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Abstract
The application of machine learning methods to
solve combinatorial problems has garnered con-
siderable research interest. In this paper, we
propose MAGG (Metamorphic Aggregation), a
method to augment machine learning models for
combinatorial problems at inference time using
metamorphic relations. MAGG models meta-
morphic relations using directed graphs, which
are then fed to a Graph Neural Network (GNN)
model to improve the aggregation of predictions
across transformed input instances. By incorpo-
rating metamorphic relations, MAGG essentially
extends standard Test-Time Augmentation (TTA),
eliminating the necessity of label-preserving trans-
formations and expanding its applicability to a
broader range of supervised learning tasks for
combinatorial problems. We evaluate the pro-
posed MAGG method on three mainstream ma-
chine learning tasks for combinatorial problems,
namely Boolean Satisfiability Prediction (SAT),
Decision Traveling Salesman Problem Satisfia-
bility Prediction (Decision TSP), and Graph Edit
Distance Estimation (GED). The evaluation result
shows significant improvements over base models
in all three tasks, corroborating the effectiveness
and versatility of the proposed method.

1. Introduction
Solving combinatorial problems efficiently is a pivotal and
challenging task in the field of computer science (Korte et al.,
2011; Papadimitriou & Steiglitz, 1998). Recently, many
works have been proposed to solve combinatorial problems
using machine learning techniques (Bengio et al., 2021;
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Mazyavkina et al., 2021; Cappart et al., 2023). However, the
intrinsic characteristics of combinatorial problems, such as
their discrete nature and NP-hardness, still pose significant
challenges to machine learning techniques.

Test-time augmentation (TTA) (Moshkov et al., 2020;
Lyzhov et al., 2020; Shanmugam et al., 2021; Kim et al.,
2020) is a technique aiming at enhancing a pretrained model
at inference time. The workflow of standard TTA (defined in
(Shanmugam et al., 2021)) is shown in Figure 1 (b). It turns
target instance into different versions using label-preserving
transformations such as rotation (see Figure 4). Model
predictions on these versions of target instance are then
averaged to give a better prediction. TTA has proven to
provide more accurate and robust prediction than one-shot
prediction (see Figure 1 (a)) in computer vision tasks.

However, standard TTA has many shortcomings, prohibit-
ing it from applying to augment machine learning models
for combinatorial problems. First, it is not easy to find
label-preserving transformations for combinatorial prob-
lems, which are required by both standard TTA and conven-
tional data augmentation methods to give unbiased predic-
tions (Shorten & Khoshgoftaar, 2019; Duan et al., 2022).
Second, there exists numerous semantic relations between
instances of combinatorial problems (since combinatorial
problems are formally definable), but standard TTA fails to
leverage them. Third, standard TTA uses a fixed average
strategy to aggregate model predictions, making it infeasible
to adapt to different models.

Enlightened by works on metamorphic testing (Segura et al.,
2016; Chen et al., 2018; Segura et al., 2018), we propose to
extend TTA technique with metamorphic relations to amend
its shortcomings. Metamorphic testing is a software testing
technique that leverages the relationship among different
outputs of the target system (i.e. metamorphic relation)
for test. It is widely used to test deep learning based utili-
ties (Zhang et al., 2021b; Wang & Su, 2019; Naidu et al.,
2021; Dwarakanath et al., 2018). Metamorphic relations
are necessary properties of the target system (see Defini-
tion 3.1). An example is given in Figure 3. Suppose one
wants to test an implementation of SAT whose aim is to
predict whether a boolean formula is satisfiable. Then for
the two instances q and q′, SAT (q′) → SAT (q). If the
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Figure 1. Workflow of (a) one-shot prediction and (b) standard TTA.
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Figure 2. Workflow of MAGG.

implementation violates this relation, it can be concluded
that it is faulty. Indeed, label-preserving transformations
used by standard TTA can be viewed as a special kind of
metamorphic relations (see Figure 4).

We believe metamorphic relations are useful for test-time
augmentation of combinatorial problems, for the following
reasons. First, since metamorphic relations can be used to
detect errors, they should encompass information that en-
ables models to make better predictions (see Appendix D.1).
Second, metamorphic relations are prevalent in combinato-
rial problems, since these problems are formally definable.
Third, it is not easy for a machine learning model to learn
these relations directly from data (see Appendix D.2).

In this paper, we propose MAGG, a method to augment
machine learning models at inference time by leveraging
metamorphic relations. The workflow of MAGG is shown
in Figure 2 (c). Given a problem instance x, MAGG first
transforms it into several mutants using metamorphic trans-
formations. Note in this step the metamorphic transforma-
tions do not have to be label-preserving, and they can be
applied iteratively. Then, metamorphic relations among
transformed instances are built, forming an Ego Metamor-
phic Graph (EMG) (see Definition 3.6) of x. After that, the
base model (the pretrained model to augment) is executed
to give predictions for transformed instances. Finally, the
EMG with base model predictions as node features is fed to
a Graph Neural Network to give final prediction.

The proposed MAGG essentially extends standard TTA tech-
nique in the following aspects. First, instead of requiring

label-preserving transformations, MAGG is able to utilize a
wide range of metamorphic relations, making it applicable
to the augmentation of machine learning models for com-
binatorial problems. Second, by using a GNN to aggregate
EMG, MAGG can utilize the information that metamorphic
relations encompass to make better predictions. Third, the
use of a trainable GNN instead of a fixed average strategy
helps MAGG adapt to models with different characteristics.
In addition, the ubiquity of metamorphic relations in com-
binatorial problems makes MAGG universally applicable.
To the best of our knowledge, MAGG is the first TTA tech-
nique that can be applied for learning based combinatorial
problem solving.

MAGG is evaluated on three mainstream machine learn-
ing tasks for combinatorial problems, namely Boolean Sat-
isfiability Prediction (SAT), Decision Traveling Salesman
Problem Satisfiability Prediction (Decision TSP), and Graph
Edit Distance Estimation (GED). NeuroSAT (Selsam et al.,
2019), TSP-GNN (Prates et al., 2019), and GREED (Ranjan
et al., 2022) are used as base models for these tasks, respec-
tively. MAGG achieves considerable improvements on all
tasks. Specifically, it achieves maximal 15%, 4%, and 42%
improvements relative to base models on the three tasks,
respectively. It is surprising that MAGG, as a lightweight
TTA method aiming at augmenting existing models, can
achieve such a magnitude of improvement. The evaluation
result shows (1) using metamorphic relations to augment pre-
trained models at inference time is helpful, and (2) MAGG
does well in utilizing information provided by metamorphic
relations.
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Figure 4. Label-preserving transformations can be viewed as a
special kind of metamorphic relations.

In summary, the contribution of this paper is three-fold:

• We present the first attempt to apply TTA to machine
learning models for combinatorial problems.

• We propose to extend TTA with metamorphic relations,
and we design an effective method that models meta-
morphic relations with directed graphs and utilizes
GNN for better aggregation.

• We conduct evaluations on three tasks, and the results
show significant improvements (maximally 42%), cor-
roborating the effectiveness of the proposed method.

2. Background and Related Work
In this section, three research areas closely related to our
work, namely metamorphic testing, test-time augmentation,
and machine learning for combinatorial problems, are intro-
duced.

2.1. Metamorphic Testing

Metamorphic testing (Segura et al., 2016; Chen et al., 2018;
Segura et al., 2018) is a software testing technique which
aims to alleviate the test oracle problem. The field of meta-
morphic testing has seen remarkable growth and increased
attention in recent years within the software testing and qual-
ity assurance communities. Metamorphic testing has also
been applied to test deep learning models, and has proven
to be fruitful and valuable (Zhang et al., 2021b; Wang & Su,
2019; Naidu et al., 2021; Dwarakanath et al., 2018).

