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Abstract

Continual Relation Extraction (CRE) aims to
continuously train a model to learn new re-
lations while preserving its ability on previ-
ously learned relations. Similar to other contin-
ual learning problems, in CRE, models experi-
ence representation shift, where learned deep
space changes in the continual learning pro-
cess, which leads to the downgrade in the per-
formance of the old tasks. In this work, we will
provide an insight into this phenomenon un-
der the spectral viewpoint. Our key argument
is that, for each class shape, if its eigenvec-
tors (or spectral components) do not change
much, the shape is well-preserved. We then
conduct a spectral experiment and show that,
for the shape of each class, the eigenvectors
with larger eigenvalue are more preserved after
learning new tasks which means these vectors
are good at keeping class shapes. Based on
this analysis, we propose a simple yet effec-
tive class-wise regularization that improve the
eigenvalues in the representation learning. We
observe that our proposed regularization leads
to an increase in the eigenvalues. Extensive ex-
periments on two benchmark datasets, FewRel
and TACRED, show the effectiveness of our
proposed method with significant improvement
in performance compared to the state-of-the-art
models. Further analyses also verify our hy-
pothesis that larger eigenvalues lead to better
performance and vice versa.

1 Introduction

Relation Extraction (RE) problem is the basis
of many NLP tasks, such as Question Answer-
ing (Sorokin and Gurevych, 2017), Knowledge
Graph Construction (Luu et al., 2014, 2016; Bal-
dini Soares et al., 2019), Definition Extraction (Vey-
seh et al., 2020) and event relation extraction (Man
et al., 2022; Lai et al., 2022). In particular, a re-
lation extraction system is expected to classify se-
mantic relation between two entities mentioned in
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the given context. To address this problem, several
methods have been proposed and have achieved
remarkable results (Nguyen and Grishman, 2015;
Zhou et al., 2016; Pouran Ben Veyseh et al., 2020;
Zheng et al., 2023). Nevertheless, most previous
RE studies only considered the traditional setting
where the set of relations is pre-defined and fixed
during the training and testing phases. This setting
is not practical as new relations of interest might
emerge during deployment time of RE systems in
practice, requiring the models to adapt their opera-
tions to accommodate new types.

Recently, Continual Relation Extraction (CRE)
has attracted considerable attention in the litera-
ture (Wang et al., 2019; Han et al., 2020; Cui
et al., 2021; Zhao et al., 2022), aiming to learn
new relations from incoming data. CRE meth-
ods often suffer from Catastrophic Forgetting (CF)
phenomenon where their performance on previous
relations reduce significantly when learning new
relations. One key issue that causes CF is the repre-
sentation shift that occurs when models learn new
knowledge. Existing works have made significant
progress in mitigating this phenomenon (Phan et al.,
2022; Van et al., 2022; Nam et al., 2023). Different
from those works, we analyze the representation
shift using spectral decomposition. We argue that
the eigenvectors play an important role in capturing
the shape of each class. As such, if the eigenvec-
tors of a class shape adjust much after exposing
new tasks, it means the class shape also changes
significantly. We give an intuition for our argument
in figure 1. Based on this reasoning, we conduct
an experiment to see how eigenvectors change in
the continual learning process. We find that the
eigenvectors with larger eigenvalue are preserved
well when learning new tasks. In other words, these
eigenvectors are good at keeping class shapes and
hence avoiding the representation shift.

Based on these experiments, we propose a class-
wise regularization that aims to boost the eigen-



Figure 1: A demonstration for the impact of the adjustment of the first component vector. The class shape before
updating is blue and the updated one is green. The first component before updating is the dashed line while the new
one is the solid line. Left: The small adjustment keeps the shape unchanged. Right: The large adjustment leads to a
bad representation shift.

values. This regularization is inspired by some
recent works on dimensional collapse and feature
decorrelation (Bardes et al., 2022), which try to
make different dimensions of the embedding un-
correlated and avoid small eigenvalues effectively.
To enhance understanding, we theoretically show
why feature decorrelation helps increase the eigen-
values.

