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ABSTRACT

Self-Supervised Learning (SSL) has shown great success in language and vision
by using pretext tasks to learn representations without manual labels. Motivated by
this, SSL has also emerged as a promising methodology in the molecular domain,
which has unique challenges such as high sensitivity to subtle structural changes and
scaffold splits, thereby requiring strong generalization ability. However, existing
SSL-based approaches have been predominantly evaluated by naïve fine-tuning
performance. For a more diagnostic analysis of generalizability beyond fine-
tuning, we introduce a multi-perspective evaluation framework for molecular
SSL under a unified experimental setting, varying only the pretraining strategies.
We assess the quality of learned representations via linear probing on frozen
encoders, measure Pretrain Gain by comparison against random initialization,
quantify forgetting during fine-tuning, and explore scalability. Experimental results
show that several models, surprisingly, exhibit low or even negative Pretrain Gain
in linear probing. Graph neural network-based models experience substantial
parameter shifts, and most models derive negligible benefits from larger pretraining
datasets. Our reassessments offer new insights into the current landscape and
challenges of molecular SSL.

1 INTRODUCTION

Recently, Self-Supervised Learning (SSL) has achieved significant success in natural language pro-
cessing (NLP) Devlin et al. (2019); Floridi & Chiriatti (2020) and computer vision (CV) Dosovitskiy
et al. (2020); Grill et al. (2020); He et al. (2022). SSL has received growing attention to learn
useful representations from large-scale unlabeled data Chen et al. (2020); Radford et al. (2021).
Motivated by this success, SSL has also emerged as a promising approach in the molecular domain Li
& Jiang (2021); Moon et al. (2023); Son et al. (2025), where labeling molecular data is expensive and
time-consuming because it relies on real-world experiments Juan et al. (2024); Wouters et al. (2020).

The molecular field presents several unique challenges for designing generalizable models. For
instance, downstream tasks in this domain are diverse, predicting toxicity, solubility, and estimating
bioactivity Lipinski et al. (1997). In addition, molecular properties are often highly sensitive to even
subtle structural changes; a small modification in an atom or bond can lead to significant differences
in biological activity or chemical property Kubinyi (2002). When evaluating such properties in
downstream tasks, model generalization is commonly assessed using random splits. However, in the
molecular domain, scaffold splitting is used, due to molecules with similar core structures tend to
have similar properties Bemis & Murcko (1996). Scaffold splitting ensures that the test set contains
core structures unseen during training.

To solve these challenges of the molecular domain, various molecular SSL have been proposed.
However, as shown in Table 1, existing molecular SSL have primarily been evaluated by naïve fine-
tuning performance. This evaluation may not be sufficient for thoroughly assessing the generalizability
of pretrained representations, as fine–tuning modifies all parameters and can thereby lead to forgetting
of knowledge acquired during large–scale pretraining Zhou & Cao (2021). Moreover, fair comparisons
have not been conducted, as each study employs different downstream prediction heads, hidden
dimensions, and dataset scales. For example, downstream prediction heads range from one-layer Hu
et al. (2019); Xu et al. (2021) to two-layer MLPs Rong et al. (2020); Fang et al. (2023); hidden
dimensions vary from 300 Hu et al. (2019); Sun et al. (2022) to 1200 Rong et al. (2020); and
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Table 1: Summary of existing molecular SSL methods. Evaluation indicates which metric was used
to evaluate each model.Experimental Configuration describes the pretraining dataset size and model
architecture used for each method.

Evaluation Experimental Configuration
Model Fine-tune Random Gain Data Scaling Pretrain Data Backbone Hidden Dim # Parameter

GROVER Rong et al. (2020) ✓ ✓ ✓ 11.00 M Transformer 1200 5,418K
AttributeMask Hu et al. (2019) ✓ ✓ ✓ 2.00 M GNN 300 1,857K
ContextPred Hu et al. (2019) ✓ ✓ ✓ 2.00 M GNN 300 1,857K

EdgePred Hamilton et al. (2017) ✓ ✓ ✓ 2.00 M GNN 300 1,857K
GraphLoG Xu et al. (2021) ✓ ✓ 2.00 M GNN 300 1,857K
GraphCL You et al. (2020) ✓ ✓ 2.00 M GNN 300 1,857K
KANO Fang et al. (2023) ✓ 0.25 M GNN 300 2,088K

ChemBERTa Chithrananda et al. (2020) ✓ ✓ 77.00 M Transformer 768 3,683K

pretraining data sizes span from 0.25 million Fang et al. (2023) to 77 million samples Chithrananda
et al. (2020). These highlight the need for a multi-perspective and fair evaluation strategy.

To systematically analyze molecular SSL beyond fine-tuning, we propose a multi-perspective evalua-
tion framework for molecular SSL. Since prior studies have been evaluated under different experi-
mental configurations as shown in Table 1, it hinders fair comparisons regarding the effectiveness of
pretraining. All non-pretraining factors — such as datasets, prediction heads, and hidden dimensions
— are kept the same, while only pretraining-related configurations are varied. Upon this unified setup,
we propose various evaluation metrics to assess molecular SSL. We utilize linear probing to evaluate
the quality of pretrained representations. We introduce the Pretrain Gain to measure the benefits of
pretraining against random initialization. We quantify forgetting during fine-tuning through parameter
shifts. Finally, we explore the scalability to evaluate their potential as foundation models. These
metrics allow us to reassess existing approaches and provide insights into the generalization of
pretrained representations in molecular SSL.

Our contributions are summarized as follows:

• A unified experimental setup is employed that standardizes experimental variables (e.g.,
hidden dimensions, downstream heads, and datasets) across diverse molecular SSL methods,
enabling fair and controlled comparisons focused solely on pretraining strategies.

• We propose a multi-perspective evaluation framework for molecular SSL beyond fine-
tuning. It includes linear probing to assess representation quality, Pretrain Gain to quantify
pretraining benefits, parameter shift analysis to measure forgetting, and scalability.

• Comprehensive reassessments offer new insights into the current landscape and challenges
of molecular SSL, revealing that, surprisingly, several models exhibit low or even negative
Pretrain Gain, substantial parameter shifts, and negligible benefits from increased scale.

2 PRELIMINARIES

2.1 SELF-SUPERVISED LEARNING

SSL leverages unlabeled data to reduce reliance on manual annotation Devlin et al. (2019); Radford
et al. (2021); Kingma et al. (2019). It typically follows a two-stage framework: pretraining and
downstream. Pretraining learns generalizable representations by capturing intrinsic patterns within
large-scale unlabeled datasets Tendle & Hasan (2021); Goyal et al. (2019); Fang et al. (2024). These
results suggest that these generalized representations enable efficient transfer to downstream tasks
with limited labeled data. The downstream step connects a task-specific prediction head to the
pretrained encoder. The transferred model is then trained with labeled data to perform the target task.
These tasks include toxicity prediction, solubility estimation, binding affinity prediction, and other
molecular property classification or regression tasks.

2.2 PRETRAINING STRATEGIES AND ARCHITECTURES FOR MOLECULAR SSL

To understand molecular SSL, we organize existing approaches by categorizing pretext tasks into four
types — generation-based, auxiliary property–based, contrast-based, and hybrid — and by analyzing
model architectures, focusing on GNN-based and Transformer-based designs Liu et al. (2022); Xu
et al. (2018); Rong et al. (2020); Chithrananda et al. (2020).
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Figure 1: The left part presents results using a pretrained encoder in fine-tuning and linear probing,
while the right part shows the same experiments with a randomly initialized encoder. To quantify the
benefit of pretraining, we compare models under identical training settings except for the encoder.
We assess the generality of the learned representations by comparing fine-tuning and linear probing:
high performance under linear probing suggests general representations.

