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Abstract001

Climate change has intensified the need for002
transparency and accountability in organiza-003
tional practices, making Environmental, Social,004
and Governance (ESG) reporting increasingly005
crucial. Frameworks like the Global Reporting006
Initiative (GRI) and the new European Sustain-007
ability Reporting Standards (ESRS) aim to stan-008
dardize ESG reporting, yet generating compre-009
hensive reports remains challenging due to the010
considerable length of ESG documents and vari-011
ability in company reporting styles. To facilitate012
ESG report automation, Retrieval-Augmented013
Generation (RAG) systems can be employed,014
but their development is hindered by a lack of015
labeled data suitable for training retrieval mod-016
els. In this paper, we leverage an underutilized017
source of weak supervision—the disclosure018
content index found in past ESG reports—to019
create a comprehensive dataset, ESG-CID, for020
both GRI and ESRS standards. By extracting021
mappings between specific disclosure require-022
ments and corresponding report sections, and023
refining them using a Large Language Model024
as a judge, we generate a robust training and025
evaluation set. We benchmark popular embed-026
ding models on this dataset and show that fine-027
tuning smaller BERT-based models can outper-028
form commercial embeddings and leading pub-029
lic models, even under temporal data splits and030
cross-report style transfer from GRI to ESRS.031

1 Introduction032

Addressing climate change is one of the most press-033

ing challenges of our time. This accelerating global034

climate crisis and increasing societal demands for035

corporate accountability have made Environmental,036

Social, and Governance (ESG) reporting a critical037

aspect of modern business. Natural Language Pro-038

cessing plays a pivotal role in understanding and039

drafting these documents. Recent advancements in040

Large Language Models (LLMs) enable the analy-041

sis of vast amounts of textual data related to climate042

Figure 1: We extract content indices from GRI-
compliant sustainability PDFs to create an ESG rele-
vance dataset: ESG-CID. Each entry consists of a dis-
closure query (q), a relevant chunk (c+) from the in-
dexed page, and a randomly selected irrelevant chunk
(c−) from the rest of the document

policies, sustainability reports, and environmental 043

impact assessments (Vaghefi et al., 2023; Schiman- 044

ski et al., 2024). By extracting actionable insights 045

from ESG reports, LLMs enhance transparency and 046

inform stakeholders, driving data-driven decision- 047

making in sustainability practices. 048

Despite these advancements, generating compre- 049

hensive and standardized ESG reports remains a 050

significant challenge. ESG documents are exten- 051

sive—averaging 120 pages—and exhibit variability 052

in reporting styles and structures among organi- 053

zations. The lack of standardized and accessible 054

ESG data can lead to greenwashing, obscures true 055

risks, and impedes the effective allocation of re- 056

sources toward sustainable investments and prac- 057

tices. Frameworks like the Global Reporting Ini- 058

tiative (GRI) and the new European Sustainabil- 059

ity Reporting Standards (ESRS) aim to standardize 060

ESG reporting, but automating this process requires 061

1



effective Retrieval-Augmented Generation (RAG)062

systems. The development of such systems is hin-063

dered by a lack of labeled data suitable for training064

and evaluating retrieval models in the ESG domain.065

The scarcity of labeled data arises mainly due to066

two factors: First, the considerable length of ESG067

reports makes manual annotation labor-intensive068

and time-consuming. Second, the lack of unifor-069

mity in reporting styles across different companies070

presents a challenge in creating datasets that gener-071

alize well. The combination of these factors makes072

it difficult to develop robust retrieval models needed073

for automating ESG reporting tasks.074

In this paper, we leverage an underutilized yet075

readily available source of weak supervision: the076

disclosure content index found in past reports. We077

observed that GRI-compliant reports often include078

a content index linking specific disclosure require-079

ments to corresponding sections or page numbers080

within the report. By extracting these mappings,081

we can generate large amounts of weakly super-082

vised data that associates ESG disclosure queries083

with relevant text passages. To enhance the quality084

of this data, we employ a Large Language Model085

(LLM) as a judge to refine and validate the map-086

pings. This process enables us to create a compre-087

hensive dataset for both GRI and ESRS standards.088

Using this dataset, we benchmark popular em-089

bedding models on the ESG retrieval task and ex-090

plore the impact of fine-tuning. Our findings reveal091

that finetuning smaller BERT-based embedding092

models (gte-large-en-v1.5, roberta-large)093

can outperform commercial embedding models094

(text-embedding-3-small, text-embedding-095

3-large) and top-performing public models096

(SFR-Embedding-Mistral, gte-Qwen2-1.5B-097

instruct, gte-Qwen2-7B-instruct). Notably,098

our benchmark evaluates model performance under099

temporal data splits and cross-report style transfer100

from GRI to ESRS, demonstrating the generaliz-101

ability of the fine-tuned models.102

In summary, our contributions are as follows:103

• We create the ESG-Content Index Dataset104

(ESG-CID), a dataset leveraging disclosure105

content indices from ESG reports to facilitate106

research in the ESG domain and support the107

development of retrieval models for standard-108

ized ESG reporting.109

• We benchmark state-of-the-art embedding110

models on ESG-CID, highlighting their lim-111

itations in the ESG retrieval task out of the112

Metric Value

Unique Topics 11
Unique Sections 112
Total Datapoints 1230
Avg. Sections/Topic 10
Avg. Dataponts/Section 11

Sections with GRI Overlap 99
Sections without GRI Overlap 13
Sections GRI Overlap ratio 0.88

Datapoints with GRI Overlap 648
Datapoints without GRI Overlap 582
Datapoints GRI Overlap ratio 0.53