In summary, our work makes the following con-
tributions:

• We conduct a thorough analysis and provide
an insightful view of the representation space
in continual relation extraction setting via the
spectral perspective. We find that the spec-
tral components with larger eigenvalues are
less forgettable and useful in preserving class
shapes.

• A simple yet effective class-wise feature
decorrelation regularization is proposed with
the goal of boosting the eigenvalues of the rep-
resentation for each class. Furthermore, we
theoretically demonstrate why feature decor-
relation helps boost eigenvalues.

Our extensive experiments demonstrate that our
model achieves new state-of-the-art performance
on two CRE benchmarks, FewRel and TACRED.
We also conduct further analysis to verify the effi-
cacy of our idea in boosting the eigenvalues.

2 Problem Formulation and Base Model

Problem Formulation: In continual relation ex-
traction, models are trained on a sequence of tasks
{T1, T2, ..., Tk}, where the k-th task is one tradi-
tional relation extraction task and has its own train-

ing set Dk and relation set Rk. Formally, each task
Tk is a supervised classification task with training
set Dk containing N samples {(xi, yi)}Ni=1, where
xi is the input sentence and entity pair, and yi is the
relation label. As a general goal of continual learn-
ing, a CRE system is expected to perform well on
both the current task and all previous tasks. Hence,
models are required to classify each relation into a
known relation set R̃k , where R̃k =

⋃k
i=1Ri.

We adapt an episodic memory module to store a
few examples of historical tasks. Each relation has
its own memory module, i.e., a memory module
for relation r is a set Mr = {(xi, yi)}Oi=1 storing
O samples that are representatives for relation r,
where O is the pre-defined number of samples to
be stored.

Base Model and Objective Function: For mod-
elling details, we use one pretrained language
model, i.e., BERT (Devlin et al., 2018) as a fea-
ture extractor and a learnable linear classifier on
top of the feature extractor. Following previous
work (Han et al., 2020; Cui et al., 2021), we use the
CE loss LCE as the objective function for training
task Tk:

LCE =

|Dk|∑
i=1

− logP (yi|xi),

where (xi, yi) ∈ Dk

3 Spectral Analysis on The
Representation Space

3.1 Spectral Analysis Setups
Inspired by (Zhu et al., 2021), in this section we
aim to explore the changes in class shapes be-
fore and after learning new tasks. Concretely
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Figure 2: Absolute cosine values of corresponding angles of two classes P410 and per:cities of residence, which we
choose randomly from the first task of FewRel and TACRED, respectively.

FewRel
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2
CML 91.2 74.8 68.2 58.2 53.7 50.4 47.8 44.4 43.1 39.7
EMAR + BERT 98.1 94.3 92.3 90.5 89.7 88.5 87.2 86.1 84.8 83.6
RP-CRE 97.8 94.7 92.1 90.3 89.4 88.0 87.1 85.8 84.4 82.8
CRL 98.1 94.6 92.5 90.5 89.4 87.9 86.9 85.6 84.5 83.1
EMAR + ACA 98.3 95.0 92.6 91.3 90.4 89.2 87.6 87.0 86.3 84.7
Ours 98.3 94.7 93.1 91.4 90.6 89.4 87.9 86.9 85.4 84.3

TACRED
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 47.5 40.1 38.3 29.9 24 27.3 26.9 25.8 22.9 19.8
CML 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4
EMAR + BERT 98.3 92.0 87.4 84.1 82.1 80.6 78.3 76.6 76.8 76.1
RP-CRE 97.5 92.2 89.1 84.2 81.7 81.0 78.1 76.1 75.0 75.3
CRL 97.7 93.2 89.8 84.7 84.1 81.3 80.2 79.1 79.0 78.0
EMAR + ACA 98.0 92.1 90.6 85.5 84.4 82.2 80.0 78.6 78.8 78.1
Ours 98.1 93.8 89.8 85.8 84.4 83.4 81.6 79.9 79.7 79.1

Table 1: Accuracy (%) on all observed relations (which will continue to accumulate over time) at the stage of
learning current task. Other results are directly taken from (Wang et al., 2022). We show the best results in boldface
and the second best ones in underlines (Note that all models do not use class augmentation except EMAR + ACA)

