø Ø
NewFunc3 - Alibaba - warm start 95.31% Ø Ø Ø Ø
NewFunc4 - Alibaba - warm start 97.09% Ø Ø Ø Ø
Warm start (Mean) 95.72% 4/4 4/4 4/4 4/4

consists of five interacting functions, while the second application, from the Google platform [18], is composed of
three functions. These applications are numbered as App1 and App2. We analyze their cold-start and warm-start
response latencies using SCOPE. To evaluate the effectiveness of SCOPE, we collect cold-start and warm-start
performance data for each application under 1,000 executions, which serves as the ground truth. Table 2 shows
their results. For cold starts, SCOPE achieves an accuracy of 99.43% for App1 and 98.55% for App2. Furthermore,
SCOPE reliably estimates performance at 25th, 50th, and 75th percentile performance for both applications.
For warm starts, SCOPE achieves an accuracy of 98.82% for App1 and 99.77% for App2, demonstrating reliable
performance at the 25th, 50th, 75th, and 90th percentile percentiles. This illustrates that SCOPE can achieve similar
effectiveness for serverless application performance.

We explore the effectiveness of SCOPE under varying input conditions for serverless functions. For this purpose,
we select two serverless functions: Func6 and Func7, which allow for flexible adjustment of input to alter the
computation scale. We generate three distinct inputs for each function to ensure a broader evaluation, rather than
relying on a single input. Although three inputs provide a reasonable balance between diversity and experimental
feasibility, our approach is not limited to this number and can be extended to more inputs if needed. For example,
Func7 solves linear equations with input = representing the matrix size. We generate three sizes, e.g., 15, 18, and
20. During each warm-start invocation, one of these inputs is randomly selected to produce the corresponding
performance data. To evaluate SCOPE, we collect performance data for each function over 1,000 executions
with these varying inputs, which serves as the ground truth. Table 2 shows their results. SCOPE can achieve
an accuracy of 96.37% for Func6 and 97.02% for Func7. Moreover, SCOPE reliably estimates performance at the
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Table 3. The results of SCOPE considering other performance metrics.

Accuracy #Functions: reliability at 25th/50th/75th/90th percentile
SCOPE 97.25% 87.69% 93.08% 92.31% 90.77%
SCOPE + Tail 98.84% 91.54% 96.92% 94.62% 93.08%
SCOPE + Outlier 97.61% 88.46% 93.08% 92.31% 90.00%

25th, 50th, 75th, and 90th percentiles for both functions, demonstrating its effectiveness in handling diverse input
conditions.

We explore the effectiveness of SCOPE under serverless functions with other types of triggers. For this purpose,
we select three functions (Func5, Func34, and Func61) from our set of 65 serverless functions. Then, we modify
them to use file uploads, message queues, and database inserts as their triggers by incorporating Amazon S3,
Amazon SQS, and Amazon DynamoDB, respectively. We analyze their warm-start response latencies using
SCOPE. To obtain the end-to-end response time, we calculate the time difference between the initiation of the
triggering event and the completion of the function execution. This measurement is consistently performed
by recording the event’s start time and the function’s end time within the function code and then logging the
computed time difference. The resulting time difference, referred to as the end-to-end response time, includes
both the cloud infrastructure overhead and the function execution time. We collect performance data for each
function across 1,000 executions, which serves as the ground truth. The results are presented in Table 2. SCOPE
achieves an accuracy ranging from 96.04% to 98.98%. Moreover, SCOPE reliably estimates the performance at
25th, 50th, 75th, and 90th percentiles for Func5 and Func61. Furthermore, SCOPE provides reliable 25th, 50th,
and 75th percentile performance for Func34. These results highlight the effectiveness of SCOPE in assessing the
performance of serverless functions triggered by various event types.

We investigate the effectiveness of SCOPE under highly bursty workloads for serverless functions. To this end,
we select two serverless functions: Func32 from AWS Lambda and Func52 from Google Cloud Functions. These
functions are subjected to a series of random burst invocations after prolonged periods of inactivity. The bursty
invocations consist of randomly generated concurrent requests. We respectively collect 1,000 performance data
triggered by these bursty invocations for both Func32 and Func52, which serve as the ground truth for evaluating
the accuracy and reliability of the results produced by SCOPE. As shown in Table 2, SCOPE achieves an accuracy
of 99.63% for Func32 and 99.55% for Func52. Additionally, SCOPE provides reliable performance across the 25th,
50th, 75th, and 90th percentiles for both functions. This illustrates that SCOPE effectively handles serverless
function performance with highly bursty workloads.

