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Abstract

Fine-tuning the pre-trained model with active learning holds promise for reducing annotation
costs. However, this combination introduces significant computational costs, particularly
with the growing scale of pre-trained models. Recent research has proposed proxy-based
active learning, which pre-computes features to reduce computational costs. Yet, this ap-
proach often incurs a significant loss in active learning performance, sometimes outweighing
the computational cost savings. This paper demonstrates that not all sample selection dif-
ferences result in performance degradation. Furthermore, we show that suitable training
methods can mitigate the decline of active learning performance caused by certain selec-
tion discrepancies. Building upon detailed analysis, we propose a novel method, aligned
selection via proxy, which improves proxy-based active learning performance by updating
pre-computed features and selecting a proper training method. Extensive experiments vali-
date that our method improves the total cost of efficient active learning while maintaining
computational efficiency. The code is available at https://github.com/ZiTingW/asvp.

1 Introduction

Training effective deep neural networks typically requires large-scale data (Deng et al., 2009; He et al., 2016;
Liu et al., 2021). However, the high cost of acquiring data, especially annotated data, poses a significant
challenge for practitioners (Budd et al., 2021; Norouzzadeh et al., 2021). Active learning and the pre-training
fine-tuning paradigm are widely adopted strategies to address this challenge. Active learning reduces the
demand for extensive annotation by iteratively selecting and labeling the most informative samples (Ren
et al., 2021). Additionally, the pre-training fine-tuning method leverages large-scale unsupervised pre-training
to create a powerful foundational model, enabling exceptional performance on downstream tasks with only
a limited amount of labeled data (Chen et al., 2020a; Grill et al., 2020; Caron et al., 2021; He et al., 2022).
To further minimize labels’ demands, researchers have turned their attention to active fine-tuning, which
fine-tunes the pre-training model with labeled samples selected by active learning strategies (Xie et al., 2023;
Chan et al., 2021; Bengar et al., 2021). However, as the scale of pre-training models continues to grow, the
sample selection time of active learning, which often is overlooked in traditional active learning, becomes a
challenge (Coleman et al., 2019). As illustrated in fig. 1, larger pre-training models lead to higher accuracy,
but also significantly increase the time required for active learning sample selection.

To address this issue, recent research has introduced an efficient active learning framework known as Selection
via Proxy based on pre-trained features (SVPp) (Zhang et al., 2024). SVPp begins by forwarding the entire
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Figure 1: Comparing sample selection time
and accuracy in active learning (margin
sampling) with different scale models. The
active learning included a total of 16 it-
erations, selecting a total of 400k samples
on the ImageNet dataset. All models are
pre-trained using BYOL-EMAN (Cai et al.,
2021).
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Figure 2: Comparison of the labeling and training costs
across random sampling, the standard active learning
pipeline, the efficient active learning method (SVPp), and
our method (ASVP), using margin sampling to achieve the
same accuracy as randomly selecting 400k samples on the
ImageNet dataset. A ResNet-50 model was employed, with
training costs calculated based on AWS EC2 P3 instances
(following Zhang et al., 2024), and annotation costs esti-
mated using AWS Mechanical Turk1 with triple reviews.

dataset through a pre-trained model once, recording pre-trained features for all samples. Subsequently, in
multiple iterations of active learning, a simple MLP classifier is trained using the pre-computed features for
sample selection. After the sample selection, the entire model is fine-tuned once. However, we observe that,
in comparison to the standard active learning method (fine-tuning the whole pre-trained model in each
active learning iteration), SVPp may compromise the effectiveness of active learning, resulting in additional
annotation costs. As depicted in fig. 2, we noticed that while SVPp significantly reduces active learning time
(training costs), its decline in active learning performance leads to a notable increase in annotation costs.
Practitioners therefore have to face the dilemma of weighing computational efficiency against overall cost
(the sum of labeling cost and the training cost).

In light of this challenge, in this paper, we analyze the factors contributing to the decline in active learning
performance when using SVPp in sec. 4. Beyond the intuition-aligned reason for SVPp active learning
performance decline: fine-tuned features being more capable of distinguishing sample categories than pre-
trained features, leading to the selection of redundant samples (i.e., samples the fine-tuned model can already
predict correctly), our analysis reveals an intriguing discovery: when pre-trained features are of comparable
quality to fine-tuned features, not all sample selection differences result in a decline in SVPp performance.
Moreover, some performance drops are due to samples selected by SVPp causing substantial modifications
to the pre-trained model during fine-tuning.

Based on these insights, we propose an aligned selection via proxy strategy, ASVP, to enhance the per-
formance of efficient active learning in sec. 5. First, we align the pre-computed features used by the proxy
model with the one used in standard active learning. Specifically, we update the pre-computed features based
on the fine-tuned model when the pre-trained features’ ability to distinguish sample categories significantly
lags behind the fine-tuned features. In addition, we switch the training method between linear-probing then
fine-tuning (LP-FT) (Kumar et al., 2022) and fine-tuning (FT) to mitigate the impact of samples selected
by the proxy model on the model’s performance.

Extensive experimental validation shows that our method improves the effectiveness of efficient active learn-
ing, achieving similar or better total cost savings compared to those of standard active learning, while still
maintaining computational efficiency.

1https://aws.amazon.com/sagemaker/groundtruth/pricing/
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The contributions of this paper can be summarized as follows: (1) This paper empirically analyzes which
sample selection differences contribute to the performance drop when employing SVPp. (2) We propose a
novel efficient active learning approach, aligned selection via proxy (ASVP), based on the detailed analysis.
It improves the performance of efficient active learning while incurring a marginal amount of computation
time. (3) We introduce a novel and practical evaluation metric for efficient active learning: the sample
saving ratio. This metric directly quantifies the savings in annotation achieved by employing active learning
strategies compared with the random baseline. It also facilitates the estimation of overall savings, including
savings in both computational and labeling costs, thereby assisting practitioners in making a decision on
whether to use efficient active learning strategies.

2 Related Work

Active learning is a technique that minimizes the number of labels needed for model training by selectively
requesting annotations for samples. Numerous active learning strategies have been proposed, primarily in-
cluding uncertainty sampling (Lewis & Catlett, 1994; Scheffer et al., 2001; Gal et al., 2017; Kirsch et al.,
2019; Woo, 2022), diversity sampling (feature space coverage) (Sener & Savarese, 2018; Mahmood et al.,
2022), their combinations (Yang et al., 2017; Ash et al., 2020; Shui et al., 2020), and some learning-based
approaches (Sinha et al., 2019; Yoo & Kweon, 2019; Tran et al., 2019). With the advancement of large-scale
unsupervised pre-training and fine-tuning, an increasing number of researchers have turned their attention
to active fine-tuning, which fine-tuning the pre-trained model with samples selected by active learning strate-
gies. Given the success of the pre-training fine-tuning mode, most works of active fine-tuning have focused
on developing active learning strategies that can work with extremely limited annotations (Hacohen et al.,
2022; Yehuda et al., 2022; Wen et al., 2023). Furthermore, researchers have validated the performance of ex-
isting active learning methods when applied to pre-training fine-tuning mode, demonstrating that traditional
margin sampling exhibits strong performance (Zhang et al., 2024; Emam et al., 2021).

