Inducing, Detecting and Characterising Neural Modules: A Pipeline for
Functional Interpretability in Reinforcement Learning

Anna Soligo! Pietro Ferraro! David Boyle

Abstract

Interpretability is crucial for ensuring RL systems
align with human values. However, it remains
challenging to achieve in complex decision mak-
ing domains. Existing methods frequently attempt
interpretability at the level of fundamental model
units, such as neurons or decision nodes: an ap-
proach which scales poorly to large models. Here,
we instead propose an approach to interpretability
at the level of functional modularity. We show
how encouraging sparsity and locality in network
weights leads to the emergence of functional mod-
ules in RL policy networks. To detect these mod-
ules, we develop an extended Louvain algorithm
which uses a novel ‘correlation alignment’ metric
to overcome the limitations of standard network
analysis techniques when applied to neural net-
work architectures. Applying these methods to 2D
and 3D MiniGrid environments reveals the consis-
tent emergence of distinct navigational modules
for different axes, and we further demonstrate how
these functions can be validated through direct in-
terventions on network weights prior to inference.

1. Introduction

Reinforcement learning (RL) has emerged as a powerful ap-
proach to improve performance in complex decision-making
domains. Learning policies directly from interactions can
offer improved flexibility and performance, whilst avoid-
ing challenges faced by classical model based control ap-
proaches (Song et al., 2023). The growing body of RL
research is demonstrating its potential to positively impact
diverse real-world domains, from battery manufacturing
(Lu et al., 2020) to the design of medical treatment regimes
(Coronato et al., 2020), applications which directly impact
critical issues such as climate-change and human-health.

"Imperial College London. Correspondence to: Anna Soligo
<anna.soligo18 @imperial.ac.uk>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

However, this breadth of impacts also raises wide-ranging
concerns related to topics of safety, reliability and bias,
among others. It is thus crucial that the behaviour of RL
agents can be properly characterised to the extent that it can
be reasonably verified that their impacts align with human
values. As reflected in the EU’s Al ethics guidelines: sys-
tems should allow for human oversight, accountability and
transparency (European Commission & High-Level Expert
Group on Al 2019).

Currently, there remain fundamental challenges to achieving
this, and RL systems rarely afford sufficient interpretability.
One factor is the ambiguity regarding what constitutes a
suitable ‘explanation’ of a model. Lipton (2016) consid-
ers two parallel concepts: ‘simulatability’, the ease with
which a human can predict a model’s output from its in-
put and explanation, and ‘decomposability’, the extent to
which constituent components of a model are themselves
interpretable. Doshi-Velez & Kim (2017) reiterate this with
the concept of ‘cognitive chunks’, emphasising the need for
model explanations to be tractable to human interpreters.

More concretely, interpretability can be considered in terms
of the affordances it provides. In some cases, interpretability
enables formal verification of safety-relevant capabilities
(Bastani et al., 2018). However, in complex, incompletely-
defined scenarios, it can instead offer insights which enable
downstream safety-relevant tasks, such as system auditing
or direct interventions to reduce undesirable behaviours
(Kohler et al., 2024; Delfosse et al., 2024).

When scaling these affordances to complex domains, in-
terpretability at the level of neurons, or other fundamental
model units, becomes problematic: both due to their sheer
quantity and because individual neurons are rarely seman-
tically meaningful in isolation (Elhage et al., 2022). We
address this challenge by taking a modular approach to in-
terpretability. Modularity is fundamental in diverse biologi-
cal architectures, including physical structures of the brain
(Gazzaniga et al., 2018). Similarly, human-decision making
can be considered as decomposable into modular processes
(Eppe et al., 2022), suggesting that modularity may offer a
natural framework for enhancing human understanding of
complex systems.

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

Motivated by this, we demonstrate how training modifica-
tions can encourage the emergence of functional modules
within RL policy networks. We further propose methods to
detect these modules and characterise their behaviour. In
doing so, we aim to establish a suitable level of abstraction
for aligning model interpretations with our internal decision
making frameworks.

1.1. Contributions

Considering interpretability at the level of functional mod-
ules, our work makes the following contributions':

* We extend recent algorithms for encouraging locality in
neural networks (Margalit et al., 2024; Liu et al., 2023;
Achterberg et al., 2023) to an RL context, demonstrat-
ing that penalizing non-local weights facilitates the
emergence of functional modules within policy net-
works (Section 4.2). These modules offer a scalable
unit for decomposing decision making, moving beyond
interpretability at the level of neurons.

* We propose an extended Louvain algorithm for commu-
nity detection which addresses the limitations of con-
ventional community detection methods when applied
to neural networks (Section 3.5). We thus demonstrate
the ability to automatically identify functionally cohe-
sive neural modules (Section 4.3) in a manner which
enables the scaling of module based interpretability to
complex networks.

« Utilising this approach to module detection, we demon-
strate how targeted modifications of network param-
eters prior to inference can be used to characterise
module behaviour, offering an empirical understanding
of their functionality (Section 4.6).

2. Background

Following (Glanois et al., 2024), and to avoid confusion aris-
ing from the inconsistent use of terms in the literature, we
denote interpretability as the extent to which a model’s inner
workings can be examined and understood. We distinguish
this from explainability, which we define as an external
understanding of model behaviour generally arising from
post hoc attempts at explaining input-output relations. In-
terpretability and explainability present two approaches to
obtaining information which can be used to form explana-
tions for model-behaviour. Specifically, this work takes a
direct interpretability approach, learning an inherently more
interpretable model architecture.

Structural modularity, a property well-studied in network
analysis, is characterised by the presence of communities

'All code is available at: https://github.com/annasoligo/BIXRL

of nodes with denser intra-community connections than
inter-community ones. Detection of these communities is
an NP-hard problem (Fortunato, 2010), and a multitude
of methods have been developed to avoid the brute force
approach, including hierarchical clustering, non-negative
matrix factorisation (Lee & Seung, 2000), and the Lou-
vain algorithm (Blondel et al., 2008). For the purpose of
interpretability, we are further interested in functional mod-
ularity: the presence of components which show a level of
independence and specialisation in their function (Fodor,
1985; Sternberg, 2011).

Functional modularity in the brain arises alongside its
‘small-world” architecture: a combination of high clustering
and short path length hypothesised to have evolved partially
to satisfy spatial and energy constraints (Margalit et al.,
2024). Recent works have investigated applying analogous
constraints to neural networks. Liu et al. (2023); Achterberg
et al. (2023); Margalit et al. (2024) demonstrate that penal-
ising parameter ‘connection length’ in neural networks can
lead to clustering and improved interpretability of network
visualisations. We primarily build on the brain-inspired
modular training approach proposed by Liu et al. (2023).
We extend the concept of distance weighted regularisation
to the RL context and further propose methods to extract
and characterise functionally relevant modules from these
regularised networks, enabling scalable interpretability in a
decision making context.

3. Methods

3.1. Spatially Aware Regularisation

Regularisation approaches encourage sparsity by penalising
the magnitude of model parameters. Following (Liu et al.,
2023; Achterberg et al., 2023), we extend this to encourage
local connectivity by projecting the neural network into Eu-
clidian space and scaling weight penalties by the ‘distance’
between the neurons they connect.