Generation-based methods Hou et al. (2022); Wang et al. (2019) define the pretext task as reconstruct-
ing masked components of molecular data, such as atom types, bond types, or substructures. For
example, certain atoms or bonds in a molecular graph, or tokens in string-based SMILES Weininger
(1988); Krenn et al. (2022; 2020), are masked during pretraining, and the model is trained to re-
cover them. In our study, AttributeMask Hu et al. (2019), EdgePred Hamilton et al. (2017), and
ChemBERTa Chithrananda et al. (2020) are classified as Generation-based methods. Auxiliary
property-based methods Zhang et al. (2021); Hu et al. (2019) utilize inherent chemical or structural
properties of molecules, such as atom degrees, aromaticity, and Motif Zhang et al. (2021), as a
prediction target. The ContextPred Hu et al. (2019) model is an example of this approach. Contrast-
based methods You et al. (2021) learn representations by contrasting augmented views of molecules,
typically generated through atom, edge, and subgraph level perturbations. The model learns to
make representations of views from the same molecule similar, while making those from different
molecules dissimilar. GraphLoG Xu et al. (2021), GraphCL You et al. (2020), and KANO Fang et al.
(2023) are included in this category. Hybrid methods Zang et al. (2023) combine several pretext tasks
to capture more complex structures. For example, GROVER Rong et al. (2020) learns a pretext task
that combines generation-based objectives with auxiliary property prediction.

Molecular SSL commonly employs two main model architectures: GNN and Transformer. GNNs are
particularly effective at capturing the structural properties of molecular graphs, in which atoms are
represented as nodes and chemical bonds as edges. Schütt et al. (2018); Scarselli et al. (2008). Through
message passing, nodes iteratively aggregate information from their neighbors, enabling the model to
capture the underlying graph structure Gilmer et al. (2017). This allows GNNs to learn representations
that include both atomic-level information and global structural context. Transformer-based models
commonly use sequence-based inputs, such as SMILES Li & Jiang (2021); Chithrananda et al.
(2020); Wang et al. (2019). Unlike GNNs, these models do not require an explicit graph structure and
instead learn relational patterns from sequential data. As a hybrid, GROVER incorporates GNNs and
Transformer-style attention to node features instead of using sequence-based inputs. GNNs are used
to extract graph structure

2.3 PRETEXT TASK OF MOLECULAR SELF-SUPERVISED LEARNING

We provide a summary of the pretext tasks used in the existing molecular SSL methods employed in
our experiments.

• GROVER is a hybrid model that learns a pretext task using both subgraph masking and
motif prediction. Subgraph masking aims to reconstruct masked substructures, while motif
prediction is RDKit-extracted chemical motifs for multi-label classification Landrum et al.
(2013).
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• AttributeMask predicts masked properties of nodes.
• ContextPred predicts whether a neighborhood graph and a context graph belong to the

same node. It learns through a classification task with negative sampling.
• EdgePred predicts the adjacency matrix of a graph
• GraphLoG uses a hierarchical prototype structure via clustering, enabling contrastive

learning between local instances and their parent prototypes.
• GraphCL is a contrastive learning by generating augmented graph views through node and

edge masking.
• KANO is contrastive learning between original and augmented graphs, where augmentation

is performed by adding atomic information from a knowledge graph. In addition, a prompt
approach is used to bridge the gap between pretraining and the downstream task

• ChemBERTa predicts masked tokens in SMILES strings.

3 MULTI-PERSPECTIVE EVALUATION FRAMEWORK FOR MOLECULAR SSL

We design various evaluation strategies for a more systematic and diagnostic generalization analysis
beyond fine-tuning, an overview is shown in Figure 1.

3.1 QUALITY OF LEARNED REPRESENTATIONS VIA LINEAR PROBING

In molecular SSL, pretrained models are mainly evaluated by fine-tuning. However, since fine-tuning
updates all parameters of both the encoder and the prediction head, there is a risk that the pretrained
representations may be significantly changed. This makes it hard to distinguish whether the improved
performance is due to the quality of the pretrained representations or the encoder being changed by
downstream data during fine-tuning.

To separate these effects and focus the evaluation on the quality of pretrained representations, we
employ linear probing, the encoder is frozen to preserve its pretrained representations, and trains only
the prediction head. This allows us to evaluate the focus on the quality of the pretrained represen-
tations, and high performance in linear probing indicates that the representations are generalized.
However, the quality of pretrained representations has rarely been evaluated using linear probing in
previous molecular SSL studies.

3.2 PRETRAIN GAIN AGAINST RANDOM INITIALIZATION

We introduce Pretrain Gain, a metric for quantitatively measuring the performance improvement
achieved through pretraining. It is computed by comparing the performance of a model using
pretrained parameters and randomly initialized parameters. Specifically, under the same model
architecture and training settings, only the encoder parameter differs: one uses pretrained weights,
while the other is randomly initialized. Since only the parameters differ in this setup, the performance
difference can be regarded as the effect of pretraining. The formula is as follows:

Pretrain Gain =
Scorepretrain − Scorerandom

Scorerandom
× 100 (1)

Here, Scorepretrain and Scorerandom denote the downstream performance of models using pretrained
and randomly initialized encoders, respectively. By dividing by Scorerandom, the formula calculates
the relative improvement over the Scorerandom baseline as a ratio, which is then converted into a
percentage.

3.3 QUANTIFYING FORGETTING THROUGH PARAMETER SHIFT

fine-tuning updates all model parameters, and thus, the pretrained encoder may also be modified.
As a result, the pretrained knowledge can be partially or completely forgotten during fine-tuning.
This issue can be mitigated when the pretrained representations are sufficiently general, allowing the
encoder to align across various tasks with minimal changes. In contrast, when the representations lack
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generality, the encoder requires substantial modification to align with the downstream task Zhang
et al. (2020).

To investigate forgetting, we quantitatively measure the parameter shift during fine-tuning. The
parameter shift is computed as the L2 distance between the pretrained encoder parameters before and
after fine-tuning. It is calculated as:

∆param =

N∑
i=1

∥∥θbefore
i − θafter

i

∥∥2 (2)

Here, θbefore and θafter denote the encoder parameters before and after fine-tuning. By comparing the
two, we aim to quantify the extent of the parameter shift. A larger value of ∆param indicates that the
encoder parameters have significantly changed. In contrast, a smaller parameter shift suggests that
the pretrained representations are well-generalized and that the pretrained information is preserved
during fine-tuning.

3.4 SCALABILITY IN MOLECULAR SSL

In the fields of NLP and CV, SSL performance gradually improves as the amount of pretraining data
or the number of model parameters increases Floridi & Chiriatti (2020); Kaplan et al. (2020); Zhai
et al. (2022). Larger datasets offer models a wider variety of patterns, enabling them to learn more
generalizable representations. As a result, scalability has become a key aspect of SSL. However, most
of the prior papers considered in our study have not explored scalability. In this paper, we analyze
how the size of the pretraining dataset influences the scalability of molecular SSL.

Specifically, we conduct experiments by changing only the size of the pretraining dataset, with
the original model architectures kept as proposed in each paper. Our experiments use the ZINC15
dataset Sterling & Irwin (2015), which officially provides subsets containing 0.25 M and 2 M.
Additionally, we create 0.02 M, 0.5 M, 1 M, and 1.5 M subsets by randomly sampling from the
original 2 M dataset.

4 EXPERIMENTS SETTING

4.1 DATASETS

Pretraining Dataset. We use 0.25 million unlabeled molecules from ZINC15 Sterling & Irwin
(2015). Since pretraining does not aim to predict molecular properties, the data are randomly split
into training and validation sets with a 9:1 ratio. The model is trained on the training set, and the
checkpoint with the lowest validation loss is selected as the final pretrained model.

