
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UIP2P: UNSUPERVISED INSTRUCTION-BASED IMAGE
EDITING VIA CYCLE EDIT CONSISTENCY

Anonymous authors
Paper under double-blind review

a) Make the ground forest.

Input Image InstructPix2Pix Ours

b) Have there be a birthday cake on the table.

Input Image InstructPix2Pix Ours

c) Make the mountain a volcano.

Input Image InstructPix2Pix Ours

d) Make the eagle purple.

Input Image InstructPix2Pix Ours

Figure 1: Unsupervised InstructPix2Pix. Our model achieves more precise and coherent edits
while preserving the original structure of the scene via Cycle Edit Consistency. UIP2P outperforms
InstructPix2Pix in both real images—(a) and (b)—and synthetic images—(c) and (d).

ABSTRACT

We propose an unsupervised model for instruction-based image editing that elimi-
nates the need for ground-truth edited images during training. Traditional super-
vised approaches depend on datasets containing triplets of input image, edited
image, and edit instruction, often generated by either existing editing methods or
human-annotations, which introduce biases and limit their generalization ability.
Our model addresses these challenges by introducing a novel editing mechanism
called Cycle Edit Consistency (CEC). We propose to apply a forward and backward
edit in one training step and enforce consistency in both the image and attention
space. This allows us to bypass the need for ground-truth edited images and unlock
training on datasets comprising either real image-caption pairs or image-caption-
edit triplets. We empirically show that our unsupervised method achieves better
performance across a wider range of edits with high fidelity and precision. By
eliminating the need for pre-existing datasets of triplets, reducing biases associated
with supervised methods, and introducing CEC, our work represents a significant
advancement in unblocking scaling of instruction-based image editing.

1 INTRODUCTION

Diffusion models (DMs) have recently achieved significant advancements in generating high-quality
and diverse images, primarily through breakthroughs in text-to-image generation (Ho et al., 2020;
Saharia et al., 2022; Rombach et al., 2022; Ramesh et al., 2022). This led to the development of
various techniques for tasks like personalized image generation (Ruiz et al., 2023; Wei et al., 2023;
Gal et al., 2022a), context-aware inpainting (Lugmayr et al., 2022; Nichol et al., 2022; Yang et al.,
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a) Have the lady wear a red dress with roses. b) Turn the cottage into a castle. c) Make it a black and white photograph.

Figure 2: Examples of biases introduced by Prompt-to-Prompt in the InstructPix2Pix dataset.
Each example shows an input image and its corresponding edited image (generated by Prompt-to-
Prompt) along with the associated edit instruction. (a) Attribute-entangled edits: modifying the lady’s
dress also unintentionally changes the background. (b) Scene-entangled edits: transforming the
cottage into a castle affects surrounding elements. (c) Global scene changes: converting the image to
black and white alters the entire scene.

2023), and editing images based on textual prompts (Avrahami et al., 2022; Hertz et al., 2022;
Meng et al., 2022; Kawar et al., 2022; Couairon et al., 2023). Editing images based on textual
instructions (Brooks et al., 2023) demonstrates the versatility of DMs as robust tools for a wide array
of image editing tasks.

However, existing methods predominantly rely on supervised learning, which requires large datasets
of triplets containing input and edited images with edit instructions (Brooks et al., 2023; Zhang
et al., 2023a;b; Fu et al., 2023). These datasets are often generated using editing methods such as
Prompt-to-Prompt (Hertz et al., 2022) or human annotations. While the former solution allows better
scaling of dataset size, it, unfortunately, introduces biases, such as (a) attribute-entangled or (b)
scene-entangled edits that affect unintended parts of the image or (c) cause significant changes to the
entire scene (see Fig. 2). On the other hand, human-annotated data, though valuable, is impractical
for large-scale training due to the high cost and effort involved in manual annotation. This reliance
on human-annotated or generated ground-truth edited images limits the diversity of the achievable
edits. It hinders the development of models capable of understanding and executing a wide range of
user instructions.

We present UIP2P, an unsupervised model for instruction-based image editing that removes the depen-
dency on datasets of triplets, generated or human-annotated, by introducing Cycle Edit Consistency
(CEC), i.e., consistency obtained by applying forward and reverse edits. Leveraging the alignment
between text and images in the CLIP embedding space (Radford et al., 2021b), CEC ensures that edits
remain consistent. By enforcing consistency in both the image and attention space, the UIP2P model
accurately interprets and localizes user instructions, ensuring that edits are coherent and reflect the
intended changes throughout the entire editing process. CEC allows UIP2P to effectively maintain the
integrity of the original content while making precise modifications, further enhancing the reliability
of the edits. This approach unlocks the ability to train on large real-image datasets by eliminating
the need for pre-existing datasets. As a result, our approach significantly broadens the scope and
scalability of instruction-based image editing compared to previous methods.

Our key contributions are as follows:

• We introduce an unsupervised model for instruction-based image editing, UIP2P, that
removes the requirement for ground-truth edited images during training, providing a more
scalable and adaptable alternative to current supervised methods.

• We introduce Cycle Edit Consistency (CEC), a novel method that ensures consistent edits
when cycled across forward and reverse editing, maintaining coherence in both the image
and attention space. This allows precise, high-fidelity edits that accurately reflect user
instructions.

• Our approach demonstrates scalability and versatility across various real-image datasets, en-
abling a wide range of edits without relying on pre-existing datasets, significantly broadening
the scope of instruction-based image editing.

2
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2 RELATED WORK

CLIP-Based Image Manipulation. Patashnik et al. (2021) introduces StyleCLIP, which combines
StyleGAN and CLIP for text-driven image manipulation, requiring optimization for each specific
edit. Similarly, Gal et al. (2022b) presents StyleGAN-NADA, enabling zero-shot domain adaptation
by using CLIP guidance to modify generative models. While these approaches allow for flexible
edits, they often rely on domain-specific models or optimization processes for each new task. These
works illustrate the potential of CLIP’s powerful semantic alignment for image manipulation, which
motivates the use of CLIP in other generative frameworks, such as diffusion models.

Text-Driven Image Editing with Diffusion Models. One common approach in text-driven image
editing is to use pre-trained diffusion models by first inverting the input image into a latent space
and then applying edits through text prompts (Mokady et al., 2022; Hertz et al., 2022; Wang et al.,
2023b; Meng et al., 2022; Couairon et al., 2023; Ju et al., 2023; Parmar et al., 2023; Wang et al.,
2023a; Wu et al., 2023). For example, DirectInversion (Ju et al., 2023) edits the image after inversion
using Prompt-to-Prompt (Hertz et al., 2022), but this can lead to losing essential details from the
original image. In addition, methods like CycleDiffusion (Wu & la Torre, 2023), CycleNet (Xu et al.,
2023), and DualDiffusion (Su et al., 2022) explore domain-to-domain translation as a way to improve
image editing. However, their focus on translating between two fixed domains makes it difficult to
handle more complex edits, such as the insertion or deletion of objects. In contrast, we focus on a
general-purpose image editing approach that is not limited to domain translation, enabling greater
flexibility in handling a wider variety of edits.