Table 1: ESRS Statistics and Overlap with GRI. The
table presents counts for unique topics, sections, and
datapoints, along with their averages in the ESRS guide-
lines from the official GRI-ESRS interoperability data1.
Section overlap is counted if at least one datapoint in the
section overlaps with a GRI datapoint

box and demonstrating the benefits of domain- 113

specific fine-tuning. 114

• We conduct detailed analyses of model perfor- 115

mance under temporal splits and cross-report 116

style transfer, offering insights into the chal- 117

lenges and solutions for automating ESG re- 118

port generation, particularly in the context of 119

the new ESRS standards. 120

2 Related Work 121

The ESG domain has abundant public sustainabil- 122

ity reports but lacks labeled data. Recent advance- 123

ments in LLMs and PDF ingestion are bridging 124

this gap. Vaghefi et al. (2023) demonstrates the 125

potential of LLMs to transform the ESG domain 126

with a Climate-change query specific chat interface 127

called ChatClimate powered by LLMs. More re- 128

cent studies, such as ChatReport (Ni et al., 2023) 129

and ClimRetrieve (Schimanski et al., 2024), focus 130

on Question Answering within this domain through 131

RAG. These studies, however, are limited by their 132

focus on a narrow set of queries and evaluations 133

based on only 10-20 documents. In contrast, our ap- 134

proach covers a broad spectrum of ESG framework 135

requirements and queries, supported by extensive 136

training and evaluation data. 137

Distant supervision is a key concept in low- 138

resource model training (Quirk and Poon, 2017; Qin 139

et al., 2018). Polignano et al. (2022) first proposed 140

using the GRI content index as distant supervision 141

for ESG annotations, focusing on table identifica- 142

tion via Optical Character Recognition and its role 143

1GRI-ESRS-Mapping.xlsx
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Figure 2: Dataset characteristics and challenges: (a) Industry distribution, showcasing the diversity of reporting
sectors. (b) Report statistics (page count vs. average word count per chunk, sized by chunk count), highlighting the
variability in report length and chunk size, which pose challenges for retrieval models. (c) and (d): Dataset splits
(Train, Dev, Test GRI, Test ESRS), illustrating the chronological approach and the out-of-domain ESRS test set.

in sentiment analysis. Our work extends this by144

linking ESRS and GRI frameworks and advancing145

representation learning through RAG-based auto-146

mated content index creation.147

RAG is a framework that enhances text genera-148

tion by retrieving relevant external information, im-149

proving accuracy and contextual relevance in NLP150

tasks (Lewis et al., 2020; Jiang et al., 2023). How-151

ever, most works on ESG domain rely on propri-152

etary embeddings such as OpenAI, which are diffi-153

cult to adapt to specific needs and pose privacy risks154

for company data. We enhance retrieval by fine-155

tuning on ESG-specific content indexes, exploring156

whether cost-efficient fine-tuning with high-quality157

data and smaller models can match more resource-158

intensive methods. We employ fine-tuning tech-159

niques with models such as RoBERTa-large (Devlin160

et al., 2019; Liu et al., 2019) and Alibaba-NLP/gte-161

large-en-v1.5 (Li et al., 2023; Zhang et al., 2024),162

leveraging the Model Test Evaluation Benchmark163

(MTEB; Muennighoff et al. (2022)) to identify the164

best-performing models. Additionally, our study165

also evaluates ModernBert (Warner et al., 2024) to166

further understand the impact of domain-specific167

fine-tuning on retrieval.168

3 ESG-CID 169

In line with our goal to enhance ESG-specific re- 170

trieval systems, we first collected a comprehen- 171

sive set of sustainability and annual reports from 172

companies across various industries and regions. 173

Utilizing a combination of automated web crawl- 174

ing and manual collection techniques, we gathered 175

over 10,000 reports from 2018 to 2023. The auto- 176

mated collection leveraged databases such as the 177

now-decommissioned GRI database and the SRN 178

database (Donau et al., 2023). After filtering out 179

duplicates and non-English reports, we retained ap- 180

proximately 2,500 unique reports. 181

Out of these, around half adhered to the GRI 182

standards, with a subset including the disclosure 183

content index in a machine-readable format. We 184

manually curated 73 GRI reports containing de- 185

tailed content indices to form the primary dataset 186

for our study. Additionally, we identified 11 re- 187

ports from early adopters of the ESRS standards, 188

which included ESRS content indices, enriching our 189

dataset with cross-standard representations. The 190

collected reports cover a diverse array of industries, 191

predominantly from the financial, automotive, and 192

manufacturing sectors (see Figure 2(a)). 193
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3.1 Leveraging Content Indices for Weak194