Downstream Datasets We use six molecular properties datasets from MoleculeNet Wu et al. (2018).
BACE predicts whether a compound inhibits an enzyme. BBBP evaluates the ability of compounds
to penetrate the blood-brain barrier. ClinTox is a binary classification task that distinguishes between
FDA-approved drugs and compounds that failed clinical trials due to toxicity. Tox21 aims to predict
the toxic effects of chemical compounds across multiple biological pathways. ToxCast provides
detailed toxicity profiles across diverse biological and cellular pathways. SIDER includes information
on drug side effects, covering 27 human organs. These datasets cover a variety of molecular and
biological prediction tasks. Detailed information is provided in Table 3 in the Appendix.

4.2 DATA SPLIT

There are two common strategies for data splitting in molecular machine learning: random split and
scaffold split. In domains such as computer vision and NLP, random splits are often used to evaluate
out-of-distribution generalization. However, random splits are limited in the molecular domain
because structurally or chemically similar molecules tend to exhibit similar properties Hendrickson
(1991). Consequently, the model may have already seen test data patterns during training, leading to
less reliable evaluation results. To address this issue, scaffold splitting is adopted Bemis & Murcko
(1996). This method clusters molecules based on their unique core structures (scaffolds) and splits
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Table 2: Performance on six downstream datasets and average with 3 repetitions under scaffold
splitting, reported in terms of ROC-AUC (↑) as mean ± std in %. (A) Fine-tuning: starts from
pretrained encoder weights, both the encoder and the prediction head are updated. (B) Linear probing:
starts from pretrained encoder weights, the encoder is frozen, and only the prediction head is updated.

(A) Fine-tuning

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 85.93±1.18 92.73±3.60 84.90±6.71 84.91±2.05 62.41±0.69 70.33±1.27 80.20
AttributeMask 77.12±5.09 68.46±1.37 72.27±4.43 76.84±0.39 62.75±0.81 64.04±0.17 70.25
ContextPred 76.53±3.19 68.62±1.66 65.63±3.49 74.70±1.04 62.76±0.58 64.08±1.47 68.72
EdgePred 72.29±2.96 63.85±1.01 51.87±3.16 72.40±0.62 54.64±2.50 59.96±0.68 62.50
GraphLoG 83.51±0.76 63.13±1.34 63.78±4.76 73.26±0.39 60.39±0.69 62.64±0.84 67.79
GraphCL 78.83±1.31 63.84±0.51 58.59±4.79 73.17±0.79 60.13±0.16 63.00±1.51 66.26
KANO 84.73±2.18 94.61±1.14 88.08±4.32 83.52±2.52 59.36±1.33 72.41±2.19 80.45
ChemBERTa 77.24±1.20 78.12±1.04 85.73±6.45 70.75±1.92 69.73±1.47 52.23±2.78 72.30

(B) Linear probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 82.97±4.40 91.91±2.77 76.68±5.08 81.62±2.43 61.96±0.87 66.99±2.01 77.02
AttributeMask 61.76±0.69 60.09±0.56 65.27±1.82 69.55±0.23 54.56±0.67 57.65±1.29 61.48
ContextPred 60.07±1.58 63.43±0.16 23.49±0.55 68.29±0.44 60.77±0.82 58.21±0.69 55.71
EdgePred 63.36±7.09 56.57±1.03 49.91±0.49 51.60±2.07 51.51±0.46 49.96±0.40 53.82
GraphLoG 72.28±1.64 61.34±1.07 62.18±5.31 68.73±0.41 59.78±0.18 56.17±0.88 63.41
GraphCL 70.05±3.79 62.43±0.40 56.36±2.17 66.40±0.63 58.92±0.61 58.84±0.71 62.17
KANO 78.54±4.95 91.92±3.99 61.40±16.11 81.15±3.28 59.57±0.96 68.46±1.22 73.51
ChemBERTa 69.02±0.37 76.03±0.54 32.99±4.28 70.33±0.63 65.79±1.04 50.40±0.44 60.76

clusters into training, validation, and test sets. In our experiments, we use downstream datasets
divided using scaffold splitting with an 8:1:1 ratio for the training, validation, and test sets.

4.3 IMPLEMENTATION DETAILS

The other hyperparameters for pretraining are set as follows: a batch size of 256, 100 epochs, and
300 hidden dimensions. For the downstream step, we use a batch size of 32, 50 epochs, and employ
a 2-layer prediction head. We try to keep the original encoder structures and pretraining tasks
unchanged. All the experiments are run on a single NVIDIA RTX 3090 GPU.

5 RESULT

5.1 ANALYZING GENERALIZATION VIA FINE-TUNING AND LINEAR PROBING

We design a unified experimental setup to focus on pretraining. We conduct fine-tuning, and the
results are presented in Table 2 (A). KANO achieves the highest average performance (80.45),
followed closely by GROVER (80.20), indicating that their performance is comparable.

Pretrained representations are modified during fine-tuning to fit downstream tasks, which can make it
difficult to accurately assess the quality of the original pretrained representations. To address this,
we adapt linear probing, which preserves the pretrained representations, and shows the results in
Table 2 (B). GROVER achieves the highest performance in linear probing (77.02), suggesting that
its pretrained representations are reasonably general, by showing high performance across diverse
tasks without encoder updates. KANO achieves the highest performance in fine-tuning, which leads
to the common expectation that its pretrained representations are the most generalizable. However,
KANO ranks second in linear probing, implying that its pretrained representations may be slightly
less generalizable than GROVER.

To further assess the generality of the pretrained representations, we compare the performance of
fine-tuning and linear probing. The results are shown in Figure 6 in the Appendix. The performance
gap between fine-tuning and linear probing indicates how effectively the pretrained encoder can be
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ChemBERTa
KANO

GraphCL
GraphLoG
EdgePred

ContextPred
AttributeMask

GROVER

+10.61 (3.77)

+0.19 (2.78)

+3.59 (7.98)

+8.90 (4.88)

-3.28 (3.52)

+8.99 (4.71)

+13.16 (2.56)

+6.04 (5.87)

55 60 65 70 85 80 85
ROC-AUC

ChemBERTa
KANO

GraphCL
GraphLoG
EdgePred

ContextPred
AttributeMask

GROVER

+2.07 (1.61)

+1.34 (2.90)

+0.31 (4.92)

+3.65 (3.86)

-12.90 (4.53)

-10.15 (2.93)

-1.80 (13.20)

+4.42 (5.87)

Random Initialization Pretrain Positive Gain Negative Gain

(A) Fine-tuning (B) Linear Probing

Figure 2: Comparison of Pretrain Gain under (A) fine-tuning and (B) linear probing. Each line bar
represents the average ROC-AUC across six downstream datasets with 3 repetitions, the red and blue
indicate pretrain and randomly initialized, respectively. Pretrain Gain is represented using rectangular
bars, with positive gain in orange and negative in green, with values of mean and standard deviation.

utilized in downstream tasks without modification. GROVER, GraphLoG, and GraphCL exhibit a low
performance gap of less than 5, suggesting that their pretrained representations are well-generalized.
In contrast, ContextPred and ChemBERTa exhibit a performance gap of over 10, indicating a substan-
tial drop in performance when the pretrained representations are used without modification. This may
imply that their representations are less generalizable under our evaluation setup, where a smaller
performance gap indicates more generalizable and robust pretrained representations. Therefore,
designing pretraining tasks that reduce the gap between fine-tuning and linear probing is desirable, as
it may lead to more robust and generalizable molecular representations.