The key idea of metamorphic testing is that instead of fully
formalizing a system’s input-output behavior, it is easier
to check the relations of multiple outputs. Such relations

are called metamorphic relations, which are necessary prop-
erties of target function. A prototypical example is the
test of a sin function. Without knowing the exact value of
sin(x), one can check whether the metamorphic relation
sin(x) = sin(π − x) holds. If this relation is violated, the
implementation of sin must be faulty. Additional examples
of metamorphic relations are illustrated in Figures 3, 4, 6,
and 7.

Inspired by the works on metamorphic testing, we propose
to leverage metamorphic relations for augmenting machine
learning models at inference time. This is because (1) as
metamorphic relations can reveal deficiencies of machine
learning models, they should contain information that can
be used to remedy the deficiencies and (2) general meta-
morphic relations are more prevalent than label-preserving
transformations, especially in the field of combinatorial
problems.

2.2. Test-Time Augmentation

Test-time augmentation (TTA) (Moshkov et al., 2020;
Lyzhov et al., 2020; Shanmugam et al., 2021; Kim et al.,
2020; Kimura, 2021; Wang et al., 2019; Pérez et al., 2021;
Chun et al., 2022; Mocerino et al., 2021) is a common prac-
tice in computer vision tasks, such as image classification.
It can be viewed as a special type of data augmentation
(Shorten & Khoshgoftaar, 2019). The distinctive charac-
teristic is that TTA is performed at inference time, and it
only requires a pretrained model, without the need of further
training. This characteristic makes it a popular and easy-
to-use technique. TTA has garnered substantial research
attention in recent years, demonstrating its capability to
yield more accurate and robust predictions.

Standard TTA (defined in (Shanmugam et al., 2021)) applies
label-preserving transformation to target instance, yielding
various versions. Then the predictions of base model on
these versions are averaged to give a final prediction. Re-
cently, many enhancements of standard TTA are put for-
warded. For example, (Lyzhov et al., 2020) proposes to
select useful transformations greedily, (Shanmugam et al.,
2021) proposes to use trainable weighted sum instead of
simple average, and (Kim et al., 2020) proposes to select
suitable transformation for each instance. However, these
works still use label-preserving transformations, and the
enhancements are confined in computer vision tasks. Thus
the potential of the idea of test-time augmentation has not
been fully exploited.

Our work goes beyond standard TTA by employing general
metamorphic relations instead of relying on label-preserving
transformations. Metamorphic relations contain valuable
information for augmentation, and are more prevalent than
label-preserving transformations. Additionally, we use a
trainable GNN model instead of a simple average to aggre-
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gate predictions. These features make the proposed method
more flexible and broadly applicable.

2.3. Machine Learning for Combinatorial Problems

Combinatorial problem solving (Korte et al., 2011; Papadim-
itriou & Steiglitz, 1998) is a pivotal area in computer science,
and have garnered considerable research interest. Recently,
there is a surge of interest to use machine learning models
directly as solvers for combinatorial problems (Bengio et al.,
2021; Mazyavkina et al., 2021; Cappart et al., 2023). Some
works discuss the use of specific metamorphic relations in
graph data and their application to SAT problems (Xu et al.,
2018; Sun et al., 2022). Even though these methods have
achieved considerable accomplishments, many combina-
torial problems are still challenging to machine learning
methods because of their discrete and NP-hard nature.

In this paper, we present the first attempt to apply TTA for
combinatorial problems. We believe using metamorphic
relations at inference time for augmentation is the most
suitable for combinatorial problems, according to following
reasons. First, it is not easy to find effective label-preserving
transformations for many combinatorial problems (see Ap-
pendix D.3). Second, there exists a considerable amount of
effective metamorphic relations in combinatorial problems,
since combinatorial problems are formally definable. Third,
non-label-preserving metamorphic relations are challenging
to apply for data augmentation or unsupervised learning, as
discussed in (Shorten & Khoshgoftaar, 2019; Duan et al.,
2022).

3. Method
The proposed MAGG method extends test-time augmen-
tation with metamorphic relations. The key components
of MAGG are introduced in detail in the following sub-
sections.

3.1. Representing Metamorphic Relations

We first give formal definitions of metamorphic testing re-
lated concepts, which are from (Chen et al., 2018).

Definition 3.1. (Metamorphic Relation). Let f : X → Y
be a target function. A metamorphic relation is a necessary
property of f over multiple inputs ⟨x1, x2, · · ·xn⟩ and cor-
responding outputs ⟨f(x1), f(x2) · · · f(xn)⟩, which can be
expressed as R ⊆ Xn × Y n.

Definition 3.2. (Source Input, Follow-up Input and Meta-
morphic Transformation). Consider a metamorphic relation
R over ⟨x1, x2, · · ·xn⟩ and ⟨f(x1), f(x2) · · · f(xn)⟩. Sup-
pose ⟨xk+1, xk+2, · · ·xn⟩ is constructed by applying a trans-
formation T to ⟨x1, x2, · · ·xk, f(x1), f(x2) · · · f(xk)⟩. We
refer to xi, i = 1 · · · k as source input, xj , j = k + 1 · · ·n
as follow-up input, and T as metamorphic transformation.

Definition 3.3. (Metamorphic Testing). Let m be an
implementation of the target function f . Suppose we have a
metamorphic relation R and the corresponding metamorphic
transformation T . Metamorphic testing based on R involves
the following steps:

(1) Given source input ⟨x1, x2, · · ·xk⟩, apply m to them
and obtain corresponding ⟨m(x1),m(x2), · · ·m(xk)⟩.

(2) Apply the metamorphic transformation T to
⟨x1, x2, · · ·xk,m(x1),m(x2) · · ·m(xk)⟩, and obtain
follow-up input ⟨xk+1, xk+2, · · ·xn⟩.

(3) Apply m to follow-up input ⟨xk+1, xk+2, · · ·xn⟩, and
obtain m(xk+1),m(xk+2), · · ·m(xn).

(4) Check whether ⟨x1, x2 · · ·xn,m(x1),m(x2) · · ·m(xn)⟩
satisfies R. If not, then m is faulty.

For example, consider the metamorphic relation in Figure
3. The target function is SAT . The source input q is (x ∨
¬y)∧ (x∨ z)∧ (y∨¬z), follow-up input q′ is (x∨¬y)∧x,
and the metamorphic transformation that transforms q to q′

is substituting z with 0. The corresponding metamorphic
relation is SAT (q′) → SAT (q). If an implementation m
gives m(q) = 0 and m(q′) = 1, it can be concluded that m
is faulty.

In the context of supervised learning, the target function f
can be viewed as the ground truth, and the implementation
m can be viewed as the machine learning model which is
used to fit f .

To make things simpler, MAGG only considers binary meta-
morphic relations and single-input metamorphic transforma-
tions.

Definition 3.4. (Binary Metamorphic Relation). A bi-
nary metamorphic relation R is a metamorphic relation
concerning only two test instances. That is, R is over
⟨x1, x2, f(x1), f(x2)⟩, expressed as R ⊆ X2 × Y 2.

Definition 3.5. (Single-input Metamorphic Transforma-
tion). A single-input metamorphic transformation T is
a metamorphic transformation that transforms one source
test instance x1 to one follow-up test instance x2. That is,
T : X → X .

