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ABSTRACT

Self-Supervised Learning (SSL) has shown great success in language and vision
by using pretext tasks to learn representations without manual labels. Motivated by
this, SSL has also emerged as a promising methodology in the molecular domain,
which has unique challenges such as high sensitivity to subtle structural changes and
scaffold splits, thereby requiring strong generalization ability. However, existing
SSL-based approaches have been predominantly evaluated by naive fine-tuning
performance. For a more diagnostic analysis of generalizability beyond fine-
tuning, we introduce a multi-perspective evaluation framework for molecular
SSL under a unified experimental setting, varying only the pretraining strategies.
We assess the quality of learned representations via linear probing on frozen
encoders, measure Pretrain Gain by comparison against random initialization,
quantify forgetting during fine-tuning, and explore scalability. Experimental results
show that several models, surprisingly, exhibit low or even negative Pretrain Gain
in linear probing. Graph neural network-based models experience substantial
parameter shifts, and most models derive negligible benefits from larger pretraining
datasets. Our reassessments offer new insights into the current landscape and
challenges of molecular SSL.

1 INTRODUCTION

Recently, Self-Supervised Learning (SSL) has achieved significant success in natural language pro-
cessing (NLP) Devlin et al.| (2019); |[Floridi & Chiriatti| (2020) and computer vision (CV) |Dosovitskiy:
et al.| (2020); |Grill et al.| (2020); He et al.| (2022)). SSL has received growing attention to learn
useful representations from large-scale unlabeled data [Chen et al.| (2020); Radford et al.| (2021]).
Motivated by this success, SSL has also emerged as a promising approach in the molecular domain |Li
& Jiang| (2021)); Moon et al.| (2023)); Son et al.| (2025)), where labeling molecular data is expensive and
time-consuming because it relies on real-world experiments [Juan et al.[(2024); Wouters et al.| (2020)).

The molecular field presents several unique challenges for designing generalizable models. For
instance, downstream tasks in this domain are diverse, predicting toxicity, solubility, and estimating
bioactivity [Lipinski et al.[|(1997). In addition, molecular properties are often highly sensitive to even
subtle structural changes; a small modification in an atom or bond can lead to significant differences
in biological activity or chemical property Kubinyi (2002). When evaluating such properties in
downstream tasks, model generalization is commonly assessed using random splits. However, in the
molecular domain, scaffold splitting is used, due to molecules with similar core structures tend to
have similar properties Bemis & Murckol|(1996). Scaffold splitting ensures that the test set contains
core structures unseen during training.

To solve these challenges of the molecular domain, various molecular SSL have been proposed.
However, as shown in Table[I] existing molecular SSL have primarily been evaluated by naive fine-
tuning performance. This evaluation may not be sufficient for thoroughly assessing the generalizability
of pretrained representations, as fine—tuning modifies all parameters and can thereby lead to forgetting
of knowledge acquired during large—scale pretraining/Zhou & Cao|(2021). Moreover, fair comparisons
have not been conducted, as each study employs different downstream prediction heads, hidden
dimensions, and dataset scales. For example, downstream prediction heads range from one-layer|Hu
et al.| (2019); Xu et al.| (2021)) to two-layer MLPs [Rong et al.| (2020); [Fang et al.| (2023)); hidden
dimensions vary from 300 |[Hu et al.| (2019); [Sun et al.| (2022)) to 1200 |[Rong et al.| (2020); and
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Table 1: Summary of existing molecular SSL. methods. Evaluation indicates which metric was used
to evaluate each model.Experimental Configuration describes the pretraining dataset size and model
architecture used for each method.

Evaluation Experimental Configuration
Model Fine-tune Random Gain Data Scaling Pretrain Data Backbone Hidden Dim # Parameter
GROVER [Rong et al. |(2020) v v v 11.00M  Transformer 1200 5,418K
AttributeMask|Hu et al.|(2019) v v v 2.00 M GNN 300 1,857K
ContextPred|Hu et al.|(2019) v v v 2.00 M GNN 300 1,857K
EdgePred [Hamilton et al.[(2017) v v v 2.00M GNN 300 1,857K
GraphLoG|Xu et al.|(2021) v v 2.00 M GNN 300 1,857K
GraphCL |You et al.|(2020) v v 2.00 M GNN 300 1,857K
KANO|Fang et al.|(2023) v 025M GNN 300 2,088K
ChemBERTa|Chithrananda et al.|(2020) v v 77.00 M Transformer 768 3,683K

pretraining data sizes span from 0.25 million Fang et al.[(2023) to 77 million samples Chithrananda
et al.|(2020). These highlight the need for a multi-perspective and fair evaluation strategy.

To systematically analyze molecular SSL beyond fine-tuning, we propose a multi-perspective evalua-
tion framework for molecular SSL. Since prior studies have been evaluated under different experi-
mental configurations as shown in Table[] it hinders fair comparisons regarding the effectiveness of
pretraining. All non-pretraining factors — such as datasets, prediction heads, and hidden dimensions
— are kept the same, while only pretraining-related configurations are varied. Upon this unified setup,
we propose various evaluation metrics to assess molecular SSL. We utilize linear probing to evaluate
the quality of pretrained representations. We introduce the Pretrain Gain to measure the benefits of
pretraining against random initialization. We quantify forgetting during fine-tuning through parameter
shifts. Finally, we explore the scalability to evaluate their potential as foundation models. These
metrics allow us to reassess existing approaches and provide insights into the generalization of
pretrained representations in molecular SSL.

Our contributions are summarized as follows:

* A unified experimental setup is employed that standardizes experimental variables (e.g.,
hidden dimensions, downstream heads, and datasets) across diverse molecular SSL methods,
enabling fair and controlled comparisons focused solely on pretraining strategies.

* We propose a multi-perspective evaluation framework for molecular SSL beyond fine-
tuning. It includes linear probing to assess representation quality, Pretrain Gain to quantify
pretraining benefits, parameter shift analysis to measure forgetting, and scalability.

* Comprehensive reassessments offer new insights into the current landscape and challenges
of molecular SSL, revealing that, surprisingly, several models exhibit low or even negative
Pretrain Gain, substantial parameter shifts, and negligible benefits from increased scale.

2 PRELIMINARIES

2.1 SELF-SUPERVISED LEARNING

SSL leverages unlabeled data to reduce reliance on manual annotation Devlin et al.|(2019); Radford
et al.| (2021)); Kingma et al.|(2019). It typically follows a two-stage framework: pretraining and
downstream. Pretraining learns generalizable representations by capturing intrinsic patterns within
large-scale unlabeled datasets Tendle & Hasan| (2021);|Goyal et al.|(2019); Fang et al.| (2024)). These
results suggest that these generalized representations enable efficient transfer to downstream tasks
with limited labeled data. The downstream step connects a task-specific prediction head to the
pretrained encoder. The transferred model is then trained with labeled data to perform the target task.
These tasks include toxicity prediction, solubility estimation, binding affinity prediction, and other
molecular property classification or regression tasks.