For a network with L weight layers, we denote neuron
layers IN; for [€ 0,...L, and weight matrices W; for
1 €0,...L—1. Each W; € R"*"+1 connects adjacent
neuron layers, where wl” links the t* neuron in IV to the
jth neuron in N;y;. Each neuron, n}, is assigned a 2D
coordinate. To preserve their sequential nature, neurons
within each layer IN; share a fixed y-coordinate y} := .
Initial x-coordinates are uniformly spaced as x} = nil

Standard L1 regularisation, va |w; |, promotes sparsity by
penalising the sum of absolute weight values. However, this
scales linearly with weight magnitude, such that two weights
of size x incur the same penalty as a single weight of 2x. We
thus introduce a logarithmic sparsity loss, va log(Jw;|+1)
which provides a greater sparsity incentive by incurring a
penalty which scales with (x + 1) rather than kx. We

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

provide further explanation and analysis in Appendix A.
Scaling sparsity by distance gives the ‘connection cost’ loss:

L mi—1 ny

Lcc =)\cc Z Z Zlog((d’bj - d8)|wl”‘ + 1) (1)

=1 i=1 j=1

where

dij = (a; = 202 + (i + 9)?

Ace 1s the regularisation scaling factor, and d adjusts the
relative impacts of weight ‘length’ and magnitude.

3.2. Neuron Relocation

To further minimise L., neurons are periodically relocated
during training, following (Liu et al., 2023). Within each
layer, neurons are ranked by their weighted degree w(n) =
> win|4+> " |wout|. The top k neurons are optimised within
their layer by exchanging their position with the alternative
neuron position which leads to the greatest reduction in
L., as detailed in Algorithm 1. This has the effect of
changing the relative ‘cost’ of weights, such that weights
with a greater impact on performance can be retained with
a lower relative connection cost. We discuss this further in
Appendix E.2.

Algorithm 1 Neuron Position Optimization

1: Every Tiyap training steps:
2: for each layer ! in [1, L] do
: Calculate weighted degrees: w(n) = Y |win| + Y |[Wout|
foralln € IN;
4: Select top k neurons with highest w(n)
5: for each candidate neuron nj do
6: Compute baseline cost L, using Equation 1
7: Lbest « L2, nbest « None
8 for each neuron n! in layer [do)
9 Calculate L, after swapping positions of nj and n;

10 if L1, < LY then

11: Lbest Li. nlest « nf
12: end if

13: end for

14: if n2°** is not None then

15: Swap positions of n and n?et
16: end if

17: end for

18: end for

3.3. Structural Modularity in Networks

In network analysis, structural modularity is quantified by
comparing the strength of intra-community links with their
expected strength in a random ‘null model’, such that high
modularity indicates stronger connectivity within a set of
defined modules than would occur by chance (Clauset et al.,
2004). Given the network partition P = {C1,Cs,...,Cy}

where the community of node n’ is denoted C'(n’) € P,
modularity () is defined as:

1 kik;
@= 2m Z (Aij - 2m

ijeP

where m = 3. wl“ is the sum of all edge weights, A is
the network adjacency matrix, k; is the weighted degree of
node ¢ and the binary d(c;, ¢;) is a binary variable which
equals 1 if nodes ¢, j share a community. The null model
k%]f; models random connectivity given node orders and acts
as the non-modular baseline. This equation forms the basis
of the heuristic Louvain algorithm (Blondel et al., 2008),
which optimises P to maximise () through hierarchical local

node reassignments.

We take the Louvain algorithm as a baseline partitioning ap-
proach due to its efficiency (O(nlog(n))), automatic detec-
tion of community number, and relative simplicity. However
application to neural networks reveals limitations arising
from the differences between NN and traditional networks.
Primarily, the high fan-out connectivity of input features
and constrained layer-wise connectivity in MLPs results in
Louvain partitions which fail to span sufficient weight layers
and violate the directionality of NN information processing.
We further discuss and provide of this in Appendix B.

3.4. Modularity in Feed-forward Neural Networks

To address these challenges, we propose two metrics to quan-
tify neural network modularity while accounting for their
architecture and the specific utility of modularity for inter-
pretability. Firstly, we consider module isolation. High iso-
lation implies minimal inter-module connectivity, resulting
in stricter decomposability and enabling more independent
module analysis. For a single module, we define isolation
I(C) as:
Wint

I(C) Wint + Wext (3)
- Zi,jec [w"| Wey = Ziec,jgéc lw™] +
> igc,jec |w*| represents the sum of intra- and inter-
community weights respectively. We extend this to the
isolation of a network partition P:

where W, =

if |P| =1

0
(P = {113| > cepl(C) otherwise @

Secondly, we consider the alignment between structural and
functional modularity by considering correlations between
neuron activations. Neuronal correlations have been used to
study functional architectures of biological neural networks
(Cohen & Kohn, 2011), as well as similarities between
artificial neurons (Li et al., 2016). We calculate the Pearson

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

correlation coefficients %/ between each pair of neurons i, j,
based on their activations n'(¢) and n’ (¢) over T' samples.

i () —) (1) —)
VEL (i(t) -)2 /XL (0 (t) —)2

These correlation values form the adjacency matrix of a
functional network graph, G g, in which, unlike the weight-
based structural network graph, Gg, connections are not
constrained to adjacent layers. Given two Louvain parti-
tions, Pr = {F|, Fs,..., F,} and Pg = {S1, 59, ..., S, },
of these graphs, the Adjusted Rand Index (ARI) quantifies
their similarity and thus the ‘correlation alignment’ of Pg:

&)

252 () = [(5) 5, (5)] ©
() +32 (5) -

ARI(Pp, Pg) = 2y ()

where n;; is the number of nodes shared between modules
i of Pr and j of Pg, and f; and s; are the total numbers of
nodes in modules ¢ and j respectively.

3.5. Detecting Modules in Neural Networks

Utilising these isolation and correlation alignment metrics,
we propose a ‘fine-tuning’ stage which improves the ini-
tial Louvain partition Pg by iteratively merging modules
to maximise the structural and functional modularity of the
resulting partition. As detailed in Algorithm 2, functional
and structural partitions, Pr and Pg, are initialised using
an ‘internal’ variation of the Louvain algorithm. This ex-
cludes input layer nodes in the initial partitioning, then sub-
sequently assigns them to the community to which they are
most strongly connected, mitigating the challenges the input
layer poses to module detection. Pg is evaluated according
to its modularity score M = I(Ps) + ARI(Ps, Pr), and
adjacent modules are merged in the manner that maximises
M , until no further improvement is obtained.

4. Experiments

We evaluate the proposed methods with respect to 4 main
research questions. These examine the ability to induce
(RQ1), detect (RQ2) and interpret (RQ4) modularity, while
considering auxiliary impact on model performance (RQ3).

RQ1. Does spatially aware regularization lead to the
emergence of modular structures in RL policy networks?
RQ2. Can emergent modular structures be detected using
the proposed extended Louvain algorithm?

RQ3. What is the quantitative relationship between RL
policy modularity and performance?

RQ4. Do detected network modules correspond to

Algorithm 2 Interpretability Fine-tuning of MLP Modules

1: Initialize Ps, current and Pr using the Louvain algorithm

2: In each of Ps current and P, assign each input neuron ng to
the community to which it is most strongly connected.