Efficient active learning. Most active learning methods operate in a multi-round mode, iteratively training
models and selecting samples to label. This mode needs significant training time and costs. In the context
of active fine-tuning, this phenomenon becomes more pronounced, as larger models are better equipped to
effectively leverage data in unsupervised pre-training (Chen et al., 2020b; Oquab et al., 2023).

Increasing the active learning batch size, which refers to the number of samples selected per active learning
iteration, is one solution to enhance computational efficiency (Citovsky et al., 2021; Zhang et al., 2022).
However, it weakens the performance of active learning, and there remains the considerable computational
cost associated with training the entire network multiple times. Therefore, recent research has explored
single-shot active learning based on pre-trained features (Xie et al., 2023). However, as the number of
labels increases, the effectiveness of this method gradually diminishes in comparison to other standard active
learning strategies.

Another solution to boost active learning efficiency is to use less computationally intensive models or training
methods as proxy tasks for sample selection, known as Selection via Proxy (SVP) (Coleman et al., 2019).
Typical proxy tasks include reducing model complexity, such as using models like ResNet-8 or ResNet-14,
early stopping, or training linear classifiers or MLPs based on pre-trained features (Zhang et al., 2024).
However, these proxy tasks often have an impact on active learning performance and may result in savings
in computation costs not outweighing the increase in annotation costs. As a result, practitioners are often
faced with a trade-off between computational efficiency and the overall cost.

3 Preliminary

3.1 Selection via Proxy based on Pre-computed Features

We briefly review the Selection via Proxy framework based on pre-computed features, SVPp, as shown in
fig. 3. We denote the labeled set as L, the unlabeled set as U . The pre-trained neural network backbone is
defined as f(·; θp) : X → Rd, where θp represents weights of the pre-trained model, X is the data space and
Rd is feature space. And we define the predictor as h(·; θh) : Rd → Rc, where θh is weights of the predictor
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and Rc is the output space. SVPp follows a three-step process. First, all samples are forward-passed through
f(·; θp), and the pre-trained features are saved. Subsequently, the proxy model is trained, and samples are
selected iteratively based on the active learning strategy. In this process, the predictor h(·; θh) serves as the
proxy model, utilizing pre-computed features as its input. The final step is fine-tuning the pre-trained model
h(f(·; θp); θh) based on the obtained labels.

Figure 3: The Selection via Proxy based on pre-trained features (SVPp) Framework. Stage 1: pre-computing
features. Stage 2: sample selection based on the proxy model (a simple classifier) with pre-computed features
as input. Stage 3: Fine-tuning the pre-trained model using labeled samples.

3.2 LogME-PED

LogME-PED is an efficient metric for selecting pre-trained models, which outputs a score reflecting the
performance of fine-tuned models. LogME uses evidence as a metric to assess the compatibility between a
given pre-trained feature and the labels of the training samples (You et al., 2021), as shown in equation 1,
where F denotes the pre-trained features of the labeled set and w denotes the parameters of the linear
classifier. For specific calculation methods, refer to (You et al., 2021).

p(y|F ) =
∫

p(w)p(y|w, F )dw (1)

PED is a physically inspired model, that simulates feature learning dynamics through multiple iterations (Li
et al., 2023). The approach draws an analogy between the optimization objective during fine-tuning and the
concept of potential energy in physics. In fine-tuning, adjusting the model parameters forces the features
of different classes to be distinguished, akin to the movement of objects influenced by forces in physics.
Following this intuition, PED models the features of different classes as separate small balls, where the mean
and standard deviation of each class’s features correspond to the position and radius of the ball, respectively.
The force between balls is proportional to their overlapping length. In this physical model, the positions and
forces of the objects are updated iteratively until convergence. Finally, the updated features are regarded
as the features after fine-tuning the pre-trained model. Then, LogME is computed based on these updated
features to assess the performance of the fine-tuned model.

4 Observation and Analysis

Since practitioners utilizing proxy models for efficient active learning aim to reduce sample selection time
while minimizing the loss of active learning gains (between standard active learning based on fine-tuned
models and SVPp), the exact overlap between samples selected by the proxy model and those selected by
the fine-tuned model is not their primary concern. Therefore, in this section, we first investigate which
differences in sample selection lead to the degradation of SVPp active learning performance.
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4.1 Impact of Sample Selection Differences on SVPp Performance

We categorize the samples selected by both the proxy model and the fine-tuned model into different regions
based on whether the models can correctly predict the samples and the active learning metrics (such as
margin (Scheffer et al., 2001), entropy (Lewis & Catlett, 1994), etc.). As shown in fig. 4, the x and y axes
represent whether the proxy model and the fine-tuned model can correctly predict the samples, respectively.
The closer a sample is to the origin, the more likely it is to be selected in active learning. For uncertainty-
based active learning strategies (e.g., margin, entropy, confidence (Wang & Shang, 2014)) and strategies
combining uncertainty and diversity (e.g., BADGE (Ash et al., 2020)), a smaller distance from the origin
indicates higher uncertainty, such as a smaller margin predicted by the model. For distance-based active
learning strategies (e.g., coreset (Sener & Savarese, 2018)), a smaller distance from the origin indicates a
greater distance between the sample and the labeled set. Most effective active learning strategies for fine-
tuning pre-trained models are uncertainty-based or combine uncertainty with diversity (where the latter
extends the former by selecting diverse samples from the uncertainty candidates) (Zhang et al., 2024; Emam
et al., 2021), this paper will use uncertainty-based active learning as an example for analysis.

Standard active learning based on the fine-tuned model selects samples from regions O, A, and B, while
efficient active learning based on the proxy model selects samples from regions O, C, and D. In other words,
compared to the fine-tuned model, the proxy model misses samples from regions A1, A2, B1, and B2 while
additionally selecting samples from regions C and D.

Figure 4: Sample Selection Discrepancy: Proxy vs. Fine-tuned Models. For instance, in uncertainty-based
active learning strategies, the two axes represent the confidence of predictions for the proxy model and
the fine-tuned model, with the positive half-axis indicating correct predictions and the negative half-axis
indicating incorrect predictions. AL strategy selects samples with the lowest prediction confidence, meaning
the proxy model chooses samples from regions O, C, and D, while the fine-tuned model selects samples from
regions O, A, and B. Depending on whether the proxy model correctly predicts the samples, regions A and
B are further divided into subregions A1, A2, B1, and B2. Both the proxy model and the fine-tuned model
confidently predict the remaining white region, hence they do not select samples from it.