Labeling195

The disclosure content index serves as a structured196

bridge between the ESG standard requirements and197

the report content, providing an opportunity to cre-198

ate weakly labeled data without extensive manual199

annotation. Each content index lists the standard200

disclosure requirements (e.g., GRI or ESRS IDs and201

descriptions), along with references to the pages in202

the report where these disclosures are addressed.203

As illustrated in Figure 2(b), the sustainability204

reports are significantly lengthy, averaging around205

120 pages each, with the longest document exceed-206

ing 350 pages. Annotating such extensive docu-207

ments is labor-intensive and impractical, especially208

when fine-grained annotations at the chunk or sen-209

tence level are considered. To address this chal-210

lenge, we manually extracted only the content in-211

dices from the reports focusing only on these spe-212

cific but crucial sections. Two experienced anno-213

tators, well-versed in ESG reporting and familiar214

with both GRI and ESRS standards, undertook this215

task. Their expertise ensured the accuracy and con-216

sistency of the extracted content indices.217

Using the extracted content indices, we align the218

disclosure requirements with their corresponding219

page numbers in the reports. By automatically as-220

sociating each standard query q (i.e., the disclosure221

requirement) with the relevant sections of the report222

indicated by the page numbers, we generate a set223

of query-document pairs. The query is a standard224

disclosure requirement, and the document is the225

corresponding page content addressing that require-226

ment. Leveraging this inherent structure allows us227

to create a weakly labeled dataset suitable for train-228

ing and evaluating retrieval models.229

3.2 Creating Triplets for Embedding Models230

To train and evaluate retrieval models in a con-231

trastive learning framework, we construct triplets232

consisting of a query q, a positive (matched) chunk233

c+, and a negative (unmatched) chunk c−.234

Positive Chunks We preprocess the PDF doc-235

uments to segment them into manageable chunks236

(details in §C). The positive chunks c+ are extracted237

from the pages referenced in the content index for238

each disclosure requirement. This ensures that c+239

contains information pertinent to the query q.240

Negative Chunks For the negative samples c−,241

we randomly sample chunks from the same report242

that are not associated with the given disclosure 243

requirement. This assumes that these chunks are 244

less relevant or irrelevant to the query, providing a 245

contrastive signal for training. 246

3.3 Refining Labels with LLM Judgments 247

While the content indices provide page-level refer- 248

ences, not all text within the referenced pages may 249

directly address the disclosure requirement. To en- 250

hance the quality of our dataset, we employ Large 251

Language Models (LLMs) as automated judges to 252

assess the relevance of each chunk to the corre- 253

sponding query. 254

We define a scoring function s = 255

LLMScore(q, c) that assigns a relevance score 256

between 0 and 5 to each query-chunk pair. The 257

LLM evaluates whether the chunk c sufficiently 258

addresses the disclosure requirement q. By 259

applying a relevance threshold (e.g., s ≥ 3), we 260

filter out positive chunks that are not sufficiently 261

relevant, thus improving the quality of the triplets. 262

This refinement step ensures that our dataset con- 263

tains high-quality, relevant query-document pairs, 264

enhancing the effectiveness of retrieval models 265

trained or evaluated on this data2. 266

3.4 Dataset Splitting for Real-World 267

Evaluation 268

To simulate real-world scenarios, particularly the 269

temporal evolution of ESG standards and the adop- 270

tion of new reporting requirements, we strategically 271

split our dataset based on report release years and 272

reporting standards. 273

Temporal Splitting The 73 GRI reports are or- 274

dered chronologically. We allocate the 10 most 275

recent reports released after 2020, which adhere to 276

the updated GRI-NEW standards, to form the test set 277

(TEST − GRI). The next 5 most recent reports are 278

designated as the development set for hyperparam- 279

eter tuning. The remaining 58 reports, primarily 280

following the older GRI-OLD standards, constitute 281

the training set as shown in Fig 2(d). This split em- 282

ulates a scenario where models trained on earlier 283

data are evaluated on newer standards, testing their 284

ability to generalize over time. 285

Cross-Standard Transfer The 11 ESRS reports 286

form a separate test set (TEST − ESRS), allowing 287

us to assess the models’ performance on a differ- 288

ent but related standard. This setup facilitates the 289

2Details on the LLM prompts and scoring criteria are pro-
vided in the §B
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evaluation of cross-standard transferability and the290