3: Calculate initial modularity score M = I(Ps current) +
ARI(PS,cur'rent, PF)

4: repeat
5: for each pair (P;, P;) of adjacent modules do
6: Calculate M;; for merged modules
7: end for
8: if max(M;;) > M then
9: Update Ps,current With best merge
10: M + max(M;;)
11: endif

12: until max(M;;) < M

Figure 1: The Dynamic Obstacles (DO) and Go to Key (G2K)
Environments.

interpretable and functionally relevant components?

4.1. Experimental Setup

Experiments are conducted in three Minigrid environments
(Chevalier-Boisvert et al., 2023; Pignatelli et al., 2024),
shown in Figure 1: Go-to-key (G2K), where an agent must
navigate to one of two keys in a 4x4 grid; dynamic obsta-
cles (DO), where an agent must reach a goal in a 4x4 grid
whilst avoiding three moving obstacles; and 3D dynamic
obstacles (3D-DO), which extends dynamic obstacles to a
3x3x2 grid. These are encoded into a symbolic observation
of entity coordinates relative to the agent. The action space
consists of left, right, up, down, and, in the 3D case, for-
ward, backward steps. Following Pignatelli et al. (2024), a
Markov reward function offers a sparse reward of 1 when
the target is reached and O otherwise. The reported returns
thus represent both the mean episode return and the success
rate. Episodes terminate on goal completion, collision with
obstacles, reaching the incorrect key, or exceeding the 100
step limit.

We train all policies using Proximal Policy Optimisation
(Schulman et al., 2017) due to its stability and simplicity.
The actor and critic networks are implemented as MLPs
with two hidden layers of 32 neurons and hyperparameters
(Table 1) optimised via grid search. We focus on decision
making interpretability, and apply distance weighted regular-
isation to the actor network. The regularisation coefficient

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

0.01

0.14

VAVERY,

N

DO

3D-DO

G2K

Returns 1.00

Figure 2: Distance weighted regularisation induces the emergence of visual modularity. As A is increased, increasingly isolated modular
structures are observed in the policy networks of the DO (top), 3DO (middle) and G2K (bottom) environments. A moderate decrease in
mean return is also observed, as annotated below each network plot.

Acc 18 increased linearly from O to its target value between
20 and 30% of training steps. Agents are trained for 4M
environment frames, pruned by removing weights and neu-
rons with magnitudes below 1% of the maximum values
and orders in their respective layers, then fine-tuned without
L. regularization for 2M frames. This regularization sched-
ule and two-stage training methodology yields improved
returns and modularity metrics, as detailed in Appendix C.
The PPO agent and environment are implemented in JAX
(Bradbury et al., 2018) and trained using a NVIDIA RTX
4090 GPU.

4.2. Emergence of Visual Modularity (RQ1)

Structural modularity emerges as the strength of distance
weighted regularisation is increased. As shown in Figure 2,
module independence initially emerges in the second and
third weight layers, while feature sharing persists in the
first. Across all environments, neuron relocation causes the
input features and output actions to reorder in a manner that
reflects their relevance. Figure 3 shows how feature x, y and
z coordinates align vertically with the actions controlling
movements on the X, y and z axes respectively. In the DO
and 3D-DO environments, modules become fully indepen-
dent at high .. values, and networks increasingly prioritise
goal features over obstacles. Conversely, the target key ID
in the Go to Key task remains used by both navigational
modules at all \.. values, reflecting its necessity to solve the
task. Figure 4 shows the importance of both the connection
cost loss and neuron relocation in inducing this modular-
ity and we provide further ablation results isolating their
impacts in Appendix E.

Left Right Up Down Fwd Bwd Down Up Left Right

d o o & d 6 v g b b o 4 Y o
B1X ' B3X ' GY B2Y B2Z Bi1zZ K1Y K2Y ID K1X K2X
B2X GX B3Y B1Y B3Z GZ

Figure 3: Neuron relocation causes input features and output ac-
tions align spatially by function. In the 3D-DO (left) and G2K
(right) policy networks, object coordinates align spatially with the
actions controlling movements along their corresponding axes.

4.3. Module Detection (RQ2)

We benchmark our proposed fine-tuned internal-Louvain
approach against the standard Louvain algorithm, and fur-
ther evaluate the isolated impacts of the fine-tuning and
internal-Louvain modifications. Fine-tuning (FT) signifi-
cantly increases the average isolation (16.8%) and correla-
tion alignment (33.7%) of the detected modules across all
Acc values (as detailed in Appendix G). Initialising with the
internal Louvain (FT Int.) increases isolation by a further
2.4% but decreases correlation alignment by 1.6%. Notably,
this disparity in ARI between the FT and FT Int. methods
predominantly arises from differences in the G2K results.
While the FT method gives partition ARIs that reach a max-
imum value at A\, = 0.11 before decreasing, the FT Int.
method gives a monotonically increasing ARI, which ex-
ceeds the FT. ARI for A.. > 0.07. Figures 5 and 6 exemplify
these improvements in performance at varying A.. values.

The G2K networks retain feature sharing between modules

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

Weight Regularisation Regularisation with Relocation

0060000503000 PRO 00580TP 6000 6560 00T 0L 0 OP.GHDCO V00 000THH 0000
/ J A | =] ~ .

Distance Weighted Regularisation

‘ ¥
\ X
00000 oodosolboo000000gHo0dddh Koo
/ // \
/ \
© d L3 < d l -} > \t:

Distance Weighted Reg. with Relocation

Figure 4: The combination of distance weighted regularisation and neuron relocation results in the most modular networks. Ablating
the distance weighting (left and second left) or the relocation (left and second right) does not achieve the same level of modularity. We

provide further quantitative ablation results in Appendix E.2.

in highly regularised networks. This, as detailed in Section
3.3 and Appendix B, presents a failure case for the standard
Louvain algorithm, whereby it fails to distinguish modules
within the first layer, as can be seen in Figure 6. Since the
correlation partitions are less clearly segregated in networks
with higher connectivity, and occasionally exhibit this input
layer failure, we deem ARI to be a less reliable indicator
of modularity at lower .. values, and therefore adopt the
fine-tuned internal method.

Louvain (Weights) Fine-tuned Internal Louvain

G0 eoapbe owym 5 900 Yosooq
4 |
AR T Y / ¥ \ L S Y

DO, Acc = 0.02

RSV U SR~/ ‘
N /) e

b o000 oo o dd 44
f

|
PR S S NP T A A T S

3D-DO, Acc = 0.02

IVILL ..

o o & & o

Figure 5: The modified Louvain algorithm is able to identify func-
tional modules across multiple layers. Our fine-tuned internal
Louvain method (right) successfully detects cohesive neural mod-
ules, whereas the standard Louvain (left) incorrectly subdivides
modules in DO (top) and 3D-DO (bottom) policy networks due to
limitations in handling MLP architectures.

4.4. Quantification of Modularity (RQ1, RQ3)

Applying the FT. Int. partitioning method, we find module
isolation and correlation alignment increase with \.., as
shown in Figure 7. The induced sparsity, does, however,
impact negatively on return. As shown in Figure 8, we find
this impact varies significantly by environment. At the point
of module emergence, returns decrease by an average of
11.4% and 12.5% for DO and 3D-DO respectively (\.. ~
0.02,0.04), compared to just 0.8% for G2K (A.. =~ 0.02).
We also find that implementing regularisation and neuron
relocation results in an average training time increase of

17%, which, as detailed in Appendix D.1, is largely due to
the regularisation component.