Empirical Evidence We conducted replacement experiments to demonstrate the impact of missing sam-
ples from regions A1, A2, B1, and B2 on SVPp active learning performance. In this section, we used one of
the state-of-the-art strategies, margin sampling, with fine-tuned pre-trained models. A total of 400k samples
were selected over 16 rounds, with the first 10k samples selected randomly. The experiments were conducted
on ImageNet, with detailed settings provided in sec. 6.1.

Specifically, during each round of sample selection, we replaced the tail samples selected by the proxy model
(i.e., those with the largest margins) with samples from regions A1, A2, B1, and B2. As shown in fig. 5, we
observed that not all differences in sample selection caused performance degradation in SVPp active learning.
Replacing samples with those from regions A2 and B2 improved SVPp active learning performance, replacing
samples from region A1 had no effect, while replacing samples from region B1 decreased performance. Based
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Figure 5: The impact of different regions on SVPp active learning performance. Replacing samples selected
by the proxy model with those from regions A1, A2, B1, B2. The active learning gain refers to the difference
in accuracy between active learning and the random baseline.

on these observations, to improve the performance of SVPp active learning, we should focus on the sample
selection differences from regions A2 and B2.

To investigate why samples from regions A1 and B1 fail to improve SVPp performance, we analyzed the
difficulty of samples across different regions. Recent studies suggest that hard-to-learn samples are likely
to undermine active learning performance (Karamcheti et al., 2021). A1 and B1 regions, compared to A2
and B2, likely contain a higher proportion of difficult samples. This is because the fine-tuned model’s
predictions on these samples show high uncertainty, while the proxy model’s predictions on them are wrong.
To validate this hypothesis, we utilized Dataset Maps (Swayamdipta et al., 2020) to assess sample difficulty.
Dataset Maps depict sample learnability by analyzing training dynamics from models trained on the entire
dataset, using metrics such as average confidence for the correct class and prediction accuracy across training
epochs to quantify difficulty. Following Karamcheti et al. (2021), we categorized sample difficulty based
on mean confidence levels: very hard (<0.25), hard (>=0.25 and <0.5), medium (>=0.5 and <0.75), and
easy (>=0.75). As illustrated in fig. 6, regions A1 and B1 indeed contain a higher proportion of very hard
samples.
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Figure 6: Difficulty distribution of samples from different regions.

4.2 Role of Region A2 and B2 in Improving SVPp Performance

Those missed samples (Region A2, B2) that can improve SVPp performance share a common characteristic:
the proxy model can confidently predict them correctly, while the fine-tuned model shows high uncertainty in
its predictions. This indicates that these samples are well-distinguished using pre-trained features, whereas
they are harder to differentiate in the fine-tuned features. Including these samples in the next round of active
learning will help the fine-tuned model distinguish them. A question arises: are the pre-trained feature
manifold and the fine-tuned feature manifold (training with samples from regions A2 and B2)
similar?
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Empirical Evidence To answer this question, we conducted a backbone exchange experiment to compare
the similarity between the fine-tuned and pre-trained features. We put the linear classifier of the fine-tuned
model on top of the pre-trained backbone and evaluated its accuracy loss on the test set. The greater
the accuracy drop after exchanging the backbone, the more dissimilar the fine-tuned features are from the
pre-trained features.

We created five sets of training samples by replacing 0% (w/o replacing), 5%, 10%, 15%, and 20% of the
samples selected by the proxy model with the samples from regions A2 and B2 that had the smallest margins.
After training on these sets, the accuracy loss is evaluated by putting the fine-tuned model’s linear classifier
on top of the pre-trained backbone. As shown in fig. 7, the accuracy drop decreased as more samples from
A2 and B2 were included in the train set, indicating that incorporating these samples helps maintain the
feature manifold similar to the pre-trained model.
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Figure 7: The influence of samples from regions A2
and B2 on the similarity between fine-tuned and pre-
trained features. Exchange-backbone accuracy loss
refers to the accuracy difference between the fine-
tuned model’s linear classifier placed on the pre-
trained backbone and the fine-tuned model.
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Figure 8: Comparison of active learning performance
based on the fine-tuned model (standard active learn-
ing) and proxy model when employing different train-
ing methods. The active learning gain refers to the
difference in accuracy between active learning and the
random baseline (using fine-tuning).

Based on this observation, another intriguing question arises: can directly maintaining the similarity
between fine-tuned and pre-trained features mitigate the performance drop caused by the
proxy model missing samples from regions A2 and B2?

Empirical Evidence To explore this, we employed two training methods: fine-tuning and LP-FT (Linear
Probing and then Fine-Tuning), to compare the performance differences between SVPp (sample selection via
proxy model and evaluation via fine-tuning or LP-FT) and standard active learning (both sample selection
and evaluation via fine-tuning or LP-FT). In LP-FT, linear probing is followed by fine-tuning to preserve
the similarity between the fine-tuned features and the pre-trained features.

As shown in fig. 8, after applying LP-FT, the active learning performance based on the proxy model was
almost identical to that based on the LP-FT model. This suggests that samples from regions A2 and
B2 enhance active learning performance by preserving the similarity between the fine-tuned and pre-trained
feature manifold. Therefore, directly preserving this similarity compensates for the decrease in active learning
performance caused by the proxy model’s omission of samples from regions A2 and B2.

4.3 Discussions

The previous section discussed that not all differences in sample selection between SVPp and standard active
learning result in performance differences (only those from regions A2 and B2 do). Moreover, when using
LP-FT to train the model, the sample selection differences from regions A2 and B2 do not cause a decline
in SVPp active learning performance. Next, we discuss the limitations of the above analysis.
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Firstly, given the training samples, we always aim to choose the training method that achieves the highest
accuracy. Therefore, it is only meaningful to use LP-FT to compensate for the proxy model missing samples
from regions A2 and B2 if LP-FT can achieve accuracy that is at least as good as fine-tuning. Secondly, as
the number of selected samples increases, the performance gap between the fine-tuned model and the proxy
model may widen (Cai et al., 2021). This could reduce the active learning gain of SVPp, thus affecting
the previous conclusion about the impact of missed regions (A1, A2, B2, B2) by the proxy model on active
learning performance. Therefore, we further analyzed the proportion of samples from regions C and D, as
well as their impact on active learning gain.
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Figure 9: Observations on region C and D: (a) the proportion of region C and D, (b) comparison of active
learning gain when selecting only samples from region C or D. The active learning gain refers to the difference
in accuracy between active learning and the random baseline.

As shown in fig. 9a, with more samples selected during active learning, the proportion of samples from
region C selected by the proxy model increases, while the proportion from region D decreases. This aligns
with intuition: as the number of annotations increases, the features of the fine-tuned model become better
at distinguishing between sample categories than those of the proxy model, increasing correctly predicted
samples (samples from region C). Additionally, as shown in fig. 9b, selecting samples from region C results
in an active learning gain of less than 0, meaning it performs worse than random selection. These two
observations imply that as more samples are selected during active learning, the proxy model selects more
samples from region C, causing its active learning performance to decline. As the proxy model’s active
learning performance declines, it may lead to all missed regions (A1, A2, B1, B2) contributing to performance
differences between SVPp and standard active learning.