2.2 PRETRAINING STRATEGIES AND ARCHITECTURES FOR MOLECULAR SSL

To understand molecular SSL, we organize existing approaches by categorizing pretext tasks into four
types — generation-based, auxiliary property—based, contrast-based, and hybrid — and by analyzing
model architectures, focusing on GNN-based and Transformer-based designs |Liu et al.|(2022); Xu
et al. (2018); Rong et al.| (2020); Chithrananda et al.| (2020).
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Figure 1: The left part presents results using a pretrained encoder in fine-tuning and linear probing,
while the right part shows the same experiments with a randomly initialized encoder. To quantify the
benefit of pretraining, we compare models under identical training settings except for the encoder.
We assess the generality of the learned representations by comparing fine-tuning and linear probing:
high performance under linear probing suggests general representations.

Generation-based methods Hou et al.|(2022); [Wang et al.|(2019) define the pretext task as reconstruct-
ing masked components of molecular data, such as atom types, bond types, or substructures. For
example, certain atoms or bonds in a molecular graph, or tokens in string-based SMILES Weininger
(1988); [Krenn et al.| (2022} 2020), are masked during pretraining, and the model is trained to re-
cover them. In our study, AttributeMask Hu et al.| (2019), EdgePred [Hamilton et al.| (2017), and
ChemBERTa [Chithrananda et al.| (2020) are classified as Generation-based methods. Auxiliary
property-based methods Zhang et al.|(2021)); Hu et al.|(2019) utilize inherent chemical or structural
properties of molecules, such as atom degrees, aromaticity, and Motif |[Zhang et al.| (2021), as a
prediction target. The ContextPred Hu et al.|(2019) model is an example of this approach. Contrast-
based methods|You et al.[(2021) learn representations by contrasting augmented views of molecules,
typically generated through atom, edge, and subgraph level perturbations. The model learns to
make representations of views from the same molecule similar, while making those from different
molecules dissimilar. GraphLoG Xu et al.|(2021]), GraphCL |You et al.[(2020), and KANO |Fang et al.
(2023)) are included in this category. Hybrid methods|Zang et al.|(2023)) combine several pretext tasks
to capture more complex structures. For example, GROVER Rong et al.| (2020)) learns a pretext task
that combines generation-based objectives with auxiliary property prediction.

Molecular SSL commonly employs two main model architectures: GNN and Transformer. GNNs are
particularly effective at capturing the structural properties of molecular graphs, in which atoms are
represented as nodes and chemical bonds as edges. [Schiitt et al.| (2018));/Scarselli et al.|(2008)). Through
message passing, nodes iteratively aggregate information from their neighbors, enabling the model to
capture the underlying graph structure Gilmer et al.|(2017). This allows GNNss to learn representations
that include both atomic-level information and global structural context. Transformer-based models
commonly use sequence-based inputs, such as SMILES [Li & Jiang| (2021)); |Chithrananda et al.
(2020); |Wang et al.|(2019). Unlike GNNs, these models do not require an explicit graph structure and
instead learn relational patterns from sequential data. As a hybrid, GROVER incorporates GNNs and
Transformer-style attention to node features instead of using sequence-based inputs. GNNs are used
to extract graph structure

2.3 PRETEXT TASK OF MOLECULAR SELF-SUPERVISED LEARNING

We provide a summary of the pretext tasks used in the existing molecular SSL methods employed in
our experiments.

* GROVER is a hybrid model that learns a pretext task using both subgraph masking and
motif prediction. Subgraph masking aims to reconstruct masked substructures, while motif
prediction is RDKit-extracted chemical motifs for multi-label classification Landrum et al.
(2013).
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 AttributeMask predicts masked properties of nodes.

* ContextPred predicts whether a neighborhood graph and a context graph belong to the
same node. It learns through a classification task with negative sampling.

* EdgePred predicts the adjacency matrix of a graph

* GraphLoG uses a hierarchical prototype structure via clustering, enabling contrastive
learning between local instances and their parent prototypes.

* GraphClL is a contrastive learning by generating augmented graph views through node and
edge masking.

* KANO is contrastive learning between original and augmented graphs, where augmentation
is performed by adding atomic information from a knowledge graph. In addition, a prompt
approach is used to bridge the gap between pretraining and the downstream task

* ChemBERTa predicts masked tokens in SMILES strings.

3 MULTI-PERSPECTIVE EVALUATION FRAMEWORK FOR MOLECULAR SSL

We design various evaluation strategies for a more systematic and diagnostic generalization analysis
beyond fine-tuning, an overview is shown in Figure|T]

3.1 QUALITY OF LEARNED REPRESENTATIONS VIA LINEAR PROBING

In molecular SSL, pretrained models are mainly evaluated by fine-tuning. However, since fine-tuning
updates all parameters of both the encoder and the prediction head, there is a risk that the pretrained
representations may be significantly changed. This makes it hard to distinguish whether the improved
performance is due to the quality of the pretrained representations or the encoder being changed by
downstream data during fine-tuning.

To separate these effects and focus the evaluation on the quality of pretrained representations, we
employ linear probing, the encoder is frozen to preserve its pretrained representations, and trains only
the prediction head. This allows us to evaluate the focus on the quality of the pretrained represen-
tations, and high performance in linear probing indicates that the representations are generalized.
However, the quality of pretrained representations has rarely been evaluated using linear probing in
previous molecular SSL studies.

3.2 PRETRAIN GAIN AGAINST RANDOM INITIALIZATION

We introduce Pretrain Gain, a metric for quantitatively measuring the performance improvement
achieved through pretraining. It is computed by comparing the performance of a model using
pretrained parameters and randomly initialized parameters. Specifically, under the same model
architecture and training settings, only the encoder parameter differs: one uses pretrained weights,
while the other is randomly initialized. Since only the parameters differ in this setup, the performance
difference can be regarded as the effect of pretraining. The formula is as follows:

Scorepretrain - Scorerandom

Pretrain Gain = x 100 @))

SCOI'erandom

Here, Scorepretain and Scorepngom denote the downstream performance of models using pretrained
and randomly initialized encoders, respectively. By dividing by Scoreandom, the formula calculates
the relative improvement over the Score,ngom baseline as a ratio, which is then converted into a
percentage.

3.3 QUANTIFYING FORGETTING THROUGH PARAMETER SHIFT

fine-tuning updates all model parameters, and thus, the pretrained encoder may also be modified.
As a result, the pretrained knowledge can be partially or completely forgotten during fine-tuning.
This issue can be mitigated when the pretrained representations are sufficiently general, allowing the
encoder to align across various tasks with minimal changes. In contrast, when the representations lack
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generality, the encoder requires substantial modification to align with the downstream task |Zhang
et al.|(2020).

To investigate forgetting, we quantitatively measure the parameter shift during fine-tuning. The
parameter shift is computed as the L2 distance between the pretrained encoder parameters before and
after fine-tuning. It is calculated as:

N
Aparam — Z Hg?efore - aeilfterHQ )

i=1

Here, Opefore and 6, denote the encoder parameters before and after fine-tuning. By comparing the
two, we aim to quantify the extent of the parameter shift. A larger value of Ap,nm indicates that the
encoder parameters have significantly changed. In contrast, a smaller parameter shift suggests that
the pretrained representations are well-generalized and that the pretrained information is preserved
during fine-tuning.