Another line of methods for image editing involves training models on datasets containing triplets of
input image, edit instruction, and edited image such as InstructPix2Pix (Brooks et al., 2023; Zhang
et al., 2023a;b). These methods, since they directly take the input image as a condition, do not require
an inversion step. InstructDiffusion (Geng et al., 2023) builds on InstructPix2Pix by handling a
wider range of vision tasks but has difficulty with more advanced reasoning. MGIE (Fu et al., 2023)
improves on this by using large multimodal language models to generate more precise instructions.
SmartEdit (Huang et al., 2024) goes a step further by introducing a Bidirectional Interaction Module
that better connects the image and text features, improving its performance in challenging editing
scenarios.

A significant challenge in image editing is the lack of large-scale triplet datasets. Instruct-
Pix2Pix (Brooks et al., 2023) addresses this by generating a large dataset using GPT-3 (Brown
et al., 2020) and Prompt-to-Prompt (Hertz et al., 2022). However, while this solves the data scarcity
issue, it introduces new challenges, such as model biases stemming from Prompt-to-Prompt. Mag-
icBrush (Zhang et al., 2023a) attempts to overcome this with manually annotated datasets, but this
approach is small-scale and impractical for broader use.

Our method leverages CLIP’s semantic space, which aligns image and text, to offer a more robust
solution. It addresses both the dataset limitation and model bias problems by introducing Cycle Edit
Consistency (CEC), which ensures consistency across forward and reverse edits. This approach not
only improves scalability and precision for handling complex instructions but also eliminates the need
for triplet datasets, making it compatible with any image-caption dataset of real images. Furthermore,
since CEC modifies only the training phase of InstructPix2Pix, it can be seamlessly integrated with
any extension of the model.

3 BACKGROUND

3.1 LATENT DIFFUSION MODELS (LDMS)

Stable Diffusion (SD) is a prominent Latent Diffusion Model (LDM) designed for text-guided image
generation (Rombach et al., 2022). LDMs operate in a compressed latent space, typically derived
from the bottleneck of a pre-trained variational autoencoder, which enhances computational efficiency.
Starting with Gaussian noise, the model progressively constructs images through an iterative denoising
process guided by text conditioning. This process is powered by a U-Net-based architecture (Dhariwal
& Nichol, 2021), utilizing self-attention and cross-attention layers. Self-attention helps refine the
evolving image representation, while cross-attention integrates the textual guidance.

3
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Cross-attention mechanisms are crucial in directing image generation in LDMs. Each cross-attention
layer consists of three main components: queries (Q), keys (K), and values (V). Queries are generated
from intermediate image features through a linear transformation (fQ), while keys and values
are extracted from the text conditioning using linear transformations (fK and fV ). The attention
mechanism, formulated in Eq. (1), computes attention maps that indicate which regions of the
evolving image should be modified based on the text description. We utilize these maps in our loss
functions to regulate and localize the desired edit, enabling localized and consistent image editing.

Attention(Q,K, V ) = Softmax
(
QKT

√
d

)
· V (1)

3.2 INSTRUCTPIX2PIX (IP2P)

Our method builds upon InstructPix2Pix (IP2P) (Brooks et al., 2023), an LDM-based framework
for text-conditioned image-to-image transformations. Like Stable Diffusion, IP2P employs a U-Net
architecture. The conditional framework of IP2P allows it to simultaneously utilize both an input
image (I) and a text instruction (T ) to guide image modifications. Classifier-free guidance (CFG) (Ho
& Salimans, 2021) is used, with coefficients (sI and sT ) controlling the influence of the text and
the original image during editing. The predicted noise vectors (eθ) from the learned network are
combined linearly, as described in Eq. (2), to produce the final score estimate ẽθ.

ẽθ(zt, cI , cT ) = eθ(zt,∅,∅)

+ sI · (eθ(zt, cI ,∅)− eθ(zt,∅,∅))

+ sT · (eθ(zt, cI , cT )− eθ(zt, cI ,∅)).

(2)

InstructPix2Pix is trained on a dataset containing triples of input image, edit instruction and edited
image. The dataset is composed of synthetic images generate by SD on top of real captions, edit
instructions generated by an LLM and edited images obtained using Prompt-to-Prompt (Hertz et al.,
2022). The reliance on synthetic datasets introduces several limitations that we aim to address in this
work. First, models like IP2P are trained exclusively on synthetic data, which limits their applicability
during training on real-world image datasets. Second, their performance is inherently constrained by
the quality of the images generated by Prompt-to-Prompt methods, which introduces biases into the
editing process, as demonstrated in Fig. 2.

4 METHOD

Differently from related work such as InstructPix2Pix (Brooks et al., 2023), which rely on paired
datasets of input and edited images for instruction-based editing, we utilize instead an unsupervised
framework that requires only real images and corresponding edit instructions, eliminating the need
for ground-truth edited images. In a nutshell, given an image and a forward edit instruction (e.g.,
“turn the sky pink”), we generate an edited image. We then apply a reverse instruction (e.g., “turn
the sky blue.”) to the edited image, aiming to recover the original input. During this forward-reverse
edits, we enforce our proposed Cycle Edit Consistency (CEC) ensuring that the edits are reversible
and maintain coherence in both the image and attention space. This approach allows us to scale
instruction-based image editing across various real-image datasets without the limitations of synthetic
or paired edited datasets. In the following sections, we describe our approach in detail, including the
key components of our framework (Sec. 4.1), the loss functions used to enforce consistency, and the
training data generation procedure (Sec. 4.2).

4.1 FRAMEWORK

4.1.1 UIP2P

At the core of our method is the concept of Cycle Edit Consistency (CEC), which ensures that
edits applied to an image can be reversed back to the original input through corresponding reverse

4
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Figure 3: Overview of the UIP2P framework. The model performs instruction-based image editing
by utilizing forward and reverse instructions. Starting with an input image and a forward instruction,
the model generates an edited image using InstructPix2Pix. A reverse instruction is then applied to
reconstruct the original image, enforcing Cycle Edit Consistency (CEC).

instructions. Our framework, UIP2P, introduces four key components designed to enforce CEC and
maintain both semantic and visual consistency during the editing process, leveraging a mechanism
that effectively reuses predictions across diffusion steps to enhance the editing process (an overview
is illustrated in Fig. 3):

1. Text and Image Direction Consistency: We leverage CLIP embeddings (Radford et al.,
2021a) to align the semantic relationship between textual instructions and the image modifica-
tions. By operating within CLIP’s embedding space, our model ensures that the relationship
between the input and edited images corresponds to the relationship between their respective
captions. This alignment is critical for enforcing Cycle Edit Consistency (CEC), ensuring
that the desired edit is applied while preserving the input image’s structure.