Despite this performance trade-off, we note that our regu-
larisation approach offers an auxiliary benefit by yielding
much smaller networks. At the ‘modularity emergence’
stage, our final DO, 3D-DO and G2K networks have 90.5%,
96.5% and 89% fewer parameters, respectively, than those
trained without regularisation. This offers a means of signif-
icantly reducing computational overhead during inference
in addition to further potential interpretability benefits.

4.5. Functional Interpretability (RQ4)

While visualisation of network modules offers a level of
insight into the structure of decision making, it relies on
subjective assessment and lacks scalability. Consequently,
we use targeted modification of parameters as an empirical
means of interpreting module functionality.

For the example networks shown in Figure 9, we system-
atically modify module parameters in two ways: negative
saturation, in which we replace all values with a large nega-
tive value of -50; and negation, where we reverse the sign
on all parameters. The former aims to effectively disable
a module, while the latter aims to perturb it. We evaluate
the subsequent behavioural changes over 10,000 episodes,
measuring the frequency of actions and their corresponding
outcomes: success, failure, or continuation of the episode.

Foremost, we find that negatively saturating any individual
module strongly inhibits actions along a specific axis. This
validates that the detected structural modules correspond
to axis specific navigation. Intervening on community 0
in Figure 9a, for example, reduces the frequency of for-
ward/backward actions by 83%, while intervening on com-
munity 0 in Figure 9b reduces the frequency of up/down
actions by 95%. These results replicate, with slightly re-
duced functional independence, in less regularised networks
like Figure 9c, where community O intervention results in
a 91% decrease in up/down actions, while community 1
intervention results in a lesser 42% decrease in left/right.
Notably, while the overall success rate decreases when we
saturate modules in the dynamic obstacles environments,

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

Louvain (Weights) Louvain (Correlations) Internal Louvain

\

Fine-tuned Louvain Fine-tuned Internal Louvain

Y YAYEVAYS YAV YAY SV

a

o o 0090k & ob ¢ g ° o o 6opbh % on & FHHA b o) % o% ¢ SHSA B o o o 00gpk % o9 ¢ SUUR k o o o oo % 00 9 9204 0 ©
7 7 \ y 755 j>/> X
s b & 3 v o s L4 b “ d b ®

WAVARWANARY

Figure 6: The internal Louvain and fine-tuning stage result in modules which are more isolated and better aligned with the activation-based

network partition. Utilising the internal Louvain improves module assignment in the input layer, particular in the lesser-regularised
example (top), while the fine-tuning stage reduces the subdivision of modules between layers.

Relationship between Acc and Isolation

14 g ¢ o ¢ o ¢ + o
a8 .
0.9 *
CO.B" ..v....-‘.
S H EREED
o7t .o
o .
061 | -
* DO
051 % * 3D DO
1 * G2K
0.4 i |

Relationship between Acc and Adjusted Rand Index

« 11 PAEEED SEEP S S

3 :

c 4

1_30'8 LIS 7SO HER BElme Smi

= e 3 ISR ¢ 3
0.6 : . .

% () R R e ? .

E (]

g0.4* I W) |

T oo 418 1 o
02—+ * 3D DO

* G2K

0,

Figure 7: Increasing regularisation strength results in increased module isolation and correlation alignment (ARI). The mean and standard

deviation (n = 10) of isolation (left) and ARI (right) increase with A.c.

Relationship between Acc and Return

1 4ee 4,
[] : L 4
0.951 . R R
- S o 4 .
0.99 .
£ e s
>
2 0851
@ $]
0.8} .
¢ DO “"'"o-*-‘
075% <30 DO T ¢
R SErEE |
071 * 62K

Figure 8: The performance trade-offs observed with increased
regularisation strengths vary across environments. The mean and
standard deviation of return (n=10) shows varying levels of perfor-
mance degradation as A.. is increased in the three environments.

the proportion of actions resulting in failures does not in-
crease. This shows that with the achieved level of functional
independence, we can disable a module while retaining the
decision-making ability of those remaining.

NS

L4 Vo Y o

o doooodooooso o B ¥ o J & v
GZ B1Z B1Y B3Y B3X B2X K1Y K2Y TID KIX K2X K2y K1y TID K1X K2X
B2Z GZ B1X GY B2Y GX

@ 0 - Forward/Backward @ 0-Up/Down @ 0-Up/Down
B 1 - Left/Right @ 1 - Left/Right @ 1 - Left/Right
@ 2-Up/Down

(a) (b) (c)

Figure 9: The detected modules specialise in navigation along
a specific axes. Examples of partitioned policy networks for
(a) 3DDO (Ace = 0.06), (b) G2K (Aee = 0.12), (b) G2K
(Aee = 0.02), with the identified module functions described
in the legends.

Compared to negative saturation, negation has a significantly
stronger impact on return: rather than minimising actions
along a given axes, the agent now acts incorrectly. For the
3D-DO network presented, we observe an average decrease

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

in return of 73% when a module is negated compared to a
decrease of only 36% when a module is negatively saturated.
This also reflects in the failure rate: when community 0 in
Figure 9b is negatively saturated, we observe that the ratio
of success to failure outcomes of up/down actions declines
from 37:1 to 9:1. When it is instead negated, this drops to
1:103. Full intervention statistics are given in Appendix H.

4.6. Learning Robust Pong Polices

We additionally train a Pong policy using the same PPO
training protocol as the MiniGrid experiments. Due to the
simplicity of navigation in Pong, this learns a single sparse
module rather than multiple modules as we observe in the
Dynamic Obstacle and Go to Key tasks. However, we find
that that distance weighted regularisation improves visual
interpretability of the network, and enables identification
of a flaw in the learnt policy. We find that the sparse Pong
policy network retains strong connectivity to the opponents
position, which is a consequence of the opponent’s ‘fol-
low ball’ policy and was previously observed by (Delfosse
et al., 2024). This reliance means the agent is not robust
to changes in opponent policy. We consequently retrain
robust Pong policies by removing the opponent position
from the observation space, and note only minor decreases
in performance. We fully detail these results in Appendix F.

5. Related Work

Existing direct interpretability approaches frequently rely on
making fundamental architectural changes in order to build
policies from intrinsically interpretable units. Examples
include representing policies with differentiable ‘soft deci-
sion trees’, (Silva et al., 2020), symbolic equations (Hein
et al., 2017; Landajuela et al., 2021), or weighted combi-
nations of logic rules (Jiang & Luo, 2019; Delfosse et al.,
2023). Recent works have extended these frameworks to
remove previous barriers to their adoption in RL, for exam-
ple by enabling on-policy learning of decision trees (Mar-
ton et al., 2025), by combining interpretable policies with
deep-neural policies to improve performance (Shindo et al.,
2024), and by harnessing large language models to improve
downstream human interpretability (Luo et al., 2024). How-
ever, these methods continue to face scalability challenges,
becoming computationally prohibitive in complex scenar-
ios even when indirect policy distillation frameworks are
adopted (Glanois et al., 2024). Moreover, interpretability
at the level of fundamental model units is rapidly compro-
mised by scaling: a decision tree with an intractable number
of nodes, for instance, may be no more interpretable than a
network with an intractable number of neurons.