3.4 SCALABILITY IN MOLECULAR SSL

In the fields of NLP and CV, SSL performance gradually improves as the amount of pretraining data
or the number of model parameters increases Floridi & Chiriatti| (2020); [Kaplan et al.| (2020); Zhai
et al.|(2022). Larger datasets offer models a wider variety of patterns, enabling them to learn more
generalizable representations. As a result, scalability has become a key aspect of SSL. However, most
of the prior papers considered in our study have not explored scalability. In this paper, we analyze
how the size of the pretraining dataset influences the scalability of molecular SSL.

Specifically, we conduct experiments by changing only the size of the pretraining dataset, with
the original model architectures kept as proposed in each paper. Our experiments use the ZINC15
dataset |Sterling & Irwin| (2015)), which officially provides subsets containing 0.25 M and 2 M.
Additionally, we create 0.02 M, 0.5 M, 1 M, and 1.5 M subsets by randomly sampling from the
original 2 M dataset.

4 EXPERIMENTS SETTING

4.1 DATASETS

Pretraining Dataset. We use 0.25 million unlabeled molecules from ZINC15 |Sterling & Irwin
(2015)). Since pretraining does not aim to predict molecular properties, the data are randomly split
into training and validation sets with a 9:1 ratio. The model is trained on the training set, and the
checkpoint with the lowest validation loss is selected as the final pretrained model.

Downstream Datasets We use six molecular properties datasets from MoleculeNet|Wu et al.| (2018)).
BACE predicts whether a compound inhibits an enzyme. BBBP evaluates the ability of compounds
to penetrate the blood-brain barrier. ClinTox is a binary classification task that distinguishes between
FDA-approved drugs and compounds that failed clinical trials due to toxicity. Tox21 aims to predict
the toxic effects of chemical compounds across multiple biological pathways. ToxCast provides
detailed toxicity profiles across diverse biological and cellular pathways. SIDER includes information
on drug side effects, covering 27 human organs. These datasets cover a variety of molecular and
biological prediction tasks. Detailed information is provided in Table [3]in the Appendix.

4.2 DATA SPLIT

There are two common strategies for data splitting in molecular machine learning: random split and
scaffold split. In domains such as computer vision and NLP, random splits are often used to evaluate
out-of-distribution generalization. However, random splits are limited in the molecular domain
because structurally or chemically similar molecules tend to exhibit similar properties |Hendrickson
(1991). Consequently, the model may have already seen test data patterns during training, leading to
less reliable evaluation results. To address this issue, scaffold splitting is adopted Bemis & Murcko
(1996). This method clusters molecules based on their unique core structures (scaffolds) and splits
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Table 2: Performance on six downstream datasets and average with 3 repetitions under scaffold
splitting, reported in terms of ROC-AUC (1) as mean =+ std in %. (A) Fine-tuning: starts from
pretrained encoder weights, both the encoder and the prediction head are updated. (B) Linear probing:
starts from pretrained encoder weights, the encoder is frozen, and only the prediction head is updated.

(A) Fine-tuning
Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 85.93+118 92.73+360  84.90x671 8491205 62.41%060 70.33+127  80.20
AttributeMask ~ 77.12+509  68.46+137  72.27+443  76.84+039  62.75x081 64.04+017 70.25
ContextPred 76.53+319  68.62+166  65.63%349  74.70x104 62.762058 64.08+147 68.72

EdgePred 72.294296  63.85+101  51.87+316  72.40+062 54.64+250 59.96+068  62.50
GraphLoG 83.51+076 63.13%134  63.78%476  73.26+039 60.39+060 62.64+084 67.79
GraphCL 78.83+131  63.84%051  58.59+479  73.17+079  60.13%0.16  63.00+151  66.26
KANO 84.73+218  94.61+1.14  88.08+432 83.52+252 59.36+133 T72.41+219 8045

ChemBERTa 77.24+120 78.12+104  85.73%645  T70.75+192 69.73+147 52234278 72.30

(B) Linear probing
Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
GROVER 82.97+440 91.91%277  76.68+s08  81.62+243 61.96+087 66.99+201  77.02

AttributeMask  61.76x069 60.09+056  65.27+182  69.55+023 54.56%067 57.65+129 61.48
ContextPred 60.07+158 63.43x016  23.49+055  68.29+044  60.77082 58.21+069 55.71

EdgePred 63.36£7.00 56.57+103 4991049  51.60+207 51.51#046 49.96+040 53.82
GraphLoG 72.28+164  61.34%107  62.18+531  68.73041  59.78+0.18 56.17+088  63.41
GraphCL 70.05+379  62.43%040 56.36%2.17  66.40+063 58.92+061 58.84+071  62.17
KANO 78.54+495  91.92+399 61.40+16.11  81.15+328  59.57+096 68.46*122 73.51

ChemBERTa 69.02+037  76.03%054  32.99+428  70.33%063 65.79%1.04 50.40+044 60.76

clusters into training, validation, and test sets. In our experiments, we use downstream datasets
divided using scaffold splitting with an 8:1:1 ratio for the training, validation, and test sets.

4.3 IMPLEMENTATION DETAILS

The other hyperparameters for pretraining are set as follows: a batch size of 256, 100 epochs, and
300 hidden dimensions. For the downstream step, we use a batch size of 32, 50 epochs, and employ
a 2-layer prediction head. We try to keep the original encoder structures and pretraining tasks
unchanged. All the experiments are run on a single NVIDIA RTX 3090 GPU.

5 RESULT

5.1 ANALYZING GENERALIZATION VIA FINE-TUNING AND LINEAR PROBING

We design a unified experimental setup to focus on pretraining. We conduct fine-tuning, and the
results are presented in Table [2] (A). KANO achieves the highest average performance (80.45),
followed closely by GROVER (80.20), indicating that their performance is comparable.

Pretrained representations are modified during fine-tuning to fit downstream tasks, which can make it
difficult to accurately assess the quality of the original pretrained representations. To address this,
we adapt linear probing, which preserves the pretrained representations, and shows the results in
Table[2] (B). GROVER achieves the highest performance in linear probing (77.02), suggesting that
its pretrained representations are reasonably general, by showing high performance across diverse
tasks without encoder updates. KANO achieves the highest performance in fine-tuning, which leads
to the common expectation that its pretrained representations are the most generalizable. However,
KANO ranks second in linear probing, implying that its pretrained representations may be slightly
less generalizable than GROVER.

