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Abstract. Accurate hippocampal segmentation can be a useful tool for
diagnosing and monitoring neurological conditions such as Alzheimer’s
disease and epilepsy. While numerous automated segmentation methods
exist, their clinical adoption remains limited. Reliable uncertainty as-
sessment can enhance trust and facilitate clinical translation. This study
evaluates five heterogeneous hippocampal segmentation methods — In-
nerEye, ASHS, FastSurfer, HippoSeg, and FreeSurfer — across two de-
mentia datasets and one epilepsy dataset. The sub-ensemble containing
InnerEye, FastSurfer, and HippoSeg emerged as both accurate and ef-
ficient, highlighting the feasibility of balancing computational cost and
performance. Additionally, ensemble-derived uncertainty quantification
with sample variance, mutual information, and predictive entropy is
shown to reduce inaccurate segmentations by flagging low-confidence
cases, potentially providing a mechanism for automatically escalating
ambiguous cases for expert assessment.

Keywords: Uncertainty estimation · Ensemble · Hippocampal segmen-
tation · Carbon footprint.

1 Introduction

Hippocampal volume changes are associated with several neurological diseases
such as Alzheimer’s and epilepsy [10,5]. Accurate volumetric measurement can



2 G. Oliveira-Stahl et al.

serve as a biomarker for diagnosis and disease monitoring [22,3]. While man-
ual segmentation by an expert is still considered the gold standard, its time-
consuming nature and the well-documented intra- and inter-reader variability
remain significant limitations [2,8]. Multiple different protocols for hippocampal
segmentation exist, complicating the notion of a ground truth segmentation [8].

Numerous methods for automatic hippocampus segmentations have been pro-
posed, ranging from atlas-based approaches [4], to deep learning methods [20].
Despite the range of available methods, clinical adoption remains limited. Key
concerns hindering the clinical translation of these tools include the risk of silent
failure, and a lack of robustness to unexpected distribution shifts. Reliable un-
certainty estimation can play a central role in strengthening the trustworthiness
of these algorithms, e.g. by escalating uncertain cases for human review, and var-
ious approaches for assessing predictive uncertainty have been explored in the
literature [1]. While Bayesian neural networks offer the most principled frame-
work for posterior approximation, they are often computationally prohibitive.
Monte-Carlo Dropout and ensembles have emerged as practical methods for
Bayesian approximation [14,7]. Beyond providing uncertainty estimation, ensem-
ble methods consistently achieve superior performance over individual models, as
repeatedly demonstrated by results from the Brain Tumor Image Segmentation
Benchmark (BRATS) [15] and the White Matter Hyperintensity Segmentation
Challenge [13]. Ensemble predictions can be aggregated through multiple strate-
gies, with stacking of heterogeneous models proving highly effective and simple
averaging providing a stable method for integrating their predictions [17]. Al-
though deep ensembles often outperform single models, their combined outputs
are not automatically well-calibrated, even when each constituent network is
well-calibrated on its own [27,19]. Calibration deteriorates further under distri-
bution shift [18], a problem that has been traced in part to insufficient diversity
among ensemble members [11]. To counter this, the present study assesses the
disagreement of deliberately heterogeneous segmentation methods and treats
that disagreement itself as an uncertainty estimate, a strategy previously ex-
plored by Kofler et al. [12].

Another growing concern is the computational cost and energy consumption
of the segmentation methods. Recent work has highlighted the potential envi-
ronmental impact of large-scale deep learning models [23,26], emphasizing the
need for sustainable solutions. High computational demands not only contribute
to a significant carbon footprint, but also limit accessibility for hospitals and
research institutions with limited resources. Addressing both the need for reli-
able uncertainty estimation and computational efficiency will be conducive for
enabling broader clinical adoption.

Our contributions are three-fold. We first provide a comprehensive bench-
mark of five hippocampal segmentation methods, evaluating their accuracy, cal-
ibration, and carbon footprint across two dementia cohorts and one epilepsy
cohort, where we identify a resource-efficient sub-ensemble: a triad of methods
that matches the full ensemble’s Dice performance while reducing inference-time
CO2 emissions by approximately 70%. Second, we test different methods to inte-
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grate the triad’s predictions, finding simple averaging to perform best. Third, we
demonstrate that uncertainty estimates derived from the triad’s predictive dis-
tributions can identify low-confidence cases; flagging the most uncertain segmen-
tations successfully removes many gross segmentation failures across datasets.