5.2 ASSESSING THE CONTRIBUTION OF PRETRAINED REPRESENTATIONS THROUGH
PRETRAIN GAIN

To quantify the performance improvement achieved through pretraining, we use Pretrain Gain.
Figure 2 is computed based on the results shown in Table 2 and Table 4 in the Appendix. A positive
Pretrain Gain suggests that pretraining provides a benefit, resulting in better performance than a
randomly initialized model. The Pretrain Gain under fine-tuning is shown in Figure 2 (A). Most
models show a positive Pretrain Gain, which is consistent with prior work demonstrating the benefits
of pretraining. Interestingly, KANO — despite achieving the highest fine-tuning performance —
shows a negligible Pretrain Gain (0.34), suggesting that the high performance may not be due to
pretraining. This result highlights that the fine-tuning result alone is insufficient to assess the effect of
pretraining, emphasizing the importance of Pretrain Gain as an evaluation metric

As shown in Figure 2 (B), which presents the Pretrain Gain under linear probing, the results sub-
stantially differ from the trends observed in fine-tuning. Most models show a positive Pretrain
Gain in fine-tuning; however, the Pretrain Gain in linear probing is smaller than the Pretrain Gain
observed in fine-tuning. Specifically, except for ChemBERTa, no model exceeds a Pretrain Gain
of 5%. Surprisingly, in some cases, randomly initialized models outperform the pretrained model.
These observations suggest that the pretrained representations may not have captured sufficiently
transferable features for linear probing. These results show that even if a model achieves high
performance in fine-tuning, it does not always imply high-quality representations.

5.3 QUANTIFYING FORGETTING VIA PARAMETER SHIFT

We measure parameter shift to quantify forgetting during fine-tuning, as summarized in Table 5
in the Appendix and illustrated in Figure 3. GROVER and ChemBERTa, both Transformer-based
models, exhibit relatively small parameter shifts, suggesting that their pretrained representations are
sufficiently general and well preserved during fine-tuning. In contrast, GNN-based models tend to
exhibit substantial parameter shifts, particularly in tasks such as Tox21 and ToxCast. As shown in
Table 3 in the Appendix, as these datasets are larger and more diverse, this may increase the need for
generalized representations. If the pretrained representations fail to capture such molecular diversity,
the model may require more substantial parameter updates during fine-tuning.
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Figure 3: Quantification of encoder parameter
shifts due to fine-tuning. Circle size and color
represent the mean and variance of parameter
shifts, respectively. Darker colors and larger
circles represent greater parameter changes,
while lighter colors and smaller circles indi-
cate smaller changes.

Traditional GNN-based models design pretext tasks
that focus on learning the structural information of
molecular graphs. However, downstream tasks often
require a deeper understanding of chemical proper-
ties, leading to a discrepancy between pretraining
and the downstream task. KANO addresses this is-
sue through a prompt-based mechanism that incorpo-
rates functional prompts extracted from a knowledge
graph, enabling the model to learn both structural
and chemical knowledge during pretraining. This
design is intended to reduce the discrepancy between
pretraining and downstream tasks. Interestingly, al-
though GNN-based models typically show significant
parameter shifts during fine-tuning, KANO exhibits
relatively small shifts, which may suggest that for-
getting of pretrained knowledge is mitigated. This
observation implies that adopting Transformer-based
architectures or leveraging knowledge graphs can
help reduce parameter shifts and preserve pretrained
knowledge more effectively.

We compare the performance gap—used as a measure of generality—with the ranking of parameter
shift. As shown in Figure 7 of the appendix, the two metrics exhibit an linear relationship: larger
parameter shifts correspond to larger performance gaps. A larger performance gap indicates weaker
generalization, suggesting that models with larger parameter shifts produce less generalizable repre-
sentations. Thus, parameter shift provides a useful indirectly metric for evaluating representation
generality.

5.4 SCALABILITY OF MOLECULAR SSL

Figure 4 visualizes the average performance reported in Table6–10 in the Appendix, which presents
results under varying pretraining dataset sizes to analyze scalability. Most models exhibit a flat
performance trend regardless of the amount of pretraining data. This pattern is observed in both
fine-tuning and linear probing results, suggesting that these models have limited scalability under our
experimental setting.

We consider one main factor to understand this limitation. Unlike the NLP and CV domains Hoff-
mann et al. (2022), molecular data is characterized by subtle structural diversity and domain-specific
constraints. Existing molecular pretraining methods, such as masking and contrastive learning, aim
to capture chemically meaningful information through structural perturbations. However, structure-
based approaches may be insufficient to capture certain chemical properties of molecules, especially
those not directly linked to graph structure. Therefore, overcoming this limitation require pre-
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Figure 4: Pretrain Gain (%) across varying pretraining dataset sizes for eight molecular SSL models
under (A) fine-tuning and (B) linear probing. Pretrain Gain is averaged over six downstream tasks,
each repeated three times, for each pretraining dataset size.
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Figure 5: The graph illustrates model performance across eight evaluation settings using a polygon
representation. Fine-tuning and linear probing are denoted as FT and LP, respectively. For metrics
marked with (R), lower values indicate better performance, so they are computed in reverse order.
Scalability is caculated by averaging results across datasets, while Parameter Shift use ranking. A
larger polygonal area indicates stronger performance. In the legend, the value next to each model
denotes its polygon area.

training strategies that reduce the discrepancy between pretraining and downstream tasks, enabling
performance to scale with larger datasets.

5.5 INTEGRATED EVALUATION RESULTS

As shown in Figure 5, we present a comprehensive evaluation integrating eight methods for quantita-
tive comparison. A key observation is that no model achieves balanced performance across all eight
metrics. Nevertheless, GROVER emerges as the strongest overall model, excelling in most metrics
except for Pretrain Gain FT and FT scalability. KANO achieves the highest performance under the
widely adopted fine-tuning but performs poorly in both Pretrain Gain and scalability, leading to an
overall ranking of fourth. This demonstrates that strong fine-tuning performance does not guarantee
overall superiority in pretraining approaches.

Taken together, our results indicate that Transformer-based architectures are particularly effective,
with GROVER and ChemBERTa achieving the highest overall performance. For GNN-based mod-
els, contrastive learning generally proves to be a strong pretraining strategy, with GraphLoG and
KANO achieving the best performance among GNNs. However, GraphCL performs worse than
AttributeMask, suggesting that basic contrastive learning alone is insufficient and that more advanced
strategies are required.

To further validate our findings, we provide additional results in the appendix. The regression results
in Table 11–16 and Figure 8, 9 show that scalability remains flat, while the experiments with a hidden
dimension of 1200 (Table 17, Figure 10) reveal that linear probing yields more negative gains. These
results are consistent with our main findings, thereby reinforcing the robustness of our conclusions.

6 CONCLUSION

In this paper, we present a multi-perspective evaluation framework for molecular SSL beyond fine-
tuning, incorporating linear probing, Pretrain Gain, parameter shift analysis, scalability. Our results
reveal that high fine-tuning performance does not necessarily imply generalizable pretrained rep-
resentations, highlighting the limitations of relying solely on fine-tuning for evaluation. Through
parameter shift analysis, we show that GNN-based models encounter substantial parameter shifts
during fine-tuning, raising concerns about the stability and generality of their representations. We
also find that many models exhibit limited scalability, with flat trends from larger pretraining datasets,
unlike trends observed in NLP and CV. In the comprehensive evaluation, no model achieves consis-
tently high performance across all metrics, underscoring the limited generalization of molecular SSL
representations. This suggests that advancing molecular graph SSL requires moving beyond a focus
solely on fine-tuning accuracy and should adopt comprehensive evaluation frameworks such as the
one proposed in this paper.
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Table 3: Details of the dataset used in the experiments. # Tasks and # Compounds are the number of
tasks to perform and molecules, respectively. # Atoms and # Bonds are the averages of the number of
nodes and edges in all molecules, respectively.