To further assess the generality of the pretrained representations, we compare the performance of
fine-tuning and linear probing. The results are shown in Figure[6]in the Appendix. The performance
gap between fine-tuning and linear probing indicates how effectively the pretrained encoder can be
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Figure 2: Comparison of Pretrain Gain under (A) fine-tuning and (B) linear probing. Each line bar
represents the average ROC-AUC across six downstream datasets with 3 repetitions, the red and blue
indicate pretrain and randomly initialized, respectively. Pretrain Gain is represented using rectangular
bars, with positive gain in orange and negative in green, with values of mean and standard deviation.

utilized in downstream tasks without modification. GROVER, GraphLoG, and GraphCL exhibit a low
performance gap of less than 5, suggesting that their pretrained representations are well-generalized.
In contrast, ContextPred and ChemBERTa exhibit a performance gap of over 10, indicating a substan-
tial drop in performance when the pretrained representations are used without modification. This may
imply that their representations are less generalizable under our evaluation setup, where a smaller
performance gap indicates more generalizable and robust pretrained representations. Therefore,
designing pretraining tasks that reduce the gap between fine-tuning and linear probing is desirable, as
it may lead to more robust and generalizable molecular representations.

5.2 ASSESSING THE CONTRIBUTION OF PRETRAINED REPRESENTATIONS THROUGH
PRETRAIN GAIN

To quantify the performance improvement achieved through pretraining, we use Pretrain Gain.
Figure2]is computed based on the results shown in Table[2]and Table[din the Appendix. A positive
Pretrain Gain suggests that pretraining provides a benefit, resulting in better performance than a
randomly initialized model. The Pretrain Gain under fine-tuning is shown in Figure 2] (A). Most
models show a positive Pretrain Gain, which is consistent with prior work demonstrating the benefits
of pretraining. Interestingly, KANO — despite achieving the highest fine-tuning performance —
shows a negligible Pretrain Gain (0.34), suggesting that the high performance may not be due to
pretraining. This result highlights that the fine-tuning result alone is insufficient to assess the effect of
pretraining, emphasizing the importance of Pretrain Gain as an evaluation metric

As shown in Figure [2] (B), which presents the Pretrain Gain under linear probing, the results sub-
stantially differ from the trends observed in fine-tuning. Most models show a positive Pretrain
Gain in fine-tuning; however, the Pretrain Gain in linear probing is smaller than the Pretrain Gain
observed in fine-tuning. Specifically, except for ChemBERTa, no model exceeds a Pretrain Gain
of 5%. Surprisingly, in some cases, randomly initialized models outperform the pretrained model.
These observations suggest that the pretrained representations may not have captured sufficiently
transferable features for linear probing. These results show that even if a model achieves high
performance in fine-tuning, it does not always imply high-quality representations.

5.3 QUANTIFYING FORGETTING VIA PARAMETER SHIFT

We measure parameter shift to quantify forgetting during fine-tuning, as summarized in Table [3]
in the Appendix and illustrated in Figure[3] GROVER and ChemBERTa, both Transformer-based
models, exhibit relatively small parameter shifts, suggesting that their pretrained representations are
sufficiently general and well preserved during fine-tuning. In contrast, GNN-based models tend to
exhibit substantial parameter shifts, particularly in tasks such as Tox21 and ToxCast. As shown in
Table[3in the Appendix, as these datasets are larger and more diverse, this may increase the need for
generalized representations. If the pretrained representations fail to capture such molecular diversity,
the model may require more substantial parameter updates during fine-tuning.
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We compare the performance gap—used as a measure of generality—with the ranking of parameter
shift. As shown in Figure[7]of the appendix, the two metrics exhibit an linear relationship: larger
parameter shifts correspond to larger performance gaps. A larger performance gap indicates weaker
generalization, suggesting that models with larger parameter shifts produce less generalizable repre-
sentations. Thus, parameter shift provides a useful indirectly metric for evaluating representation
generality.

5.4 SCALABILITY OF MOLECULAR SSL

Figure [d] visualizes the average performance reported in Tabld6HI0|in the Appendix, which presents
results under varying pretraining dataset sizes to analyze scalability. Most models exhibit a flat
performance trend regardless of the amount of pretraining data. This pattern is observed in both
fine-tuning and linear probing results, suggesting that these models have limited scalability under our
experimental setting.

We consider one main factor to understand this limitation. Unlike the NLP and CV domains [Hoft1
mann et al.| (2022), molecular data is characterized by subtle structural diversity and domain-specific
constraints. Existing molecular pretraining methods, such as masking and contrastive learning, aim
to capture chemically meaningful information through structural perturbations. However, structure-
based approaches may be insufficient to capture certain chemical properties of molecules, especially
those not directly linked to graph structure. Therefore, overcoming this limitation require pre-
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Figure 4: Pretrain Gain (%) across varying pretraining dataset sizes for eight molecular SSL models
under (A) fine-tuning and (B) linear probing. Pretrain Gain is averaged over six downstream tasks,
each repeated three times, for each pretraining dataset size.
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Figure 5: The graph illustrates model performance across eight evaluation settings using a polygon
representation. Fine-tuning and linear probing are denoted as FT and LP, respectively. For metrics
marked with (R), lower values indicate better performance, so they are computed in reverse order.
Scalability is caculated by averaging results across datasets, while Parameter Shift use ranking. A
larger polygonal area indicates stronger performance. In the legend, the value next to each model
denotes its polygon area.

training strategies that reduce the discrepancy between pretraining and downstream tasks, enabling
performance to scale with larger datasets.

5.5 INTEGRATED EVALUATION RESULTS

As shown in Figure[5] we present a comprehensive evaluation integrating eight methods for quantita-
tive comparison. A key observation is that no model achieves balanced performance across all eight
metrics. Nevertheless, GROVER emerges as the strongest overall model, excelling in most metrics
except for Pretrain Gain FT and FT scalability. KANO achieves the highest performance under the
widely adopted fine-tuning but performs poorly in both Pretrain Gain and scalability, leading to an
overall ranking of fourth. This demonstrates that strong fine-tuning performance does not guarantee
overall superiority in pretraining approaches.

Taken together, our results indicate that Transformer-based architectures are particularly effective,
with GROVER and ChemBERTa achieving the highest overall performance. For GNN-based mod-
els, contrastive learning generally proves to be a strong pretraining strategy, with GraphLoG and
KANO achieving the best performance among GNNs. However, GraphCL performs worse than
AttributeMask, suggesting that basic contrastive learning alone is insufficient and that more advanced
strategies are required.

To further validate our findings, we provide additional results in the appendix. The regression results
in Table[TTHT6|and Figure[8] 0] show that scalability remains flat, while the experiments with a hidden
dimension of 1200 (Table[I7] Figure[I0) reveal that linear probing yields more negative gains. These
results are consistent with our main findings, thereby reinforcing the robustness of our conclusions.