Tangentially, the field of mechanistic interpretability takes a
bottom up approach to reverse-engineering neural networks,
particularly large language models. This can involve the

identification of features (Templeton et al., 2024), concept
representations (Zou et al., 2023) or computational ‘circuits’
(Wang et al., 2022). We share the behavioural focus of
circuits work, but rather than attempting interpretability at
the level of computations, we aim to characterise the roles
of higher-level communities of neurons. Notably, recent
work has partially automated the circuit-discovery process in
transformers (Conmy et al., 2023). This, like our automated
module detection, is motivated by the need to improve the
scalability of interpretability techniques.

Modularity in RL is approached by hierarchical RL, par-
ticularly policy tree methods where decision making is de-
composed into sub-policies (Pateria et al., 2021). These
rely on predefined levels of decomposition, but can afford
interpretability when discernible sub-behaviours, such as
motor primitives (Merel et al., 2018), are explicitly learnt.
More intentionally, Cloud et al. (2024) recently proposed
to localise network computations through selectively mask-
ing parameter gradients. In contrast to our approach, this
gradient-routing approach requires user-defined sets of pa-
rameters and data points to control the functional localisa-
tion process.

Prior work has explored applying biologically inspired con-
nection constraints to neural networks. Achterberg et al.
(2023) spatially embed an RNN and penalise connection
length, demonstrating energy efficiency and clustering in a
one-step inference task. Concurrently, Margalit et al. (2024)
proposed to encourage local activation correlation in the
training of network layers projected onto simulated corti-
cal sheets. While these studies target the advancement of
neuro-scientific understanding, Liu et al. (2023) aim to im-
prove the interpretability of network visualisations. They
demonstrate that length-relative weight penalisation reveals
structure within regression and classification tasks such as
learning mathematical formulae.

Community detection in graphs is a significant area of re-
search with relevance to multiple disciplines, including
computer science and biology (Fortunato, 2010). Although
recent works adapt classical clustering approaches to spe-
cialised structures such as multiplex networks (Huang et al.,
2021), the challenge of detecting communities within neural
networks remains largely unexplored. Filan et al. (2021),
study the extent to which non-regularised MLPs can be clus-
tered, and Hod et al. (2022) extend this to determine whether
such clusters are more ‘coherent’ than random sets of neu-
rons. Both rely on spectral clustering (Shi & Malik, 2000),
however, which is impractical for large neural networks due
to its reliance on computing eigenvectors and predefining
the number of communities.

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

6. Discussion

Interpretability. Our work addresses interpretability at the
level of functional modules, targeting a level of abstrac-
tion that may offer a suitable balance of tractability and
fidelity when scaled to large models. Given a model with
emergent modules, we demonstrate how modular function-
ality can be systematically characterised through targeted
weight interventions, enabled by our neural-network spe-
cific partitioning approach. We successfully identify module
functions, but emphasize that this is a preliminary demon-
stration of module characterisation in simple environments.
Other methods may offer improved insights, notably through
activation rather than parameter modifications. This will
become particularly relevant in complex architectures and
applications, where we expect to achieve less module inde-
pendence, and where preserving module output distributions
will be necessary to preserve the downstream functionality.

As introduced in Section 1, interpretability can, in different
contexts, enable both formal verification and safety auditing.
While we primarily target the latter, due to its broader appli-
cability at scale and given incomplete problem definitions,
our sparse, modular approach could also advance formal ver-
ification. The extraction of relatively independent modules
enables verification to be performed in isolation, reducing
complexity and simplifying identification of failures.

Scalability. Scalability poses a fundamental challenge to in-
terpretability, and we have aimed to address this at multiple
levels. By preserving standard neural network architec-
tures and training, we avoid the scaling limitations faced by
white-box model approaches such as decision-tree or logic-
based policies. By automating the classification of neurons
into modules, we remove reliance on manual approaches
to module detection. The subsequent characterisation of
module functions through parameter modifications further
automates the interpretability process, enabling scalability
to complex models embedded in a higher dimensions than
the two we consider in this work. Finally, by targeting
decomposability at the level of functional modules rather
than fundamental units such as neurons, we aim to maintain
tractability as model complexity increases, thereby offering
a level of simulatability that scales with network size.

Limitations and Future Work. The observed trade-off
between interpretability and performance, while common
among ‘white-box’ approaches, is undesirable and a barrier
to the adoption of interpretable systems. The A.. scaling
factor offers a means of tailoring the level of interpretability
based on specific requirements, but further investigation into
mitigating the performance decline is warranted.

We offer a proof-of-concept in three environments, but
demonstration in complex domains and agent architectures
remains a key direction for future work. While we focus on

the RL context, motivated by the relevance of modularity in
decision making, this modular approach could be applied
more broadly. We also note that while we induce and detect
a high level of modularity in our examples, a lower level of
spatially aware regularisation may be useful to promote spar-
sity and functional localisation in a manner which would
improve the performance of post-hoc interpretability and
explainability approaches.

Currently, the lack of formal metrics for interpretability
makes it challenging to comparatively evaluate the utility
of different interpretability methods. While certain metrics,
such as performance, can be objectively measured, the criti-
cal notions of interpretation accuracy and tractability still
lack rigorous means of evaluation, and the formalisation of
these metrics poses an important challenge for advancing
interpretable Al In their absence, we discuss performance,
tractability and scope of our approach. Future work ex-
ploring specific, real-world use cases could examine how
verification or user-studies could be used to validate the
utility of this interpretability approach.

7. Conclusion

In this work, we have demonstrated how spatially aware
regularisation induces the emergence of structural and func-
tional modularity in the policy networks of RL agents. We
develop a novel approach and metrics to quantify and detect
modularity in neural networks, and leveraging this, automat-
ically identify and characterise decision-making modules.
By addressing interpretability at the level of functional mod-
ules rather than fundamental units, we offer a promising
balance between fidelity and human tractability. Future
work should explore the broad potential applicability of
this approach within different model architectures and its
scalability to complex, real-world domains.

Acknowledgments

The authors thank the IOTA Foundation, Google and UKRI
EPSRC [grant numbers EP/Y037421/1 and EP/X040518/1]
for supporting this research.

Impact Statement

This work advances the interpretability of deep reinforce-
ment learning systems, with direct implications for the safe
deployment of RL in real-world applications. The proposed
methods could contribute to enhancing human oversight and
verification of Al systems through increasing understand-
ing of decision making processes. In addition to enhancing
safety, this aligns with growing regulatory requirements and
could help accelerate the adoption of RL in safety-critical
domains.

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

References

Achterberg, J., Akarca, D., Strouse, D. J., Duncan, J., and
Astle, D. E. Spatially embedded recurrent neural net-
works reveal widespread links between structural and
functional neuroscience findings. Nature Machine In-
telligence, 5(12):1369-1381, Dec 2023. ISSN 2522-
5839. doi: 10.1038/s42256-023-00748-9. URL https:
//doi.org/10.1038/s42256-023-00748-9.

Bastani, O., Pu, Y., and Solar-Lezama, A. Verifiable
reinforcement learning via policy extraction. CoRR,
abs/1805.08328, 2018. URL http://arxiv.org/
abs/1805.08328.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-
vre, E. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, oct 2008. doi: 10.1088/1742-5468/

2008/10/P10008. URL https://dx.doi.org/10.

1088/1742-5468/2008/10/P10008.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/ jax.