DATASET # TASKS # GRAPHS # ATOMS # BONDS

BACE 1 1,513 34.1 36.9
BBBP 1 2,03 24.1 26.0
CLINTOX 2 1,478 26.3 28.1
TOX21 12 7,831 18.6 19.3
SIDER 27 1,478 34.3 36.1
TOXCAST 617 8,575 18.8 19.3

55 60 65 70 85 80 85
ROC-AUC

ChemBERTa
KANO

GraphCL
GraphLoG
EdgePred

ContextPred
AttributeMask

GROVER

+11.54

+6.94

+4.09

+4.38

+8.68

+13.01

+8.77

+3.18

Linear probing
Fine-tuning

Performance Gap

Figure 6: Figure illustrates the performance gap between fine-tuning and linear probing. A smaller gap
indicates that linear probing achieves high performance, suggesting that the pretrained representations
are highly generalizable.

Table 4: Prediction performance on six downstream tasks and the overall average (across 3 repeats)
using scaffold splitting, reported in terms of ROC-AUC (↑) as mean and std in %. (A) Random
Initialization (Fine-tuning): Starts from randomly initialized encoder weights; both the encoder and
the prediction head are trained. (B) Random Initialization (Linear Probing): Starts from randomly
initialized encoder weights; the encoder is frozen, and only the prediction head is trained.

(A) Random Initialization (Fine-tuning)

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 79.14±5.19 91.51±2.85 74.95±4.89 81.60±2.07 65.56±1.59 61.36±2.82 75.69
AttributeMask 70.52±2.50 66.78±0.94 53.12±3.23 73.11±0.98 61.75±0.73 59.11±0.39 64.07
ContextPred 66.07±3.75 68.34±1.05 49.10±6.12 73.06±0.95 61.35±1.53 59.57±3.49 62.92
EdgePred 72.69±6.11 66.26±2.22 51.47±6.95 73.06±0.36 60.93±1.02 56.98±1.82 63.57
GraphLoG 74.74±2.36 67.99±1.35 54.26±1.57 72.58±0.81 61.75±1.13 56.20±2.96 64.59
GraphCL 71.09±3.84 65.20±3.84 48.74±0.82 73.76±1.05 61.92±0.53 56.05±1.47 62.79
KANO 84.35±0.56 93.50±2.82 85.36±5.17 83.44±2.29 71.66±1.17 62.36±2.04 80.11
ChemBERTa 71.17±3.11 72.02±4.02 64.16±8.13 66.48±2.74 68.89±1.89 49.56±2.99 65.38
(B) Random Initialization (Linear probing)

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 82.97±4.40 91.91±2.77 76.68±5.08 81.62±2.43 66.99±0.87 61.96±2.01 77.02
AttributeMask 61.76±0.69 60.09±0.56 65.27±1.82 69.55±0.23 57.65±0.67 54.56±1.29 61.48
ContextPred 60.07±1.58 63.43±0.16 23.49±0.55 68.29±0.44 58.21±0.82 60.77±0.69 55.71
EdgePred 63.36±7.09 56.57±1.03 49.91±0.49 51.60±2.07 51.51±0.46 49.96±0.40 53.82
GraphLog 72.28±1.64 61.34±1.07 62.18±5.31 68.73±0.41 56.17±0.18 59.78±0.88 63.41
GraphCL 70.05±3.79 62.43±0.40 56.36±2.17 66.40±0.63 58.84±0.61 58.92±0.71 62.17
KANO 78.54±4.95 91.92±3.99 61.40±16.11 81.15±3.28 68.46±0.96 59.57±1.22 73.51
ChemBERTa 69.02±0.37 76.03±0.54 32.99±4.28 70.33±0.63 65.79±1.05 50.40±0.44 60.76
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The table shows the numerical values of the parameter shifts visualized in Figure 3.

Table 5: This table shows the mean and standard deviation of L2-based parameter shifts for each
dataset.

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 150.56 ±6.79 114.52 ±5.01 14.47 ±0.72 146.88 ±7.99 83.40±4.08 202.52 ±10.55 118.73
AttributeMask 7342.73 ±324.47 7512.03 ±342.73 1621.39 ±81.04 33802.75±1467.07 37624.28±1623.60 9871.82 ±460.89 16295.83
ContextPred 13259.14±585.36 959.35 ±42.16 12196.34±567.81 53328.02±2256.96 56409.84±2435.61 19260.63±841.49 25902.22
EdgePred 10292.06±487.97 7128.03 ±337.83 2880.88 ±133.83 49563.34±2209.74 46475.73±2074.52 18025.51±856.93 22394.26
GraphLoG 3575.96 ±189.63 13064.01±707.52 8800.22 ±482.51 41243.57±2083.18 39080.37±1757.49 8217.41 ±358.15 18996.92
GraphCL 10232.89±531.38 351.13 ±15.59 1395.80 ±63.51 34420.74±1581.78 37580.58±1720.92 3829.59 ±174.62 14635.12
KANO 2406.61 ±109.54 3817.20 ±190.18 2454.36 ±110.82 13678.55±701.49 28898.60 ±1502.89 2227.76 ±103.35 8913.85
ChemBERTa 1777.71 ±24.31 1649.05±22.61 1463.93 ±20.10 1393.99 ±19.26 553.03 ±7.87 31.30 ±0.61 1144.83
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Figure 7: The relationship between parameter shift—calculated based on ranking—and the perfor-
mance gap, which reflects the generality of pretrained representations.

These tables show the performance on each dataset size from the scalability experiment.

Table 6: Fine-tuning and linear probing results of models pretrained on 0.02M dataset.
Fine-tuning

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 85.07±2.09 93.10±3.99 79.04±9.67 83.81±1.01 69.38±0.53 61.83±2.16 78.70
AttributeMask 82.18±3.36 69.86±1.89 63.87±4.96 74.89±0.99 64.36±0.88 58.73±1.75 68.98
ContextPred 75.99±6.20 68.12±0.39 50.13±4.58 74.71±0.52 62.22±0.37 62.21±0.07 65.57
EdgePred 70.26±3.01 67.01±3.37 49.43±4.00 73.46±0.24 60.83±0.55 57.38±1.44 63.06
GraphLog 69.31±10.44 63.08±4.04 51.87±4.24 72.88±0.14 62.27±1.15 57.96±1.06 62.89
GraphCL 78.14±4.02 68.11±1.64 58.17±3.26 74.32±0.89 64.06±0.80 58.85±2.71 66.94
KANO 83.52±1.92 93.86±3.64 87.59±4.21 83.66±2.52 72.39±0.97 62.34±1.44 80.56
ChemBERTa 85.48±0.59 69.85±2.45 99.27±0.11 65.20±1.49 61.11±2.13 57.63±1.94 73.09
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 82.26±2.34 92.62±4.32 67.76±5.92 80.98±1.58 67.71±0.61 61.52±0.51 75.47
AttributeMask 77.71±1.81 60.37±0.77 44.99±6.56 68.67±0.59 60.30±0.59 58.14±0.83 61.70
ContextPred 63.11±0.33 62.81±0.87 40.95±4.43 62.54±0.63 58.61±1.20 55.54±0.73 57.26
EdgePred 62.35±3.87 53.97±1.18 51.43±2.79 51.98±0.33 51.84±0.79 51.21±0.87 53.80
GraphLog 69.26±1.69 57.18±1.59 54.22±2.03 69.40±0.48 58.78±0.36 61.07±1.99 61.65
GraphCL 68.25±1.75 66.19±0.71 73.74±4.52 71.97±0.25 58.50±1.06 59.98±0.42 66.44
KANO 82.61±5.01 88.67±1.94 69.45±10.04 80.20±3.58 67.62±1.40 58.74±2.74 74.55
ChemBERTa 57.13±3.32 59.92±4.70 61.24±27.96 51.11±2.83 49.65±0.19 49.99±0.47 54.84
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Table 7: Fine-tuning and linear probing results of models pretrained on 0.5M dataset.
head are trained.