In summary, when LP-FT training achieves performance comparable to fine-tuning and the proportion of
samples from region C is small, using LP-FT can prevent the decline in active learning gains caused by
SVPp. The next section discusses how to adjust proxy model-based active learning to build an efficient
active learning framework when these conditions are not met.

5 Method

This section first addresses the issue of the increasing proportion of region C samples, which makes LP-
FT insufficient to prevent the decline in SVPp active learning performance. Region C refers to samples
that the fine-tuned model can predict correctly with high confidence, while the proxy model struggles to
differentiate them (high uncertainty). This indicates that the fine-tuned model’s features are more suitable
for distinguishing these samples. To address this, we recommend fine-tuning the pre-trained model as the
number of region C samples increases. Updating the pre-computed features enhances the proxy model’s
discriminative capacity, thereby reducing the proportion of region C samples. Additionally, when updating
pre-computed features, we switch the model training method from LP-FT to fine-tuning. Continuing with
LP-FT when fine-tuned features outperform pre-trained features can lead to suboptimal results by hindering
necessary modifications to the pre-trained model.
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The ASVP framework is divided into three stages: pre-computation of features, data selection, and final
model training. The data selection stage of our method is illustrated in fig. 10. During the data selection
stage, the proxy model uses pre-computed features (pre-computed features refer to pre-trained features when
feature updating is not triggered) as input and performs multiple rounds of active learning (alternating
between sample selection and proxy model training). At each iteration, we check if an update to the pre-
computed features is needed. If the annotation budget is exhausted without triggering a feature update,
LP-FT is used to train the final model. If an update is detected, fine-tuning is performed to generate new
pre-computed features for the following rounds of sample selection. After the sample selection, the final
model is trained using fine-tuning.

Figure 10: The Data Selection Pipeline in our approach, Aligned Selection via Proxy (ASVP). After acquiring
new labels from the oracle, we assess the necessity of updating the pre-computed features. If required, the
pre-trained model is fine-tuned, and the pre-computed features are updated.

Next, we explain when it becomes necessary to update the pre-computed features. As discussed in sec. 4,
as the number of annotations increases, the quality of fine-tuned features improves gradually, resulting in a
higher proportion of samples selected by the proxy model from the redundant region. Also, including the
samples from the redundant region rarely improves the performance of the fine-tuned model. Hence, we
assess the ratio of redundant region samples by evaluating the changes in the performance of the fine-tuned
model after adding more annotated samples. To assess the changes in the fine-tuned model’s performance,
we employ LogME-PED (You et al., 2021; Li et al., 2023) as an indicator.

Specifically, in every active learning iteration, we first compute the PED component. If convergence is
achieved within a single iteration, we infer that the fine-tuned features will maintain similarity to the pre-
trained features. So, there is no need to calculate the LogME metric and update the pre-computed features.
However, if the PED component converges with more than one iteration, we proceed to compute the LogME
metric. When the difference between the current LogME score and that from the previous active learning
iteration is below a predefined threshold, we deduce that the fixed pre-trained features pose a significant
obstacle to the performance improvement of the proxy model, prompting us to fine-tune the model and
update the pre-computed features.

6 Results

Our method is validated on four datasets: ImageNet-1k (Deng et al., 2009), CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009) and Oxford-IIIT Pet dataset (Parkhi et al., 2012) with five
typical active learning strategies. The experiment setup is clarified in sec. 6.1. We propose the new efficient
active learning evaluation metric in sec. 6.2. The results are shown in sec. 6.3 and sec. 6.4. The ablation
study is shown in sec. 6.5. The detailed study of the impact of the position of updating features is shown
in sec. 6.6. Additionally, given the efficiency of our framework, decreasing the amount of sample selected in
each active learning iteration to alleviate the redundant problem of batch active learning strategy is feasible.
The results are shown in appendix F.
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6.1 Experiment Setup

Active learning strategies. To evaluate the compatibility of our proposed ASVP with existing active
learning strategies, four typical active learning strategies are included: (1) Margin: uncertainty-based sam-
pling, one of the SOTA in the context of fine-tuning pre-trained models (Scheffer et al., 2001), (2) Confidence:
uncertainty-based sampling (Wang & Shang, 2014), (3) Coreset: diversity-based sampling (Sener & Savarese,
2018), (4) BADGE: combination of uncertainty and diversity (Ash et al., 2020), (5) ActiveFT(al), feature
space coverage with features from fine-tuned model (Xie et al., 2023).

Baseline. (1) Standard active learning: training the whole model with fine-tuning (FT) or linear-probing
then fine-tuning (LP-FT) (Kumar et al., 2022) in each active iteration, (2) SVPp (Zhang et al., 2024):
selecting samples via MLP proxy model based on pre-trained features and training the final model with FT,
(3) ActiveFT(pre) (Xie et al., 2023): a single-shot active learning strategy that selects all sample in single
iteration based on pre-trained features.

Implementations. We utilized the ResNet-50 model (He et al., 2016), pre-trained on ImageNet using the
BYOL-EMAN (Cai et al., 2021) method in all our experiments. The training hyper-parameters of the two
model training approaches, fine-tune (FT) and LP-FT, are provided in appendix A. For the baseline method
(SVPp) and our method (ASVP), we employed 2-layer MLPs as proxy models, where its architecture is
Linear + BatchNorm + ReLU + Linear. The hidden layer width matched the input feature dimensions.
We performed multiple active learning iterations until the model performance approached that of training
on the entire dataset (upper bound). Specifically, for the ImageNet, CIFAR-10, CIFAR-100, and Pets
datasets, we conducted 16, 18, 22, and 10 active learning iterations, respectively. The query step was set
to 200 samples per iteration for the Pets dataset. For ImageNet, CIFAR-10, and CIFAR-100, we used
varying query steps: for ImageNet, we queried 10,000 samples per iteration until reaching 100,000 samples,
after which we queried 50,000 samples per iteration. For CIFAR-10, we queried 200 samples per iteration
until reaching 2,000 samples, then increased to 500 samples per iteration. For CIFAR-100, we queried 400
samples per iteration until reaching 6,000 labeled samples, then switched to 2,000 samples per iteration. The
difference in LogME-PED scores between consecutive active learning iterations is set as 1 for the threshold
of updating pre-computed features.

6.2 Metric

Efficient active learning methods often exhibit a lower accuracy compared to standard active learning ap-
proaches. Understanding the additional annotation costs needed to compensate for the accuracy gap caused
by efficient active learning allows practitioners to weigh the computational cost savings against increased
labeling expenses, aiding their decision to utilize these methods.