2. Attention Map Consistency: To maintain consistency throughout the editing process, we
enforce that attention maps generated during both forward and reverse edits align. This
guarantees that the model consistently focuses on the same regions of the image during the
initial edit and its reversal. Attention Map Consistency is crucial for CEC, as it ensures that
localized edits can be effectively reversed.

3. Reconstruction Consistency: Central to enforcing CEC, the model must reconstruct the
original input image after applying the reverse instruction. This ensures that the model
can reliably undo its edits. We achieve this by minimizing both pixel-wise and semantic
discrepancies between the reconstructed image and the original input, ensuring coherence
between the applied edit and its reversal.

4. Unified Prediction with Varying Diffusion Steps: We sample different diffusion steps
(t for forward and t̂ for reverse). Then, we independently predict ϵ̂F and ϵ̂R for one step
of each, then apply them across t steps in the forward (F) and t̂ steps in the reverse (R) to
reconstruct the image. Reusing the same prediction across steps reduces computational cost.
By working with two similar images at different noise levels, the model learns to align its
predictions, improving efficiency and ensuring more accurate edits.

5
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By combining these components—Text and Image Direction Consistency, Attention Map Consistency,
Reconstruction Consistency, and Unified Prediction with Varying Diffusion Steps—our framework
not only enforces CEC, but also effectively applies across diverse real-image datasets. Importantly,
this applicability is achieved without requiring ground-truth edited images, making the framework
applicable to a wide range of tasks where annotated data is limited or unavailable. This ability
to generalize beyond synthetic datasets underscores the versatility of our method in real-world
instruction-based image editing scenarios.

4.1.2 LOSS FUNCTIONS

To enforce CEC and ensure both visual and semantic consistency during the editing and reconstruction
process, we introduce the following loss terms:

CLIP Direction Loss: This loss ensures that the transformations applied to the image align with the
text instructions in CLIP’s semantic space (Gal et al., 2022b). Given the CLIP embeddings of the
input image (EIinput ), edited image (EIedit ), input caption (ETinput ), and edited caption (ETedit ), the loss
is defined as:

LCLIP = 1− cos
(
EIedit − EIinput , ETedit − ETinput

)
(3)

This loss aligns the direction of change in the image space with the direction of the transformation
described in the text space, ensuring that the modifications reflect the intended edits and enabling
reversible transformations necessary for CEC. This ensures that the model aligns transformations in
the image space with the corresponding text modifications. However, ensuring spatial consistency is
equally important, which we address with the Attention Map Consistency Loss (see next).

Attention Map Consistency Loss: To ensure that the same regions of the image are edited in both
the forward and reverse edits, we define an attention map consistency loss. Let Af and Ar represent
the cross-attention maps from the forward and reverse edits, respectively. The loss is defined as:

Lattn =
∑
i

∥∥∥A(i)
f −A(i)

r

∥∥∥
2

(4)

where i indexes the layers of the U-Net model. This loss ensures spatial consistency during both the
editing and reversal stages, a key requirement for CEC, as it guarantees that the attention focuses on
the same regions when reversing the edits.

CLIP Similarity Loss: This loss encourages the edited image to remain semantically aligned with
the provided textual instruction. It is calculated as the cosine similarity between the CLIP embeddings
of the edited image (EIedit ) and the edited caption (ETedit ):

Lsim = 1− cos(EIedit , ETedit) (5)

This loss ensures that the generated image aligns with the desired edits in the instruction, preserving
semantic coherence between the forward and reverse processes—an essential aspect of CEC.

Reconstruction Loss: To guarantee that the original image is recovered after the reverse edit,
we employ a reconstruction loss. This loss consists of two components: a pixel-wise loss and a
CLIP-based semantic loss. The total reconstruction loss is defined as:

Lrecon = ∥Iinput − Irecon∥2 + 1− cos(EIinput , EIrecon) (6)

This loss ensures that the model can faithfully reverse edits and return to the original image when
the reverse instruction is applied, enforcing CEC by minimizing differences between the input and
reconstructed images.

4.1.3 TOTAL LOSS

The total loss function, is applied to the single step noise prediction rather than recursively, used to
train the model is a weighted combination of the individual losses:

LCEC = λCLIPLCLIP + λattnLattn + λsimLsim + λreconLrecon (7)

where λCLIP, λattn, λsim, and λrecon are hyperparameters controlling the relative weights of each loss.

6
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4.2 TRAINING DATA

To facilitate CEC training on datasets with image and edit instructions Brooks et al. (2023), we
leverage Large Language Models (LLMs), such as GEMMA2 (Team et al., 2024) and GEMINI (Team
et al., 2023), to automatically generate reverse edit instructions. These LLMs provide an efficient and
scalable solution for obtaining reverse instructions with minimal cost and effort (Brooks et al., 2023).
We use GEMINI Pro to enrich our dataset with reverse instructions based on the input caption, edit
instruction, and corresponding edited caption. To improve model performance, we employ few-shot
prompting during this process, enabling the generation of reverse instructions without the need for
manually paired datasets, which significantly enhances scalability. The reverse instructions generated
by the LLM aim to revert the edited image to its original form (see Tab. 1 - IP2P section).

Table 1: Reverse Instruction Generation. Our method generates reverse instructions for the IP2P
dataset, eliminating the need for manually edited images. Additionally, edit instructions, edited
captions, and reverse instructions are generated for CC3M and CC12M datasets—denoted as CCXM.
The texts are generated by LLMs such as GEMINI Pro, and GEMMA2.