Figure 3: A visualization of relation representation learned from task 1 of the test set by CRL (Top) and our model
(Bottom) at different task

speaking, we monitor how every eigenvector of
deep feature space is adjusted after updating new
knowledge thanks to spectral decomposition. For-
mally, we first train a feature extractor on dataset

Dold = {(xi, yi)}ni=1 of current task, denoted
as Fold. After finetuning Fold on new dataset
Dnew = {(xi, yi)}ni=1, we obtain an updated ex-
tractor, denoted as Fnew. To measure the sensi-
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Figure 4: Top: Absolute cosine values of corresponding angles of two classes P410 and per:cities of residence
between our model and the SOTA. Bottom: Distribution of eigenvalues of two classes P410 and per:cities of
residence for our model and the SOTA one . (Lines in cosine figures are smoothen for a better view)

tivity of learned class shapes, we use old dataset
Dold and map it into old space and new space us-
ing Fold and Fnew respectively. Let Fold(xi) and
Fnew(xi) be mapped features of a sample xi on
old and new spaces, we do spectral decomposition
on the correlation matrix as follows:

1

n

n∑
i=1

F̃(xi)F̃(xi)
T =

d∑
j=1

ujλju
T
j ,

where in the L.H.S, F̃ is the mapped feature F
after normalizing, while in the R.H.S the λj is
the j-th eigenvalue in the sorted list of d eigen-
values in descending order and uj is its correspond-
ing eigenvector. Applying this decomposition on
both old representations and new ones, Fold(xi)
and Fnew(xi), we obtain two set of eigenvectors
{uold,1, ...,uold,d} and {unew,1, ...,unew,d}.

In order to investigate the change of the
eigenvectors, Zhu et al. (2021) introduced the
definition of Corresponding Angle: given
two groups of eigenvectors, {uold,1, ...,uold,d}
and {unew,1, ...,unew,d}, corresponding angle
presents the angle between two eigenvectors corre-

sponding to the same eigenvalue index. The cosine
value of the corresponding angle is computed as
follows:

cos(ψj)
(1)
=

⟨uold,j ,unew,j⟩
∥uold,j∥ · ∥unew,j∥

(2)
= ⟨uold,j ,unew,j⟩

where uold,j is the j-th eigenvectors with the j-th
largest eigenvalue in the old feature space, and sim-
ilarly for unew,j . Additionally, because ∥uold,j∥ =

∥unew,j∥ = 1, the
(2)
= is trivial.

3.2 Changes in eigenvectors

We conduct an experiment to explore which part,
i.e., which direction of the representation space car-
ries helpful knowledge in CRE setting. We lever-
age the first two tasks of the FewRel and TACRED
datasets to examine the feature space. Figure 2
shows the absolute cosine values of the correspond-
ing angles between the old and new eigenvectors. It
is clear that, after updating, eigenvectors with large
eigenvalues adjust insignificantly and are therefore
good at preserving the shape of the data distribu-
tion, while ones with small eigenvalues tend to



move towards some different direction and can be
considered as noisy and forgettable directions.

3.3 Class-wise Decorrelation Feature
Regularization

With the previous finding, our goal is to boost the
eigenvalues of the distribution shape of each class.
Hua et al. (2021) indicated the relationship between
strong correlation and dimensional collapse, which
leads to the idea of feature decorrelation. Based
on this finding, we propose a simple technique
that enlarges eigenvalues. Formally, in each batch,
for a given label r, the correlation matrix of r is
estimated as:

K(r) =
1

n− 1

n∑
i=1

(Z
(r)
i − Z̄r)(Z

(r)
i − Z̄r)T ,

where Z(r)
i is the encoder output representation

on the i-th data point of class r while the mean
vector of r is denoted as Z̄r = 1

n

∑n
i=1(Z

(r)
i ). The

data representations is explicitly constrained by a
class-wise feature decorrelation regularization:

LFD =
∑
r∈Rk

∑
i#j

K
(r)
i,j

2

We give the theoretical proof on how feature decor-
relation enlarges the eigenvalues in Appendix B.1.
The overall objective function is given by:

Loverall = LCE + µLFD,

where µ are the hyper-parameters controlling the
importance of each term in the overall loss.