We investigate the effectiveness of SCOPE on performance data from serverless functions executed on different
platforms. Specifically, we conduct experiments on serverless functions deployed on Microsoft Azure Functions
and Alibaba Function Compute. Four serverless functions are implemented: two from Microsoft Azure Functions
(denoted as NewFunc1 and NewFunc2) and two from Alibaba Function Compute (denoted as NewFunc3 and New-
Func4). We analyze their cold-start and warm-start response latencies using SCOPE. To evaluate the effectiveness
of SCOPE, we collect cold-start and warm-start performance data for each function over 1,000 executions, which
serve as the ground truth for comparison. The results are presented in Table 2. For cold starts, SCOPE achieves a
mean accuracy of 96.82% across these functions. Additionally, SCOPE reliably captures performance at the 25th,
50th, 75th, and 90th percentiles for four, four, three, and three functions, respectively. For warm starts, SCOPE
achieves a mean accuracy of 95.72%, with reliable performance at the 25th, 50th, 75th, and 90th percentiles for
all four functions, respectively. These results demonstrate the effectiveness and generalizability of SCOPE in
assessing the performance of serverless functions executed on different serverless platforms.

We explore the effectiveness of SCOPE when incorporating additional critical performance metrics, such as
tail latency and outlier behavior. Specifically, we consider the tail latency of the 95th percentile performance in
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SCOPE and check whether its confidence interval falls within a defined error margin (e.g., 3%) of the observed
true percentile performance. Since enforcing constraints on tail latency is even more difficult to achieve, the
error threshold may need to be relaxed compared to the original constraint settings for non-tail latency. This is
because tail latency is inherently more variable and sensitive, making strict enforcement more challenging in
practice. Additionally, we investigate the inclusion of outlier behavior in SCOPE. Outliers are determined using
the Interquartile Range (IQR) method, a statistical approach for detecting outliers. In this method, outliers are
identified as data points that fall outside the range defined by the first and third quartiles, typically beyond 1.5
times the IQR. If the number of outliers does not exceed a predefined threshold (e.g., 10% of the total test data),
the outlier behavior is considered negligible in our study. Table 3 shows the mean results of two new versions of
SCOPE in cold-start and warm-start performance testing for serverless functions. The mean accuracy achieved
by SCOPE considering tail latency is 98.84%, and 97.61% for outlier behavior. Regarding reliability, SCOPE with
tail latency provides reliable 25th, 50th, 75th, and 90th percentile performance for 91.54%, 96.92%, 94.62%, and
93.08% of the serverless functions, respectively. Similarly, SCOPE with outlier behavior provides reliable 25th,
50th, 75th, and 90th percentile performance for 88.46%, 93.08%, 92.31%, and 90.00% of the functions, respectively.
From these results, adding other critical performance metrics, such as tail latency or outlier behavior, can improve
the effectiveness of SCOPE. It is important to note that even without the integration of these critical metrics, our
approach maintains consistency and high effectiveness. This suggests that while adding tail latency and outlier
behavior improves the robustness and comprehensiveness of the analysis, SCOPE already performs well across
different serverless functions.

6 DISCUSSION

6.1 Why SCOPE?
Similar to PT4Cloud , Metior , and CONFIRM , SCOPE efficiently determines the number of repetitions for each
serverless function, ensuring accurate and reliable performance testing outcomes. Notably, SCOPE achieves an
impressive accuracy rate of 97.25%, outperforming PT4Cloud , Metior , and CONFIRM by 44.97, 33.83, and 36.83
percentage points, respectively. The ineffectiveness of baselines stems from fundamental differences in approach,
which fail to accommodate the unique characteristics of serverless functions.