Input Caption Edit Instruction Edited Caption Reverse Instruction

IP
2P

A man wearing a denim jacket make the jacket a
rain coat

A man wearing a rain coat make the coat a
denim jacket

A sofa in the living room add pillows A sofa in the living room with
pillows

remove the pillows

· · · · · · · · · · · ·

C
C

X
M

Person on the cover of a
magazine

make the person a
cat

Cat on the cover of the
magazine

make the cat a
person

A tourist rests against a
concrete wall

give him a
backpack

A tourist with a backpack
rests against a concrete wall

remove his
backpack

· · · · · · · · · · · ·

Using the enriched dataset with reverse instructions (see Tab. 1, IP2P section), we fine-tune
GEMMA2 (Team et al., 2024), to generate an edit instruction, edited caption, and reverse instruction
given an input caption. We use this fine-tuned model to allow training on image-caption paired
datasets such as CC3M and CC12M (Sharma et al., 2018; Changpinyo et al., 2021), generating
forward and reverse edits along with corresponding edited captions (see Tab. 1, CCXM section).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset Generation. To train our method, we generate datasets consisting of paired forward and
reverse instructions, as detailed in Sec. 4.2. For the initial experiments, we use the InstructPix2Pix
dataset (Brooks et al., 2023), which provides generated image-caption pairs. We further extend our
experiments to real-image datasets by fine-tuning GEMMA2 (Team et al., 2024). The real-image
datasets include CC3M (Sharma et al., 2018) and CC12M (Changpinyo et al., 2021), for which we
generate eight possible edits per image-caption pair. This increases diversity in the editing tasks,
exposing the model to a wide range of transformations and enhancing its ability to generalize across
different types of edits and real-world scenarios.

Baselines. We evaluate our method by comparing it against several baseline models. The primary
baseline is InstructPix2Pix (IP2P) (Brooks et al., 2023), a supervised method that relies on ground-
truth edited images during training. To demonstrate the advantages of our unsupervised approach, we
train and test both IP2P and our model on the same datasets and compare their performance. We also
compare our method with other instruction-based editing models, including MagicBrush (Zhang et al.,
2023a), HIVE (Zhang et al., 2023b), MGIE (Fu et al., 2023), and SmartEdit (Huang et al., 2024).
These additional comparisons allow us to evaluate how effectively our unsupervised model handles
diverse and complex edits without the need for existing editing methods to generate ground-truth
edited images or human-annotated data.

7
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Implementation Details. Our method, UIP2P, fine-tunes SD-v1.5 model (Rombach et al., 2022),
without any pre-training on supervised datasets. While we retain the IP2P architecture, our approach
uses different training objectives, primarily focusing on enforcing Cycle Edit Consistency (CEC).
Specifically, we employ the CLIP ViT-L/14 model, integrated into SD-v1.5, to calculate the losses.
By using a single noise prediction across varying diffusion steps t for forward and t̂ for reverse, both
sampled between 0-1000 (as proposed in IP2P training), our model reduces computational overhead,
respect to IP2P (please refer to Sec. 5.4), while maintaining consistency between forward and reverse
edits. This reuse of the prediction enables efficient and accurate editing with fewer inference steps
than IP2P, which improves both generalization and performance, as empirically demonstrated in
Sec. 5.4. UIP2P is trained using the AdamW optimizer (Loshchilov, 2017) with a batch size of 768
over 11K iterations. The base learning rate is set to 5e-05. All experiments are implemented in
PyTorch (Paszke et al., 2019) and conducted on 16 NVIDIA H100 GPUs, with loss weights set as
λCLIP = 1.0, λattn = 0.5, λsim = 1.0, and λrecon = 1.0. We select the best configuration based on the
validation loss of LCEC.

5.2 QUANTITATIVE RESULTS

5.2.1 IP2P TEST DATASET
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We evaluate our method on the IP2P test split, containing
5K image-instruction pairs. Following Brooks et al.
(2023), we use CLIP image similarity for visual fidelity
and CLIP text-image similarity to assess alignment with
the instructions. Higher scores in both metrics indicate
better performance (upper right corner) by preserving
image details (image similarity) and effectively applying
the edits (direction similarity). As shown in the plot,
UIP2P outperforms IP2P across both metrics. In these
experiments, the text scale sT is fixed, while the image
scale sI varies from 1.0 to 2.2.

5.2.2 MAGICBRUSH TEST DATASET

The test split provides an evaluation pipeline with 535 sessions (source images for iterative editing)
and 1053 turns (individual editing steps). It uses L1 and L2 norms for pixel accuracy, CLIP-I and
DINO embeddings for image quality via cosine similarity, and CLIP-T to ensure alignment with local
text descriptions.

Table 2: Zero-shot Quantitative Comparison on MagicBrush (Zhang et al., 2023a) test set.
Instruction-based editing methods -are not fine-tuned on MagicBrush- are presented. In the multi-turn
setting, target images are iteratively edited from the initial images. Best results are in bold.

Settings Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Single-turn

HIVE (Zhang et al., 2023b) 0.1092 0.0341 0.8519 0.7500 0.2752
InstructPix2Pix (Brooks et al., 2023) 0.1122 0.0371 0.8524 0.7428 0.2764
UIP2P w/ IP2P Dataset 0.0722 0.0193 0.9243 0.8876 0.2944
UIP2P w/ CC3M Dataset 0.0680 0.0183 0.9262 0.8924 0.2966
UIP2P w/ CC12M Dataset 0.0619 0.0174 0.9318 0.9039 0.2964

Multi-turn

HIVE (Zhang et al., 2023b) 0.1521 0.0557 0.8004 0.6463 0.2673
InstructPix2Pix (Brooks et al., 2023) 0.1584 0.0598 0.7924 0.6177 0.2726
UIP2P w/ IP2P Dataset 0.1104 0.0358 0.8779 0.8041 0.2892
UIP2P w/ CC3M Dataset 0.1040 0.0337 0.8816 0.8130 0.2909
UIP2P w/ CC12M Dataset 0.0976 0.0323 0.8857 0.8235 0.2901

As seen in Tab. 2, UIP2P perfoms the best for both single- and multi-turn settings. It is important to
be noted that HIVE utilizes human feedback on edited images to understand user preferences and
fine-tunes IP2P based on learned rewards, aligning the model more closely with human expectations.
Table 2 also shows that increasing the number of samples in the training dataset and also training on
real images provides better performance than training on the synthetic dataset, IP2P dataset.
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5.2.3 USER STUDY

Table 3: User Study.
Models (Q1) (Q2)

IP2P 8% 12%
MagicBrush 17% 18%

HIVE 14% 13%
MGIE 20% 19%

SmartEdit 19% 18%
UIP2P 22% 20%

We conduct a user study on Prolific Platform (prolific) with 52 participants
to evaluate six methods—IP2P, MagicBrush, HIVE, MGIE, SmartEdit,
and UIP2P—across 15 image-edit instructions. For each instruction, par-
ticipants select the best two methods, suggested in Huang et al. (2024),
based on: (Q1)—how well the edit matched the instruction—and local-
ization, and (Q2)—how accurately the edit was applied to the intended
region. The table summarizes the percentage of times each method was
chosen as a top performer for each question. UIP2P achieves the highest
preference score, with MGIE and SmartEdit closely following. Unlike these methods, however, our
approach introduces no latency penalty at inference time, offering both accuracy and efficiency.