4 Experiments

4.1 Experiments Setups
Datasets: Similar to (Zhao et al., 2022), we per-
form our experiments on two standard English
benchmark datasets: FewRel and TACRED. More
details about two datasets is given at A.1

Implementation Details: Following (Cui et al.,
2021), relations are randomly divided into 10 clus-
ters to simulate 10 tasks. We use average accuracy
on all seen tasks to measure model performance on
the CRE task as previous work (Han et al., 2020).
In terms of environment and configuration, we train
all models on the same task sequence used in (Cui
et al., 2021; Zhao et al., 2022) by setting exactly
the same random seed to make a fair comparison.
For the convenience of reproduction we provide
the details of hyper-parameters settings at A.3.

4.2 Experimental Results

Base results: We report the results of our proposed
method and some baselines in Table 1. We give the
details of the baselines in A.2. It can be seen from
the table that, compare with other models which
do not use class augmentation ACA (Wang et al.,
2022), our model sets new SOTA on two CRE
benchmark datasets. Our model performs better
than the current SOTA, CRL by 1.2 % on FewRel
and 1.1% on TACRED. Our model without ACA
performs on par with the EMAR + ACA on FewRel
and still outperforms it remarkably on TACRED.

Effectiveness of the regularizer on eigenval-
ues: We run the same spectral analysis on both
our model and see that it produces larger eigen-
values compared to the SOTA model, CRL. The
reason we do not conduct experiments with ACA
because they use synthesis classes that leads to dif-
ferent behaviours in deep space compared to nor-
mal methods. We display changes in class shapes
using t-SNE in figure 3 and also provide figures
about the corresponding angles in figure 4 to verify
the effectiveness of our regularizer in keeping class
shapes. In detail, in figure 3, we show the represen-
tation of the test set data from four classes of the
first task of TACRED after learning task 0, 3, 6,
9. Our discussion is that: in a long run, the class
shapes in CRL tend to be thinner and longer while
ones trained with our model do not suffer it. The
gap in eigenvalues (Figure 4) shows that our feature
decorrelation regularization actually increases the
eigenvalues and the cosine value of corresponding
angles.

5 Conclusion

In this work, we conduct a thorough study on the
change of distribution shapes in the CRE problem
through spectral analysis and observe that eigen-
vectors with larger eigenvalues are less forgettable.
Based on these findings, we introduce a class-wise
feature decorrelation regularization with the goal
of boosting eigenvalues. Our theoretical analysis
shows the effectiveness of our proposed method in
handling low eigenvalues. Furthermore, our exten-
sive experiments on two benchmark datasets show
the superior performance of our method. In the
future, we will extend our analysis to other Infor-
mation Extraction tasks, such as Entity Mention
Detection (Nguyen et al., 2016) and Event Classifi-
cation (Lai et al., 2020; Hao et al., 2023).



Limitations

• Although we do an analysis to indicate that
eigenvectors with larger eigenvalues carry
more helpful features, there is a lack of in-
terpretation in these directions. It would
be preferable to provide some examples to
demonstrate the superiority of these directions
and make them more understandable.

• Like all prior works about CRE, we only focus
on classifying a pair of entities into relation
types when given those entities in a context.
To aim for a complete solution for CRE, the
problem of named entity recognition should
be studied in the continual learning scenarios.
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A Experiments Details

A.1 Datasets
We perform our experiments on two English bench-
mark datasets: FewRel and TACRED The training-
test-validation split ratio is 3:1:1. FewRel (Han
et al., 2018) is a RE dataset that contains 80 re-
lations and 56,000 samples in total. To make it
a continual RE dataset, we follow the settings in
(Wang et al., 2019) and use the original train set
and validation set for our experiments. TACRED
(Zhang et al., 2017) is an imbalanced RE dataset
that contains 42 relations (including no_relation)
and 106,264 samples. Following the experiment
settings by (Cui et al., 2021), to reduce the imbal-
ance, we remove the no_relation class and limit
the number of training samples of each relation to
320 and the number of test samples of each relation
to 40.

A.2 Baselines
We compare our proposed methods with several
state-of-the-art CRE baselines:

• EA-EMR (Wang et al., 2019) proposed a
memory replay and embedding alignment
technique to mitigate catastrophic forgetting.