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano,
R., Willems, L., Lahlou, S., Pal, S., Castro, P. S., and
Terry, J. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented
tasks. CoRR, abs/2306.13831, 2023.

Clauset, A., Newman, M. E. J., and Moore, C. Finding
community structure in very large networks. Physical
Review E, 70(6), December 2004. ISSN 1550-2376. doi:

10.1103/physreve.70.066111. URL http://dx.doi.

org/10.1103/PhysRevE.70.066111.

Cloud, A., Goldman-Wetzler, J., Wybitul, E., Miller, J., and
Turner, A. M. Gradient routing: Masking gradients to
localize computation in neural networks, 2024. URL
https://arxiv.org/abs/2410.04332.

Cohen, M. R. and Kohn, A. Measuring and interpreting
neuronal correlations. Nature neuroscience, 14(7):811—
819, 2011.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated circuit
discovery for mechanistic interpretability, 2023. URL
https://arxiv.org/abs/2304.14997.

Coronato, A., Naeem, M., De Pietro, G., and Paragliola,
G. Reinforcement learning for intelligent health-
care applications: A survey. Artificial Intelligence
in Medicine, 109:101964, 2020. ISSN 0933-3657.

10

doi: https://doi.org/10.1016/j.artmed.2020.101964.
URL https://www.sciencedirect.com/
science/article/pii/S093336572031229X.

Delfosse, Q., Shindo, H., Dhami, D., and Kersting, K.
Interpretable and explainable logical policies via neu-
rally guided symbolic abstraction, 2023. URL https:
//arxiv.org/abs/2306.01439.

Delfosse, Q., Sztwiertnia, S., Rothermel, M., Stammer, W.,
and Kersting, K. Interpretable concept bottlenecks to
align reinforcement learning agents, 2024. URL https:
//arxiv.org/abs/2401.05821.

Doshi-Velez, F. and Kim, B. Towards a rigorous science of
interpretable machine learning, 2017. arXiv:1702.08608.

Elhage, N., Hume, T., Olsson, C., Schiefer, N.,
Henighan, T., Kravec, S., Hatfield-Dodds, Z., Lasenby,
R., Drain, D., Chen, C., Grosse, R., McCandlish,
S., Kaplan, J., Amodei, D., Wattenberg, M., and
Olah, C. Toy models of superposition. Trans-
former Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy_model/index.html.

Eppe, M., Gumbsch, C., Kerzel, M., Nguyen, P. D. H.,
Butz, M. V., and Wermter, S. Hierarchical principles of
embodied reinforcement learning: A review, 2022. URL
https://arxiv.org/abs/2012.10147. arXiv:
2012.10147.

European Commission and High-Level Expert Group
on AL Ethics guidelines for trustworthy ai,
2019. URL https://digital-strategy.
ec.europa.eu/en/library/
ethics—guidelines—-trustworthy—-ai.

Filan, D., Casper, S., Hod, S., Wild, C., Critch, A., and
Russell, S. Clusterability in neural networks, 2021. URL
https://arxiv.org/abs/2103.03386.

Fodor, J. A. Précis of the modularity of mind. Behav-
ioral and Brain Sciences, 8(1):1-5, 1985. doi: 10.1017/
S0140525X0001921X.

Fortunato, S. Community detection in graphs. Physics
reports, 486(3-5):75-174, 2010.

Gazzaniga, M., Ivry, R., and Mangun, G. Cognitive Neu-
roscience: Fifth International Student Edition. Inter-
national student edition. W.W. Norton, 2018. ISBN
9780393667813. URL https://books.google.
co.uk/books?id=1mSbDwAAQBRAJ.

Glanois, C., Weng, P., Zimmer, M., Li, D., Yang, T,
Hao, J., and Liu, W. A survey on interpretable rein-
forcement learning. Machine Learning, 113(8):5847—
5890, Aug 2024. ISSN 1573-0565. doi: 10.1007/

https://doi.org/10.1038/s42256-023-00748-9
https://doi.org/10.1038/s42256-023-00748-9
http://arxiv.org/abs/1805.08328
http://arxiv.org/abs/1805.08328
https://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://github.com/google/jax
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
https://arxiv.org/abs/2410.04332
https://arxiv.org/abs/2304.14997
https://www.sciencedirect.com/science/article/pii/S093336572031229X
https://www.sciencedirect.com/science/article/pii/S093336572031229X
https://arxiv.org/abs/2306.01439
https://arxiv.org/abs/2306.01439
https://arxiv.org/abs/2401.05821
https://arxiv.org/abs/2401.05821
https://arxiv.org/abs/2012.10147
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://arxiv.org/abs/2103.03386
https://books.google.co.uk/books?id=1mSbDwAAQBAJ
https://books.google.co.uk/books?id=1mSbDwAAQBAJ

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

$10994-024-06543-w. URL https://doi.org/10.
1007/s10994-024-06543-w.

Hein, D., Udluft, S., and Runkler, T. A. Interpretable
policies for reinforcement learning by genetic program-
ming. CoRR, abs/1712.04170, 2017. URL http:
//arxiv.org/abs/1712.04170.

Hod, S., Casper, S., Filan, D., Wild, C., Critch, A., and
Russell, S. Detecting modularity in deep neural networks,
2022. URL https://openreview.net/forum?
id=tFQyjb0z34.

Huang, X., Chen, D., Ren, T., and Wang, D. A survey
of community detection methods in multilayer networks.
Data Mining and Knowledge Discovery, 35:1-45, 2021.

Jiang, Z. and Luo, S. Neural logic reinforcement learning.
CoRR, abs/1904.10729, 2019. URL http://arxiv.
org/abs/1904.10729.

Kohler, H., Delfosse, Q., Akrour, R., Kersting, K., and
Preux, P. Interpretable and editable programmatic tree
policies for reinforcement learning, 2024. URL https:
//arxiv.org/abs/2405.14956.

Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P,,
Glatt, R., Mundhenk, N., Pettit, J. F., and Faissol, D.
Discovering symbolic policies with deep reinforcement
learning. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 5979-5989. PMLR, 18-24 Jul
2021. URL https://proceedings.mlr.press/
v139/landajuela2la.html.

Lee, D. and Seung, H. S. Algorithms for non-negative
matrix factorization. In Leen, T., Dietterich, T.,
and Tresp, V. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 13. MIT Press,
2000. URL https://proceedings.neurips.
cc/paper_files/paper/2000/file/

£9d1152547c0bde01830b7e8bd60024c—Paper.

pdf.

Li, Y., Yosinski, J., Clune, J., Lipson, H., and Hopcroft,
J. Convergent learning: Do different neural networks
learn the same representations?, 2016. URL https:
//arxiv.org/abs/1511.07543.

Lipton, Z. C. The mythos of model interpretability. CoRR,
abs/1606.03490, 2016. URL http://arxiv.org/
abs/1606.03490.

Liu, Z., Gan, E., and Tegmark, M. Seeing is believing:
Brain-inspired modular training for mechanistic inter-
pretability, 2023. URL https://arxiv.org/abs/
2305.08746. arXiv: 2305.08746.

11

Lu, R, Li, Y.-C,, Li, Y., Jiang, J., and Ding, Y. Multi-agent
deep reinforcement learning based demand response for
discrete manufacturing systems energy management.
Applied Energy, 276:115473, 2020. ISSN 0306-2619.
doi: https://doi.org/10.1016/j.apenergy.2020.115473.
URL https://www.sciencedirect.com/
science/article/pii/S0306261920309855.