To this end, we propose a new evaluation metric: equivalent saving amount. Let N1 represent the number
of samples selected by the active learning strategy, and let A be the accuracy achieved by a model trained
with these N1 labeled samples. We utilize interpolation to estimate the number of samples, N2, required to
achieve accuracy A for a random baseline. We refer to N2 as the equivalent number of non-AL labels in
the subsequent discussions. The number of saved samples is N2 − N1 and sample saving ratio is N2−N1

N2
.

Subsequently, we compute the average sample saving ratio across all iterations of active learning to assess
the performance of the active learning strategy. Furthermore, the overall cost of active learning, including
annotation and training costs, equals N1 × Pl + Ctr, where Pl denotes the unit price of annotation and Ctr

represents the training cost of active learning.

6.3 Sample Saving Ratio and Overall Cost

The average sample savings ratios are presented in table 1, with each experimental setting repeated three
times to report both the average and standard deviation. The table also illustrates the total cost required
for active learning to reach the accuracy achieved by the random baseline at the last active learning iteration
(i.e., the accuracy achieved when randomly selecting 400k, 6000, 20000, and 2000 samples from ImageNet,
CIFAR-10, CIFAR-100, and Pets datasets, respectively). The training cost is assessed based on AWS EC2
P3 instances (Zhang et al., 2024), while the annotation cost is evaluated using AWS Mechanical Turk,
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with three annotations per sample to ensure labeling quality. Additionally, Figures 11 and 12 show the
accuracy and corresponding label savings achieved with margin sampling, while results using other active
learning strategies are provided in Appendix E. Figure 13 shows the sampling time and total cost required by
standard active learning, SVPp, ASVP (ours), and the single-shot active learning strategy, ActiveFT (pre),
to achieve the accuracy attained by the random baseline at the final active learning iteration.

Table 1: Average sample savings ratios, with each configuration repeated three times to calculate the average
and standard deviation. The training method indicates how the final model is trained, and the selection
method indicates the model used for sample selection. The cost refers to the total cost required for active
learning to achieve the accuracy achieved by the random baseline in the last active learning iteration. The
cost-saving ratio refers to the average ratio of the cost of active learning to the cost of the random baseline.
The best results are shown in red and the second-best results are in blue.

ImageNet CIFAR-10 CIFAR-100 Pets Cost
Selection Training AL Avg. Sample Cost Avg. Sample Cost Avg. Sample Cost Avg. Sample Cost Saving
Method Method Strategy Saving Ratio ($) Saving Ratio ($) Saving Ratio ($) Saving Ratio ($) Ratio

Standard FT Random 0% 14400 0% 216 0% 720 0% 72 100%

Standard FT

Margin 30.30±1.09 8752 40.23±0.51 134 14.54±2.46 578 31.67±2.30 49 68%
BADGE 21.33±0.38 10018 36.18±0.34 128 13.73±2.07 580 33.01±3.17 47 69%

Confidence -3.42±0.75 9619 24.99±1.37 142 4.23±2.34 567 27.24±3.28 50 70%
Coreset - - 12.44±2.42 192 -13.90±2.31 722 -4.05±2.31 74 97%

ActiveFT(al) - - 12.39±3.26 186 3.03±1.17 798 -5.20±2.28 97 111%

Standard LP-FT

Margin 32.22±0.27 9884 37.39±1.28 139 22.31±1.83 509 6.97±2.55 73 76%
BADGE 24.12±0.54 11901 29.54±0.70 136 19.81±1.28 528 6.74±3.84 68 78%

Confidence 0.11±1.51 10125 20.10±4.01 138 13.49±2.90 510 9.58±3.41 73 77%
Coreset - - -4.60±4.09 244 -16.76±1.78 769 -36.93±4.53 110 124%

ActiveFT(al) - - -2.13±0.11 249 6.38±1.35 755 -29.33±10.58 104 122%

Single-shot FT ActiveFT(pre) - - 1.40±1.50 235 -0.21±1.41 822 -11.92±1.26 118 129%
LP-FT - - 5.02±4.02 238 8.92±2.34 742 -38.10±2.61 235 180%

SVPp FT

Margin 25.16±1.47 9094 19.86±2.53 184 3.51±0.77 654 23.48±4.09 50 77%
BADGE 16.17±1.84 11374 19.35±3.66 156 0.51±0.74 657 -7.78±2.42 85 90%

Confidence -8.56±2.88 9678 1.53±1.82 171 -7.93±1.85 644 2.40±7.25 66 82%
Coreset - - -54.78±8.88 1355 -56.53±3.12 903 -38.63±11.64 87 291%

ActiveFT(al) - - 3.79±4.31 192 -0.50±1.42 713 -11.63±6.85 319 210%

ASVP FT/LP-FT

Margin 34.38±1.57 8690 32.45±1.13 127 12.82±1.40 590 21.98±0.50 47 67%
BADGE 25.57±2.54 10305 32.87±0.84 137 10.11±1.13 577 6.10±5.59 55 73%

Confidence 5.88±0.66 9479 25.67±2.48 167 2.75±1.17 616 14.81±3.17 50 75%
Coreset - - 11.11±1.74 192 -26.16±1.76 767 -46.3±10.26 91 107%

ActiveFT(al) - - 26.67±0.66 155 6.81±1.70 775 -7.74±4.81 47 82%
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Figure 11: The accuracy of the standard method, SVPp, and our method ASVP on (a) ImageNet, (b)
CIFAR-10, (C) CIFAR-100 and (d) Pets using margin sampling.

Our method consistently outperforms the efficient active learning method, SVPp, in terms of sample saving
ratio and overall cost reduction. It surpasses the single-shot active learning strategy, ActiveFT(pre), when
combined with most active learning strategies. In most cases, our approach offers similar or greater overall
cost savings compared to standard active learning. This alleviates practitioners’ concerns about overall
costs when using efficient active learning. Additionally, in standard active learning methods, the lack of
a clear criterion for choosing the proper training method may lead to suboptimal results. Specifically, the
standard active learning with FT outperforms the standard active learning with LP-FT on CIFAR-10 and
Pets, while on ImageNet and CIFAR-100, the standard (LP-FT) method demonstrates better performance.
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Figure 12: The equivalent number of non-active learning label amounts comparison of the standard method,
SVPp, and our method ASVP on (a) ImageNet, (b) CIFAR-10, (C) CIFAR-100 and (d) Pets using margin
sampling.
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Figure 13: Computation efficiency and overall cost comparison of the standard active learning method,
SVPp, and our method ASVP on (a) ImageNet, (b) CIFAR-10, (C) CIFAR-100 and (d) Pets using margin
sampling.

In contrast, our approach, by switching training methods, ensures a relatively favorable performance in
practical applications.

Compared to the single-shot active learning method ActiveFT(pre), our approach is compatible with various
existing active learning strategies and exhibits lower dependence on the quality of pre-trained features.
The reliance of ActiveFT(pre) on the quality of pre-trained features leads to suboptimal results. This is
particularly evident in datasets like Pets, where the pre-trained feature quality is low.