• EMAR (Han et al., 2020) introduced a mem-
ory activation and reconsolidation to preserve
old knowledge.

• CML (Wu et al., 2021) proposed a curriculum-
meta learning method to handle the order-
sensitivity and catastrophic forgetting in CRE.

• RP-CRE (Cui et al., 2021) learns a mem-
ory network with the goal of refining sample
embeddings with relation prototypes, thereby
avoid catastrophic forgetting.

• CRL (Zhao et al., 2022) maintains learned
knowledge by introducing contrastive replay
mechanism and knowledge distillation.

• ACA (Wang et al., 2022) proposed an adver-
sarial class augmentation mechanism to make
learned models more robust representations.

A.3 Reproducibility Checklist
• Source code with specification of all depen-

dencies, including external libraries: Our
source code with necessary documentation for
reproducibility will be released upon accep-
tance of the paper.

• Description of computing infrastructure
used: In this work, we use a single Tesla
A100 GPU with 100GB memory operated
by Ubuntu Server 18.04.3 LTS for all ex-
periments. PyTorch 2.0 and Huggingface-
Transformer 4.29.2 (Apache License 2.0)
(Wolf et al., 2019) are used to implement the
models.

• Average runtime: Training each round on
average takes 88 minutes for FewRel dataset
and 18 minutes for TACRED dataset. For each
task, in both Initial training for new task phase
and Memory replay phase we train the model
for 10 epochs following the experiments by
(Zhao et al., 2022)

• Number of parameters in the model: There
are approximately 110 million parameters in
total, including 110 million from the feature
extractor and very few parameters, compared
to the feature extractor, from the softmax clas-
sifier.

• Bounds for each hyper-parameter: To tune
the proposed objective function, we choose µ
from [0.05, 0.1, 0.2, 0.25, 0.5, 1.0, 1.25]. All
the hyper-parameters are selected based on F1
scores on the validation set.

• The method of choosing hyper-parameter
values and the criterion used to se-
lect among them: We choose the hyper-
parameters for the proposed model using man-
ual tuning.

• Hyperparameter configurations for best-
performing models: In our model, we use
the following values for the hyper-parameters:
learning rate 1e-5 for the encoder and 1e-3 for
the classifier with the AdamW optimizer; 32
for the mini-batch size; µ = 0.05 for FewRel
and µ = 0.1 for TACRED. The memory size
of each task is 10.

B The Feature Decorrelation Regularizer

B.1 Theoretical proof for the effect of our loss
on eigenvalues

Without the loss of generality, we give a proof for
our loss LFD on a specific class r, denoted as L(r)

FD:

L
(r)
FD =

∑
i#j

K
(r)
i,j

2



Suppose that the correlation matrix of r: K(r) ∈
Rd×d, defined in subsection 3.3, have {λi}di=1 as
its eigenvalues, we have:

d∑
i=1

λi = trace(K(r)) = d (1)

Above equalities hold because the entries on the
main diagonal of a correlation matrix are 1’s. Now,
consider our proposed loss L(r)

FD , we have:

L
(r)
FD =

∑
i#j

K
(r)
i,j

2

= ∥K(r) − diag(K(r))∥2F
= ∥K(r) − Id∥2F

(2)

Recall that the Frobenius norm is equal to the
sum of its squared eigenvalues. The problem now
is to find out which is the eigenvalue of the matrix
K(r) − Id. In fact, its eigenvalues are {λi − 1}di=1.
Therefore, we have:

∥K(r) − Id∥2F =
d∑

i=1

(λi − 1)2 (3)

Moreover, by equation 1, we rewrite above equa-
tion as:

∥K(r) − Id∥2F =
d∑

i=1

(λi −
1

d

d∑
j=1

λj)
2 (4)

Next, plug equation 4 back to equation 2, we
have:

L
(r)
FD =

∑
i#j

K
(r)
i,j

2

=
d∑

i=1

(λi −
1

d

d∑
j=1

λj)
2

(5)

Note that our regularizer increases the number of
eigenvectors with large eigenvalues by penalizing
large eigenvalues. In fact, it reduces top eigenval-
ues and boosts the eigenvalues with lower indices.