Luo, L., Zhang, G., Xu, H., Yang, Y., Fang, C., and Li, Q.
End-to-end neuro-symbolic reinforcement learning with
textual explanations, 2024. URL https://arxiv.
org/abs/2403.12451.

Margalit, E., Lee, H., Finzi, D., DiCarlo, J. J., Grill-
Spector, K., and Yamins, D. L. A unifying frame-
work for functional organization in early and higher
ventral visual cortex. Neuron, 112(14):2435-2451.e7,
Jul 2024. ISSN 0896-6273. doi: 10.1016/j.neuron.
2024.04.018. URL https://doi.org/10.1016/
Jj.neuron.2024.04.018.

Marton, S., Grams, T., Vogt, F., Liidtke, S., Bartelt, C.,
and Stuckenschmidt, H. Mitigating information loss in
tree-based reinforcement learning via direct optimiza-
tion, 2025. URL https://arxiv.org/abs/2408.
08761.

Merel, J., Hasenclever, L., Galashov, A., Ahuja, A., Pham,
V., Wayne, G., Teh, Y. W., and Heess, N. Neural prob-
abilistic motor primitives for humanoid control. CoRR,
abs/1811.11711, 2018. URL http://arxiv.org/
abs/1811.11711.

Pateria, S., Subagdja, B., Tan, A.-h., and Quek, C. Hier-
archical reinforcement learning: A comprehensive sur-
vey. ACM Comput. Surv., 54(5), June 2021. ISSN
0360-0300. doi: 10.1145/3453160. URL https:
//doi.org/10.1145/3453160.

Pignatelli, E., Liesen, J., Lange, R. T., Lu, C., Castro, P. S.,
and Toni, L. Navix: Scaling minigrid environments with
jax, 2024. URL https://arxiv.org/abs/2407.
19396. arXiv:2407.19396.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms, 2017. URL https://arxiv.org/abs/
1707.06347. arXiv: 1707.06347.

Shi, J. and Malik, J. Normalized cuts and image seg-
mentation. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888-905, 2000. doi:
10.1109/34.868688.

Shindo, H., Delfosse, Q., Dhami, D. S., and Kersting, K.
Blendrl: A framework for merging symbolic and neural
policy learning, 2024. URL https://arxiv.org/
abs/2410.11689.

https://doi.org/10.1007/s10994-024-06543-w
https://doi.org/10.1007/s10994-024-06543-w
http://arxiv.org/abs/1712.04170
http://arxiv.org/abs/1712.04170
https://openreview.net/forum?id=tFQyjbOz34
https://openreview.net/forum?id=tFQyjbOz34
http://arxiv.org/abs/1904.10729
http://arxiv.org/abs/1904.10729
https://arxiv.org/abs/2405.14956
https://arxiv.org/abs/2405.14956
https://proceedings.mlr.press/v139/landajuela21a.html
https://proceedings.mlr.press/v139/landajuela21a.html
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://arxiv.org/abs/1511.07543
https://arxiv.org/abs/1511.07543
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://arxiv.org/abs/2305.08746
https://arxiv.org/abs/2305.08746
https://www.sciencedirect.com/science/article/pii/S0306261920309855
https://www.sciencedirect.com/science/article/pii/S0306261920309855
https://arxiv.org/abs/2403.12451
https://arxiv.org/abs/2403.12451
https://doi.org/10.1016/j.neuron.2024.04.018
https://doi.org/10.1016/j.neuron.2024.04.018
https://arxiv.org/abs/2408.08761
https://arxiv.org/abs/2408.08761
http://arxiv.org/abs/1811.11711
http://arxiv.org/abs/1811.11711
https://doi.org/10.1145/3453160
https://doi.org/10.1145/3453160
https://arxiv.org/abs/2407.19396
https://arxiv.org/abs/2407.19396
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2410.11689
https://arxiv.org/abs/2410.11689

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

Silva, A., Killian, T., Rodriguez, 1. D. J., Son, S.-H.,
and Gombolay, M. Optimization methods for inter-
pretable differentiable decision trees in reinforcement
learning, 2020. URL https://arxiv.org/abs/
1903.09338. arXiv: 1903.09338.

Song, Y., Romero, A., Miiller, M., Koltun, V., and Scara-
muzza, D. Reaching the limit in autonomous racing:
Optimal control versus reinforcement learning. Science
Robotics, 8(82), September 2023. ISSN 2470-9476. doi:
10.1126/scirobotics.adg1462. URL http://dx.doi.
0rg/10.1126/scirobotics.adgl462.

Sternberg, S. Modular processes in mind and brain. Cog-
nitive Neuropsychology, 28(3-4):156-208, 2011. doi:
10.1080/02643294.2011.557231. URL https://doi.
0rg/10.1080/02643294.2011.557231. PMID:
22185235.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Traag, V. A. Faster unfolding of communities: Speeding up
the louvain algorithm. Physical Review E, 92(3):032801,
2015.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for
indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593. arXiv:
2211.00593.

Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren,
R., Pan, A., Yin, X., Mazeika, M., Dombrowski, A.-K.,
Goel, S., Li, N., Byun, M. J., Wang, Z., Mallen, A.,
Basart, S., Koyejo, S., Song, D., Fredrikson, M., Kolter,
J. Z., and Hendrycks, D. Representation engineering:
A top-down approach to ai transparency, 2023. URL
https://arxiv.org/abs/2310.01405. arXiv:
2310.01405.

12

https://arxiv.org/abs/1903.09338
https://arxiv.org/abs/1903.09338
http://dx.doi.org/10.1126/scirobotics.adg1462
http://dx.doi.org/10.1126/scirobotics.adg1462
https://doi.org/10.1080/02643294.2011.557231
https://doi.org/10.1080/02643294.2011.557231
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2310.01405

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

A. Sparsity Methods

The L1 norm (va x;) is known to induce sparser solutions than the L2 norm (\/(va x?) due to its having constant
gradients with respect to parameter magnitudes. In contrast the gradient of the L2 norm decreases with its magnitude,
resulting in an optimisation landscape that preferentially reduces larger parameters rather than promoting sparsity through
the elimination of near-zero parameters. However, while an L1 loss function does not directly discourage reducing near-zero
parameters, nor does it favour it: the L.1 norm optimises for minimal total parameter magnitude, rather than a low count of
non-zero parameters, which is what we desire in a sparse model.

In contrast, our proposed log-based sparsity loss, Ziv log(|z;| + 1), has a gradient 8%,- = %H This scales inversely with

parameter magnitude, thus explicitly promoting sparsity. We note an alternative formulation exp(ZfV log(|z;| + 1)), with
gradient 8%1_ = Hj\;l Tjs which similarl.y directly encourages.spa.rsity as a result of having relativel.y hi.gher grad.ients for
parameters whose magnitudes are low in the parameter distribution. We adopt the former due to its linear scaling with

respect to number of parameters.