The question then arises: does SCOPE’s success solely depend on mandating a higher number of repetitions? The
answer is no. While heightened accuracy in performance testing inherently demands increased repetitions, SCOPE
refines this approach by ensuring the effective determination of additional repetitions. This is evidenced by our
analysis in RQ3. Specifically, in RQ3, we adopt a fixed number of 300 repetitions per serverless function, which
maintains a comparable total volume of repetitions to SCOPE across all functions considered and achieves a similar
overall accuracy. However, this comparison exposes the inefficiencies inherent in employing a fixed number.
Employing a rigidly high fixed repetition number for serverless functions that do not require 300 repetitions
produces unnecessary resource usage and prolonged testing times, without a commensurate increase in result
precision. Conversely, this fixed approach proves inadequate for functions that may require more repetitions,
risking insufficient coverage and potentially failing to guarantee the accuracy and reliability of serverless function
performance.

Therefore, while high-accuracy performance testing inherently demands a greater number of repetitions,
SCOPE surpasses this requirement by adopting a strategy that does not just increase repetitions but does so
with discerning efficiency. This strategy ensures SCOPE’s efficacy across a diverse array of serverless functions,
validating its effectiveness. Thus, SCOPE’s superior effectiveness is not merely a product of increased testing
iterations but results from a strategic and judicious application of those additional repetitions, tailored to the
unique demands of each serverless function it evaluates.
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6.2 Validity of ground truth performance
We use 1,000 repetitions as the ground truth performance for each serverless function to identify the technique’s
effectiveness. This may raise the question of whether a sufficiently large number of repetitions are chosen for
ground truth performance. To address it, we execute each serverless function for an additional 500 runs. When
using execution results of 1,000, 1,100, 1,200, 1,300, 1,400, and 1,500 repetitions of the ground truth, the mean
accuracy of SCOPE is between 96.18% and 97.25%, a difference of about one percentage point. The consistent
results indicate that using 1,000 executions has established a trustworthy ground truth. An additional 500 runs
are added to our online repository [17].

6.3 Discussion of different design, data, and parameter choices
SCOPE is built with a flexible, effective, and adaptable design aimed at providing accurate performance analysis
across a wide range of serverless functions. Central to the design is the stopping criterion, which evaluates the
tested performance data of serverless functions. This criterion is based on non-parametric confidence interval (CI)
calculations, and we support three mainstream CI calculation methods to demonstrate the flexibility, applicability,
and effectiveness of our approach. Furthermore, as discussed in Section 5.4, we explore the inclusion of additional
critical performance metrics, such as tail latency and outlier behavior, into the design of SCOPE. The results
demonstrate that while incorporating these metrics improves the results of the analysis, SCOPE performs well
across different serverless functions, achieving an accuracy of 97.25%. This indicates that even without these
additional metrics, SCOPE remains highly effective for performance testing.

SCOPE is evaluated using a diverse dataset that includes 25 distinct task types.These tasks cover a broad array of
applications, including mathematical operations, image processing, face detection, graph network analysis, video
processing, and natural language processing. This diverse set of functions ensures that our evaluation reflects a
wide range of real-world serverless computing workloads, enabling us to assess the generalizability of SCOPE
across different domains and use cases, both in cold-start and warm-start scenarios. The additional situations
explored in Section 5.4 further confirm its applicability across various situations, such as mixed cold and warm
conditions, serverless applications composed of multiple functions, varying input conditions, functions with
other types of triggers, highly bursty workloads, and functions executed across different platforms. Additionally,
we use a trustworthy ground truth to validate the performance of SCOPE. To assess the sufficiency of 1,000
repetitions as the ground truth, we conduct an additional 500 runs for each function, as discussed in Section 6.2.
The results show that the effectiveness of SCOPE remains consistent when compared to the 1,500 repetitions.

SCOPE’s evaluation also includes a thorough investigation of parameter choices. In RQ2, we examine the impact
of varying key parameters, such as different constraints for the stopping criterion and varying the number of
repetitions within each run interval. The results demonstrate that SCOPE continues to maintain high effectiveness
regardless of these parameter variations. Additionally, we assess SCOPE by comparing how well the estimated
performance aligns with the true performance across different percentiles (25th, 50th, 75th, 90th). This analysis
highlights the ability of SCOPE.

In summary, the design, data, and parameter choices of SCOPE are carefully tailored to provide an effective
performance testing approach across a variety of serverless functions.