5.3 QUALITATIVE RESULTS

We compare UIP2P with state-of-the-art methods, including InstructPix2Pix (Brooks et al., 2023),
MagicBrush (Zhang et al., 2023a), HIVE (Zhang et al., 2023b), MGIE (Fu et al., 2023), and
SmartEdit (Huang et al., 2024), on various datasets (Brooks et al., 2023; Zhang et al., 2023a; Shi et al.,
2020; 2021). The tasks include color modifications, object removal, and structural changes. UIP2P
consistently produces high-quality edits, applying transformations accurately while maintaining
visual coherence. For example, in “let the bird turn yellow,” UIP2P provides a more natural color
change while preserving the bird’s shape. Similar improvements are observed in tasks like “remove
hot air balloons” and “change hat color to blue.” These results demonstrate UIP2P’s ability to handle
diverse and complex edits, often matching or outperforming other methods.

5.4 ABLATION STUDY

Table 4: Ablation on loss functions.

Loss L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Base 0.117 0.032 0.878 0.806 0.309
+ Lsim 0.089 0.024 0.906 0.872 0.301
+ Lattn 0.062 0.017 0.932 0.904 0.296

Loss Functions. We conduct a zero-shot evaluation on
the MagicBrush test set (single-turn setting) to assess the
effectiveness of different loss functions. Starting with
the base model which contains LCLIP and Lrecon, we
observe moderate performance across the same metrics.
Adding Lsim allows the model to perform edits more
freely, as the base configuration without it tends to create outputs similar to the input image.. Finally,
Lattn enhances the model’s focus on relevant regions and ensures that the region of interest remains
consistent between the forward and reverse processes.

5 Steps 15 Steps 50 Steps

InstructP
ix2P

ix
O

urs

put blue 
glitter on 
fingernails

Input ImageNumber of Steps During Inference. We analyze the
effect of varying the number of diffusion steps during
inference. Fewer steps reduce computational time but
may affect image quality. Our experiments show that
UIP2P maintains high-quality edits with as few as 5
steps, providing a significant speedup without sacrific-
ing accuracy. In contrast, IP2P requires more steps to
achieve similar results. As shown in the figure, UIP2P
consistently outperforms IP2P in both quality and efficiency, particularly with fewer inference steps.

6 CONCLUSION

In this work, we present UIP2P, an unsupervised instruction-based image editing framework that
leverages Cycle Edit Consistency (CEC) to ensure reversible and coherent edits without relying on
ground-truth edited images. Some key components of our approach are Text and Image Direction
Consistency, Attention Map Consistency, Reconstruction Consistency, and Unified Prediction with
Varying Diffusion Steps, which together enforce consistency in both the image and attention space.
Through experiments on real-image datasets, we show that UIP2P delivers high-quality and precise
edits while maintaining the structure of the original image. It performs competitively against existing
methods, demonstrating the effectiveness of our unsupervised approach, which scales efficiently
across diverse editing tasks without the need for manually annotated datasets.
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Input Image Instruction InstructPix2Pix MagicBrush HIVE MGIE SmartEdit Ours

let the bird 
turn yellow

let there be 
palm trees

make the 

face happy

make the 
color more 

green

remove hot 
air balloons

make the 
frame red

make it the 
Vatican

turn the 
sunset into a 

firestorm

make the 
forest path 
into a beach

change hat 
color to blue

remove the 
blinders from 

the horse

put blue 
glitter on 
fingernails

Figure 4: Qualitative Examples. UIP2P performance is shown across various tasks and datasets,
compared to InstructPix2Pix, MagicBrush, HIVE, MGIE, and SmartEdit. Our method demonstrates
either comparable or superior results in terms of accurately applying the requested edits while
preserving visual consistency.
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7 ETHICS STATEMENT

Advancements in localized image editing technology offer substantial opportunities to enhance
creative expression and improve accessibility within digital media and virtual reality environments.
Nonetheless, these developments also bring forth important ethical challenges, particularly concerning
the misuse of such technology to create misleading content, such as deepfakes (Korshunov & Marcel,
2018), and its potential effect on employment in the image editing industry. Moreover, as also
highlighted by Kenthapadi et al. (2023), it requires a thorough and careful discussion about their
ethical use to avoid possible misuse. We believe that our method could help reduce some of the biases
present in previous datasets, though it will still be affected by biases inherent in models such as CLIP.
Ethical frameworks should prioritize encouraging responsible usage, developing clear guidelines
to prevent misuse, and promoting fairness and transparency, particularly in sensitive contexts like
journalism. Effectively addressing these concerns is crucial to amplifying the positive benefits of the
technology while minimizing associated risks. In addition, our user study follows strict anonymity
rules to protect the privacy of participants.

8 REPRODUCIBILITY STATEMENT

We aim to promote reproducibility by offering a clear description of our UIP2P method, including
Cycle Edit Consistency (CEC). The complete algorithm can be found in Algorithm 1, along with
pseudo-code to aid in replicating the implementation. In Appendix A.10, we explain the relevant
frameworks and any modifications applied, ensuring compatibility with common tools. The reverse
instruction datasets, will be made accessible along with the fine-tuned GEMMA2 model in a future
release. Furthermore, Secs. 4.2 and 5.1 provide details on hyperparameters and the reverse instruction
generation process. These sections outline the experimental setup and evaluation procedure to
facilitate replication efforts.
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A.1 RUNTIME ANALYSIS

Our method modifies the training objectives of IP2P by incorporating Cycle Edit Consistency (CEC)
and additional loss functions. However, these changes do not affect the overall runtime. Inference
time remains comparable to the original IP2P framework, as we retain the same architecture and
model structure. Consequently, our approach introduces no additional complexity or overhead in
terms of processing time or resource consumption. This gives UIP2P an advantage over methods
like MGIE (Fu et al., 2023) and SmartEdit Huang et al. (2024), which rely on large language models
(LLMs) during inference in terms of runtime and resource consumption.

Additionally, as shown in Sec. 5.4, UIP2P requires fewer inference steps to achieve accurate edits.
For instance, while IP2P typically uses more steps, e.g., from 50 to 100 steps, UIP2P can produce
coherent results in as few as five steps. This reduction in steps leads to faster inference times, offering
a clear efficiency advantage without compromising on quality, especially in real-time or large-scale
applications.