Fine-tuning

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 86.99±1.18 92.94±4.51 85.14±5.10 85.31±2.46 70.61±0.80 62.71±1.87 80.62
AttributeMask 79.01±1.02 67.54±0.92 68.49±6.70 74.93±1.46 64.20±0.15 62.37±0.67 70.74
ContextPred 81.30±1.12 69.28±1.42 60.19±4.61 75.07±0.94 64.19±0.30 60.98±1.68 68.50
EdgePred 76.38±5.54 65.51±2.98 54.37±4.98 73.63±1.02 63.25±0.56 61.86±0.79 65.83
GraphLog 81.19±1.51 67.53±2.52 62.73±3.86 74.00±0.46 61.58±1.03 58.13±0.12 67.29
GraphCL 70.02±2.17 68.41±1.05 63.92±4.09 73.23±0.81 63.45±0.23 59.26±1.07 66.38
KANO 83.48±2.08 93.93±2.30 88.19±8.10 83.87±2.00 72.12±1.19 59.87±0.18 80.24
ChemBERTa 76.76±4.07 81.97±2.46 88.70±0.91 66.45±2.49 72.12±0.82 50.71±0.79 72.79
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 82.60±4.09 92.69±2.74 77.85±7.65 81.59±2.28 67.87±0.67 62.00±1.94 77.43
AttributeMask 67.66±12.23 59.30±0.49 60.20±2.99 68.13±0.44 59.57±0.24 55.01±1.23 61.65
ContextPred 73.82±3.49 63.98±1.41 50.68±0.77 69.17±0.73 60.18±0.91 58.39±0.51 62.70
EdgePred 61.03±1.30 58.20±0.38 55.75±2.22 67.69±0.42 57.82±0.09 58.51±0.43 59.83
GraphLog 70.00±2.30 60.41±0.98 61.28±4.17 66.56±0.05 55.97±0.30 56.38±0.74 61.77
GraphCL 74.80±1.50 62.32±1.47 65.78±3.70 67.51±1.13 59.47±0.52 59.58±0.89 64.91
KANO 77.19±7.76 91.87±2.98 53.39±10.40 80.04±2.99 68.65±1.15 58.29±0.99 71.57
ChemBERTa 74.08±0.39 76.66±0.91 89.61±1.89 63.42±0.20 65.92±0.07 52.12±1.04 70.30

Table 8: Fine-tuning and linear probing results of models pretrained on 1 M dataset.
Fine-tuning

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 85.68±1.70 93.01±3.56 85.77±4.18 84.87±2.10 70.41±0.28 61.98±0.87 80.29
AttributeMask 78.59±0.85 69.41±3.44 76.48±4.71 75.98±0.63 63.99±0.64 59.96±1.56 70.74
ContextPred 74.51±9.06 69.84±5.46 64.76±0.51 74.88±0.53 64.05±0.52 62.78±0.18 68.47
EdgePred 67.08±4.13 69.24±0.47 55.75±2.80 73.63±0.52 60.62±0.46 55.70±1.39 63.67
GraphLog 82.80±1.68 66.52±0.69 68.01±3.71 73.97±1.10 61.89±0.31 58.33±1.20 68.59
GraphCL 81.74±2.08 67.36±0.19 58.49±4.59 73.79±0.58 63.80±0.49 61.08±0.99 67.71
KANO 84.94±0.56 94.29±1.80 87.53±7.46 83.32±2.24 72.28±1.47 60.72±0.88 80.51
ChemBERTa 76.33±1.42 79.54±1.41 75.23±5.15 70.04±0.84 69.66±2.92 55.11±0.88 70.99
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 82.16±4.16 92.77±2.74 75.78±7.16 81.24±2.58 67.58±0.71 61.48±2.16 76.84
AttributeMask 69.64±0.47 60.58±0.30 68.63±3.06 66.38±0.10 60.38±0.45 51.37±0.91 62.83
ContextPred 69.43±2.91 59.86±2.39 41.91±3.06 68.70±1.13 59.09±0.51 60.80±1.08 59.96
EdgePred 61.03±1.30 58.20±0.38 55.66±2.25 67.64±0.43 57.75±0.18 58.48±0.41 59.79
GraphLog 66.87±2.39 53.08±0.42 57.64±3.98 65.78±0.13 55.83±0.34 54.87±0.50 59.01
GraphCL 72.32±0.82 64.89±1.02 56.20±3.59 67.39±0.64 60.47±0.40 59.47±1.23 63.46
KANO 72.42±12.67 92.11±3.09 59.60±12.22 80.39±3.34 68.38±1.01 57.12±2.33 71.67
ChemBERTa 64.30±9.50 76.54±1.23 80.59±3.77 65.28±0.59 64.99±0.13 52.47±0.59 67.36
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Table 9: Fine-tuning and linear probing results of models pretrained on 1.5 M dataset.
Fine-tuning

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 84.39±2.80 92.45±4.87 86.21±5.23 85.48±2.41 71.81±0.88 62.39±0.95 80.45
AttributeMask 81.06±2.21 67.96±3.82 59.34±2.24 75.02±0.61 63.41±0.10 59.71±0.80 67.75
ContextPred 75.48±3.42 67.81±2.08 56.73±9.11 73.85±0.28 61.51±0.95 59.94±1.76 65.89
EdgePred 68.73±6.20 66.79±2.01 50.31±4.67 72.07±0.51 62.15±0.54 56.60±1.50 62.77
GraphLog 82.98±0.57 65.22±2.42 62.63±1.76 74.44±0.05 63.21±0.62 62.11±1.75 68.43
GraphCL 78.76±1.23 67.58±2.15 60.25±1.93 75.41±0.66 63.44±1.04 60.55±1.37 67.66
KANO 83.62±1.31 94.53±1.74 84.02±4.57 83.04±1.76 72.94±1.06 60.83±1.50 79.83
ChemBERTa 71.05±0.83 87.42±1.84 98.55±0.19 66.93±0.99 62.12±0.95 58.98±0.20 74.18
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 83.80±2.24 93.05±4.15 83.19±7.27 82.26±3.05 68.32±0.81 63.36±1.78 79.00
AttributeMask 60.63±2.24 64.13±0.16 55.65±1.96 69.63±0.45 59.10±0.21 53.23±3.39 60.40
ContextPred 42.43±4.47 59.38±0.47 43.16±6.56 65.20±0.17 57.89±0.35 57.60±0.38 54.28
EdgePred 69.32±4.57 56.38±2.31 49.24±4.16 51.73±0.57 51.93±0.38 49.17±2.65 54.63
GraphLog 74.10±1.26 62.36±1.18 57.52±0.29 69.14±0.26 56.81±0.50 59.10±0.91 63.17
GraphCL 73.34±1.12 66.66±0.86 66.27±2.38 69.80±0.90 59.33±1.04 58.25±1.12 65.61
KANO 75.31±7.02 92.04±2.84 57.61±16.89 80.51±2.76 68.29±0.72 57.73±1.51 71.92
chemberta 78.02±4.55 80.15±2.00 39.27±6.63 73.93±0.85 73.90±1.80 54.24±1.55 66.59

Table 10: Fine-tuning and linear probing results of models pretrained on 2 M dataset.
Fine-tuning

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 85.68±1.70 93.01± 3.56 85.77±4.18 84.87±2.10 70.41±0.28 61.98±0.87 80.29
AttributeMask 80.81±2.53 70.12± 1.12 71.58±7.19 75.75±0.65 63.47±0.82 61.61±1.01 70.56
ContextPred 76.78±10.81 67.88± 0.91 59.26±3.05 74.54±0.51 64.31±0.64 62.78±1.76 67.59
EdgePred 76.30±8.16 69.86± 10.91 61.75±2.69 75.69±0.18 64.27±0.45 61.05±0.21 68.15
GraphLog 79.01±11.22 67.66± 2.71 59.69±3.15 73.29±0.42 62.07±0.57 60.60±1.30 67.05
GraphCL 78.15±3.26 68.13± 0.27 72.93±3.27 74.61±0.07 63.71±0.12 58.17±1.48 69.28
KANO 84.02±1.38 93.71± 1.68 87.13±8.28 84.11±1.54 72.63±1.51 61.21±1.02 80.47
ChemBERTa 79.02±2.25 79.19± 3.19 66.21±21.11 73.75±1.03 72.12±1.51 56.71±1.09 71.17
Linear Probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