The metamorphic relations and corresponding transforma-
tions shown in Figure 3 and 4 are both binary metamorphic
relations (and single-input transformations).

The advantage of using binary metamorphic relations is that
they can be conveniently represented in a graph. We repre-
sent a binary metamorphic relation as a directed edge, with
one endpoint being the source instance and the other being
the follow-up instance. Figure 3 gives such an example.
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Figure 5. Construction of Ego Metamorphic Graph.

3.2. Constructing Ego Metamorphic Structure

In this section, we investigate the method for extracting in-
formation within metamorphic relations for a given instance
x. We propose to construct a graph for x, defined as the Ego
Metamorphic Graph of x.

Definition 3.6. (Ego Metamorphic Graph). An Ego Meta-
morphic Graph (EMG) is defined as a triplet G = ⟨V,E, x⟩,
where V is the set of nodes representing instances, E is the
set of directed edges representing binary metamorphic rela-
tions, x ∈ V is the central node representing the instance of
concern. It is a requisite that all nodes y ∈ V are connected
to x.

Figure 5 (b) gives an example of Ego Metamorphic Graph,
where x is the central node.

For an instance x, an Ego Metamorphic Graph of x is con-
structed using a given set of single-input metamorphic trans-
formations T = {Ti}. The Ego Metamorphic Graph is
constructed incrementally. Initially, G = ⟨{x}, ∅, x⟩. Each
time, we sample a node u from node set V , and sample a
single-input metamorphic transformation Ti from T, then
apply Ti to u. The newly generated instance and binary
metamorphic relation are added to G. We refer to single-
input metamorphic transformations directly applied to x as
first-level metamorphic transformations, those applied to in-
stances that are transformed directly from x as second-level
metamorphic transformations, and so forth. Figure 5 gives
such an example.

3.3. Aggregating Predictions

Given an Ego Metamorphic Graph G = ⟨V,E, x⟩, we be-
lieve that the predictions of the base model on V and the
graph structure are helpful for improving the prediction of
x. In this paper, we propose to use a trainable aggregation
model to learn how to leverage them from data. The advan-
tages of using a trainable aggregation model are as follows:
(1) Using a trainable aggregation model frees people from
writing hard-coded aggregation rules for various metamor-

phic relations and tasks, especially when the appropriate
aggregation rule is not evident. (2) Using a trainable ag-
gregation model makes it feasible to adapt to the features
of different base models. A base model can be aggressive
or conservative, and can predict more accurately on some
instances than on others. A trainable aggregation model can
provide targeted aggregation strategies for it.

We choose to use Graph Neural Network (GNN) as the ag-
gregation model. The benefits of using GNN are as follows:
(1) Since the ego metamorphic structure of a target instance
is represented as a graph, it is natural to use a GNN to lever-
age it. (2) GNN can adapt to varying Ego Metamorphic
Graphs, making it feasible to train and test on instances with
different ego metamorphic structures.

Specifically, in this paper a simplified Message Passing Neu-
ral Network (MPNN) model (Gilmer et al., 2017) is adopted.
We design this model to be as simple as possible to demon-
strate that the effectiveness of the proposed MAGG method
comes mostly from the incorporation of metamorphic rela-
tions rather than aggregation model. The message passing
phase runs for T times, where T is the maximum level of
metamorphic transformations (see Section 3.2). Node states
ht
u ∈ Rdt are updated using messages mt

u ∈ Rdt which are
aggregated from their neighbors. The update rules are

mt+1
u =

1

|N(u)|
∑

v∈N(u)

Mt(h
t
u)

ht+1
u = Ut(h

t
u,m

t+1
u )

where N(u) is the set of neighbors of u, that is, the nodes
with a directed edge to u in a directed graph. The initial
node state (or node feature) h0

u ∈ RC is the prediction of
base model on instance u (C is the number of classes). The
state of central node x at time T , i.e. hT

x ∈ RC, is used as
final prediction.
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3.4. Training the Aggregation Model

A portion of the training set is used to train the aggregation
model, as we observed that the base models we use do
not seem to overfit. For each instance-label pair in the
selected portion of training set, an Ego Metamorphic Graph
is generated for this instance, with base model predictions
as node features. In this way, a graph classification task is
constructed upon which the aggregation model is trained.

4. Evaluation
In this Section, we evaluate the proposed MAGG method on
machine learning tasks for combinatorial problems, assess-
ing its ability to enhance base models’ performance at in-
ference time. Three tasks are selected, namely Boolean Sat-
isfiability Prediction (SAT), Decision Traveling Salesman
Problem Satisfiability Prediction (Decision TSP), and Graph
Edit Distance Estimation (GED). The details of each task,
including base models, datasets, evaluation metrics, and
maximal improvements, are summarized in Table 1. All ex-
periments are conducted on a Ubuntu 22.04.2 LTS machine
with Intel Xeon Gold 6338 processor and NVIDIA A800
80GB PCIe GPU. The code of the experiments is available at
https://github.com/MetamorphicAgg/MAgg.

4.1. Boolean Satifiability Prediction

4.1.1. TASK DESCRIPTION AND BASE MODEL

The Boolean Satisfiability Prediction task (SAT) (Gu et al.,
1996) aims to predict the satisfiability of a boolean for-
mula presented in conjunctive normal form (CNF). Recently,
many machine learning based methods have been proposed
to directly solve SAT (Selsam et al., 2019; Ozolins et al.,
2022; Bünz & Lamm, 2017) or provide assistance in solving
it (Zhang et al., 2021a; Zhang & Zhang, 2021).

NeuroSAT (Selsam et al., 2019) is used as base model. It is
a seminal model in learning-based SAT prediction, trained
with a single-bit of supervision. The authors of NeuroSAT
sample SAT instances of n variables and corresponding
satisfiability labels from a distribution SR(n). NeuroSAT is
trained using instances sampled from SR(U(10, 40)) and
tested on SR(40), SR(80) · · · to show its generalization
ability. More details are given in Appendix A.3.

We train a NeuroSAT model using the same setup as in
(Selsam et al., 2019), and get similar results as reported (see
Appendix A.3).

4.1.2. EVALUATION SETUP

Metamorphic Relation. A family of metamorphic trans-
formations T is used, where T = {Ti,v |i = 1, 2, · · ·n, v =
0, 1}. Ti,v replaces the i-th variable in an instance with
boolean value v, yielding a transformed instance. An exam-

ple of Ti,v and the corresponding metamorphic relation is
shown in Figure 3.

Two settings, namely MAgg(n) and MAgg(n,m), are used to
generate Ego Metamorphic Graphs. In the MAgg(n) setting,
only first-level metamorphic transformations (refer to Figure
5) are used, and n metamorphic transformations from T are
sampled for each instance. In the MAgg(n, m) setting, first
and second-level metamorphic transformations are used.
We sample n first-level metamorphic transformations for
each instance, and sample m second-level metamorphic
transformations for each first level transformation.

Aggregation Model. A simplified MPNN model (refer to
Section 3.3) is used as aggregation model. The message
function Mt is set to the identity function. The state update
function Ut is set to Ut(h

t
u,m

t+1
u ) = σt(Wt · (ht

u ∥mt+1
u )),

i.e. a fully connected layer operating on the concatenation
of node state and message. In the MAgg(n) setting, σ0 = id,
and in the MAgg(n, m) setting, σ0 = softmax, σ1 = id.
The hidden dimensions are set to dt = 2 and the same
weight Wt is used for each layer. Note for MAgg(n), the
aggregation model is essentially linear.