A.2 ABLATION STUDY ON LOSS FUNCTIONS

We focused our ablation studies on Lsim and Lattn because these losses are additional components
beyond the core LCLIP and Lrecon. The core losses are essential for ensuring semantic alignment and
reversibility in Cycle Edit Consistency (CEC), forming the foundation of our method. Without LCLIP

and Lrecon, the model risks diverging, losing its ability to preserve both the input’s structure and its
semantic coherence during edits.

Adding Lsim enables the model to perform edits more freely by encouraging alignment between image
and textual embeddings, thereby expanding its capacity for complex and diverse transformations. On
the other hand, Lattn refines the model’s ability to focus on relevant regions during edits, improving
localization and reducing unintended changes in non-targeted areas.

LCLIP is applied between the input image and the edited image to ensure semantic alignment with
the edit instruction. The reconstructed image is already constrained by Lrecon, which enforces struc-
tural and semantic consistency with the input. Adding LCLIP to the reconstructed image would be
redundant and could interfere with the reversibility objective. Our design does not apply LCLIP to
the reconstructed image to preserve the focus on reversibility and prevent conflicting optimization
objectives.
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A.3 DISCUSSION ON REDUCED DDIM STEPS

This observation is based on empirical results, as detailed in Number of Steps During Inference
(Sec. 5.4). Specifically, we hypothesize that the CEC ensures strong alignment between forward
and reverse edits, enabling the model to produce high-quality outputs even with fewer DDIM
steps. Additionally, as shown in Algorithm 1 (Lines 4 and 8), our method uses the same denoising
prediction across all timesteps to recover the image, which enhances efficiency.

In contrast, IP2P does not optimize its losses in image space during training, limiting its ability to
achieve comparable results with fewer DDIM steps. This reduction in DDIM steps contributes to
improved scalability and makes our method more applicable in real-world scenarios where computa-
tional resources are often constrained.

A.4 DETAILS OF COMPETITOR METHODS

Our method offers significant advantages over competitors in both training and inference. Unlike
supervised methods that rely on paired triplets of input images, edited images, and instructions, our ap-
proach eliminates the need for such datasets, reducing biases and improving scalability. For example,
MagicBrush is fine-tuned on a human-annotated dataset, while HIVE leverages Prompt-to-Prompt
editing with human annotators, introducing dependency on labor-intensive processes. Furthermore,
MGIE and SmartEdit rely on LLMs during inference, which significantly increases computational
overhead. These distinctions highlight the efficiency and practicality of our approach, as it avoids the
need for expensive human annotations and additional inference-time complexities. Like other editing
methods, our approach can produce small variations for different random seeds but consistently
applies the specified edit, eliminating the need for manual selection. To the best of our knowledge,
the compared methods (e.g., MagicBrush, InstructPix2Pix) also do not involve manual selection.

InstructPix2Pix (Brooks et al., 2023)1: InstructPix2Pix (IP2P) is a diffusion-based model that
performs instruction-based image editing by training on triplets of input image, instruction, and edited
image. The model is fine-tuned on a synthetic dataset of edited images generated by combining large
language models (LLMs) and Prompt-to-Prompt (Hertz et al., 2022). This approach relies on paired
datasets, which can introduce biases and limit generalization. InstructPix2Pix serves as one of the
key baselines for our comparison, given its supervised training methodology.

HIVE (Zhang et al., 2023b)2: HIVE is another instruction-based editing model that fine-tunes
InstructPix2Pix based on human feedback. Specifically, HIVE learns from user preferences about
which edited images are preferred, incorporating this feedback into the model training. While this
approach allows HIVE to better align with human expectations, it still builds on top of InstructPix2Pix
and does not start training from scratch. This limits its flexibility compared to methods like UIP2P,
which are trained from the ground up.

MagicBrush (Zhang et al., 2023a)3: MagicBrush fine-tunes the pre-trained weights of InstructPix2Pix
on a human-annotated dataset to improve real-image editing performance. While this fine-tuning
approach makes MagicBrush highly effective for specific tasks with ground-truth labels, it limits
its generalizability compared to methods like UIP2P, which are trained from scratch. Moreover,
MagicBrush’s reliance on human-annotated data introduces significant scalability challenges, as
obtaining such annotations is both costly and labor-intensive. This dependency makes it less suited
for broader datasets where large-scale annotations may not be feasible.

MGIE (Fu et al., 2023)4: MGIE introduces a large multimodal language model to generate more
precise instructions for image editing. Like InstructPix2Pix, MGIE requires a paired dataset for
training but uses the language model to improve the quality of the instructions during inference.
However, this reliance on LLMs during inference adds computational overhead. In contrast, UIP2P
operates without LLMs at inference time, reducing overhead while maintaining flexibility.

1https://github.com/timothybrooks/instruct-pix2pix
2https://github.com/salesforce/HIVE
3https://github.com/OSU-NLP-Group/MagicBrush
4https://ml-mgie.com/playground.html
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SmartEdit (Huang et al., 2024)5: SmartEdit is based on InstructDiffusion, a model already trained for
instruction-based image editing tasks. It introduces a bidirectional interaction module to improve text-
image alignment, but its reliance on the pre-trained InstructDiffusion limits flexibility, as SmartEdit
does not start training from scratch. Additionally, SmartEdit depends on large language models
(LLMs) during inference, increasing computational overhead. This makes SmartEdit less efficient
than UIP2P in scenarios where real-time or large-scale processing is required.

During evaluation, we use the publicly available implementations and demo pages of the baseline
methods. Each baseline provides a different approach to instruction-based image editing, and together
they offer a comprehensive set of methods for comparing the performance, flexibility, and efficiency
of the proposed method, UIP2P.

A.5 CYCLE EDIT CONSISTENCY EXAMPLE

make the forest 

path into a beach

Input Image Forward Instr. Reverse Instr.

make the beach 

path into a forest

remove hot 

air balloons

add hot 

air balloons

We demonstrate CEC with a visual exam-
ple during inference. In the forward pass,
the model transforms the input image based
on the instruction (e.g., “turn the forest path
into a beach”). In the reverse pass, the corre-
sponding reverse instruction (e.g., “turn the
beach back into a forest”) is applied, recon-
structing the original image. This showcases
the model’s ability to maintain consistency
and accuracy across complex edits, ensuring
that both the forward and reverse transforma-
tions align coherently. Additional examples,
such as adding and removing objects, further
emphasize UIP2P’s adaptability in diverse
editing tasks. This example illustrates how
our method ensures precise, reversible edits
while maintaining the integrity of the original
content.