models’ adaptability to new reporting frameworks.291

By organizing the dataset in this manner, we en-292

sure that our evaluations reflect the challenges faced293

in real-world applications, such as adapting to evolv-294

ing standards and handling reports from different295

time periods.296

4 Experimental Setup297

4.1 Embedding Models298

We benchmark the retrieval performance of sev-299

eral state-of-the-art embedding models, includ-300

ing both LLMs and lightweight BERT-based mod-301

els (< 1B Params). The LLM-based embeddings302

comprise open-source models such as gte-Qwen2-303

1.5B-instruct(Li et al., 2023), gte-Qwen2-7B-304

instruct(Li et al., 2023), and SFR-Embedding-305

Mistral(Rui Meng, 2024) , which are known for306

their strong capabilities in capturing complex lan-307

guage representations. We also include commercial308

models from OpenAI, namely text-embedding-309

3-small and text-embedding-3-large.310

In addition to the LLMs, we evaluate lightweight311

BERT-based models suitable for deployment in312

resource-constrained environments. These include313

roberta-large(Liu et al., 2019), ModernBERT-314

large(Warner et al., 2024) and gte-large-en-315

v1.5(Li et al., 2023; Zhang et al., 2024) , which316

offer a balance between performance and computa-317

tional efficiency. By comparing these models, we318

aim to understand the trade-offs between large-scale319

embeddings and more efficient alternatives in the320

ESG retrieval context.321

4.2 Fine-tuning on ESG-CID322

To enhance the domain-specific performance of323

the lightweight BERT-based models, we fine-tune324

them on the training split of our constructed dataset325

(ESG-CID). We utilize the standard Multiple Nega-326

tives Ranking Loss (Reimers and Gurevych, 2019)327

for contrastive learning using triplets consisting of328

a query, a positive chunk, and a negative chunk329

((q, c+, c−)). Each query is associated with one330

relevant positive chunk and one irrelevant negative331

chunk, as detailed in Section 3.332

The fine-tuning process spans five epochs. Fur-333

ther training details are provided in the Appendix.334

The fine-tuned models are referred to as roberta-335

large–FT, ModernBERT-large, and gte-large-336

en-v1.5–FT, respectively. We hypothesize that337

fine-tuning will imbue these models with ESG-338

specific knowledge, improving their retrieval ca- 339

pabilities on domain-specific queries. 340

4.3 Evaluation Metrics 341

We evaluate the models using standard retrieval 342

metrics to assess their ability to rank relevant docu- 343

ment chunks given a query. The metrics employed 344

include Recall@20, which measures the proportion 345

of relevant documents retrieved in the top 20 re- 346

sults; Mean Reciprocal Rank at 100 (MRR@100), 347

indicating how early the first relevant document ap- 348

pears; Mean Average Precision at 100 (MAP@100), 349

averaging precision scores at ranks where relevant 350

documents are found; and Normalized Discounted 351

Cumulative Gain at 100 (NDCG@100), emphasiz- 352

ing the ranking positions of relevant documents. 353

Performance is reported on both the GRI 354

test split (TEST − GRI) and the ESRS test split 355

(TEST − ESRS). It is noteworthy that the fine-tuned 356

models were trained exclusively on the GRI training 357

data and have not been exposed to any ESRS data, 358

allowing us to evaluate their generalization capabil- 359

ities across different ESG reporting standards. 360

4.4 Real-world Applicability: ESRS Content 361

Indexing 362

Beyond standard retrieval metrics, we assess the 363

practical utility of the models in constructing the 364

ESRS content index within a company’s report. Ac- 365

cording to ESRS, companies are required to provide 366

structured disclosures in a tabular format. Our ob- 367

jective is to automate the extraction and indexing of 368

relevant information from PDF reports according 369

to each disclosure requirement. 370

In this task, given a document D and a set of 371

ESRS disclosure queries Q = {q1, q2, . . . , qn}, we 372

aim to map each query qi to its corresponding page 373

numbers in D. We experiment with reports from 374

two companies—one in the automotive industry and 375

one in agriculture—to capture diversity in reporting 376

styles. We report the precision, recall and F1 of 377

these mappings. 378

The models are employed within a Retrieval- 379

Augmented Generation (RAG) framework. Each 380

report D is segmented into chunks, and for each 381

disclosure query qi, the model retrieves the most 382

relevant chunks from D. The retrieved chunks are 383

then mapped back to their page numbers, effectively 384

constructing the content index. Evaluation is based 385

on the accuracy of these mappings, reflecting the 386

models’ effectiveness in automating the ESRS con- 387

tent indexing process. 388
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TEST − GRI TEST − ESRS

Model Size REC
@20

MRR
@100

MAP
@100

NDCG
@100

REC
@20

MRR
@100

MAP
@100

NDCG
@100

gte-Qwen2-1.5B-instruct 1.5B 0.72 0.38 0.34 0.48 0.44 0.22 0.19 0.29
gte-Qwen2-7B-instruct 7B 0.74 0.45 0.40 0.52 0.47 0.26 0.23 0.32
SFR-Embedding-Mistral 7B 0.66 0.36 0.31 0.45 0.42 0.23 0.19 0.28
text-embedding-3-small 0.70 0.40 0.36 0.49 0.43 0.21 0.18 0.28
text-embedding-3-large 0.74 0.47 0.41 0.53 0.46 0.27 0.23 0.32

roberta-large 355M 0.28 0.11 0.08 0.21 0.19 0.08 0.06 0.15
ModernBERT-large 396M 0.22 0.08 0.06 0.18 0.18 0.07 0.05 0.14
gte-large-en-v1.5 434M 0.69 0.40 0.36 0.48 0.43 0.21 0.18 0.28

roberta-large–FT 355M 0.74 0.43 0.38 0.51 0.40 0.21 0.17 0.27
ModernBERT-large–FT 396M 0.76 0.50 0.43 0.55 0.44 0.26 0.22 0.31
gte-large-en-v1.5–FT 434M 0.74 0.44 0.39 0.52 0.44 0.23 0.19 0.29
roberta-large–FTLLMScore 355M 0.77 0.55 0.50 0.60 0.47 0.28 0.24 0.33
ModernBERT-large–FTLLMScore 396M 0.78 0.57 0.50 0.61 0.46 0.28 0.24 0.33
gte-large-en-v1.5–FTLLMScore 434M 0.78 0.56 0.50 0.61 0.47 0.30 0.26 0.34

Table 2: Overall effectiveness of the models on GRI Dev Set and ESRS Index. The best results are highlighted
in boldface. For the GRI dataset, our fine-tuned models markedly outperform OpenAI, with our best performing
fine-tuned model being better by up to 10% on all the ranking metrics, setting the state-of-the-art on this benchmark.
For the ESRS dataset, our best performing fine-tuned model outperforms Open AI’s text-embeddings-3-large by up
to 2-3% on the ranking metrics. The low baseline underscores the significant challenge in ESRS disclosure retrieval.

5 Results and Analysis389

5.1 Benchmarking Pre-trained Embedding390

Models391

Table 2 presents the retrieval performance of vari-392

ous state-of-the-art embedding models on the GRI393

and ESRS test sets.394

Firstly, we observe that most of the LLM-395

based embedding models demonstrate strong per-396

formance out of the box. For instance, the397

1.5B parameter gte-Qwen2-1.5B-instruct em-398

bedding model achieves a Recall@20 of 0.72399

without any domain-specific fine-tuning. Addi-400

tionally, the open-source model gte-Qwen2-7B-401

instruct performs comparably to the commercial402

model text-embedding-3-large, highlighting403

the competitiveness of open-source solutions.404

Secondly, LLM-based embedding models (listed405

in the first section of the table) significantly outper-406

form the BERT-based embedding models (listed in407

the second section). This difference is attributed408

to the higher representational power and larger pre-409

training datasets of the LLM-based models, which410

enable better capture of semantic relationships in411

the ESG domain.412

Thirdly, we note that the ESRS dataset presents413

a greater challenge compared to GRI. There is a414

substantial performance degradation across models415

when evaluated on ESRS, indicating that ESRS416

retrieval tasks are more difficult, possibly due to417

differences in standards or less overlapping training418

data. 419

5.2 Benchmarking Fine-tuned Embedding 420

Models 421

We present the performance of our fine-tuned mod- 422

els in the last section of Table 2. While the 423

original BERT-based models perform significantly 424

worse than the LLM-based embeddings in their pre- 425

trained state, fine-tuning on our dataset results in 426

substantial performance improvements. After fine- 427

tuning, the BERT-based models not only close the 428

gap but, in most cases, outperform the larger LLM- 429

based embeddings. 430

Specifically, for the GRI test set, gte-large- 431

en-v1.5–FT achieves improvements of over 10 432

percentage points across all ranking metrics. Simi- 433

larly, roberta-large–FT demonstrates consistent 434

gains, outperforming the LLM-based models de- 435

spite having fewer parameters. This showcases the 436

effectiveness of fine-tuning on domain-specific data 437

for enhancing model performance. 438

When evaluating the transfer performance to the 439

ESRS test set, the fine-tuned models continue to 440

perform significantly better than their pre-trained 441

counterparts. Notably, the fine-tuned gte-large- 442

en-v1.5–FT model outperforms the commercial 443

baselines across all ranking metrics, despite not hav- 444

ing been trained on any ESRS data. This suggests 445

that fine-tuning on GRI data imparts transferable 446

knowledge that generalizes to ESRS retrieval tasks. 447
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Figure 3: Relevancy Threshold vs MRR @100.