Grover 82.80±3.99 92.11±2.52 81.29±4.44 81.40±2.60 67.35±0.68 61.74±3.13 77.78
AttributeMask 62.55±0.27 66.46±0.90 73.10±0.77 69.24±0.50 56.57±0.27 54.29±0.24 63.70
ContextPred 65.52±7.00 60.88±0.59 30.00±1.09 68.77±0.52 60.32±0.78 59.22±0.26 57.45
EdgePred 70.81±2.73 59.92±1.32 64.68±2.77 64.69±0.95 59.01±0.49 56.13±1.12 62.54
GraphLog 71.78±1.98 58.66±0.69 59.57±1.74 67.00±0.39 55.98±0.72 60.82±0.91 62.30
GraphCL 76.09±1.81 67.91±0.96 65.44±2.46 69.59±0.38 61.33±0.65 57.12±1.40 66.24
KANO 77.63±6.38 92.23±1.33 58.64±11.95 80.07±2.85 68.78±0.84 57.45±1.64 72.47
ChemBERTa 63.11±9.96 77.18±0.21 91.78±3.95 70.49±2.23 68.70±0.12 53.91±1.36 70.86

Table 11: Fine-tuning and linear probing results of models pretrained on 0.02 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv AVG

Grover 1.3440.084 3.1260.510 0.8040.019 1.758
AttributeMask 1.4630.109 2.9890.073 0.8190.036 1.757
ContextPred 1.4200.091 4.3822.314 0.8200.031 2.208
EdgePred 1.4450.046 3.2680.342 0.8410.026 1.851
GraphLog - - - - -- -
GraphCL 1.0180.114 2.2800.047 0.6140.021 1.304
KANO 0.6390.110 1.5620.365 0.4430.007 0.881
ChemBERTa 0.4200.027 4.2610.503 0.5980.022 1.760
Linear Probing

Method ESOL Lipo FreeSolv AVG

Grover 1.2600.160 3.347 0.587 0.801 0.060 2.023
AttributeMask 1.587 0.024 3.065 0.020 1.090 0.009 1.914
ContextPred 1.9890.006 4.063 0.056 1.089 0.006 2.380
EdgePred 2.1430.007 4.048 0.020 1.109 0.003 2.434
GraphLog -- - - - - -
GraphCL 1.663 0.051 3.3530.022 1.053 0.011 1.803
KANO 0.874 0.050 3.196 1.101 0.832 0.077 1.634
ChemBERTa 0.4200.027 4.261 0.503 0.598 0.022 1.760
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Table 12: Fine-tuning and linear probing results of models pretrained on 0.25 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv AVG

Grover 2.2980.255 3.5970.779 1.0540.021 0.046
AttributeMask 1.2360.066 2.5760.222 0.8010.036 0.012
ContextPred 1.2120.009 3.0670.257 0.8160.031 0.009
EdgePred 1.3330.065 3.1020.227 0.8730.026 0.018
GraphLog - - – - - - -
GraphCL 1.4540.010 2.9780.070 0.8520.019 0.007
KANO 0.5990.074 1.4420.142 0.4540.007 0.008
ChemBERTa 0.3940.017 3.5590.147 0.7960.022 0.035
Linear Probing

Method ESOL Lipo FreeSolv AVG

Grover 1.4300.093 3.7870.170 0.9880.013 2.068
AttributeMask 1.9210.041 3.3680.008 1.0700.004 2.120
ContextPred 1.8150.029 4.0410.056 1.0780.014 2.311
EdgePred 2.2660.019 4.2560.041 1.1110.000 2.544
GraphLog - - - - - - -
GraphCL 2.3460.253 3.8390.740 1.0770.065 2.421
KANO 0.7520.128 2.1570.232 0.7550.069 1.221
ChemBERTa 0.3940.017 3.5590.147 0.7960.035 1.583

Table 13: Fine-tuning and linear probing results of models pretrained on 0.5 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv AVG

Grover 0.9510.143 3.0280.613 0.5850.035 1.521
AttributeMask 1.2690.017 2.5590.068 0.8040.016 1.544
ContextPred 1.2890.048 2.9260.239 0.8320.013 1.683
EdgePred 1.4200.051 2.7950.149 0.7960.011 1.670
GraphLog - - - - - - -
GraphCL 1.2800.040 4.9960.886 0.8450.021 2.374
KANO 0.6210.105 1.4160.261 0.4420.019 0.826
ChemBERTa 0.3970.031 3.9350.218 0.7140.008 1.682
Linear Probing

Method ESOL Lipo FreeSolv AVG

Grover 1.1270.202 3.3910.704 0.7450.060 1.754
AttributeMask 1.8640.009 3.2840.049 1.0720.008 2.073
ContextPred 1.7360.041 3.7620.076 1.0540.007 2.184
EdgePred 1.9840.018 4.0560.120 1.0280.004 2.356
GraphLog - - - - - - -
GraphCL 1.9550.054 4.7580.251 0.9680.017 2.560
KANO 0.7540.157 2.3870.384 0.7640.079 1.302
ChemBERTa 0.3970.031 3.9350.218 0.7140.008 1.682
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Table 14: Fine-tuning and linear probing results of models pretrained on 1.0 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv AVG

Grover 0.9790.183 2.7680.538 0.6180.012 1.455
AttributeMask 1.3040.006 2.6900.148 0.7960.022 1.597
ContextPred 1.2720.021 2.9130.145 0.8470.019 1.677
EdgePred 1.4720.086 2.3660.273 0.8400.003 1.559
GraphLog - - - - - - -
GraphCL 1.3510.037 3.3871.075 0.8410.014 1.860
KANO 0.6270.087 1.3890.192 0.4470.005 0.821
ChemBERTa 0.4340.004 3.9660.158 0.7480.044 1.716
Linear Probing

Method ESOL Lipo FreeSolv AVG

Grover 1.0910.265 3.1040.496 0.7410.057 1.645
AttributeMask 1.9020.018 3.3660.106 1.0680.004 2.112
ContextPred 1.7060.018 3.8810.126 1.0560.003 2.214
EdgePred 1.9850.018 4.0560.120 1.0300.007 2.357
GraphLog - - - - - - -
GraphCL 1.5890.040 4.5830.248 1.0120.016 2.395
KANO 0.7820.131 2.2760.414 0.7620.074 1.273
ChemBERTa 0.4340.004 3.9660.158 0.7480.044 1.716

Table 15: Fine-tuning and linear probing results of models pretrained on 1.5 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv AVG

Grover 1.3340.064 3.4680.555 0.8010.005 1.867
AttributeMask 1.3380.101 3.1890.284 0.8270.007 1.785
ContextPred 1.4840.053 3.4480.543 0.8330.029 1.922
EdgePred 1.4720.068 3.3630.361 0.8510.014 1.895
GraphLog - - - - - - -
GraphCL 0.9570.126 2.9320.517 0.6200.002 1.503
KANO 0.6000.067 1.4550.047 0.4230.008 0.826
ChemBERTa 0.4030.019 3.6830.269 0.6160.009 1.567
Linear Probing

Method ESOL Lipo FreeSolv AVG

Grover 1.6350.034 3.2550.120 1.0870.120 1.992
AttributeMask 1.7460.087 3.2980.085 1.0820.085 2.042
ContextPred 2.0140.011 3.6320.133 1.0910.133 2.246
EdgePred 2.1880.018 4.3370.043 1.1070.043 2.544
GraphLog - - - - - - -
GraphCL 1.1050.265 3.4140.752 0.7560.752 1.758
KANO 0.7330.157 2.1220.490 0.7460.490 1.201
ChemBERTa 0.4030.019 3.6830.269 0.6160.269 1.567
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Table 16: Fine-tuning and linear probing results of models pretrained on 2.0 M dataset for regression
tasks. Note that GraphLog does not provide regression tasks.