A.6 EVALUATION ON THE PIE BENCHMARK

We apply our method to the PIE benchmark to evaluate its performance on diverse editing tasks and
compare it to IP2P, a representative feed-forward instruction-based editing method and a supervised
alternative to our approach. The table below summarizes the results:

Methods Distance ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ Whole ↑ Edit ↑

IP2P 57.91 20.82 158.63 227.78 76.26 23.61 21.64
Ours 27.05 26.85 60.57 40.07 83.69 24.78 21.89

Table 5: Performance comparison on the PIE benchmark. Lower values for Distance, LPIPS, and
MSE indicate better performance, while higher values for PSNR, SSIM, Whole, and Edit indicate
improved quality and structural preservation.

The results show that our method outperforms IP2P across most metrics, including better preservation
of structure (PSNR and SSIM), lower perceptual differences (LPIPS), and reduced mean squared
error (MSE). These improvements demonstrate the scalability and versatility of our approach on a
broader benchmark. This analysis is included in the revised manuscript to provide a comprehensive
evaluation of our method.

5https://github.com/TencentARC/SmartEdit
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A.7 ATTENTION CONSISTENCY ACROSS NOISE STEPS IN TRAINING

At training time, we sample two different noise steps for the forward and backward processes, which
are conditioned on the input image and edit instruction. Attention consistency is enforced between
these different noise steps to ensure that the model attends to the same regions during both forward
and reverse edits. This is supported by the observation that cross-attention scores in instruction-based
editing methods tend to be more consistent across timesteps, as the edit instruction remains fixed and
the model’s focus shifts only to the regions being edited (see Fig. 5).

Figure 5: Attention maps for diffusion steps. Cross-attention maps for forward (top) and reverse
(middle) instructions across early, middle, and later noise steps. The model enforces attention consis-
tency, focusing on relevant regions for both edits.

Recent works, such as those by Guo et al. Guo & Lin (2024) and Simsar et al. Simsar et al. (2023),
demonstrate that regularizing attention space with a mask during inference enables localized edits in
IP2P. Our method builds on these ideas by incorporating attention consistency into the training phase,
making it possible to focus on relevant regions from the start and avoiding the need for additional
inference-time modifications.

A.8 ADDITIONAL QUANTITATIVE ANALYSIS ON MAGICBRUSH TEST

In this section, we present the full quantitative analysis on the MagicBrush test set, including results
from both global description-guided and instruction-guided models, as shown in Tab. 6. While our
method, UIP2P, is not fine-tuned on human-annotated datasets like MagicBrush, it still achieves
highly competitive results compared to models specifically fine-tuned for the task. In particular,
UIP2P demonstrates either the best or second-best performance in key metrics such as L1, L2, and
CLIP-I, even outperforming fine-tuned models in several cases. This highlights the robustness and
generalization capabilities of UIP2P, showing that it can effectively handle complex edits without
the need for specialized training on real datasets. These results further validate that UIP2P delivers
high-quality edits in a variety of contexts, maintaining competitive performance against fine-tuned
models on the MagicBrush dataset, which is human-annotated.
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Table 6: Quantitative comparison on MagicBrush (Zhang et al., 2023a) test set. In the multi-turn
setting, target images are iteratively edited from the initial source images. Best results are in bold.

Settings Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

Single-turn

Global Description-guided

Open-Edit (Liu et al., 2020) 0.1430 0.0431 0.8381 0.7632 0.2610
VQGAN-CLIP (Crowson et al., 2022) 0.2200 0.0833 0.6751 0.4946 0.3879
SD-SDEdit (Meng et al., 2022) 0.1014 0.0278 0.8526 0.7726 0.2777
Text2LIVE (Bar-Tal et al., 2022) 0.0636 0.0169 0.9244 0.8807 0.2424
Null Text Inversion (Mokady et al., 2022) 0.0749 0.0197 0.8827 0.8206 0.2737

Instruction-guided

HIVE (Zhang et al., 2023b) 0.1092 0.0341 0.8519 0.7500 0.2752
w/ MagicBrush (Zhang et al., 2023a) 0.0658 0.0224 0.9189 0.8655 0.2812

InstructPix2Pix (Brooks et al., 2023) 0.1122 0.0371 0.8524 0.7428 0.2764
w/ MagicBrush (Zhang et al., 2023a) 0.0625 0.0203 0.9332 0.8987 0.2781

UIP2P w/ IP2P Dataset 0.0722 0.0193 0.9243 0.8876 0.2944
UIP2P w/ CC3M Dataset 0.0680 0.0183 0.9262 0.8924 0.2966
UIP2P w/ CC12M Dataset 0.0619 0.0174 0.9318 0.9039 0.2964

Multi-turn

Global Description-guided

Open-Edit (Liu et al., 2020) 0.1655 0.0550 0.8038 0.6835 0.2527
VQGAN-CLIP (Crowson et al., 2022) 0.2471 0.1025 0.6606 0.4592 0.3845
SD-SDEdit (Meng et al., 2022) 0.1616 0.0602 0.7933 0.6212 0.2694
Text2LIVE (Bar-Tal et al., 2022) 0.0989 0.0284 0.8795 0.7926 0.2716
Null Text Inversion (Mokady et al., 2022) 0.1057 0.0335 0.8468 0.7529 0.2710

Instruction-guided

HIVE (Zhang et al., 2023b) 0.1521 0.0557 0.8004 0.6463 0.2673
w/ MagicBrush (Zhang et al., 2023a) 0.0966 0.0365 0.8785 0.7891 0.2796

InstructPix2Pix (Brooks et al., 2023) 0.1584 0.0598 0.7924 0.6177 0.2726
w/ MagicBrush (Zhang et al., 2023a) 0.0964 0.0353 0.8924 0.8273 0.2754

UIP2P w/ IP2P Dataset 0.1104 0.0358 0.8779 0.8041 0.2892
UIP2P w/ CC3M Dataset 0.1040 0.0337 0.8816 0.8130 0.2909
UIP2P w/ CC12M Dataset 0.0976 0.0323 0.8857 0.8235 0.2901

A.9 USER STUDY SETTING

We conduct a user study with 52 anonymous participants on the Prolific Platform (prolific), presenting
them with 30 questions. Each question shows participants six edited images generated by different
methods, alongside their corresponding input images and edit instructions. Participants are tasked
with evaluating the effectiveness of the edits in achieving the specified outcome (Q1) and assessing
the ability of the editing method to preserve the details in areas not targeted by the instruction (Q2).

For example, as shown in Fig. 6, where the edit instruction is make the face happy, participants are
asked to determine which of the six edited images (a-f) best satisfies the instruction while maintaining
the fidelity of irrelevant details in the scene. By aggregating responses from participants, we gather
insights into the preferred methods for both accurate editing and detail preservation. This feedback
provides a fair comparison between methods, complementing the quantitative analysis.