2 Methods

2.1 Segmentation tools

The five chosen segmentation tools are:

– ASHS (AS) - an Atlas-based method specifically developed for segmenting
substructures in the medial temporal lobe using the Penn Memory Center
3T ASHS Atlas for T1-weighted MRI [28].

– HippoSeg (HI) - an atlas-based hippocampal segmentation tool optimized
for epilepsy patients [24][25].

– Freesurfer (FR) - a neuroimaging toolkit with atlas-based whole brain par-
cellation as a subcomponent [6].

– FastSurfer (FA) - a faster deep-learning based alternative to FreeSurfer [9].
– InnerEye (IN) - a deep-learning based hippocampal segmentation tool [21,20]

trained using the InnerEye toolbox, an open-source deep-learning toolbox
from Microsoft supporting medical image segmentation [16].

2.2 Data

Hippocampal segmentations were performed on three independent datasets, for
which gold standard manual segmentations were defined by a clinician with
neuroradiology experience, and confirmed by a consultant neuroradiologist. The
definition followed an amended version of the harmonised protocol definition [2]
(inclusion of the fimbria).

ADNI dataset : 30 participants of the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) (mean age 76.8 ± 7.3 years; 70% male). One third were diagnosed
with Alzheimer’s disease, one third with late mild cognitive impairment, and one
third were cognitively normal.

Local Epilepsy: Eight patients with epilepsy (mean age 46.8±24.9 years; 62.5%
female). MRI scans were acquired using a Siemens Prisma 3T scanner with an
MPRAGE sequence and a voxel size of 1.1mm×1.1mm×1.2mm. All participants
provided written informed consent. The study was approved by the local ethics
committee.

Local Dementia: 21 patients referred to the dementia clinic (age data unavailable;
71% male). MRI scans were acquired on a Siemens Prisma 3T scanner using an
MPRAGE sequence with a voxel size of 1.1mm×1.1mm×1.2mm. The study was
approved by the local ethics committee. Informed consent was not required as
this was a retrospective study (Anon ethics).
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2.3 Processing

Inference for the ADNI dataset was performed on a High-Performance Comput-
ing cluster. For carbon footprint benchmarking, the data was processed on a
dedicated node equipped with 4 NVIDIA GTX 1080 Ti GPUs, an Intel Xeon
E5-2640 v4 CPU (2.40GHz), and 64GB of RAM, with no concurrent jobs from
other users. The local hospital data was processed entirely on a local MacBook
Pro (Intel Core i5-5257U CPU @ 2.70 GHz, with ∼8GB of memory). For fair
comparison, same software versions were installed on the cluster and on the local
machine. An older version of FreeSurfer (v6.0.0) was selected to accommodate
the memory constraints of the local machine. FastSurfer (v2.3.3) was run from a
docker image on the local machine, and via singularity (v3.8.5-2.el7) on the re-
served cluster node. ASHS (v2.0.0, July 2018) was run natively on the respective
host system. In a first experiment, performance of all individual methods and
possible sub-ensembles was compared, using the binary segmentation outputs of
the five segmentation methods. The expected calibration error (ECE) of each
sub-ensemble was approximated by interpreting the number of votes from the
T = 3 ensemble members as discrete confidence levels. Specifically, if n mod-
els predicted the class hippocampus for a voxel v, the ensemble confidence was
defined as pv = n

T . For the winning triad (InnerEye + Fastsurfer + HippoSeg)
minor changes to their code were introduced to enable saving of the proba-
bilistic outputs. The relevant amended scripts are publicly available on GitHub:
https://github.com/zfdiwkm/multi-software-uncertainty. Because epilepsy can
cause unilateral hippocampal atrophy the left and right hippocampi were pro-
cessed separately to avoid averaging out potential differences in segmentation
performance. This separation allows for evaluating whether some methods un-
derperform specifically on the atrophied side. Energy consumption and time to
completion was tracked with the python package codecarbon (v2.8.3). No addi-
tional pre-processing of the scans was performed prior to segmentation with the
respective tool.