Fine-tuning

Method ESOL Lipo FreeSolv AVG

Grover 1.3690.042 2.4890.138 0.8250.019 1.561
AttributeMask 1.2340.024 2.6450.121 0.7910.020 1.557
ContextPred 1.3300.030 2.8540.220 0.8140.015 1.666
EdgePred 1.4420.049 2.9260.081 0.8210.012 1.730
GraphLog - - - - - - -
GraphCL 1.0080.178 2.9460.755 0.5810.031 1.512
KANO 0.6020.103 1.5120.153 0.4310.006 0.848
ChemBERTa 0.3680.033 3.7730.281 0.6040.019 1.582
Linear Probing

Method ESOL Lipo FreeSolv AVG

Grover 1.5650.088 3.3170.344 0.9920.020 1.958
AttributeMask 1.8720.018 3.5220.071 1.0620.014 2.152
ContextPred 1.7600.033 3.9070.043 1.0600.005 2.242
EdgePred 2.0060.032 4.3880.057 1.0780.018 2.491
GraphLog - - - - - - -
GraphCL 1.0970.242 3.2090.752 0.7610.065 1.689
KANO 0.7120.160 2.0890.466 0.7530.073 1.184
ChemBERTa 0.3680.033 3.7730.281 0.6040.019 1.582

Table 17: Prediction performance on six downstream tasks and the overall average (across 3 repeats)
using scaffold splitting, reported in terms of ROC-AUC (↑) as mean and standard deviation in %. The
setting is the same as in the main experiments, except that the hidden dimension is increased to 1200.

(A) Fine-tuning

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 84.82±3.16 92.96±1.44 83.22±2.19 85.02±0.48 71.69±0.96 61.85±1.08 79.9
AttributeMask 80.40±2.31 69.54±0.57 80.64±4.64 74.49±0.58 63.68±0.36 57.80±1.85 71.0
ContextPred 76.91±1.49 66.79±1.82 69.98±4.80 74.79±0.86 64.80±0.65 62.28±0.89 69.2
EdgePred 67.42±4.27 67.35±1.11 58.66±6.28 73.07±0.89 61.70±0.91 57.38±1.74 64.2
GraphLoG 82.69±0.86 65.57±1.89 67.24±4.63 72.26±1.50 61.98±0.88 61.98±0.76 68.6
GraphCL 78.06±3.07 63.86±4.41 64.64±7.35 74.05±2.23 63.36±0.29 59.09±1.66 67.1
KANO 84.20±1.34 93.05±2.27 84.66±6.12 83.54±2.39 72.36±1.06 59.93±2.82 79.6
ChemBERTa 80.35±1.28 74.18±1.10 73.06±12.2 71.21±1.76 67.55±1.60 56.15±2.21 70.4
(B) Linear probing

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 84.17±3.43 92.01±4.50 78.27±9.49 82.82±2.18 67.93±0.93 62.65±3.16 77.97
AttributeMask 64.55±1.13 62.97±0.96 55.51±2.02 67.66±0.55 57.56±0.13 56.20±0.90 60.74
ContextPred 74.94±1.03 64.36±0.46 53.31±1.79 68.36±0.51 58.75±0.66 59.35±0.65 63.18
EdgePred 53.42±7.26 53.75±2.90 49.36±1.10 50.37±0.34 50.94±0.25 50.39±1.09 51.37
GraphLoG 72.87±1.03 59.65±0.84 60.14±0.71 68.36±0.07 57.56±0.58 57.72±0.75 62.72
GraphCL 70.94±2.02 61.79±0.65 61.44±1.60 70.93±0.74 59.88±0.37 59.70±0.77 64.11
KANO 82.23±6.07 93.28±2.88 53.58±12.9 82.08±2.80 68.91±1.15 60.71±1.97 73.46
ChemBERTa 79.54±0.23 75.57±0.48 13.93±1.30 69.41±0.62 67.09±0.80 52.63±0.45 59.69
(C) Random Initialization (Fine-tuning)

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 84.50±4.07 92.93±4.40 83.99±7.13 85.05±1.97 71.52±0.95 62.18±1.18 80.03
AttributeMask 61.15±2.90 67.35±1.19 53.56±7.97 72.46±0.56 58.53±0.42 54.65±3.33 61.28
ContextPred 72.96±1.75 68.14±2.92 50.87±6.78 72.60±0.74 60.21±1.62 57.34±2.68 63.69
EdgePred 65.87±5.00 67.45±1.28 57.00±13.2 70.64±2.20 59.24±0.37 53.31±4.58 62.25
GraphLoG 69.45±10.8 65.35±4.15 52.61±9.73 72.10±2.05 58.95±0.97 54.27±5.39 62.12
GraphCL 69.57±6.68 67.12±2.27 49.61±4.93 70.91±1.20 60.13±1.58 55.86±5.55 62.20
KANO 83.35±0.99 93.61±1.52 88.31±2.68 84.00±2.93 71.30±0.98 60.80±1.13 80.23
ChemBERTa 77.20±1.89 66.85±1.58 43.69±14.0 66.72±1.36 67.16±2.86 50.96±1.87 62.10
(D)Random Initialization (Linear probing)

Method BACE BBBP ClinTox Tox21 ToxCast SIDER AVG

GROVER 83.59±3.43 92.14±4.50 79.20±9.49 83.83±2.18 68.07±0.93 61.98±3.16 81.24
AttributeMask 67.83±1.13 65.29±0.96 58.91±2.02 67.52±0.55 56.49±0.13 56.25±0.90 62.05
ContextPred 64.37±1.03 66.30±0.46 57.49±1.79 69.48±0.51 59.62±0.66 58.02±0.65 62.55
EdgePred 62.20±7.26 66.26±2.90 57.60±1.10 69.24±0.34 58.64±0.25 57.87±1.09 61.97
GraphLoG 64.89±1.03 66.47±0.84 59.98±0.71 58.26±0.07 69.32±0.58 59.05±0.75 62.99
GraphCL 62.76±2.02 66.35±0.65 57.41±1.60 69.11±0.74 59.63±0.37 57.67±0.77 62.16
KANO 82.00±6.07 94.43±2.88 74.86±12.9 85.28±2.80 76.66±1.15 63.84±1.97 79.51
ChemBERTa 76.72±0.23 73.23±0.48 42.69±1.30 69.01±0.62 73.33±0.80 57.55±0.45 65.42
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Figure 8: This figure shows the Pretrain Gain of linear probing and fine-tuning when trained on 0.25
M samples. Unlike in classification, a negative value here indicates that the model has benefited from
pretraining, while a positive value suggests that it did not gain from pretraining.
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Figure 9: The figure illustrates the Pretrain Gain for fine-tuning and linear probing in regression tasks.
A smaller performance gap between the two indicates that linear probing achieves high performance,
suggesting that the pretrained representations are highly generalizable. Note that GraphLog is
excluded from this analysis, as it does not provide code support for regression tasks. Originally,
since this is a regression task, negative values for linear probing would indicate better performance.
However, for intuitive interpretation, the signs have been reversed — meaning that higher values
indicate greater Pretrain Gain.
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Figure 10: This figure shows the Pretrain Gain of linear probing and fine-tuning when trained on
0.25M samples, with the hidden dimension increased to 1200.
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