A.10 ADDITIONAL IMPLEMENTATION DETAILS

A.10.1 CODE IMPLEMENTATION OVERVIEW

Our UIP2P implementation with CEC builds on existing frameworks for reproducibility:

• Base Framework: The code is based on InstructPix2Pix6, which provides the foundation
for instruction-based image editing.

6https://github.com/timothybrooks/instruct-pix2pix
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Figure 6: User Study Setup. The input image is shown alongside randomly ordered edited images
generated by different methods (a)-(f) based on the edit instruction, “make the face happy.” Par-
ticipants are asked to select the best two methods that match the editing effect and those that best
preserve irrelevant instruction regions.
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• Adopted CLIP Losses: We adopted and modified CLIP-based loss functions from
StyleGAN-NADA7 to fit CEC, improving image-text alignment for our specific tasks.

A.10.2 ALGORITHM OVERVIEW

In this section, we explain the proposed method, UIP2P, which introduces unsupervised learning
for instruction-based image editing. The core of our approach is the Cycle Edit Consistency (CEC),
which ensures that edits are coherent and reversible when cycled through both forward and reverse
instructions.

The algorithm consists of two key processes:

• Forward Process: Starting with an input image and a forward edit instruction, noise is first
added to the image. The model then predicts the noise, which is applied to reverse the noise
process and recover the edited image (see Algorithm 1, lines 2-4).

• Backward Process: Given the forward-edited image and a reverse edit instruction, noise is
applied again. The model predicts the reverse noise, which is used to undo the edits and
reconstruct the original image. This ensures that the reverse edits are consistent with the
original input image (see Algorithm 1, lines 6-8).

CEC is applied between the original input image, the forward-edited image, and the reconstructed
image, along with their respective attention maps and captions (see Algorithm 1, line 10). The LCEC

function guides the model’s learning through backpropagation (see Algorithm 1, lines 12-13).

The complete algorithm for the UIP2P method is outlined in Algorithm 1.

Algorithm 1 Unsupervised Instruction-Based Image Editing (UIP2P) with CEC

Require: Image Iinput (input image), Forward edit instruction F , Reverse edit instruction R, Noise
levels t (forward), t̂ (backward), Model M , Loss function LCEC , Noise function N , Input
caption Tinput, Edited caption Tedit

Ensure: Edited image Iedit, Reconstructed image Irecon

1: Forward Process:
2: zt ← N(Iinput, t) ▷ Add noise t to the input image Iinput
3: ϵ̂F , Af ←M(zt|Iinput, F ) ▷ Model M predicts forward noise ϵ̂F and extracts attention map Af

4: Iedit ← Apply(ϵ̂F , zt, t) ▷ Apply predicted noise ϵ̂F to reverse the process of obtaining zt and
recover Iedit

5: Backward Process:
6: zt̂ ← N(Iedit, t̂) ▷ Add noise t̂ to the forward-edited image Iedit
7: ϵ̂R, Ar ←M(zt̂|Iedit, R) ▷ Model M predicts reverse noise ϵ̂R and extracts attention map Ar

8: Irecon ← Apply(ϵ̂R, zt̂, t̂) ▷ Apply predicted noise ϵ̂R to reverse the process of obtaining zt̂ and
recover Irecon

9: Cycle Edit Consistency Loss:
10: LCEC ← L(Iinput, Iedit, Irecon, Af , Ar, Tinput, Tedit) ▷ Compute CEC loss using Iinput,

Iedit, Irecon, attention maps Af , Ar, input text Tinput, and edited text Tedit

11: Update Model:
12: Backpropagate the loss LCEC and update the model M
13: Repeat until convergence

A.11 DATASET FILTERING

We apply CLIP (Radford et al., 2021a) to both the CC3M (Sharma et al., 2018) and CC12M (Chang-
pinyo et al., 2021) datasets to calculate the similarity between captions and images, ensuring that

7https://github.com/rinongal/StyleGAN-nada

22

https://github.com/rinongal/StyleGAN-nada


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

the text descriptions accurately reflect the content of the corresponding images. Following the
methodology used in InstructPix2Pix (IP2P) (Brooks et al., 2023), we adopt a CLIP-based filtering
strategy with a similarity threshold set at 0.2. This threshold filters out image-caption pairs that do
not have sufficient semantic alignment, allowing us to curate a dataset with higher-quality text-image
pairs. For the filtering process, we utilize the CLIP ViT-L/14 model, which provides a robust and
well-established framework for capturing semantic similarity across text and images.

By applying this filtering process, we ensure that only relevant and coherent pairs remain in the
dataset, improving the quality of training data and helping the model better generalize to real-world
editing tasks. As a result, the filtered CC3M dataset contains 2.5 million image-caption pairs, while
the filtered CC12M dataset contains 8.5 million pairs. This careful curation of the dataset enhances
the reliability of the training process without relying on human annotations, making it scalable
for broader real-image datasets without the cost and limitations of human-annotated ground-truth
datasets (Brooks et al., 2023; Zhang et al., 2023a).

A.12 MORE EXAMPLES FROM REVERSE INSTRUCTIONS DATASET

To demonstrate the versatility of our reverse instruction dataset, we provide examples with multiple
variations of edits for two different input captions. Each caption has four distinct edits, such as color
changes, object additions, object removals, and positional adjustments. This variety helps the model
generalize across a wide range of tasks and scenarios, as discussed in Sec. 4.2. The use of LLMs to
generate reverse instructions further enhances the flexibility of our dataset.

Table 7: Examples of Four Possible Edits for Two Different Input Captions. Our dataset
generation process showcases the flexibility of the reverse instruction dataset by demonstrating
multiple transformations for the same caption.

Input Caption Edit Instruction Edited Caption Reverse Instruction

A dog sitting on a couch

change the dog’s
color to brown

A brown dog sitting on a
couch

change the dog’s
color back to white

add a ball next to
the dog

A dog sitting on a couch
with a ball

remove the ball

remove the dog An empty couch add the dog back
move the dog to the
floor

A dog sitting on the floor move the dog back
to the couch

A car parked on the street

change the car color
to red

A red car parked on the
street

change the car color
back to black

add a bicycle next
to the car

A car parked on the
street with a bicycle

remove the bicycle

remove the car An empty street add the car back
move the car to the
garage

A car parked in the
garage

move the car back
to the street

These examples, along with others in Tab. 1, illustrate the diversity of edit types our model learns,
enabling it to perform a wide range of tasks across different real-image datasets. The reverse
instruction mechanism ensures that the edits are reversible, maintaining consistency and coherence in
both the forward and reverse transformations.
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