6 CONCLUSION

In this paper, we present a multi-perspective evaluation framework for molecular SSL beyond fine-
tuning, incorporating linear probing, Pretrain Gain, parameter shift analysis, scalability. Our results
reveal that high fine-tuning performance does not necessarily imply generalizable pretrained rep-
resentations, highlighting the limitations of relying solely on fine-tuning for evaluation. Through
parameter shift analysis, we show that GNN-based models encounter substantial parameter shifts
during fine-tuning, raising concerns about the stability and generality of their representations. We
also find that many models exhibit limited scalability, with flat trends from larger pretraining datasets,
unlike trends observed in NLP and CV. In the comprehensive evaluation, no model achieves consis-
tently high performance across all metrics, underscoring the limited generalization of molecular SSL
representations. This suggests that advancing molecular graph SSL requires moving beyond a focus
solely on fine-tuning accuracy and should adopt comprehensive evaluation frameworks such as the
one proposed in this paper.
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Table 3: Details of the dataset used in the experiments. # Tasks and # Compounds are the number of
tasks to perform and molecules, respectively. # Atoms and # Bonds are the averages of the number of
nodes and edges in all molecules, respectively.

DATASET # TASKS # GRAPHS # ATOMS # BONDS
BACE 1 1,513 34.1 36.9
BBBP 1 2,03 24.1 26.0
CLINTOX 2 1,478 26.3 28.1
Tox21 12 7,831 18.6 19.3
SIDER 27 1,478 34.3 36.1
ToxCAST 617 8,575 18.8 19.3

N Linear probing
IEE Fine-tuning

GROVER

AttributeMask

ContextPred;

EdgePred;

GraphLoG

GraphCL

KANO

ChemBERTa;]

[ Performance Gap
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Figure 6: Figure illustrates the performance gap between fine-tuning and linear probing. A smaller gap
indicates that linear probing achieves high performance, suggesting that the pretrained representations

are highly generalizable.

Table 4: Prediction performance on six downstream tasks and the overall average (across 3 repeats)
using scaffold splitting, reported in terms of ROC-AUC (1) as mean and std in %. (A) Random
Initialization (Fine-tuning): Starts from randomly initialized encoder weights; both the encoder and
the prediction head are trained. (B) Random Initialization (Linear Probing): Starts from randomly
initialized encoder weights; the encoder is frozen, and only the prediction head is trained.

(A) Random Initialization (Fine-tuning)

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
GROVER 79.14%519  91.51+285  74.95+480  81.60+207 65.56+159 61.36+282 75.69
AttributeMask ~ 70.52+250  66.78%094  53.12+323  73.11x098 61.75%073 59.11x039  64.07
ContextPred 66.07+375  68.34+105  49.1046.12  73.06%095 61.35+153 59.57+349 62.92
EdgePred 72.69%611  66.26%222  51.47%695  73.06%036 60.93%102 56.98+182  63.57
GraphLoG T4.74%236  67.99+135 5426157  72.58%081 61.75+113  56.20+296 64.59
GraphCL 71.094384  65.20+384  48.74x082  73.76%105 61.92+053 56.05%147  62.79
KANO 84.35+056 93.50+282 85364517  83.44+220  71.66+1.17 6236204  80.11
ChemBERTa 71174311 72.024402  64.164813  66.48+274  68.89+189 49.56+299  65.38
(B) Random Initialization (Linear probing)

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
Grover 82.97+440 91914277  76.68+s508  81.62+243  66.99+087 61.96+201 77.02
AttributeMask  61.76x060  60.09+056  65.27+182  69.55+023 57.65067 54.56*120 61.48
ContextPred 60.07+1.58  63.43%0.16  23.49+055  68.294044 5821082  60.77+069  55.71
EdgePred 63.36+7.00 56.57+103  4991%049  51.60+207 51.51%046 49.96+040 53.82
GraphLog 72.28+164  61.34%107  62.18+s531  68.73+041  56.17+018 59.78+0s88  63.41
GraphCL 70.05+379  62.43%040  56.36+2.17  66.40%063  58.84+061  58.92+071  62.17
KANO 78.54+495 91924399  61.40+1611  81.15+328 68.46%09 59.57+122  73.51
ChemBERTa 69.02+037  76.03%054 32994428  70.33%063 65.79+105 50.40%044  60.76
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The table shows the numerical values of the parameter shifts visualized in Figure 3]

Table 5: This table shows the mean and standard deviation of L2-based parameter shifts for each

dataset.
Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
GROVER 150.56 +6.79 114.52 +5.01 14.47 072 146.88 £7.99 83.40%4.08 202.52 *10.55 118.73
AttributeMask ~ 7342.73 £32447  7512.03 34273 1621.39 +s81.04 33802.75+146707  37624.28+1623.60  9871.82 +460.89 16295.83
ContextPred 13259.14458536  959.35 +42.16 12196.34+567.81  53328.02+2256.96  56409.84+2435.61 19260.63+s4149  25902.22
EdgePred 10292.06+487.97  7128.03 33783 2880.88 +133.83  49563.34+220074  46475.73+207452  18025.514856.93  22394.26
GraphLoG 3575.96 +189.63 13064.01+707.52  8800.22 +48251  41243.5742083.18  39080.37+1757.49  8217.41 £358.15 18996.92
GraphCL 10232.894s31.38  351.13 #*15.59 1395.80 *63.51 34420.74+1581.78  37580.58%172092  3829.59 +17462  14635.12
KANO 2406.61 +10954  3817.20 +190.18  2454.36 11082 13678.55%701.49  28898.60 £150289  2227.76 10335  8913.85
ChemBERTa 1777.71 2431 1649.05+22.61 1463.93 *+20.10 1393.99 *19.26 553.03 +7.87 31.30 o061 1144.83
10 1
s 4 .ContextPred
[ Edgepred
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Figure 7: The relationship between parameter shift—calculated based on ranking—and the perfor-
mance gap, which reflects the generality of pretrained representations.

These tables show the performance on each dataset size from the scalability experiment.

Table 6: Fine-tuning and linear probing results of models pretrained on 0.02M dataset.

Fine-tuning

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
Grover 85.07+209  93.10+399  79.04+967  83.81%101  69.38+053 61.83+216 78.70
AttributeMask ~ 82.18+336  69.86+189  63.87+496  74.89+099 64.36+08s 58.73%175  68.98
ContextPred 7599620  68.12+039  50.13+458  74.71+052  62.22+037 62.21%007 65.57
EdgePred 70.26+301  67.01%337  49.43%400 73.46x024 60.83+055 57.38+144 63.06
GraphLog 69.31+1044  63.08+404  51.87+424 7288014 6227115 57.96x106 62.89
GraphCL 78.14+402  68.11x164  58.17%326  74.32+089  64.06x080 58.85+271  66.94
KANO 83.52+192 93.86+364  87.59+421  83.66+252  72.39+097 62.34+144  80.56
ChemBERTa 85.48+050  69.85+245  99.27+011  65.20+149 61.11+213  57.63%194  73.09
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
Grover 82.26+234  92.62+43  67.76+592  80.98+1s8  67.71x061  61.52+051  75.47
AttributeMask ~ 77.71x181  60.37+077  44.994656  68.67+059  60.30+059  58.14+083 61.70
ContextPred 63.11+033  62.81+087  40.95%443  62.54+063 58.61x120 55.54%073 57.26
EdgePred 62.35+387  53.97+118  51.43%279  51.98+033 51.84+079 51.21%087 53.80
GraphLog 69.26+1.60  57.18+150  54.224203  69.40+048 58.78+036 61.07+199 61.65
GraphCL 68.25+175  66.19+071  73.74+452  T1.97+025 58.50+106 59.98+042 66.44
KANO 82.61+501  88.67+194  69.45%1004 80.20+358 67.62+140 58.74%274  T4.55
ChemBERTa 57134332 59.924470 61.2442796 S1.11x283  49.65+019 49.99+047 54.84
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Table 7: Fine-tuning and linear probing results of models pretrained on 0.5M dataset.
head are trained.
Fine-tuning
Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 86.99+1.18  92.94+451  85.14%s510  85.31#246  70.61x080 62.71+187  80.62
AttributeMask ~ 79.01+1.02  67.54+092  68.494670  74.93%146 64.20+015 62.37+067 70.74
ContextPred 81.30+112  69.28+142  60.19+461  75.07x094 64.19%030 60.98+168 68.50