5.3 Interplay between ESRS and GRI448

To investigate the lower baseline scores observed449

on the ESRS test set, we performed a fine-grained450

analysis of the overlap between ESRS topics and451

GRI standards. The heatmap in Figure 4 illus-452

trates the overlapping sections and is paired with the453

MRR@100 scores achieved by our best-performing454

models compared to the OpenAI baseline for each455

ESRS topic.456

We identify topics E2, E3, E4, and E5 as problem-457

atic due to insufficient training data, warranting fur-458

ther scrutiny. Similarly, topics S3 and S4, despite459

having substantial training data, diverge from GRI460

mappings, indicating potential discrepancies in the461

ESRS-GRI correspondence. On the other hand,462

topics ESRS 2, E1, S1, S2, and G1 yield strong463

performance, suggesting they are well-suited for464

automation. These topics show high overlap with465

GRI, reinforcing the potential to leverage existing466

GRI data for fine-tuning retrieval systems aimed at467

ESRS/CSRD-compliant reporting.468

The problematic topics highlighted in red em-469

phasize areas where additional data collection and470

methodological refinement are necessary to im-471

prove mapping accuracy. Future work may focus472

on enhancing the GRI-ESRS correspondence or in-473

corporating additional standards into the training474

set to further boost ESRS performance.475

5.4 Impact of LLMScore Filtering476

To understand the contribution of the LLMScore fil-477

tering step, we conducted an ablation study on the478

GRI development set. Table 2 also compares the479

performance of the finetuned model with and with-480

out LLMScore filtering. Removing the LLMScore481

filtering step (i.e., using all triplets generated from482

ESRS 2 0.32 0.34

E1 0.29 0.29

E2 0.22 0.19
E3 0.16 0.23

E4 0.12 0.14

E5 0.18 0.20

S1 0.35 0.43

S2 0.29 0.33

S3 0.13 0.19

S4 0.12 0.17

G1 0.53 0.52

OpenAI OursESRS-GRI Overlap vs MRR@100                      

0.0 0.2 0.4 0.6 0.8 1.0
ESRS-GRI Overlap Ratio

Figure 4: ESRS-GRI overlapping datapoints grouped
by topics (top to bottom). Sections within each topic
are ordered by their overlapping ratio (left to right).
The table on the right displays ranking scores, using
the MRR@100 metric, comparing OpenAI embeddings
with those from our best-performing model. Scores from
the better-performing model are bolded. Positive results
(with MRR > 0.25) are highlighted in green, while neg-
ative results are highlighted in red.

the content index, regardless of the LLM’s assess- 483

ment) leads to a statistically significant drop in per- 484

formance. This confirms that the LLM filtering 485

helps to remove noise and improve the quality of 486

the training data, leading to a more effective re- 487

trieval model. 488

5.5 Sensitivity of LLMScore Threshold 489

To determine the optimal threshold for filtering 490

triplets using the LLMScore, we experimented with 491

different threshold values on the DEV set. Figure 3 492

shows the MRR@100 performance of the finetuned 493

models with thresholds ranging from 0 to 5. A 494

threshold ≥ 1, which means keeping all triplets that 495

have any positive relevance score from the LLM, 496

provides better performance than doing no filtering. 497

As the threshold increases, performance steadily 498

increases indicating that having better quality sam- 499

ples improves retrieval performance. However, dis- 500

carding triplets after a certain point (threshold ≥ 501

4) results in a less effective model. This shows for 502

the LLM-provided grading signal, there exists an 503

optimal threshold to maximize the utilization of the 504

weakly supervised data. 505

5.6 ESRS Content Indexing 506

Table 3 presents the results of ESRS content in- 507

dexing, comparing the performance of our fine- 508

tuned gte-large-en-v1.5–FT model with the 509

OpenAI embeddings. We observe that gte-large- 510
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Company Model Prec Rec F1

Auto

text-embedding-3-large 0.30 0.41 0.34
gte-large-en-v1.5 0.30 0.38 0.34
gte-large-en-v1.5–FT 0.36 0.35 0.35

gte-large-en-v1.5–FTLLMScore 0.32 0.49 0.39

Agri

text-embedding-3-large 0.53 0.50 0.52
gte-large-en-v1.5 0.55 0.49 0.52
gte-large-en-v1.5–FT 0.56 0.46 0.50

gte-large-en-v1.5–FTLLMScore 0.54 0.44 0.48

Table 3: Comparison of GTE and OpenAI models for
content index generation on an Automotive (Auto) and
an Agricultural (Agri) companies.