Training the Aggregation Model. For each n ∈
{40, 80, 120} and settings MAgg(10), MAgg(10,10), 5000
instances are sampled from the training set (which follows
SR(n)), and an Ego Metamorphic Graph is constructed
for each instance. The aggregation model is trained on the
corresponding set for 100 epochs with a 0.001 learning rate.

Testing. The performance of the proposed method is evalu-
ated for each n ∈ {40, 80, 120}. The test set contains 5000
instances sampled from SR(n). Accuracy is used as eval-
uation metric. The process of building Ego Metamorphic
Graphs and training the aggregation model is repeated for
10 times, and the mean accuracy is reported.

4.1.3. CLASSIFICATION RESULT

In Table 2, we compare the classification accuracy of
base model (the NeuroSAT column) and base model aug-
mented with MAGG in two settings (the MAgg(10) and
MAgg(10,10) columns). For every n, NeuroSAT augmented
with MAGG considerably outperforms NeuroSAT. Maxi-
mally, MAGG achieves 0.13 accuracy improvement.

This result shows that leveraging metamorphic relations at
test time can significantly improve the performance of base
model . Also, the metamorphic transformations used are not
label-preserving, thus can not be leveraged by standard TTA.
The significant accuracy improvement in the MAgg(10,10)
setting compared to MAgg(10) shows the helpfulness of
leveraging indirect metamorphic relations of the central
instance. This underscores the superiority of constructing a
multi-hop Ego Metamorphic Graph over solely considering
one-step transformed instances.
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Table 1. Summary of the selected tasks and the results.
Task Base Model Datasets Metric Maximal Improvements of MAGG

SAT NeuroSAT SR(40), SR(80), SR(120) accuracy 15% relative to base model
Decision TSP TSP-GNN TSP(0.01), TSP(0.02) accuracy 4% relative to base model
GED GREED AIDS, IMDB, LINUX RMSE 42% relative to base model

Table 2. Classification result for SAT in accuracy.
Dataset NeuroSAT MAgg(10) MAgg(10,10)

SR(40) 0.8444 0.9548 0.9757
SR(80) 0.7268 0.7936 0.8533
SR(120) 0.6270 0.6412 0.6643

It is surprising that the aggregation model in the MAgg(10)
setting, which is essentially linear, can achieve such a mag-
nitude of accuracy improvement. We analyze the effect
of the MAgg(10) aggregation model in Appendix A.7, and
find that using base model predictions on transformed in-
stances as features makes the satisfiable and unsatisfiable
instances linearly separable, which underscores the value of
metamorphic relations.

4.2. Decision TSP Satifiability Prediction

4.2.1. TASK DESCRIPTION AND BASE MODEL

An instance of Decision Traveling Salesman Problem (De-
cision TSP) (Zambito, 2006) is a pair ⟨G,C⟩, where G is a
weighted complete graph and C is target cost. Given an in-
stance, the Decision TSP Satifiability Prediction task aims at
predicting whether there exists a Hamiltonian cycle whose
cost is less than or equal to C. Many machine learning-
based methods have been proposed for solving TSP (Prates
et al., 2019; Vinyals et al., 2015; Joshi et al., 2019).

For this task, TSP-GNN (Prates et al., 2019) is used as base
model. It is a GNN based model trained to predict the sat-
isfiability of Decision TSP instances. TSP-GNN is trained
on 2d Eucildean Decision TSP instances. The authors of
TSP-GNN sample 2d Eucildean Decision TSP instances
and corresponding satisfiability labels from a distribution,
which we denote as TSP (dev), to train and test TSP-GNN.
The dev argument controls the difficulty of Decision TSP
instances. The lower dev is, the harder the Decision TSP in-
stances are. The TSP-GNN model is trained on TSP (0.01),
TSP (0.02), TSP (0.05) and TSP (0.10), respectively, and
tested using instances sampled from the corresponding dis-
tribution. More details are given in Appendix B.3.

We train a TSP-GNN model using the same setup as in
(Prates et al., 2019) for TSP (0.01) and TSP (0.02), and
get similar results as reported (see Appendix B.3).

instance 

add midpoint to 

instance 

Figure 6. Metamorphic relation in decision TSP.

4.2.2. EVALUATION SETUP

Metamorphic Relation. As the TSP-GNN model is
trained with 2d Eucildean Decision TSP instances, the
chosen metamorphic transformations should preserve
the 2d Eucildean property. To this end, a family of
metamorphic transformations T is used, where T =
{Te |e is the 50% edges with the least weights}. Te

adds a node which is at the midpoint of e and adds cor-
responding edges, yielding a transformed instance. We
select e from the 50% edges with least weights to ensure
a close relationship in satisfiability between the two Deci-
sion TSP instances. Suppose Te transforms 2d Eucildean
Decision TSP instance q to q′, because of the triangular
inequality in Euclidean space, we have the metamorphic
relation HasRoute(q′) → HasRoute(q), as shown in Fig-
ure 6.

The MAgg(n) setting (refer to Section 4.1.2) is used to gen-
erate Ego Metamorphic Graphs.

Aggregation Model. The same aggregation model as in
Section 4.1.2 is adopted.

Training the Aggregation Model. For each dev ∈
{0.01, 0.02}, 2048 instances are sampled from the training
set (which follows TSP (dev)), and an Ego Metamorphic
Graph is constructed for each instance. We train the aggre-
gation model on the corresponding set for 100 epochs, with
a 0.0001 learning rate.

Testing. The performance of the proposed method is eval-
uated for dev ∈ {0.01, 0.02}. The test set contains 2048
instances sampled from TSP (dev). Accuracy is used as
evaluation metric. The process of building Ego Metamor-
phic Graphs and training the aggregation model is repeated
for 10 times, and the mean accuracy is reported.
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Table 3. Classification result for Decision TSP in accuracy.
Dataset TSP-GNN MAgg(10)

TSP(0.01) 0.6562 0.6812
TSP(0.02) 0.8101 0.8321

4.2.3. CLASSIFICATION RESULT

In Table 3, we compare the classification accuracy of base
model (the TSP-GNN column) and base model augmented
with MAGG (the MAgg(10) column). The result shows
a notable accuracy improvement after augmentation with
MAGG on both datasets, corroborating that utilizing meta-
morphic relations at inference time is effective.

4.3. Graph Edit Distance Estimation

4.3.1. TASK DESCRIPTION AND BASE MODEL

Graph Edit Distance (GED) (Gao et al., 2010) is a measure
of graph similarities, defined as the minimum number of
steps needed to transform one graph into another using
a predefined set of edit operations. An instance of GED
estimation comprises two graphs, denoted as ⟨G1, G2⟩, and
the model is required to estimate the GED of the two graphs.
Many machine learning based methods have been proposed
for effective GED estimation (Ranjan et al., 2022; Bai et al.,
2019; 2020; Li et al., 2019).

For this task, GREED (Ranjan et al., 2022) is used as base
model. It is an efficient Siamese Graph Neural Network
architecture for graph similarity measure such as GED. The
authors of GREED conduct experiments on GED estimation
using three datasets, namely AIDS, IMDB and LINUX,
which all consist of real-world graphs. For each of the three
datasets, the GREED Model is trained using a portion of
graph pairs and tested using others. More details are given
in Appendix C.3.

The trained checkpoints of GREED are available online, so
we simply use them.

4.3.2. EVALUATION SETUP

Metamorphic Relation. A family of metamorphic trans-
formations T is used, where T = {Ti,op |i = 1, 2, v ∈ Op}.
For q = ⟨G1, G2⟩, Ti,op performs a graph edit operation op
to Gi, yielding a new graph pair q′. Since the operation op
already takes one step, we have the metamorphic relation
GED(q) ≤ GED(q′) + 1, as shown in Figure 7.