6.4 Discussion of implications
Our work provides several key implications for the design and implementation of performance testing approaches,
spanning the pre-design, design, and post-design phases. These implications are outlined as follows: (1) When
designing a performance testing approach, it is essential to assess the magnitude of the performance data in order
to determine the most appropriate level of granularity for analysis. If the magnitude is large, a coarse-grained
analysis might be more efficient, as it provides a broader overview with less computational overhead. Conversely,
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for smaller magnitude, a fine-grained analysis may be necessary to capture subtle variations in performance. This
consideration helps to target the accuracy in the performance evaluation process. (2) Another critical consideration
is the distribution of the performance data. Different analysis methods are suitable depending on whether the
data follows a normal or non-normal distribution. In cases where performance data exhibits a non-normal
distribution, non-parametric methods are the most appropriate choice. These methods do not assume any specific
data distribution, making them more robust for handling irregular data patterns. This underscores the need for
careful method selection to ensure reliable and valid performance analysis. (3) Performance characteristics can
vary significantly depending on the task type being executed. Therefore, any performance testing approach must
incorporate a diverse set of task types to ensure a comprehensive evaluation. By testing across a wide range
of tasks, one can ensure that the approach remains effective in a variety of real-world tasks. This variability in
performance highlights the importance of adapting the performance testing approach to different contexts and
workloads to ensure generalizability.

6.5 Threats to validity
Selection of baselinemethods. Embracing serverless computing enables developers to create cloud applications
in a new programming paradigm. However, the literature on serverless computing lacks dedicated performance
testing approaches. As a result, baselines specifically designed for serverless performance testing are not currently
available. To address this, we evaluate serverless function performance using performance testing methods
designed for traditional cloud applications.Thismay raise a threat to the representativeness of baselinemethods. To
mitigate this threat, we select three state-of-the-art performance testingmethods: PT4Cloud ,Metior , andCONFIRM .
They have demonstrated superiority over previous performance testing techniques for cloud applications [35, 36].
Thesemethods are detailed in Section 4.2 and Section 7.Therefore, our selected baseline methods are representative
of the state-of-the-art.
Conclusion of technical effectiveness. We evaluate the effectiveness of SCOPE and state-of-the-art techniques
on the performance results of serverless functions. Technical effectiveness may vary depending on the types of
serverless functions. This may potentially influence the experimental conclusions that we summarize herein. To
mitigate it, we investigate the performance of 65 serverless functions from a publicly available dataset curated
in previous work [76], which covers a variety of tasks, e.g., video processing, machine learning, and natural
language processing. Thus, the conclusion of technical effectiveness is based on testing results for various types
of serverless functions. Although we cannot generalize our results to all serverless functions, the ones used herein
are representative of those widely used in previous work.

6.6 Limitations of SCOPE
While SCOPE provides accurate and effective performance evaluations, it currently does not delve into specific
distribution characteristics, such as identifying patterns, which could further enhance the depth of performance
assessment. SCOPE employs a non-parametric approach for evaluating serverless function performance. This
method is advantageous as it makes minimal assumptions about the underlying probability distribution of
performance data, making it well-suited for scenarios where the distribution is unknown or highly variable.
However, if the performance distribution of serverless functions is explicitly determined and incorporated into
the analysis, it could enable SCOPE to provide even more nuanced insights and potentially improve its evaluation
effectiveness.

6.7 Challenges of SCOPE
In the process of designing SCOPE, we face several key challenges related to selecting appropriate checks,
statistical methods, and performance metrics for analysis. First, in serverless computing, it is crucial to determine
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the appropriate level of granularity for performance analysis. Due to the latency characteristics of serverless
functions, a fine-grained approach is necessary to capture subtle changes in performance data and ensure
effective analysis. Second, serverless functions generally exhibit irregular performance patterns. This variability
necessitates careful consideration of which statistical methods are most appropriate. Since the performance data
of many serverless functions, both in cold and warm starts, follows a non-normal distribution, non-parametric
methods are more suitable for accurate performance analysis because they require fewer distribution assumptions.
Finally, once the appropriate statistical methods are identified, we must determine which performance metrics
should be analyzed. A critical aspect of our approach is assessing whether the performance metric falls within
a desired confidence interval. Given the fine-grained nature of our analysis, we extend our checks to cover a
broader range of the performance distribution—specifically from the 25th percentile to the 75th percentile. This
ensures that results are reliable and accurate.