en-v1.5–FTLLMScoreoutperforms the OpenAI em-511

beddings for the automotive company, whereas the512

OpenAI model performs better for the agriculture513

company. This discrepancy is likely due to the514

availability of fine-tuning data. Our training set515

contains abundant data from the automotive in-516

dustry, which benefits the fine-tuned model. In517

contrast, the agricultural sector has limited repre-518

sentation in our training data, potentially disad-519

vantaging the fine-tuned model compared to the520

more general-purpose OpenAI embeddings. Inter-521

estingly, LLMScore hurts the precision of the RAG522

system indicating that the models trained with LLM523

filtering confuse the RAG system by retrieving rele-524

vant looking false positives. Future work can refine525

the RAG through prompt tuning.526

6 Conclusion527

This paper addresses the critical need for scalable528

ESG information retrieval by leveraging disclosure529

content indices to align GRI and ESRS frameworks.530

Despite the abundance of publicly available sus-531

tainability reports, creating structured datasets has532

been challenging due to the labor-intensive nature533

of manual annotation. By using content indices as534

a source of weak supervision, we developed a novel535

benchmark for ESG retrieval finetuning and showed536

our models that outperform strong baselines, such537

as OpenAI.538

Our results demonstrate that GRI indices can ef-539

fectively bootstrap models for ESRS compliance,540

achieving moderate transferability despite limited541

ESRS-specific data. The LLMScore filtering pro-542

cess further enhanced training data quality, enabling543

our models to generalize across evolving ESG stan-544

dards. These findings highlight the practical bene-545

fits of structured indices in automating ESG report-546

ing and compliance tasks.547

By harmonizing the GRI and ESRS frameworks,548

this research establishes a robust foundation for fu-549

ture inquiries into standard-agnostic capabilities, 550

adaptability across regulatory frameworks, and 551

holistic ESG reporting solutions. Our methodol- 552

ogy significantly advances the field of ESG data 553

retrieval, while also forging new paths for the cre- 554

ation of domain-specific LLMs tailored to meet the 555

dynamic demands of sustainability regulations. 556

Limitations 557

• Data Quality and Heterogeneity: The re- 558

liance on content indices can introduce errors 559

or omissions into the training dataset. The 560

variability in reporting styles across industries 561

complicates model generalization. 562

• Transferability Across Standards: Limited 563

ESRS data may hinder the robustness of trans- 564

fer learning from GRI to ESRS, potentially 565

requiring frequent model updates as standards 566

evolve. 567

• LLMScore and Filtering Challenges: The 568

sensitivity of model performance to the LLM- 569

Score threshold indicates potential instability. 570

Filtering might introduce false positives, im- 571

pacting model precision. 572

• Industry and Temporal Bias: The dataset 573

may be skewed towards certain industries, af- 574

fecting model performance across different 575

sectors. Temporal splits might not account 576

for future changes in reporting practices. 577

Ethics Statement 578

In alignment with the ACL 2025 guidelines, we 579

highlight the ethical aspects related to the partici- 580

pation of annotators in research activities. We are 581

committed to ensuring that our approach to data 582

annotation is humane, respectful, and inclusive, as 583

this not only enhances the quality of the datasets but 584

also respects and preserves the dignity and rights 585

of all participants. 586
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A Hyperparameter settings708

This section provides detailed information on the709

hyperparameter settings and training procedures710

used for fine-tuning the retrieval models (RoBERTa-711

large and GTE-large).712

A.1 Hyperparameter Optimization713

We used a combination of prior work, best practices714

for transformer fine-tuning, and empirical evalua-715

tion on a small validation set (carved out from the716

training set) to select the hyperparameters. Specifi-717

cally, we held out five documents from the training718

set to form a validation set. This validation set was719

used solely for checkpoint selection and is distinct720

from the development set used for model evaluation.721

The primary metric for checkpoint selection was722

‘dev_cosine_accuracy‘, defined below.723

A.2 Training Arguments724

Table 4 summarizes the key hyperparameters used725

for training. These settings were largely consistent726

across both RoBERTa-large and GTE-large, with727

the primary difference being the batch size due to728

GPU memory constraints.729

Hyperparameter RoBERTa-large GTE-large

Training Epochs 5 5
Train Batch Size 32 8
Eval Batch Size 32 8
Warmup Ratio 0.05 0.05
FP16 False False
BF16 False False
Batch Sampler No Duplicates No Duplicates
Eval Steps 50 50
Save Steps 50 50
Save Total Limit 5 5
Logging Steps 20 20
Learning Rate 5e-5 5e-5
Load Best Model True True
Weight Decay 0.01 0.01
Metric for Best Model ‘cosine accuracy‘ ‘cosine accuracy‘
DDP Find Unused Params False False

Table 4: Hyperparameter settings for fine-tuning
RoBERTa-large and GTE-large.