The MAgg(n) setting (refer to Section 4.1.2) is used to gen-
erate Ego Metamorphic Graphs.

Aggregation Model. A simplified MPNN model (see
Section 3.3) is used as aggregation model. The message
function Mt is set to the identity function. To better han-

instance instance 

one graph edit
operation 

Figure 7. Metamorphic relation in GED.

Table 4. Regression result for GED in RMSE (lower is better).
Dataset GREED MAgg(50)

AIDS 0.7957 0.7994
LINUX 0.4151 0.2409
IMDB 6.7341 6.3107

dle regression task, we normalize and then discretize the
base model predictions into 200 bins, representing them
using one-hot vectors. For the LINUX and IMDB datasets,
the state update function Ut is set to Ut(h

t
u,m

t+1
u ) =

MLP (ht
u ∥ mt+1

u ), i.e. a multi-layer perceptron operat-
ing on the concatenation of node state and message. The
hidden dimensions of the MLP are 200, 100, 50 and the ac-
tivation function is ReLU . For the AIDS dataset, a linear
state update function is used to alleviate overfitting.

Training the Aggregation Model. We use 50% of the
training set, and construct an Ego Metamorphic Graph for
each instance. The aggregation model is trained for 500
epochs with a 0.0001 learning rate and a 0.5 dropout.

Testing. The Root Mean Square Error (RMSE) is used as
evaluation metric, as in (Ranjan et al., 2022). The RMSE

is defined as RMSE =
√

1
n

∑
i(yi − ŷi)2, where ŷi is the

GED ground-truth and yi is the estimation of model. The
process of building Ego Metamorphic Graphs and training
the aggregation model is repeated for 10 times, and the
mean RMSE is reported.

4.3.3. REGRESSION RESULT

In Table 4, we compare the RMSE score of base model (the
GREED column) and base model augmented with MAGG
(the MAgg(50) column). On IMDB and LINUX datasets,
there are considerable RMSE improvements after augment-
ing base model using MAGG. And a 42% improvement
relative to base model is achieved on LINUX dataset. This
result shows using metamorphic relations for test-time aug-
mentation is helpful. However, on AIDS dataset, MAGG
provides no improvements, and we think this is because
graphs have various node labels in AIDS dataset. Because
of the existence of node labels, a random graph edit op-
eration is more likely to increase the GED, making the
metamorphic relation less effective.
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5. Conclusion
Using machine learning techniques to help solve combina-
torial problems is an emerging research field. However, the
use of TTA in this field remains unexplored. In this pa-
per, we propose MAGG, which uses metamorphic relations
in target problems to enhance the corresponding machine
learning models at inference time. The key extension of
MAGG over standard TTA is the utilization of metamor-
phic relations, which helps MAGG (1) to be applicable to
many combinatorial problems where there are sufficient
metamorphic relations while few label-preserving transfor-
mations (2) to be able to leverage the semantic information
encoded in metamorphic relations to achieve better augmen-
tation performance. Also, the use of Graph Neural Network
model to aggregate base model predictions helps the MAGG
method to be highly adaptable to different combinatorial
problems and different models. The evaluation result shows
significant improvements over base models, underscoring
the importance of incorporating metamorphic relations and
effectiveness of the proposed MAGG method.
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A. Boolean Satisfiability Prediction
A.1. Formal Definition

Definition A.1. (Boolean Formula and Conjunctive Normal Form). A boolean formula ϕ is an expression constructed
from boolean variables and three logical operators which are conjunction (∧), disjunction (∨) and negation (¬). A boolean
formula in conjunctive normal form (CNF) is a conjunction of clauses, where a clause is a disjunction of literals and a literal
is a boolean variable or its negation.

Definition A.2. (Assignment and Satisfiability). An assignment τ is a map from boolean variables to boolean values. A
boolean formula ϕ is satisfiable if there exists an assignment under which ϕ evaluates to True. Otherwise ϕ is unsatisfiable.

Definition A.3. (Boolean Satisfiability Problem). Given a formula ϕ in CNF, the Boolean Satisfiability Problem (SAT) aims
to determine whether ϕ is satisfiable.

A.2. Proof of Metamorphic Relation

Proposition A.4. Suppose ϕ is a boolean formula, and ϕ′ is obtained by assigning a boolean value v to a boolean variable
xk in ϕ. Then, if ϕ′ is satisfiable, then ϕ is satisfiable.

Proof. Because ϕ′ is satisfiable, there exists an assignment τ ′ such that ϕ′ evaluates to True under τ ′. We define an
assignment τ of ϕ as follows. For varaibles xi which are also varaibles of ϕ′, τ(xi) := τ ′(xi). And for xk, τ(xk) := v.
Because ϕ′ is obtained by assigning a boolean varaible xk to v in ϕ and τ ′ is a satisfiable assignment for ϕ′, τ is a satisfiable
assignment for ϕ. That is, ϕ is satisfiable.

A.3. Base Model Details

NeuroSAT (Selsam et al., 2019) is used as base model, and we briefly introduce the details of the NeuroSAT model in this
section.

A.3.1. PROBLEM ENCODING

In NeuroSAT architecture, an SAT instance is encoded as a heterogeneous graph. Specifically, there are two types of nodes:
(1) one node for every clause, and (2) one node for every literal. Also, there are two types of edges: (1) one edge between
literal and the clause it appears in, and (2) two edges between one literal and its negation.

A.3.2. MODEL ARCHITECTURE

NeuroSAT adopts an Neural Message Passing architecture (Gilmer et al., 2017). The inference of NeuroSAT consists of
many iterations. At each iteration, the nodes representing clauses first collect messages from their neighbors and update
their embeddings, the nodes representing literals then collect messages from their neighbors and update their embeddings.
The update rules are given by MLPs and LSTMs. Finally, the average of literal votes are computed to give satisfiability
prediction.

A.3.3. TRAINING HYPERPARAMETERS

The NeuroSAT model is trained on SR(U(10, 40)) where SAT instances of 10 to 40 variables are uniformly sampled. The
instances are continuously sampled during training. The dimension of literal embeddings is d = 128. For each MLP, 3
hidden layers are used. The message passing is performed for 26 iterations. The model is trained using ADAM optimizer,
with a 2 · 10−5 learning rate. The model is trained with batches, where each batch contains 12000 nodes.

A.3.4. REPRODUCING RESULTS

We train the NeuroSAT model using the same settings as in the original paper. (Selsam et al., 2019) reports a 0.85 accuracy
on SR(40), and our trained NeuroSAT model achieves a 0.8444 accuracy on the same dataset, which is close to the reported
accuracy.
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Figure 8. Visualization of MAgg setting

A.4. Dataset Details

The dataset used in the SAT task is SR(n), proposed in (Selsam et al., 2019). SR(n) is a distribution over random SAT
instances with n variables. It generates a pair of SAT instances with one satisfiable while the other not, which two differ by
negating one literal. SR(n) works as follows: It first create clauses by randomly choosing k variables without replacement
and negating each one with 50% probability. This process continues until adding a specific clause makes the SAT problem
unsatisfiable (checked using an SAT solver). Negating a single literal in the final clause results in a satisfiable SAT instance.
Finally, the pair of SAT instances is generated.

The base model is trained using SR(U(10, 40)) in (Selsam et al., 2019), and we use SR(40), SR(80) and SR(120) for
evaluation.