EdgePred 76.38+554  65.51+298  54.37+a98  73.63%£1.02  63.25+056 61.86+079  65.83
GraphLog 81.19+151  67.53+252 62734386  74.00+046 61.58+1.03 58.13+0.12  67.29
GraphCL 70.02+217  68.41%105 63924409  73.23%081 63.45%023 59.26%1.07 66.38
KANO 83.48+208  93.93+230  88.194s.10  83.87#200 72.12+119  59.87+018  80.24

ChemBERTa 76.76+407  81.97+246  88.70+091  66.45+249  72.12+082 50.71x079  72.79
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
Grover 82.60+409  92.69+274  T7.85+765 81.594228 67.87+067 62.00+194 77.43

AttributeMask  67.66+1223  59.30+049  60.204299  68.13+044  59.57+024 55.01%123 61.65
ContextPred 73.82+349  63.98%141  50.68+077  69.17+073  60.18+091  58.39+0s51  62.70

EdgePred 61.03+130  58.20+038  55.75+222  67.69+042 57.82%009 58.51+043 59.83
GraphLog 70.00+230  60.41+098  61.28+417  66.56+005 55.97+030 56.38+074 61.77
GraphCL 74.80x150  62.32+147  65.78+370  67.51*113  59.470s52  59.58+089  64.91
KANO 77194776 91.87#298  53.39%1040  80.04%299  68.65+1.15 58294099  71.57

ChemBERTa 74.08+030  76.66+091  89.61%189  63.42+020 65.92+007 52.12+104  70.30

Table 8: Fine-tuning and linear probing results of models pretrained on 1 M dataset.
Fine-tuning
Method BACE BBBP  ClinTox Tox2l ~ ToxCast ~ SIDER  AVG

Grover 85.68+170  93.01+356  85.77+418  84.87+210 70.41%028 61.98+087  80.29
AttributeMask ~ 78.59+085  69.41+344  76.48+471  75.98%063 63.99+064 59.96+156 70.74
ContextPred 74514906  69.84%546  64.76%051  T4.88+053 64.05+052 62.78+0.18  68.47

EdgePred 67.08+413  69.24+047  55.75%280  73.63x052  60.62+046 55.70+139  63.67
GraphLog 82.80+1.68  66.52+060  68.01+371  73.97+110 61.89+031 58.33+120 68.59
GraphCL 81.74+208  67.36+0.19  58.49+450  73.79+058 63.80+049 61.08+099 67.71
KANO 84.94+056  94.29+180  87.53+746  83.32+204  72.28+147  60.72+0s3  80.51

ChemBERTa 76.33+142  79.54%141  75.23%s515  70.04%084  69.66%292  55.11x088  70.99
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
Grover 82.16+416  92.77+274  75.78+716  81.24+258 67.58+071 61.48+216 76.84

AttributeMask ~ 69.64+047  60.58+030  68.63+306  66.38+0.10 60.38%045 51.37+091 62.83
ContextPred 69.43+201  59.86+239 4191306 68.70+113  59.09+051  60.80+108 59.96

EdgePred 61.03+130  58.20+038  55.66+225  67.64+043 57.75%018  58.48+041  59.79
GraphLog 66.87+239  53.08%042  57.64x398  65.78%0.13  55.83%034 54.87+0s50 59.01
GraphCL 72324082 64.89+1.02 56204350  67.39+064  60.47+040 59.47+123  63.46
KANO 724241267 92.11#300  59.60+1222  80.39+334  68.38%101  57.12+233  71.67

ChemBERTa 64.30+950  76.54+123  80.59+377  65.28+059 64.99%0.13  52.47+059  67.36

15



Under review as a conference paper at ICLR 2026

Table 9: Fine-tuning and linear probing results of models pretrained on 1.5 M dataset.
Fine-tuning
Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 84.39+280 92.45+487  86.21%s523  85.48+241  T1.81+0s8  62.39+095  80.45
AttributeMask ~ 81.06%221  67.96%382 59344224  75.02+061 63.41%010 59.710s0 67.75
ContextPred 75484342 67.81%208  56.73k9.11  73.85+028 61.51%095 59.94+176  65.89

EdgePred 68.73+620 66.79+201  50.31#467  72.07+051  62.15%054 56.60%150 62.77
GraphLog 82.98+057 65.224242  62.63%176  T4.44%005 63.21x062 62.11*175  68.43
GraphCL 78.76+123  67.58+215  60.25%193  75.41%066 63.44%104 60.55%137 67.66
KANO 83.62+131  94.53+174  84.02+457  83.04+176  72.94+106  60.83%150 79.83

ChemBERTa 71.05+083 87.42+184  98.55+019  66.93+099 62.12+095 58.98+020 74.18
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
Grover 83.80+224  93.05%415  83.194727  82.264305  68.32+081  63.36+173  79.00

AttributeMask ~ 60.63%224  64.13+0.16  55.65+196  69.63+045  59.104021  53.23+339  60.40
ContextPred 42.43+447  59.38%047  43.16%656  65.20+017 57.894035 57.60+038 54.28

EdgePred 69.32+457  56.38+231  49.24+416  51.73%057  51.93%038 49.17+265 54.63
GraphLog 74.10%126  62.36%1.18  57.52+029  69.14%026  56.81%050 59.10+091 63.17
GraphCL 7334%112  66.66+086  66.27+238  69.80%090 59.33%104 58.25%112  65.61
KANO 7531+702  92.04+284 57.61*i680 80.51+276 68.29+072 57.73+151  71.92
chemberta 78.02+455  80.15%200  39.274663  73.93%085 73.90+180 54.24+155 66.59

Table 10: Fine-tuning and linear probing results of models pretrained on 2 M dataset.
Fine-tuning
Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 85.68+1.70  93.01%356  85.77+418  84.87+210 70.41%028 61.98+087  80.29
AttributeMask ~ 80.81%253  70.12+112  71.58+7.19  75.75%065 63.47+082 61.61%101  70.56
ContextPred 76.78+1081  67.88%091 59.26+305  74.54%051 64.31%064 62.78+176  67.59