2.4 Uncertainty

For each voxel v, uncertainty was quantified as sample variance, mutual infor-
mation (MI), and predictive entropy (PE) across the winning triad’s probabilis-
tic outputs. Sample variance was calculated as Varv = 1

T−1

∑T
t=1(yv,t − ȳv)

2,
with the mean prediction ȳv = 1

T

∑T
t=1 yv,t. Mutual information was defined

as MIv = H(p̄v) − 1
T

∑T
t=1 H(pv,t), and predictive entropy as PEv = H(p̄v) =

−p̄v log2 p̄v − (1 − p̄v) log2(1 − p̄v), where p̄v = 1
T

∑T
t=1 pv,t, pv,t is the pre-

dicted probability for voxel v from tool t, and T is the number of segmenta-
tion tools. Figure 1 presents confidence maps for all three UQ metrics for a
high-dice example (a) and a low-dice example (b). Uncertainty calibration was
evaluated by the ECE, with 20 bins of equal bin-width. To not have larger
hippocampi have a disproportionate influence, ECE was calculated as the aver-
age of the per-hippocampus ECE values. For each hippocampus we computed
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ECE = Bm

n |acc(Bm)− conf(Bm)|, where Bm represents the set of indices of
voxels with confidence values falling into bin m.

Fig. 1. Visualization of uncertainty maps. Uncertainty quantified as sample variance,
mutual information, and predictive entropy, all min-max normalized. Dark red line
represents the gold standard boundary. Top row: High-dice example. Bottom row:
Low-dice example.

2.5 Evaluation metrics & experiments

Segmentation performance was evaluated using the Dice Similarity Coefficient
(DSC) and the 95th percentile Hausdorff distance (HD), predictive uncertainty
with sample variance, mutual information, and entropy, while uncertainty cali-
bration was evaluated in terms of expected calibration error. As initial bench-
marking (Experiment 1), the five individual segmentation methods, all possible
triads formed from them, and the full ensemble of five methods were compared on
the ADNI dataset. For each triad and for the full ensemble, the final prediction
mask was obtained via majority voting. Performance was assessed in terms of
DSC, ECE, and estimated CO2 emissions. In a second experiment, we compared
different strategies for integrating the predictions of the best-performing triad
to assess their impact on segmentation accuracy and uncertainty calibration.
These ensemble strategies were: (1) simple averaging of the output probabilities
from each ensemble member (denoted as ‘Ensemble_Averaged’ in the results),
(2) weighting each prediction by the model’s confidence (‘Ensemble Weighted’),
and (3) assigning each voxel to the prediction of the most confident model in a
winner-takes-all approach (‘Ensemble Triage’). In a third experiment then, we
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evaluated whether hippocampus-wide aggregated uncertainty could serve as a
predictor of low-quality segmentations. To this end, uncertainty values were ag-
gregated across the region of interest (ROI), defined as the union of predicted
segmentations with a one-voxel margin. Morphological dilation was performed
once, with scipy.ndimage.binary_dilation with a square connectivity = 1 (6-
connected kernel). The hippocampi with the highest uncertainty were excluded,
and the resulting impact on segmentation performance was assessed to deter-
mine the method’s suitability for preventing silent failures. The threshold for
exclusion was determined through the following steps: (A) classifying all predic-
tions into ‘correct’ or ‘failed’ segmentations, with failed segmentations defined
here as DSC < 0.82 or HD95 > 2.5 mm; (B) performing a stratified split of
predictions into a validation set (30%) and a test set (70%); (C) conducting a
grid search to identify the optimal threshold per dataset and metric by maxi-
mizing the F1-score; and (D) applying the identified optimal threshold to the
held-out test data. Due to non-normality of studied distributions, Friedman tests
were performed to assess significant difference in performance. To account for
multiple comparisons, p-values were adjusted with the Holm-Bonferroni method.
Resource consumption was estimated in terms of duration and CO2 expenditure
for each method and each subject.