A.5. Ego Metamorphic Graph Generation Setting

We visualize the two settings used to generate Ego Metamorphic Graph for each instance. Figure 8 (a) shows the MAgg(n)
setting, in which only first level metamorphic transformations are used. Figure 8 (b) shows the MAgg(n, m) setting, in
which only first and second level metamorphic transformations are used.

A.6. Impact of Number of Samples

In this section, we analyze the effect of the number of metamorphic transformations samples.

A.6.1. SETTING

We use the trained aggregation model in MAgg(10), MAgg(10, 10) settings, and change the number of metamorphic
transformation samples fed to the aggregation model.

A.6.2. RESULTS

The changes of classification accuracy in regard to the number of samples are shown on Figure 9 and 10.

Figure 9 shows the effect of the number of first level metamorphic transformation samples (denoted as n1, the x-axis) on
classification accuracy in the MAgg(10) setting. We observed that even though the aggregation models are trained with 10
samples, they can well generalize to larger number of samples, yielding better classification result. Also, the marginal effect
of number of samples is decreasing, and only a small number of samples can yield satisfactory results.

Figure 10 shows the effect of the number of first level metamorphic transformation samples (denoted as n1, the x-axis)
and the number of first level metamorphic transformation samples (denoted as n2, shown in the legend) on classification
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Figure 9. Effect of the number of first level metamorphic transformation samples
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Figure 10. Effect of the number of first and second level metamorphic transformation samples

accuracy in the MAgg(10, 10) setting. Similar as the MAgg(10) setting, the aggregation model can generalize to larger
number of samples with better classification accuracy. The observation on marginal effect of the number of samples also
holds in MAgg(10, 10) setting.

A.7. Explaining the Effectiveness

In this section, we analyze the reason why the MAGG method is so effective in the SAT task. For simplicity, we consider
the MAgg(n) setting. In MAgg(n) setting, for each instance x, n metamorphic transformations as shown in Figure 3 are
sampled, yielding n mutants x1, x2 · · ·xn. We assume that the number of samples n is large enough. The aggregation
model uses base model’s predictions on x, x1, · · ·xn to give a better prediction on x. Because all mutants have same status
and SAT is a binary classification task, only the portion of satisfiable predictions matters, which we denote α. That is,
α := |{xi|BaseModel(xi)=True}|

n .
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Figure 11. The α distributions in two edge cases
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Figure 12. The α distributions on SR(40), SR(80) and SR(120)

Suppose the base model always make correct predictions. If x is satisfiable, then at least a half of xis are satisfiable (since for
one variable, at least one assignment is satisfiable). If x is unsatisfiable, then all xis are unsatisfiable. Then the distribution
of α under the two cases can be illustrated as in Figure 11 left. The satisfiable and unsatisfiable distributions can be well
separated using a threshold.

Suppose the base model makes random independent predictions and it predict True and False with equal probability. Then
the distributions of α when x is satisfiable or not will be the same, as in Figure 11 right.

Now, suppose the base model make independent predictions, and the probability of correct is 1
2 < p < 1. If p approaches 1,

the α distribution will be similar to Figure 11 left. If p approaches 1
2 , the α distribution will be similar to Figure 11 right.

Now for 1
2 < p < 1, the α distribution will be in some intermediate state between Figure 11 left and right. Figure 12 shows

the α distribution of NeuroSAT on SR(40), SR(80) and SR(120), with a decreasing probability of correct prediction. It
can be observed that using a threshold on α to classify satisfiable and unsatisfiable instances can yield better classification
accuracy.

A.8. Comparison with Standard TTA

In this section, we compare the performance of the proposed MAGG with standard TTA.

A.8.1. SETTING

The metamorphic transformation used by MAGG (see Figure 3) is not label-preserving, thus can not be used by Standard
TTA. To apply Standard TTA for SAT prediction, we use the Add Unit Literal (AU) transformation (see (Duan et al., 2022)).
The AU transformations uses a new literal l. It adds one clause containing only l, and add ¬l to some other clauses, as
depicted in Figure 13. The satisfiability of SAT instance will not change after apply the AU transformation. For each
instances, 10 AU transformations are sampled. The process of sampling AU transformations is repeated for 10 times, and
the mean and standard deviation are reported.
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instance instance add unit literal 

Figure 13. Label-preserving transformation AU in SAT

Table 5. Classification result for SAT in accuracy

Dataset NeuroSAT MAgg(10) STTA(10)

SR(40) 0.8444 0.9548 ± 0.0026 0.8431 ± 0.0006
SR(80) 0.7268 0.7936 ± 0.0020 0.7302 ± 0.0022
SR(120) 0.6270 0.6412 ± 0.0027 0.6287 ± 0.0019

Table 6. Classification result for SAT in accuracy

Model NeuroSAT MAgg(10) MAgg GCN(10) MAgg(10, 10) MAgg GCN(10, 10)

SR(40) 0.8444 0.9548 ± 0.0026 0.9559 ± 0.0025 0.9757 ± 0.0021 0.9838 ± 0.0015
SR(80) 0.7268 0.7936 ± 0.0020 0.7920 ± 0.0023 0.8533 ± 0.0035 0.8430 ± 0.0025
SR(120) 0.6270 0.6412 ± 0.0027 0.6446 ± 0.0035 0.6643 ± 0.0026 0.6626 ± 0.0020

A.8.2. RESULTS

In Table 5, we compare the classification accuracy of base model (the NeuroSAT column), base model augmented with
MAGG (the MAgg(10) column), and base model augmented with standard TTA (the STTA(10) column). For all n, the
classification accuracy of Standard TTA on SR(n) is almost the same as NeuroSAT, and far inferior to MAGG. We speculate
that this is because (1) the AU transformation is not effective (it makes instances more complex and harder for the base
model to classify), and (2) the fixed average aggregation used by Standard TTA can not adapt to base model’s characteristics.
Thus, the leverage of non-label-preserving metamorphic relations and a trainable aggregation model are necessary.

A.9. Ablation Study

A.9.1. SETTING

The ablation study is conducted by replacing the simplified MPNN aggregation model with other Graph Neural Network
architectures. The Graph Convolutional Network (GCN) (Kipf & Welling, 2017) is used for substitution. The state update
rule of GCN is,

ht+1
u = σ(

∑
v∈N(u)∪{u}

1√
du · dv

ht
vW

t)

where du is the degree of node u, and W t is the parameter matrix at time step t, and σ is the activation function. The process
of building Ego Metamorphic Graph and training the aggregation model is repeated for 10 times, and the mean and standard
deviation are reported.

A.9.2. RESULTS

In Table 6, we compare the classification accuracy of base model (the NeuroSAT column), base model augmented with
MAGG (the MAgg(10) and MAgg(10,10) columns), and base model augmented with MAGG in which GCN is used as
aggregation model (the MAgg GCN(10) and MAgg GCN(10,10) columns). For all n, the performance of GCN aggregation
model is close to the simplified MPNN aggregation model on SR(n). We speculate that this is because the base model
predictions on transformed instances matter more than predictions on original instances, and the two aggregation models
leverage predictions on transformed instances in the same way.
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B. Decision TSP Satisfiability Prediction
B.1. Formal Definition

Definition B.1. (Hamilton Cycle). Given an undirected graph G = ⟨V,E⟩, a Hamilton cycle in G is a cycle (a path in
which only the first and last vertices are equal) that visits each vertex v ∈ V exactly once.

Definition B.2. (Traveling Salesman Problem). Given a complete undirected weighted graph G = ⟨V,E,w⟩ where
w : E → R is the edge weight function. The Traveling Salesman Problem (TSP) aims to determine the Hamilton cycle with
minimal cost, where the cost of a path is defined as the sum of its edge weights.