6.4 Computational Time

We define the average training time for the fine-tuned and the proxy models in each active learning iteration
as Ttr,full and Ttr,proxy, respectively. The time for processing all unlabeled samples through the whole pre-
trained model and the proxy model to compute active learning metrics and select samples is denoted as Tf,full

and Tf,proxy, respectively. The time spent on forwarding all samples through the model to record features
is represented by Tpre. The number of active learning iteration is given by Nal. The total active learning
time for standard active learning, Ts,full, is Nal × (Ttr,full + Tf,full). The total time for SVPp, Ts,svpp, is
Nal×(Ttr,proxy+Tf,proxy)+Tpre. For ASVP, the initial pre-computed features are obtained from a pre-trained
model. When updating these pre-computed features is necessary, the model is fine-tuned on labeled data, and
the pre-computed features are refreshed accordingly. Let Npre denote the number of times the ASVP features
are pre-computed, then, the time required for pre-computing features is Npre×Tpre+(Npre−1)×Ttr,full. The
total time required by ASVP, denoted as Ts,asvp, is Nal×(Ttr,proxy+Tf,proxy)+Npre×Tpre+(Npre−1)×Ttr,full.

The computation time of standard active learning, SVPp, and ASVP on ImageNet is presented in table 2.
The results on other datasets are shown in appendix B. The time for ASVP mainly arises from updating
pre-computed features, as the computation time for the proxy model, an MLP, is significantly lower than
that of the fine-tuned model. This means that increasing the number of active learning iterations Nal has a
marginal impact on ASVP’s total time. Therefore, this opens up the potential to improve the diversity of
selected samples by reducing the number of samples chosen in each active learning iteration.
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Table 2: Computation time comparison of various active learning sample selection methods on ImageNet
using V100 GPU.

Tpre(hrs) Nal × Tf (hrs) Nal × Ttr(hrs) Ts(hrs)
Standard - 16.36 80.97 97.33

SVPp 0.92 0.10 0.46 1.48
ASVP 8.60 0.10 0.46 9.16

6.5 Ablation Study

Our ablation study was conducted on CIFAR-10, CIFAR-100, and Pets, using 10, 15, and 10 active learning
iterations, respectively, with each iteration querying 200, 400, and 200 samples. All other settings follow
those described in sec. 6.1. The results with margin sampling are shown in Table 3, while additional ablation
studies with other active learning strategies are provided in Appendix C. Across all three datasets, updating
pre-computed features consistently led to a noticeable performance boost. Meanwhile, switching training
methods improved performance on all datasets except for the Pets dataset, suggesting that our method may
not precisely determine the optimal point for switching training methods. However, considering the practical
scenario where we cannot pre-determine whether using FT or LP-FT for training is better, our approach
still aids in selecting a preferable training method.

Table 3: Ablation Study. Comparison of the average sample saving ratio of only updating pre-computed
features (training the final model using fine-tuning), solely switching training methods (using pre-trained
features), and the complete ASVP approach (both updating pre-computed features and switching training
methods) under different datasets with margin sampling.

Update Pre-computed Features Switch Training Methods CIFAR-10 CIFAR-100 Pets
No No 23.63±4.01 1.36±1.45 23.48±4.09
No Yes 24.96±2.74 7.69±1.56 18.45±3.89
Yes No 31.42±2.65 6.98±2.03 27.01±0.51
Yes Yes 35.03±1.89 13.31±1.86 21.98±0.50

6.6 Influence from Position of Updating Features

We examined the impact of the position of updating pre-computed features on CIFAR-10. The average
savings ratio is presented in table 4. The choice of updating pre-computed features does indeed affect the
final performance of ASVP. Nevertheless, across the six different positions explored in the experiments,
ASVP consistently outperforms the method relying solely on pre-training features (SVPp). Furthermore,
our proposed method for determining the update location based on LogME-PED proves to be effective. On
CIFAR-10, this method selects the update of pre-computed features at 600 labels, ranking as the second-best
among the six experimental positions, as shown in table 4. The positions of updating pre-computed features
estimated through LogME-PED are outlined in appendix D.

Table 4: The influence of the position of updating pre-computed feature on average sample savings ratios
on CIFAR-10. The best results are shown in red and the second-best results are in blue.

Change at Avg. Sample Saving Ratio Change at Avg. Sample Saving Ratio
w/o 23.63±4.01
200 33.13±2.32 800 36.03±1.48
400 32.13±4.60 1000 32.75±1.91
600 35.03±1.89 1200 31.33±1.87
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7 Conclusion

Active learning on pre-trained models offers label efficiency but requires significant computational time,
whereas current efficient active learning methods tend to compromise a notable fraction of active learning
performance, resulting in increased overall costs. To address this challenge, this paper attributes the reduced
performance of SVPp to (1) the absence of samples necessary to preserve fine-tuned features similar to the
pre-trained features and (2) an increased selection of redundant samples due to fine-tuned features becoming
better than pre-trained features as the annotation increases. Building upon this analysis, we propose a simple
and effective method, ASVP, to improve the effectiveness (in terms of accuracy) of efficient active learning
with comparable or marginally increased computational time. Additionally, we introduce the sample savings
ratio as a metric to assess the effectiveness of efficient active learning, providing a straightforward measure
for labeling cost savings. Experiments show that our proposed ASVP saves similar or greater total costs in
most cases while maintaining computational efficiency.

8 Limitations and Future Directions

Due to limited computational resources, this paper evaluates efficient active learning methods’ labeling and
training costs using a ResNet-50 model with a specific pre-training method, BYOL-EMAN (Grill et al., 2020;
Cai et al., 2021). Although ResNet-50 serves as a practical choice for our experiments and provides a reliable
baseline, larger models achieve higher accuracy and are often more helpful in practical applications (Zhai
et al., 2022). Existing research shows that larger models exhibit better label efficiency, requiring fewer
labeled samples to reach the same accuracy as smaller models (Chen et al., 2020b). This implies that in
active learning, using larger models may reduce labeling costs while increasing training costs. Therefore,
the total cost savings achieved by both standard and efficient active learning methods are closely tied to
model size. Evaluating the impact of model size on total cost savings, and exploring efficient active learning
methods that can effectively reduce sample selection time and total cost (labeling and training costs) in the
context of larger models, are important directions for future research.

Furthermore, when transferring to downstream datasets (used for active learning), different pre-trained
models exhibit varying performance gaps between fine-tuning and linear probing. A smaller gap suggests
higher-quality pre-trained features, making it easier for proxy models based on these features to select
samples similar to those chosen by fine-tuned models. This means that proxy model-based active learning
may compromise less on performance compared to standard active learning. Therefore, exploring how to
select suitable pre-trained models is another interesting direction for future research.
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A Hyperparameters

Fine-tuning, linear probing then fine-tuning (LP-FT), and proxy model training all utilized the SGD with
momentum optimizer, with a momentum value of 0.9. For fine-tuning and LP-FT, the batch size in the
training stage is 128 and the batch size in the sample selection stage of the active learning is 512.