EdgePred 76304816  69.86+ 1091  61.75%260  75.690.18  64.27+045 61.05+021  68.15
GraphLog 79.01+1122  67.66+271 59.69+315  73.294042  62.07+057  60.60+130 67.05
GraphCL 78154326  68.13k027 72934327  74.61%007 63.71x012 58.17+148  69.28
KANO 84.02+138  93.71+168  87.13#s828  84.11+154 72.63x151  61.21+102 80.47

ChemBERTa 79.02+205  79.19+319 66212111 73.75+103  72.12+151  56.71%100  71.17
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
Grover 82.80+3.99 92.11+252 81.29+444  81.40+260 67.35+068 61.74+3.13  77.78

AttributeMask ~ 62.55%0.27 66.46+0.90 73.10%077  69.24+050 56.57+027 54.29+024  63.70
ContextPred 65.52+7.00 60.88+0.59 30.00+1.00  68.77+052  60.32+078  59.22+026 57.45

EdgePred 70.81#273  59.92+132  64.68+277  64.69+095 59.01x040 56.13x1.12  62.54
GraphLog 71.78+1.98 58.66+060  59.57+174  67.00+030 55.98+072  60.82+091  62.30
GraphCL 76.09+1.31 6791096  65.44+246  69.59+038 61.33x065 S57.12+140 66.24
KANO 77.63%638  92.23+133  58.64+1195  80.07+285  68.78+084 57.45+164  72.47

ChemBERTa 63.11+9.96 77.18+0.21 91.78+395  70.49+223  68.70+0.12  53.91+136 70.86

Table 11: Fine-tuning and linear probing results of models pretrained on 0.02 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv.  AVG

Grover 1.3440084  3.1260510  0.8040019  1.758
AttributeMask  1.4630.100  2.9890.073  0.8190.036  1.757
ContextPred 1.4200001  4.3822314  0.8200031  2.208

EdgePred 1.4450046  3.2680342  0.8410.026  1.851
GraphLog - - - -
GraphCL 1.0180.114  2.2800.047 0.6140021 1.304
KANO 0.639.110 1.5620365  0.4430007  0.881
ChemBERTa 0.4200027  4.2610503  0.5980.022  1.760
Linear Probing

Method ESOL Lipo FreeSolv.  AVG
Grover 1.2600.160  3.347 0587 0.8010060 2.023

AttributeMask ~ 1.5870.024  3.0650020 1.0900000 1.914
ContextPred 1.9890.006  4.06300s6  1.0890.006 2.380

EdgePred 2.1430007  4.0480.020  1.1090.003  2.434
GraphLog - -- -- -

GraphCL 1.663 0051 3.3530022  1.0530011  1.803
KANO 0.8740050 3.196 1101 0.8320077 1.634

ChemBERTa 0.4200027  4.2610503  0.5980022 1.760
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Table 12: Fine-tuning and linear probing results of models pretrained on 0.25 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv  AVG

Grover 2.2980255  3.5970779  1.0540021  0.046
AttributeMask  1.2360066  2.5760222  0.8010.036  0.012
ContextPred 1.2120009  3.0670257  0.8160.031  0.009

EdgePred 1.333006s  3.1020227  0.8730.026 0.018
GraphLog -- —- -- -

GraphCL 1.4540010 29780070 0.8520019 0.007
KANO 0.5990.074  1.4420.142  0.4540007  0.008

ChemBERTa 0.3940017  3.5590.147  0.7960.022  0.035
Linear Probing

Method ESOL Lipo FreeSolv.  AVG
Grover 1.4300.093  3.7870.170  0.9880.013  2.068

AttributeMask  1.9210041  3.3680.008  1.0700.004  2.120
ContextPred 1.8150020  4.04lo0s6  1.0780014 2.311

EdgePred 22660019  4.2560041  1.11looo0  2.544
GraphLog -- -- -- -

GraphCL 23460253 3.83%0.740  1.0770065 2.421
KANO 0.7520.28  2.1570232  0.7550060  1.221

ChemBERTa 0.3940017  3.55%.147  0.7960035  1.583

Table 13: Fine-tuning and linear probing results of models pretrained on 0.5 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv  AVG

Grover 0.9510143  3.0280613  0.5850035  1.521
AttributeMask ~ 1.2690017  2.5590.068  0.8040016  1.544
ContextPred 1.289%0.048  2.9260230  0.8320013 1.683

EdgePred 1.42000s1  2.7950149  0.7960011  1.670
GraphLog -- -- -- -

GraphCL 1.2800.040  4.9960s86  0.8450021 2.374
KANO 0.6210.105  1.4160261  0.4420019  0.826

ChemBERTa 0.3970031  3.9350218  0.7140008 1.682
Linear Probing

Method ESOL Lipo FreeSolv.  AVG
Grover 1.1270202  3.3910704  0.7450060 1.754

AttributeMask ~ 1.8640009  3.2840040  1.0720008 2.073
ContextPred 1.7360041  3.7620076  1.0540007 2.184

EdgePred 1.9840.018  4.0560.120  1.0280004  2.356
GraphLog - - - -

GraphCL 1.95500s4  4.7580251  0.9680017  2.560
KANO 0.7540157  2.3870384  0.7640079  1.302

ChemBERTa 0.3970031  3.9350218  0.7140008 1.682
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Table 14: Fine-tuning and linear probing results of models pretrained on 1.0 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv  AVG
Grover 0.979.183  2.7680538  0.6180.012  1.455
AttributeMask ~ 1.3040006  2.6900.148  0.7960.022  1.597
ContextPred 1.2720021  2.9130145  0.8470019 1.677
EdgePred 1.4720086  2.3660273  0.8400.003  1.559
GraphLog -- - - -
GraphCL 1.3510037  3.3871.075  0.8410.014  1.860
KANO 0.6270087  1.3890.192  0.4470005 0.821
ChemBERTa 0.4340004  3.9660.158  0.7480.044 1.716
Linear Probing

Method ESOL Lipo FreeSolv.  AVG
Grover 1.0910265  3.1040496  0.7410057  1.645
AttributeMask  1.9020018  3.3660.106  1.0680.004 2.112
ContextPred 1.7060.018  3.8810.126  1.0560003 2.214
EdgePred 1.9850018  4.0560.120  1.0300007  2.357
GraphLog - - - -
GraphCL 1.58%.040  4.5830248  1.0120.016 2.395
KANO 0.7820.131  2.2760414  0.7620074 1.273
ChemBERTa 0.4340004  3.9660.158  0.7480.044 1.716

Table 15: Fine-tuning and linear probing results of models pretrained on
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

1.5 M dataset for regression

Method ESOL Lipo FreeSolv.  AVG
Grover 1.3340064  3.4680555  0.801o00s 1.867
AttributeMask  1.3380.101  3.189%0.284  0.8270007  1.785
ContextPred 1.4840053  3.4480543  0.8330020 1.922
EdgePred 1.4720068  3.3630361  0.85loo14  1.895
GraphLog -- -- -- -
GraphCL 0.9570.126  2.9320517  0.6200002  1.503
KANO 0.6000067  1.4550047  0.4230008 0.826
ChemBERTa 0.4030019  3.6830260 0.6160000 1.567
Linear Probing