3 Results

3.1 Benchmarking cost and performance

Experiment 1 - benchmarking with binary segmentations: The ensemble consist-
ing of InnerEye, FastSurfer, and HippoSeg produced segmentations at the same
level of accuracy as an ensemble consisting of all five softwares, while substan-
tially reducing carbon emissions (from 5.5 kg to 1.7 kg CO2 for processing of 30
ADNI patients) and retaining a comparably well-calibrated uncertainty measure
(Fig. 2). For the remainder of the paper, any mention of ’Triad’ will therefore
refer to this specific ensemble.

3.2 Segmentation performance

Experiment 2 - ensemble integration strategy: Simple mean averaging of the
ensemble members’ probabilistic outputs yielded the highest Dice performance
across all datasets (Fig. 3, p < 0.05 after Holm-Bonferroni correction). For the
HD, no significant difference was observed between the mean ensemble and other
ensemble integration strategies on the epilepsy dataset. On the Local Dementia
dataset, the mean ensemble did not significantly differ from InnerEye, while it
significantly outperformed all other methods (Fig. 3, p < 0.05, Holm-Bonferroni
corrected). Experiment 3 - Silent failure detection: Applying dataset-specific
uncertainty thresholds demonstrated varying effectiveness across UQ metrics and
datasets. For Dice-based outlier detection (Dice < 0.82), entropy achieved the
highest performance with 91.7% recall and 44.2% precision, while variance and
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Fig. 2. Balance between accuracy, CO2 emission, and uncertainty calibration. Bench-
marking on ADNI dataset, processed on dedicated node on HPC cluster. Error bars
indicate bootstrapped confidence intervals. Winning Triad : InnerEye + FastSurfer +
HippoSeg. Abbreviations: HI = HippoSeg, FA = FastSurfer, FR = FreeSurfer, IN =
InnerEye, AS = ASHS. ECE values color coded with higher values in brighter red.
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mutual information both achieved 83% recall with ∼35% precision. For HD95-
based outlier detection (HD95 > 2.5mm), entropy again performed best with
88.9% recall and 40.6% precision, compared to variance and mutual information
achieving 55.6% recall with 28.9% and 30.6% precision, respectively.

Fig. 3. Segmentation performance comparison. Ensemble = InnerEye + FastSurfer +
HippoSeg. a) Dice score comparison. b) Hausdorff Distance comparison. For all quality
control groups (QC) the aggregated uncertainty from the Ensemble Averaged was used
to discard the most uncertain hippocampi, resulting in 35% excluded predictions when
using entropy, and ∼26% exclusions with variance and mutual information (averaged
across datasets). Asterisk * indicates significant difference to Ensemble Averaged; p-
values in Suppl. Table 1.

3.3 Uncertainty calibration

The averaged probabilistic output by the Triad members produced the best
calibrated confidences, with an ECE of 0.05 across all three datasets. The sec-
ond most calibrated segmentation method was HippoSeg, with an ECE slightly
higher than 0.05 averaged across all datasets. InnerEye (ECE ≈ 0.08) and Fast-
Surfer in particular (ECE ≈ 0.16) were less well-calibrated.
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Fig. 4. Reliability diagram. a) ADNI dataset. b) Local Epilepsy dataset. c) Local De-
mentia dataset. Black axes: calibration curve. Blue axis: distribution of confidence
scores. Stacked bars show the percentage of voxels in each confidence bin for the respec-
tive segmentation software. Analysis includes union of predicted segmentations with a
one-voxel margin.

4 Conclusion & future work

The current study comprehensively evaluated ensembles of heterogeneous hip-
pocampal segmentation methods, and proposes the triad of InnerEye, FastSurfer,
and HippoSeg as the optimal combination for achieving high segmentation per-
formance while minimizing resource cost. This ensemble significantly outper-
formed all individual methods, while also producing well-calibrated uncertainty
estimates across three independent datasets. We demonstrated that aggregating
ensemble-derived uncertainty values can be useful for catching low-quality pre-
dictions, highlighting the potential for reliable uncertainty estimation to reduce
the risk for silent failures in a clinical setting. Future work will focus on assessing
the robustness of uncertainty-based failure detection under domain shift and in
lower-quality clinical scans.

Disclosure of Interest. The authors have no competing interests to declare
that are relevant to the content of this article.
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