The hyper-parameters of fine-tuning are shown in table 5. For ImageNet, we adopted the fine-tuning pa-
rameters following the prior work (Cai et al., 2021). Setting the learning rates separately for the classifier
head and the backbone. For CIFAR-10, CIFAR-100, and Pets, we followed prior work (Cai et al., 2021) to
set the learning rate of the classifier as 0.1 and to search other hyper-parameters. The hyper-parameters are
detailed in table 5. The learning rate of the backbone was searched from (0.01, 0.05, 0.1 0.3) and the weight
decay from (0, 0.0001). Additionally, to maintain consistency in training iterations between fine-tuning and
LP-FT, we set the number of fine-tuning epochs as the sum of linear probing and fine-tuning epochs in
LP-FT training.

Table 5: The hyper-parameters of the fine-tuning.

Dataset Learning Rate Training Weight
Classifier Backbone Epochs Decay

ImageNet 0.1 0.01 50 0.0001
CIFAR-10 0.1 0.1 130 0
CIFAR-100 0.1 0.05 150 0

Pets 0.1 0.1 140 0

For the LP-FT hyper-parameters, we conducted a search within the following ranges: (0.01, 0.1) for the
classifier’s learning rate, (0.01, 0.05, 0.1, 0.3) for the backbone’s learning rate, (0.05,0.1,0.5) for learning rate
in linear-probing (LP) stage, and (0, 0.0001) for weight decay. Fine-tuning (FT) training epochs were set at
120. For ImageNet, linear probing (LP) training epochs were searched from (5, 10), while for other datasets,
LP training epochs were explored from (5, 10, 20, 30). Given the numerous hyper-parameters in LP-FT, we
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sequentially search the backbone learning rate, classifier learning rate, weight decay, and LP training epochs.
The final hyper-parameters are shown in table 6, where the weight decay is 0 and the learning rate in the
LP stage is 0.5 across all datasets.

Table 6: The hyper-parameters of LP-FT.

Dataset Learning Rate Training Epochs
Classifier Backbone LP FT

ImageNet 0.01 0.01 5 45
CIFAR-10 0.1 0.01 10 120
CIFAR-100 0.1 0.01 30 120

Pets 0.1 0.1 20 120

The proxy model was trained 50 epochs with a learning rate of 0.01 and the weight decay of 0. During the
training stage, the batch size is 2048 and in the active learning stage, the batch size is 16384.

B Computation Time

The time for standard active learning, SVPp and ASVP on V100 GPU is presented in table 7. The active
learning setup, outlined in sec. 6.1, performs a total of 10 active learning iterations on CIFAR-10 and Pets,
where 200 samples are selected for each iteration. Regarding CIFAR-100, it spans 15 iterations, selecting
400 samples per iteration.

Table 7: Sample selection time of standard active learning methods, SVPp, and our proposed method ASVP
on CIFAR-10, CIFAR-100, and Pets. Experiments conducted on V100 GPU.

CIFAR-10 (hrs) CIFAR-100 (hrs) Pets (hrs)
Standard 6.94 20.96 1.50

SVPp 0.22 0.13 0.03
ASVP 0.85 1.10 0.05

C Ablation Study

The results of ablation experiments with various active learning strategies are shown in table 8, table 9,
table 10. Specifically, feature alignment refers to whether the ASVP method updates pre-computed features
using fine-tuned model features, while training alignment indicates the selection of the final model train-
ing method (FT or LP-FT) based on LogME-PED scores. In all ablation experiments, feature alignment
consistently demonstrates notable improvements. Training alignment, except for the Pets dataset, exhibits
enhancements.

Table 8: Ablation Study: Comparing the average sample saving ratio using the active learning strategy
BADGE.

Feature alignment Training alignment CIFAR-10 CIFAR-100 Pets
No No 14.96±5.89 -2.11±0.85 -7.78±2.42
No Yes 18.3±4.68 3.81±0.44 -15.61±1.93
Yes No 30.34±2.06 2.25±2.25 13.93±5.21
Yes Yes 33.67±0.84 8.16±1.98 6.1±5.59

D Postion of Updating Pre-computed Features

The ASVP method uses the difference in LogME-PED scores between consecutive active learning iterations
to decide if updating pre-computed features is required. The absolute differences in LogME-PED scores
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Table 9: Ablation Study: Comparing the average sample saving ratio using the active learning strategy
confidence.

Feature alignment Training alignment CIFAR-10 CIFAR-100 Pets
No No -11.54±2.3 -14.43±2.49 2.4±7.25
No Yes -9.61±1.43 -7.86±2.16 -0.83±7.34
Yes No 21.99±3.32 -7.19±1.69 18.05±2.92
Yes Yes 23.92±5.16 -0.62±1.43 14.81±3.17

Table 10: Ablation Study: Comparing the average sample saving ratio using the active learning strategy
ActiveFT(al).

Feature alignment Training alignment CIFAR-10 CIFAR-100 Pets
No No -4.72±5.78 0.25±0.92 -11.63±6.85
No Yes -1.89±6.12 5.66±0.97 -14.76±6.74
Yes No 24.62±1.31 5.86±2.24 -4.61±4.97
Yes Yes 27.45±1.42 11.28±2.01 -7.74±4.81

are illustrated in fig. 14a, fig. 14b, fig. 14c. When the threshold is defined as 1, the updating positions are
detailed in table 11.

Table 11: Positions of updating pre-computed features. The number of the PED convergence iterations is
used to determine if updating pre-computed features is required. The positions are estimated by the absolute
difference in LogME-PED scores between consecutive active learning iterations, where a difference smaller
than 1 indicates an update.

Updating Features Position
ImageNet Yes 150k
CIFAR-10 Yes 600 and 2000
CIFAR-100 Yes 2000 and 6000

Pets Yes 800

500 750 1000 1250 1500 1750 2000
Label Amount

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|L
og

M
E

-P
E

D
 d

iff
er

en
ce

|

(a) CIFAR-10

1000 2000 3000 4000 5000 6000
Label Amount

0

1

2

3

4

5

6

|L
og

M
E

-P
E

D
 d

iff
er

en
ce

|

(b) CIFAR-100

500 750 1000 1250 1500 1750 2000
Label Amount

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|L
og

M
E

-P
E

D
 d

iff
er

en
ce

|

(c) Pets

Figure 14: The absolute differences in LogME-PED scores between consecutive active learning iterations on
(a) CIFAR-10, (b) CIFAR-100 and (c) Pets.