Method ESOL Lipo FreeSolv  AVG
Grover 1.6350034  3.2550.120  1.0870.120  1.992
AttributeMask ~ 1.7460.087  3.2980.085  1.0820.085 2.042
ContextPred 2.0140011  3.6320133  1.0910133  2.246
EdgePred 2.1880018  4.3370043  1.1070043 2.544
GraphLog - - - -
GraphCL 1.1050265  3.4140752  0.7560752  1.758
KANO 0.7330157  2.1220490  0.7460490  1.201
ChemBERTa 0.4030019  3.6830269  0.6160260 1.567
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Table 16: Fine-tuning and linear probing results of models pretrained on 2.0 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv.  AVG

Grover 1.3690042  2.48%.138  0.8250019 1.561
AttributeMask  1.2340024  2.6450.121  0.7910.020  1.557
ContextPred 1.3300030  2.8540220 0.8140015 1.666

EdgePred 1.4420049  2.9260081  0.8210012  1.730
GraphLog -- -- -- -

GraphCL 1.0080.178  2.9460755  0.5810.031  1.512
KANO 0.6020.103  1.5120.153  0.4310.006  0.848

ChemBERTa 0.3680033  3.7730281  0.6040019  1.582
Linear Probing

Method ESOL Lipo FreeSolv  AVG
Grover 1.5650088  3.3170344  0.9920020 1.958

AttributeMask  1.8720018  3.5220071  1.0620.014  2.152
ContextPred 1.7600033  3.9070043  1.0600005 2.242

EdgePred 2.0060.032  4.3880057 1.0780018  2.491
GraphLog -- -- -- -

GraphCL 1.0970242  3.2090752  0.7610065  1.689
KANO 0.7120.160  2.089%0.466  0.7530073  1.184

ChemBERTa 0.3680033  3.7730281  0.6040019  1.582

Table 17: Prediction performance on six downstream tasks and the overall average (across 3 repeats)
using scaffold splitting, reported in terms of ROC-AUC (7) as mean and standard deviation in %. The
setting is the same as in the main experiments, except that the hidden dimension is increased to 1200.
(A) Fine-tuning
Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 84.824316  92.96+144  83.22+219  85.02+048 71.69+096 61.85+108  79.9
AttributeMask ~ 80.40%231  69.54+057  80.64+464 74.49+058  63.68+036 57.80%185  71.0
ContextPred 76.91%149  66.79%182  69.98+480 74.79+086 64.80+065 62.28+089  69.2

EdgePred 67.42+427  67.35+111  58.66%628  73.07+089  61.70%091 57.38+174  64.2
GraphLoG 82.69+086  65.57+180 67.24+463 72.26+150 61.98+088 61.98+076  68.6
GraphCL 78.06+3.07  63.86%4.41  64.64+735  74.05+223  63.36x029 59.09%166  67.1
KANO 84204134  93.05+227  84.66%6.12  83.54%239  72.36%106 59.93+282  79.6

ChemBERTa 80.35+128  74.18%110  73.06+122  71.21%176  67.55%160 56.15+221  70.4
(B) Linear probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
GROVER 84.17+343  92.01#450 78274940  82.824218  67.93%093  62.65+316 77.97

AttributeMask ~ 64.55+1.13  62.974096 55.51%202  67.66+055 57.56+0.13 56.20+090 60.74
ContextPred 74.94+103  64.36%046 53.31%179  68.36%051 58.75066 59.35+065 63.18

EdgePred 53424726  53.75+290 49.36+110 50.37+034  50.94%025 50.39+100 51.37
GraphLoG 72874103 59.65%084  60.14+071  68.36%007 57.56%058 57.72+075  62.72
GraphCL 70.94%202  61.794065 61.44+160 70.93%074 59.88+037 59.70+077  64.11
KANO 82.23+607 93.28+288  53.58+129  82.08+280 68.91%115  60.71x197 73.46

ChemBERTa 79.54+023  75.57+048 1393130 69.41+062 67.09+080 52.63%045 59.69
(C) Random Initialization (Fine-tuning)

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
GROVER 84.50+407  92.93+440 83.99+7.13  85.05+197 71.524095 62.18+118  80.03

AttributeMask ~ 61.15%290  67.35%1.19  53.56+797 72.46+056 58.53%042 54.65+333 61.28
ContextPred 72.96+175  68.14+292  50.87+678  72.60+074  60.21x162 57.34%268 63.69

EdgePred 65.87+500 67.45%128 57.00+132  70.64+220 59.244037 53.31+458 62.25
GraphLoG 69.45+108  65.35%415  52.61+973  72.10%205 58954097 54.27+530  62.12
GraphCL 69.5T+66s  67.124227  49.61%493 7091120 60.13+158  55.86%555  62.20
KANO 83.35+099  93.61+152  88.31+268 84.00+293 71.30%098 60.80+1.13  80.23

ChemBERTa 77.20+189  66.85+158 43.69+140 66.72+136 67.16x286 50.96x187 62.10
(D)Random Initialization (Linear probing)

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG
GROVER 83.594343  92.14%450 79.204949 83.83+218 68.07+093 61.98+316 81.24

AttributeMask ~ 67.83%1.13 65294096 58.91+202  67.524055 56.49+013  56.25%090  62.05
ContextPred 64.37+1.03  66.30+046  57.49+179  69.48+051  59.62+066  58.02+065 62.55

EdgePred 62.20+726  66.26%290 57.60x110  69.24+034  58.64%025 57.87x100 61.97
GraphLoG 64.89+103  66.47+084 59.98+071 5826007 69.32+0s58  59.05+075  62.99
GraphCL 62.76%202  66.35+065 57.41*160 69.11%074  59.63+037 57.67+077 62.16
KANO 82.00£607 94.43+288  74.86£129 85.28%280 76.60%115  63.84x197 7951

ChemBERTa 76.724023  73.23%048 42.69+130 69.01+062 73.33x080 57.55%045 65.42
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Figure 8: This figure shows the Pretrain Gain of linear probing and fine-tuning when trained on 0.25
M samples. Unlike in classification, a negative value here indicates that the model has benefited from
pretraining, while a positive value suggests that it did not gain from pretraining.
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Figure 9: The figure illustrates the Pretrain Gain for fine-tuning and linear probing in regression tasks.
A smaller performance gap between the two indicates that linear probing achieves high performance,
suggesting that the pretrained representations are highly generalizable. Note that GraphLog is
excluded from this analysis, as it does not provide code support for regression tasks. Originally,
since this is a regression task, negative values for linear probing would indicate better performance.
However, for intuitive interpretation, the signs have been reversed — meaning that higher values
indicate greater Pretrain Gain.
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Figure 10: This figure shows the Pretrain Gain of linear probing and fine-tuning when trained on
0.25M samples, with the hidden dimension increased to 1200.
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