Definition B.3. (Decision Traveling Salesman Problem). An instance of decision Traveling Salesman Problem (Decision
TSP) is a pair ⟨G,C⟩, where G is a complete undirected weighted graph and C is the target cost. Decision TSP aims
to determine whether there exists a Hamilton cycle whose cost is lower than or equal to C. If so, we call this instance
satisfiable, otherwise unsatisfiable.

Definition B.4. (2D Euclidean Decision TSP). The 2D Euclidean Decision TSP is a special type of Decision TSP, where
the target graph G is a 2D Euclidean graph. That is, the vertices of G are points on Euclidean plane, and the weight function
w is defined as the distance function in Euclidean plane.

Note that the weight function in 2D Euclidean Decision TSP satisfies triangular inequality, that is, ∀u, v, t ∈ V,w(⟨u, v⟩) ≤
w(⟨u, t⟩) + w(⟨t, v⟩)

B.2. Proof of Metamorphic Relation

Proposition B.5. Suppose ⟨G,C⟩ is a 2D Euclidean TSP instance, and ⟨G′, C⟩ is obtained by add a midpoint and
corresponding edges to G in Euclidean plane. Then, if G′ has a Hamilton cycle whose cost is ≤ C, then G has a Hamilton
cycle whose cost is ≤ C.

Proof. Suppose G′ is obtained by adding a midpoint t. If G′ has a Hamilton cycle τ ′ := u0, u1 · · · , t = ui, · · ·un = u0,
such that cost(τ ′) :=

∑n−1
i=0 w(⟨ui, ui+1⟩) ≤ C. Then define a Hamilton cycle τ := u0, u1 · · · , ui−1, ui+1, · · ·un = u0 of

G which is obtained by removing t in τ ′. Because of the triangular inequality w(⟨ui−1, ui+1⟩) ≤ w(⟨ui−1, t⟩)+w(⟨t, ui+1⟩),
cost(τ) ≤ cost(τ ′) ≤ C. That is, G has a Hamilton cycle whose cost is ≤ C.

B.3. Base Model Details

TSP-GNN (Prates et al., 2019) is used as base model, and we briefly introduce the details of the TSP-GNN model in this
section.

B.3.1. MODEL ARCHITECTURE

TSP-GNN uses a message passing architecture where messaging and updating functions are modeled using neural network.
In addition to node embeddings, TSP-GNN uses edge embeddings to encode the information of edge weights, and uses
vertex-edge adjacency rather than vertex-vertex adjacency. The target cost C is encoded to initial edge embedding using
concatenation. The message passing is performed for many iterations. At each iteration, the nodes first collect messages
from their neighbors and update their embeddings, the edges then collect messages from their sources and targets and update
their embeddings. The messaging and updating functions are given by MLPs and RNNs. Finally, the edge embeddings are
aggregated to give satisfiability prediction.

B.3.2. TRAINING HYPERPARAMETERS

The TSP-GNN Model is trained on TSP (0.01), TSP (0.02), TSP (0.05) and TSP (0.10), respectively. For each dev, there
is one trained TSP-GNN model. The model is then trained with Adam optimizer with binary cross entropy loss. The model
is trained using batches. The dimension of node and edge embeddings are set to d = 64. Every MLP uses three layers with
dimensions 64, 64, 64 and ReLU activation. The message passing is performed for 32 iterations. The models for all devs
are trained for 1000 epochs.
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Table 7. Classification result for Decision TSP in accuracy

Dataset TSP-GNN MAgg(10) MAgg GCN(10)

TSP(0.01) 0.6562 0.6812 ± 0.0039 0.6815 ± 0.0021
TSP(0.02) 0.8101 0.8321 ± 0.0029 0.8309 ± 0.0028

B.3.3. REPRODUCING RESULTS

We train the TSP-GNN model using the same settings as in the original paper. (Prates et al., 2019) reports 0.66 accuracy on
TSP (0.01) and 0.80 accuracy on TSP (0.02). Our trained TSP-GNN model achieves 0.6562 accuracy on TSP (0.01) and
0.8101 accuracy on TSP (0.02), which are close to the reported results.

B.4. Dataset Details

The dataset used in the Decision TSP task is TSP (dev), proposed in (Prates et al., 2019). TSP (dev) is a distribution over
random 2d Euclidean Decision TSP instances, where the difficulty of instances is controlled by dev. The smaller dev is, the
harder the generated instances are. This distribution contains the following steps:
(1) Sampling n U(20, 40) points in a

√
2
2 ×

√
2
2 square.

(2) Computing the edge weight function using Euclidean distance.
(3) Using a TSP solver to solve the TSP instance, yielding optimal cost C.
(4) Constructing a pair of decision TSP instances: ⟨G, (1+dev) ·C⟩ and ⟨G, (1−dev) ·C⟩, note that the former is satisfiable
while the latter is not.

TSP-GNN is trained on TSP (0.01), TSP (0.02), TSP (0.05) and TSP (0.10) respectively, in (Prates et al., 2019). In this
paper, we use TSP (0.01) and TSP (0.02) for evaluation.

B.5. Ablation Study

B.5.1. SETTING

The setting is the same as in Section A.9.1.

B.5.2. RESULTS

In Table 7, we compare the classification accuracy of base model (the NeuroSAT column), base model augmented with
MAGG (the MAgg(10) column), and base model augmented with MAGG in which GCN is used as aggregation model
(the MAgg GCN(10) column). For all dev, the performance of GCN aggregation model is close to the simplified MPNN
aggregation model on TSP (dev). We speculate that this is because the base model predictions on transformed instances
matter more than predictions on original instances, and the two aggregation models leverage predictions on transformed
instances in the same way.

C. Graph Edit Distance Estimation
C.1. Formal Definition

Definition C.1. (Graph Isomorphism). Given two graphs G1 = ⟨V1, E1⟩, G2 = ⟨V2, E2⟩, an isomorphism i : V1 → V2 is a
bijection between V1 and V2, such that (1) ∀⟨u, v⟩ ∈ E1, ⟨i(u), i(v)⟩ ∈ E2 and (2) ∀⟨u′, v′⟩ ∈ E2, ⟨i−1(u′), i−1(v′)⟩ ∈ E1.
If there exits an isomorphism for G1, G2, we say G1, G2 are isomorphic.

Definition C.2. (Graph Edit Operation). A Graph Edit Operation is a function that transforms a graph to another. In this
paper, only the following set of graph edit operations are considered:
(1) Add a node.
(2) Delete an isolated node.
(3) Add an edge.
(4) Delete an edge.
(5) Relabel a node (if the graph is labeled).
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Table 8. Dataset statistics for GED
Dataset # Pairs(train) # Pairs(val) # Pairs(test)

AIDS 285600 28000 78400
LINUX 600000 40000 160000
IMDB 1380000 60000 360000

Definition C.3. (Graph Edit Sequence). A graph edit sequence (GES) s for G1, G2 is a sequence of graph edit opera-
tions, such that after these operations G1, G2 are isomorphic. The set of graph edit sequences for G1, G2 is denoted as
GES(G1, G2).

Definition C.4. (Graph Edit Distance). The Graph Edit Distance (GED) between G1, G2 is defined as the minimal length
of graph edit sequences between G1, G2. That is, GED(G1, G2) := mins∈GES(G1,G2) length(s), where length(s) is
defined as the number of graph edit operations in s.