E Results of other Active Learning Strategies

The accuracy and the equivalent non-active learning label amount of all active learning strategies on Ima-
geNet, CIFAR-10, CIFAR-100 and Pets are shown in the fig. 15-fig. 22. The equivalent non-active learning
label amount refers to the number of samples selected by a random baseline to achieve the same accuracy
as active learning.
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In fig. 23-fig. 26, we illustrate the overall costs (the labeling cost and the active learning training cost)
and computational efficiency achieved by the standard active learning method, SVPp, and our proposed
ASVP across different datasets. Compared to the existing efficient active learning method, SVPp, our
method significantly improves the overall cost while maintaining the computational efficiency. ASVP achieves
comparable overall costs while significantly reducing active learning computation time compared to the
standard active learning method. This effectively addresses the trade-off practitioners encounter between
computational efficiency and total costs, offering confidence in adopting efficient active learning methods.
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Figure 15: The accuracy of the standard method, SVPp, and our method ASVP on the ImageNet using
(a) Margin, (b) BADGE and (c) Confidence sampling.
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Figure 16: The equivalent number of non-active learning label amounts comparison of the standard method,
SVPp, and our method ASVP on ImageNet using (a) Margin, (b) BADGE and (c) Confidence sampling.
The equivalent non-active learning label amount refers to the number of samples selected by a random
baseline to achieve the same accuracy as active learning.
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Figure 17: The accuracy of the standard method, SVPp, and our method ASVP on the CIFAR-10 using
(a) Margin, (b) BADGE, (c) Confidence, (d) ActiveFT(al) and (e) Coreset sampling.

F Improvement from Small Batchsize

The training costs associated with deep neural networks often lead practitioners to increase the number
of samples selected per active learning iteration to ensure computational feasibility. Unfortunately, this
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Figure 18: The equivalent number of non-active learning label amounts comparison of the standard method,
SVPp, and our method ASVP on the CIFAR-10 using (a) Margin, (b) BADGE, (c) Confidence, (d)
ActiveFT(al) and (e) Coreset sampling. The equivalent non-active learning label amount refers to the
number of samples selected by a random baseline to achieve the same accuracy as active learning.
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Figure 19: The accuracy of the standard method, SVPp, and our method ASVP on the CIFAR-100 using
(a) Margin, (b) BADGE, (c) Confidence, (d) ActiveFT(al) and (e) Coreset sampling.
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Figure 20: The equivalent number of non-active learning label amounts comparison of the standard method,
SVPp, and our method ASVP on the CIFAR-100 using (a) Margin, (b) BADGE, (c) Confidence, (d)
ActiveFT(al) and (e) Coreset sampling. The equivalent non-active learning label amount refers to the
number of samples selected by a random baseline to achieve the same accuracy as active learning.
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Figure 21: The accuracy of the standard method, SVPp, and our method ASVP on the Pets using (a)
Margin, (b) BADGE, (c) Confidence, (d) ActiveFT(al) and (e) Coreset sampling.

strategy tends to result in selecting some redundant samples. Given the efficiency of our method, we can
alleviate this problem. We conducted experiments on ImageNet, randomly selecting an initial pool of 10,000
samples. Subsequently, we performed 9, 45, 180, and 900 active learning iterations using margin sampling,
selecting a total of 100,000 samples. The accuracy of the final model and the total sample selection time for
both FT and LP-FT training are presented in table 12. The results show a general improvement in active
learning performance with an increase in the number of iterations. However, beyond 180 iterations, the
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Figure 22: The equivalent number of non-active learning label amounts comparison of the standard method,
SVPp, and our method ASVP on the Pets using (a) Margin, (b) BADGE, (c) Confidence, (d) ActiveFT(al)
and (e) Coreset sampling. The equivalent non-active learning label amount refers to the number of samples
selected by a random baseline to achieve the same accuracy as active learning.
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Figure 23: Computation efficiency and overall cost comparison of the standard active learning method,
SVPp, and our method ASVP on ImageNet using (a) Margin, (b) BADGE and (c) Confidence sampling.
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Figure 24: Computation efficiency and overall cost comparison of the standard active learning method,
SVPp, and our method ASVP on CIFAR-10 using (a) Margin, (b) BADGE, (c) Confidence, (d) Coreset
and (e) ActiveFT (al) sampling.
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Figure 25: Computation efficiency and overall cost comparison of the standard active learning method,
SVPp, and our method ASVP on CIFAR-100 using (a) Margin, (b) BADGE and (c) Confidence sampling.

performance improvement diminishes, indicating a limit to the benefits of increasing the number of active
learning iterations.

Additionally, the accuracy of SVPp (final model is fine-tuned) with more active learning iterations remains
lower than that of the standard active learning pipeline. However, when using LP-FT for final model training
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Figure 26: Computation efficiency and overall cost comparison of the standard active learning method,
SVPp, and our method ASVP on Pets using (a) Margin, (b) BADGE and (c) Confidence sampling.

and increasing the iteration count to 45 or more, ASVP surpassed the standard active learning method in
terms of accuracy.

Table 12: The influence of the number of active learning iterations on average sample savings ratios and
sampling time on ImageNet.

# AL Training Method Sampling
iterations FT LP-FT Time (hrs)

9 16.64±2.06 30.22±1.85 1.1
45 17.66±1.37 31.20±0.40 1.5
180 19.43±0.86 32.00±0.46 3.7
900 18.21±0.67 31.64±0.24 15.8

G Replacement Experiment on CIFAR-10

We conducted replacement experiments on CIFAR-10 to demonstrate the impact of replacing missing samples
from regions A1, A2, B1, and B2 on SVPp active learning performance. As shown in Figure 27, similar to
the ImageNet replacement experiments, replacing samples from regions A1 and B1 results in little change in
active learning performance, whereas replacing samples from regions A2 and B2 improves performance.

We also used Dataset Maps to illustrate the difficulty distribution of samples from different regions. The
Dataset Map calculates the average and standard deviation of the model’s confidence for the correct class
(need true labels) using training dynamics from the entire dataset. Due to the simplicity of CIFAR-10, the
Dataset Map shows very high mean confidence for almost all samples. Therefore, the difficulty based on
mean confidence, as used in Section 4.1, would categorize nearly all samples as “easy”.

Instead, we classified sample difficulty based on the standard deviation of the model’s confidence in the
correct class. Specifically, we defined the difficulty levels as follows: very hard (std. >= 0.15), hard (std.
>= 0.1 and std. < 0.15), medium (std. >= 0.05 and std. < 0.10), and easy (std. < 0.05). The resulting
distribution of different difficulty levels across regions is shown in Figure 28, where the proportion of each
difficulty level within the entire dataset is displayed in the last column.
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Figure 27: The impact of different regions on SVPp active learning performance. Replacing samples selected
by the proxy model with those from regions A1, A2, B1, B2. The active learning gain refers to the difference
in accuracy between active learning and the random baseline on CIFAR-10.
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(c) B1
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Figure 28: Difficulty distribution of samples from different regions on CIFAR-10.
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