We use saving and evaluation strategy based on730

the number of steps we take.731

We used the ‘SentenceTransformerTrainingAr-732

guments‘ class from the ‘sentence-transformers‘733

library to manage the training process. The key734

parameters are as follows:735

- ‘output_dir‘: The directory where the trained736

models and checkpoints are saved. - ‘over-737

write_output_dir‘: If ‘True‘, overwrites the con-738

tents of the output directory. - ‘num_train_epochs‘:739

The number of training epochs. We chose 5740

epochs based on preliminary experiments, observ-741

ing that performance plateaued after this point.742

- ‘per_device_train_batch_size‘: The batch size 743

per GPU during training. We used a batch size 744

of 32 for RoBERTa-large and 8 for GTE-large 745

due to GPU memory limitations. - ‘per_de- 746

vice_eval_batch_size‘: The batch size per GPU 747

during evaluation. - ‘warmup_ratio‘: The propor- 748

tion of training steps used for a linear warmup 749

of the learning rate. - ‘fp16‘ and ‘bf16‘: These 750

were set to false due to hardware constraints. - 751

‘batch_sampler‘: We used the ‘NO_DUPLICATES‘ 752

batch sampler, which ensures no duplicate examples 753

within a batch. - ‘eval_strategy‘ and ‘eval_steps‘: 754

Evaluation was performed every 50 training steps. 755

- ‘save_strategy‘ and ‘save_steps‘: Model check- 756

points were saved every 50 training steps. - 757

‘save_total_limit‘: Limited to 5 checkpoints to con- 758

serve disk space. - ‘logging_steps‘: Training statis- 759

tics were logged every 20 steps. - ‘learning_rate‘: 760

The initial learning rate for the AdamW optimizer 761

was set to 5e-5. - ‘load_best_model_at_end‘: If 762

‘True‘, loads the model checkpoint with the best per- 763

formance on the validation set at the end of training. 764

- ‘weight_decay‘: The weight decay parameter for 765

the AdamW optimizer. - ‘metric_for_best_model‘: 766

The metric used for best model checkpoint selec- 767

tion was ‘eval_gri-chunk-dev_cosine_accuracy‘. - 768

‘ddp_find_unused_parameters‘: Set to ‘False‘ since 769

distributed data parallel (DDP) training was not 770

used. 771

A.3 Loss Function and Evaluation 772

The loss function used was ‘MultipleNegatives- 773

RankingLoss‘ from the ‘sentence-transformers‘ li- 774

brary. This loss function is designed for contrastive 775

learning, ensuring that similar pairs (query and pos- 776

itive chunk) have higher similarity scores than dis- 777

similar pairs (query and negative chunk). Each 778

batch considered all other examples as negatives. 779

For development set evaluation, we used the 780

‘TripletEvaluator‘ from ‘sentence-transformers‘. 781

The ‘TripletEvaluator‘ takes three lists as input: 782

- ‘anchors‘: A list of query examples. - ‘posi- 783

tives‘: A list of relevant chunks. - ‘negatives‘: A 784

list of irrelevant chunks. 785

The evaluator computes the cosine similarity be- 786

tween anchor-positive and anchor-negative embed- 787

dings and calculates the ‘cosine_accuracy‘ metric. 788

A.4 Cosine Accuracy Metric 789

The ‘eval_gri-chunk-dev_cosine_accuracy‘ metric 790

is calculated as follows: 791
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1. Compute the cosine similarity between the792

query embedding and the positive chunk embed-793

ding: ‘sim_pos = cosine_similarity(M(q), M(c+))‘.794

2. Compute the cosine similarity between the795

query embedding and the negative chunk embed-796

ding: ‘sim_neg = cosine_similarity(M(q), M(c-))‘.797

3. Count the number of triplets where ‘sim_pos >798

sim_neg‘. 4. Compute ‘cosine_accuracy‘ as the799

percentage of triplets where the positive chunk has800

a higher cosine similarity to the query than the neg-801

ative chunk.802

This metric reflects the model’s ability to rank803

relevant chunks higher than irrelevant chunks.804

A.5 Training Procedure805

The models were trained using ‘MultipleNegatives-806

RankingLoss‘, which is well-suited for contrastive807

training. Triplets of (query, positive chunk, nega-808

tive chunk) were constructed, ensuring each query809

had one associated positive and one negative chunk.810

No significant overfitting was observed during the811

five training epochs.812

B LLMScorePrompt Details813

Below is the prompt used for ‘LLMScore‘, which814

leverages a Large Language Model (LLM) to as-815

sess the relevance of a text chunk to a given query,816

both extracted from an ESG report. The LLM is817

instructed to provide a numerical score on a scale818

of 0 to 5, reflecting the degree of relevance. See819

Figure 5 for further details.820

C PDF Preprocessing821

For the ingestion of long sustainability PDF doc-822

uments, we adopt the popular PyMUPdfLoader li-823

brary with scalability in mind. After extracting the824

text from each page of the report we perform the825

following steps:826

1. Newline Removal: Remove newline charac-827

ters to produce continuous text.828

2. Chunking: Partition the text on a pagewise829

basis into segments of 2048 characters.830

3. Overlap: Apply an overlap of 512 characters831

between contiguous chunks to preserve con-832

text.833

Formally, for a given PDF document d ∈ D, the834

loader produces a set of text chunks:835

C(d) = {c1, c2, . . . , cn},836

LLMScore Prompt

Given the following [query], and a
[text chunk] from an ESG report,
please rate the relevancy of the chunk to
the disclosure on a scale of 0-5, in terms
of being able to provide evidence for the
disclosure. Provide higher rating if the
chunk has enough evidence to answer the
query.

• The output should be a single number
between 0 and 5. 0 means not relevant
at all, 5 means highly relevant.

• The output should be an integer

[query]
{disclosure}
[text chunk]
{chunk}
Relevancy Score (1-5): <YOUR ANSWER
HERE>

Figure 5: Prompt for LLMScore

where each chunk ci is a sequence of 2048 charac- 837

ters (with a 512-character overlap with ci and ci+1). 838

These chunks serve as the basic units for further 839

processing in our pipeline. 840

D Dataset Example 841

In this section, we provide examples of the GRI in- 842

dex and the ESRS index from the HYUNDAI 2024 843

sustainability report. This communicates the com- 844

plexity of the existing pdf data and why generating 845

an ESRS report from the the GRI format report is 846

challenging. Additionally, once relevent ESRS in- 847

dex and GRI index are identified; collating related 848

content is non-trivial. 849

Figure 6 shows details of the ESRS2, ESRS E1, 850

and ESRS E2 index. Whereas Figure 7, Figure 8 851

and Figure 9 shows all the caption index for the GRI. 852

We can also see how caption index in ESRS 2 have 853

good overlap with caption index in GRI, whereas 854

E1 has less overlap and E2 has least. This is also 855

inline with our findings in the figure 4. 856

We have also included a few content examples 857

from the Hyundai 2025 sustainability report to 858

showcase how ESRS index differ from GRI index 859

for the same content. 860
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Figure 6: European Sustainability Reporting Standards (ESRS) data example from Hyundai 2025 report.

Figure 7: GRI data example 1/3 from Hyundai 2025 report.
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Figure 8: GRI data example 2/3 from Hyundai 2025 report.

Figure 9: GRI data example 3/3 from Hyundai 2025 report.
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Example 1

## ESRS 2 GOV-4: Statement on sustainability due diligence — Page no: 50-53, 67-69
## GRI 2-24: Embedding policy commitments — page no 19, 46, 50-51, 66-69, 88-89
## Section name: Human Rights and Human Resources Management

Hyundai supports international standards and guidelines related to human rights and labor, and
promotes human rights management across global supply. In collaboration with the relevant de-
partments, we strive to make practical improvements, while also conducting annual due diligence
across our business sites and suppliers to identify both potential and actual human rights risks,
and implementing appropriate mitigation measures accordingly. Meanwhile, we have established
a human resources management system that provides the highest level of value to employees. We
recruit talented employees and invest in capacity building to create a culture of voluntary learning.
We also have built a creative and performance-oriented organizational culture performance evalu-
ation and fair compensation, operate customized welfare systems, and carry out activities aimed
at improving the work environment and promoting diversity.