C.2. Proof of Metamorphic Relation

Proposition C.5. Suppose G1, G2 is a pair of graphs, and G′
1, G

′
2 is obtained by performing one step graph edit operation

op. Then, GED(G1, G2) ≤ GED(G′
1, G

′
2) + 1.

Proof. Suppose the graph edit sequence for G′
1, G

′
2 with minimal length is s′ ∈ GES(G′

1, G
′
2). We construct s by

concatenating op to s′, then s ∈ GES(G1, G2) and length(s′) = length(s) + 1. So G1, G2 have a graph edit sequence of
length GED(G′

1, G
′
2) + 1. That is, GED(G1, G2) ≤ GED(G′

1, G
′
2) + 1.

C.3. Base Model Details

GREED (Ranjan et al., 2022) is used as base model, and we briefly introduce the details of the GREED model in this section.

C.3.1. MODEL ARCHITECTURE

GREED uses a Siamese Graph Neural Network architecture to embed graph into vector space, and the distance between
embeddings of two graphs are used to compute GED. The Siamese Graph Neural Network architecture consists of two
identical GNN with same parameters. The GNN structure first uses a pre-MLP to reduce node features to a desired dimension.
Then, a Graph Isomorphism Network (GIN) structure is used to extract graph structure information. After that, the hidden
representations in GIN are concatenated and fed to a post-MLP to yield an embedding of input graph. The L2 distance of
two embedding vectors is produced to give an estimation of GED.

C.3.2. TRAINING HYPERPARAMETERS

The GREED model is trained on AIDS, LINUX and IMDB, respectively. The number of GIN layers is set to 8 and the
hidden dimensions are set to d = 64. The model is trained until there is less than 0.05% change in validation loss over a
number of epochs.

C.4. Dataset Details

Three datasets are used in the GED task, namely AIDS, LINUX and IMDB.

• The AIDS dataset is composed of graphs that are built from the AIDS antiviral screen database. The graphs in this
dataset depict molecular compounds with Hydrogen atoms omitted. In these representations, atoms are nodes, and
chemical bonds are edges. Note the graphs are labeled.

• The LINUX dataset consists program dependence graphs. A graph represents a function, wherein nodes are statements
and edges are dependency between statements. Note the graphs are unlabeled.

• The IMDB dataset consists of ego-networks of actors/actresses. The nodes are actors/actresses, and the edges are
co-appearance relations. Note the graphs are unlabeled.
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Figure 14. Effect of the number of first level metamorphic transformation samples

Table 9. Regression result for GED in RMSE (lower is better)

Dataset GREED MAgg(50) MAgg GCN(50)

AIDS 0.7957 0.7994 ± 0.0002 0.8184 ± 0.0024
LINUX 0.4151 0.2409 ± 0.0030 0.5709 ± 0.0017
IMDB 6.7341 6.3107 ± 0.0204 6.6896 ± 0.0011

For the GED task, graph pairs are constructed using graphs in each dataset, for training, validation, and testing. The statistics
are shown in Table 8. GED computation algorithms are used to provide groundtruth.

GREED is trained on AIDS, LINUX, and IMDB, in (Ranjan et al., 2022). In this paper, we uses all the three datasets for
evaluation.

C.5. Impact of Number of Samples

In this section, we analyze the effect of the number of metamorphic transformations samples.

C.5.1. SETTING

We use the trained aggregation models on MAgg(50) setting, and change the number of metamorphic transformation samples
fed to the aggregation model.

C.5.2. RESULTS

The changes of RMSE in regard to the number of samples are shown on Figure 14, in which the number of first level
metamorphic transformations is denoted as n1. In AIDS dataset, the aggregation model does not help to improve RMSE,
and the change of number of samples still can not help with it. In LINUX and IMDB dataset, the aggregation models have
learned to aggregate predictions. It can be observed that even though the aggregation models are trained with 50 samples,
they can well generalize to larger number of samples, yielding better regression result. Also, the marginal effect of number
of samples is decreasing.

C.6. Ablation Study

C.6.1. SETTING

The setting is the same as in Section A.9.1.

C.6.2. RESULTS

In Table 9, we compare the RMSE score of base model (the NeuroSAT column), base model augmented with MAGG
(the MAgg(50) column), and base model augmented with MAGG in which GCN is used as aggregation model (the
MAgg GCN(50) column). The performance of GCN aggregation model is worse than the simplified MPNN aggregation
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Figure 15. An example in which MAGG corrects NeuroSAT’s prediction

model, and is even worse than the base model on some datasets. We speculate that this is because (1) the predictions of
central instances should be handled separately and (2) the use of MLP as the state update function is necessary.

D. Detailed Explanations
D.1. MRs Encompass Helpful Information

Since metamorphic relations can be used to detect errors in models, they should encompass information that enables the
model to make better predictions. For example, consider the metamorphic relation in Figure 3. Suppose one transforms
instance q into multiple instances qi using metamorphic relation in Figure 3. Consider the case when the base model predicts
SAT (q) = 0, while for most of qi, it predicts SAT (qi) = 1. Then according to the metamorphic relation, it is more likely
that SAT (q) = 1. Thus one can correct the base model’s prediction using its predictions on transformed instances.

Figure 15 gives an example in which MAGG corrects a prediction of NeuroSAT (Selsam et al., 2019) using metamorphic
relations. On the left hand side, the nodes denote instances, where q is on top and qis are on the bottom. The digits within
the nodes denote NeuroSAT’s predictions, with their values illustrated using colors. Aggregated prediction by MAGG is
shown on the right hand side. NeuroSAT predicts q to be unsatisfiable, while predicting most of the qis to be satisfiable.
This violates the metamorphic relation. MAGG corrects NeuroSAT’s prediction on q.

D.2. MRs Are Hard to Learn from Data

It is not easy for a machine learning model to learn metamorphic relations directly from data, according to following reasons.
First, metamorphic testing has been applied to test deep learning based utilities (Zhang et al., 2021b; Wang & Su, 2019;
Naidu et al., 2021; Dwarakanath et al., 2018), and has proven to be effective. The effectiveness of metamorphic testing shows
that machine learning models do not always learn metamorphic relations well. Second, a training set with fixed size is not
likely to contain enough groups of instances that follow the metamorphic relations. For example, consider the metamorphic
relation in Figure 3 and the training set sampled from SR(U(10, 40)). For a pair of instances ⟨q, q′⟩ to follow this relation,
q′ must be obtained by substituting one variable in q. However, there is a low probability that such two instances are both
sampled from SR(U(10, 40)), thus the model trained using SR(U(10, 40)) is not likely to learn it. During evaluation, we
found metamorphic relations in Figure 3, 6, 7 are easily violated by the corresponding base models.

D.3. Effective Label-Preserving Transformations Are Rare in Combinatorial Problems

It is not easy to find effective label-preserving transformations for many combinatorial problems. For computer vision tasks,
there is a large amount of well studied effective label-preserving transformations, such as flipping, rotation, translation, etc
(Shorten & Khoshgoftaar, 2019). However, in the area of combinatorial problem solving, such effective label-preserving
transformations are rare. For SAT, (Duan et al., 2022) proposes six label-preserving transformations, namely Unit Propagation
(UP), Add Unit Literal (AU), Pure Literal Elimination (PL), Subsumed Clause Elimination (SC), Clause Resolution (CR),
and Variable Elimination (VE). However, UP, PL, SC and CR are only applicable to specific SAT instances, and AU
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and VE make instances much more complex, harder for the base model to predict. Thus none of these label-preserving
transformations is effective. For Decision TSP and GED, it is hard to find any non-trivial label-preserving transformations.

22