6.8 Future work
In future work, we aim to extend the capabilities of SCOPE by testing a wider variety of serverless functions
and applications across different serverless providers. This will involve conducting performance evaluations
in diverse real-world scenarios, such as hybrid cold-warm start environments, variations in input types, and
different event triggers. Additionally, we plan to integrate SCOPE with various monitoring and profiling tools to
gain deeper insights into the runtime behavior of serverless functions, enhancing the diagnostic and optimization
capabilities of our approach.

Furthermore, we intend to develop SCOPE into a serverless API, making it easily accessible for developers and
researchers to perform performance evaluations of serverless functions and applications. The API will provide
customizable testing parameters, allowing for flexible performance analysis in various contexts. By providing
seamless access to SCOPE, we hope to promote its wider adoption and support the continuous evolution of
performance testing techniques within the serverless computing domain.

7 RELATED WORK
Performance of serverless computing. Performance is the most studied topic in the serverless computing
literature [45, 66, 74]. On one hand, researchers have proposed novel solutions for optimizing the performance of
serverless functions [39, 47–49, 53, 58, 62, 65, 68]. For example, FaaSLight [49] loaded only indispensable code
for serverless functions to improve overall performance. SOCK [62] cached commonly used libraries to speed
up the cold-start performance of serverless functions. A management layer called SONIC [53] was designed to
improve the communication performance between serverless functions. On the other hand, empirical studies
have delved into characterizing the performance of serverless computing. For instance, Eismann et al. [28]
utilized a case study on AWS Lambda to investigate the stability of performance measurements by exploring
the impact of various configuration settings. McGrathet al. [58] designed a performance-oriented serverless
platform and evaluated the performance characteristics of serverless platforms. Wen et al. [79] conducted a
thorough measurement study to characterize the performance of serverless functions executed on different
commodity serverless platforms. However, there is no performance testing approach specifically tailored to
serverless computing to help researchers and engineers determine accurate and reliable performance for serverless
functions. To fill the gap, we propose SCOPE.
Performance testing of cloud applications. Researchers have proposed the related performance testing work
for traditional cloud applications [35, 36, 43, 51, 57, 73]. Laaber et al. [43] explored the impact of cloud environments
on the variability of performance test results and assessed the reliability of detecting slowdowns. Eismann et
al. [26] primarily conducted a measurement study of microservices’ performance and discussed related challenges
without proposing a specific performance testing approach to determine the accurate performance.Wang et al. [73]
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proposed a non-parametric approach for cloud performance testing, based on basic bootstrapping techniques.
Similarly, Maricq et al. [57] introduced CONFIRM, a non-parametric method that employed bootstrapping for
cloud performance testing. However, He et al. [35] demonstrated that the bootstrapping method lacks the
consideration of internal data dependency, causing a low accuracy in cloud application performance. To address
this limitation, He et al. [35] improved this kind of approach by incorporating the block bootstrapping method,
which accounted for the internal data dependency.

For the stopping criterion of performance testing, Alghmadi et al. [21] measured the degree of repetition of data
in performance results. However, previous work [36] showed that this stopping criterion was not appropriate
for performance testing of cloud applications. PT4Cloud [36] and Metior [35] have considered the stability of
performance distributions to terminate the repeated runs, and have been evaluated to be the state-of-the-art in
performance testing for cloud applications [26, 35]. However, our evaluation uncovers that PT4Cloud and Metior
show low effectiveness in serverless computing. This paper proposes SCOPE with a novel stopping criterion,
which considers accuracy and consistency checks and outperforms PT4Cloud and Metior in the performance
testing for serverless functions.

8 CONCLUSION
This paper explores performance testing in the serverless computing domain. We proposed SCOPE, the first
performance testing approach specifically tailored for serverless computing, which included accuracy and
consistency checks. SCOPE emphasized the need for accuracy for most performance of serverless functions to
determine accurate and reliable performance. We investigated 65 serverless functions and used their performance
results to evaluate the effectiveness of SCOPE and state-of-the-art techniques. The results showed that SCOPE
provided testing results with 97.25% accuracy, 33.83 percentage points higher than the best currently available
technique.
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