E Future Work861

Our work opens promising avenues for advancing862

ESG information retrieval, both technically and863

practically. One key direction is improving the au-864

tomation and validation of content index extraction865

from diverse PDF formats, which necessitates ro-866

bust table detection and structure recognition (?),867

alongside accurate semantic role labeling and vali-868

dation using LLMs to ensure alignment with report869

content. Improved OCR techniques are also crucial.870

Another significant area is expanding to multi-871

document, multi-linguality and multi-source re-872

trieval, an essential step for a holistic view of a com-873

pany’s ESG performance. This involves challenges874

in cross-document coreference resolution, informa-875

tion fusion where conflicting data must be recon-876

ciled, and temporal reasoning to monitor changes877

over time. This approach could leverage existing878

methodologies in multi-source information retrieval879

but applied specifically to ESG contexts.880

Regarding semantic and reasoning capabilities,881

our focus should shift towards integrating deeper882

understanding through ESG-specific knowledge883

graphs, enabling numerical and logical reasoning884

over tabular data and figures, and adopting more885

contextualized retrieval strategies. This is where886

bridging standards mapping becomes crucial, en-887

hancing existing open-source mappings like RSO888

(Zhou and Perzylo, 2023; Usmanova and Usbeck,889

2024) by co-learning across different frameworks to890

enrich our understanding and mapping capabilities.891

The robustness, adaptability, and multilinguality892

of our models are vital due to the evolving nature 893

of ESG standards. Research should push towards 894

continual learning, few-shot/zero-shot learning for 895

new disclosures, and cross-lingual transfer learning, 896

especially considering the multilingual demands of 897

the CSRD in the EU (Gutierrez-Bustamante and 898

Espinosa-Leal, 2022). 899

Finally, our vision for an end-to-end ESGLLM 900

model aims at automating the entire ESG reporting 901

and analysis cycle. This includes not only report 902

generation and summarization but also risk assess- 903

ment, anomaly detection, and consistency/gap anal- 904

ysis, thereby simplifying processes for companies, 905

investors, and regulators. This holistic approach 906

could potentially transform how ESG data is han- 907

dled, analyzed, and reported. 908
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Example 2

## ESRS E2-2: Actions and resources related to pollution — page 20 and 43
## GRI 303-5: Water consumption — page 20, 42, 99
## MANAGEMENT OF ENVIRONMENTAL PERFORMANCE

Management of Environmental Goals Through our environmental management implementation
system, we set mid- to long-term performance goals for environmental factors that have a con-
siderable environmental impact due to business operations, such as carbon emissions. Mid- to
long-term performance goals are set in consideration of business as usual (BAU) as well as
external economic circumstances, government policy direction, and internal business strategies.
To respond to climate change, we set the goal to achieve carbon neutrality by 2045 throughout
the entire life cycle. To achieve the goal, we are implementing such strategic tasks as a strategy
to transition to EVs, achieving RE100 at business sites, and reduction of supply chain carbon
emissions. For quantitative improvements to environmental indexes, excluding carbon, we set
improvement goals for water and wastes based on the direction of suppressing increases in water
consumption and waste generation that are on the rise in connection with production that is
increasing after COVID-19. Additionally, we manage pollutant emissions at each business site –
air (dust, NOx, SOx, THC) and water (TOC, TP, BOD, SS) – to stricter standards than the legal
requirements, thereby strengthening our environmental pollutant management. We have also set
an upper limit of 5% for the three-year average for pollutant emissions and established specific
emission targets for each busines

Example 3

## GRI 305-1: Direct (Scope 1) GHG emissions, page 36 and page 98
## ESRS E1-7: Gross Scopes 1, 2, 3 and Total GHG emissions on page 36 and page 98
## Climate related metrics
Scope 1 and Scope 2 Emission 1)

classification 2021 2022 2023
Scope 1 724,013 719,9492) 696,590
Scope 2 (location-based)3) 1,853,813 1,831,531 1,831,531
Scope 2 (market-based) 1,660,058 1,684,120 1,579,161
Scope 1 + Scope 24) 2,384,071 2,404,069 2,275,751
Scope 1 + Scope 2 Emission intensity 0.616 0.601 0.531
(GHGs emissions per vehicle produced)
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Example 4

## ESRS E4-5: Impact metrics related to biodiversity and ecosystems change — page no 46-48
## GRI 304-2: Significant impacts of activities, products and services on biodiversity — page no
46-48
## Protection of Biodiversity

Biodiversity is essential for life on Earth, allowing humans, plants, and animals to live in harmony
with nature. Recognizing that biodiversity has a significant impact on natural capital—including
human food safety, health, air and water quality, and raw material supply—Hyundai strives to
assess its impacts on, and risks to, biodiversity and to ameliorate any negative impacts based on
this assessment. Furthermore, under the company-wide ”Colorful Life” campaign, we aim to
prevent further loss of biodiversity and turn it into a net gain by implementing various projects,
such as protecting endangered species and preserving natural habitants within the communities
near our sites and regenerating land and marine ecosystems while taking into account their natural
characteristics.

Example 5

## ESRS E1-1: Transition plan for climate change mitigation - page no 32
## GRI-305-5: Reduction of GHG emissions - page no 23-32
## Plans to Achieve Climate-Related Targets (Carbon Neutrality Targets)

Reducing Our Carbon Emissions at Work Hyundai is a supporter for the Paris Agreement and
recognizes its corporate role and responsibility to reduce global GHG emissions. In this regard,
we strive to achieve carbon neutrality at our business sites by 2045 by switching to renewable
energy, improving the energy efficiency of production processes through the introduction of high-
efficiency motors and inverters, and utilizing hydrogen energy. In the short term, in conjunction
with the RE100 roadmap, we plan to promote the transition from electric energy used in the
manufacturing process to renewable energy first. In the long term, our goal is to achieve carbon
neutrality by 2045 by expanding the application of green hydrogen and the use of renewable
energy in conjunction with the realization of a hydrogen society.
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