The comparative behaviour of these functions can also be intuitively understood by observing the gradients and value of the
contour plots in Figure 10 when varying x and y.

z=V(x2 + y?) z=x+Yy z = log(1+x) + log(1+y) z = exp(log(1+x) + log(1l+y))

2.0 15 1
N
3\ [}

©

0.0 0.0 0.9

Figure 10: Contour plots showing the results of L2, L1, log and exponential-log loss functions for two parameters.
In our work, we find that utilising the log rather than L1 based regularisation results in a preferable relationship between
return and isolation, and between return and ARI, as shown in Figure 11.

Relationship between Return and Structural Module Isolation Relationship between Return and Adjusted Rand Index between
with L1 and Log Sparsities Structural and Functional Modules with L1 and Log Sparsities

1] 1]
0.9 3 0.8
e}
2
508 % 0.6
k| 14
507 T 041
g
06 2
024
— DO log I 2
051 —DpOLL , , | el 0} —potL1
07 0.75 08 0.85 0.9 0.95 07 0.75 08 0.85 0.9 0.95
Return Return

Figure 11: The relationship between return and module isolation (left) and between return and ARI (right) for models trained with L1 and
log based regularisation, showing that log based sparsity results in more isolated and functionally aligned modules.

13

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

B. Applying the Standard Louvain Algorithm to MLP networks

The constrained layer-wise connectivity of MLPs conflicts with the null-model assumption of a uniform connection
probability between nodes. The Louvain equation (Equation 2) compares the magnitude of a network connection with its
expected strength within a random network with the same node orders (}62::;). Unlike the arbitrary sub-graphs observed in
traditionally modular networks, neural modules form continuously across multiple adjacent layers, with connections only
present between consecutive layers. They thus generally exhibit a lower connection density, leading to modules becoming
subdivided. Additionally, neural network input layers frequently show high fan-out connectivity patterns where feature
information is distributed to multiple downstream neurons. The resulting areas of high connectivity satisfy () optimization,
despite spanning a single weight layer and violating the directionality of information processing in the network.

We illustrate these issues in Figure 12, which contrasts a classically modular network architecture with examples of modular
MLP networks. While the Louvain algorithm performs well for the former, several ‘failure cases’ arise in the latter. The
green modules exemplify the challenge of distinguishing modules when feature sharing and fan out connectivity occur in the
input layer. Furthermore, few of the Louvain detected modules span the full depth of the network, despite it being visually
apparent that the network modules do so, which results in the network modules being subdivided.

Figure 12: Examples of the clustering results of the Louvain algorithm when applied to a modular network without layer-wise structural
constraints (left), and to modular MLPs. Note the modules (in green) which span multiple modules in the input layer, and the modules
which fail to span the full module depth.

14

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

C. Hyperparameter and Training Choices

Table 1: PPO Hyperparameters

ARCHITECTURE
HIDDEN SI1ZE 32
NUMBER OF LAYERS 2
TRAINING
PARALLEL ENVIRONMENTS 16
STEPS PER ENVIRONMENT 128
MINIBATCHES 8
EPOCHS 16
LEARNING RATE SE-4
MAX GRADIENT NORM 0.5
GAE A\ 0.99
CLIP € 0.2
ENTROPY COEFFICIENT 0.01
VALUE FUNCTION COEFFICIENT 0.5
REGULARISATION
ds (EQUATION 1) 0.95
K (SECTION 3.2) 10
RELOCATION INTERVAL (SECTION 3.2) 2

C.1. Pruning and Fine-tuning

We prune our networks after 80% of the training steps, and train for the remaining 20% with A\.. = 0. Pruning involves
setting all weights with a value below 1% of the maximum absolute weight in their layer to 0, and removing all hidden-layer
neurons with an order (total sum of incoming and outgoing weights) of less than 1% of the maximum in their layer.
Gradients for the removed parameters are masked at O for the remainder of training. The pruning fixes a sparse and modular
architecture, and we find the fine-tuning with no regularisation improves performance (Figure 13), does not compromise the
isolation the modules (Figure 15), and slightly increase their ARI (Figure 16). We select a 1% pruning level because this
does not result in a significantly reduced return compared to lower pruning levels, offers a higher level of resulting sparsity
(Figure 14), and results in the modules with the highest ARI.

Fine-tuned Return vs Fraction of Actor Weights Pruned for Dynamic Obstacles
1 ———

Finetuned Return vs Initial Return for Dynamic Obstacles

0.9

0.8

0.7

Finetuned Return

prune_frac=(0.001, 0.001)
— prune_frac=(0.005, 0.005)
prune_frac=(0.01, 0.01)
— prune_frac=(0.1, 0.1)
- - ft return = initial return

prune_frac=(0.001, 0.001)
— prune_frac=(0.005, 0.005)
prune_frac=(0.01, 0.01)

0.51 — prune_frac=(0.1, 0.1)

Fraction of Actor Weights Pruned

0.75 0.8 0.85 0.9 0.95 0.75 0.8 0.85 0.9 0.95 1
Initial Return Fine-tuned Return

Figure 13: The relationship between initial return (before pruning
and fine-tuning) and post fine-tuning return for different pruning
thresholds applied to DO networks with A.. € [0.005,0.1].

Figure 14: The fraction of actor weights pruned and the fine-tuned
return achieved with different pruning levels applied to networks
with Ace € [0.005,0.1].

C.2. Selecting d

As introduced in Section 3.1, the value of d; varies the relative significance of distance and weight in regularisation.
Primarily, given the range of possible distances between neurons in adjacent layers d, € [1,v/2], a value of d, = 1 means
that a weight connecting two vertically aligned neurons contributes 0 to the total connection cost. This is apparent in Figure
17, where networks with d; = 1 have a high number of these ‘vertical’ weights. In contrast, as d; is decreased, we see an
increasing number of distant connections in the network.

15

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

Fine-tuned Return vs Isolation for Dynamic Obstacles

1 .
~
c 0.9
k=)
k<l
o
208
°
[}
c
2
& 0.77 — prune_frac=(0, 0)
g — prune_frac=(0.001, 0.001)
— prune_frac=(0.005, 0.005)
0.6 1 — prune_frac=(0.01, 0.01)
prune_frac=(0.1, 0.1)
0.75 08 0.85 09 095 1

Fine-tuned Return

Relationship between Fine-tuned Return and ARI for Dynamic Obstacles

0.7
0.6
_ 05
&
S 04
[
c
203
@
i.% 0.23 — prune_frac=(0, 0) =
— prune_frac=(0.001, 0.001) > s s \\%
0.1} — prune_frac=(0.005, 0.005) e
— prune_frac=(0.01, 0.01) i
0 prune_frac=(0.1, 0.1)

0.75 08 0.85 09 0.95 1

Fine-tuned Return

Figure 15: The relationship between fine-tuned return and isolation
for different pruning levels. With a pruning level of 0, we do not
set Acc = O for fine-tuning, as this allow all weights in the fully
connected network to increase, compromising modularity.

Figure 16: The relationship between fine-tuned return and ARI for
different pruning levels.

ds=1.0

b hY Vo S

ds=0.9

Vs

ds=0.8

Vs

ds=0.95

Figure 17: The impact of ds on the structure of the emergent modules (pre-pruning and fine-tuning). The networks shown have varying
Ace values, as the scale of the connection cost varies when d is varied, but where selected to show networks with equivalent returns: top
row r = 0.75, and bottom row r ~ 0.82.

We run all experiments in the main body of our work with d; = 0.95, which was selected by comparing the relation between
return, isolation and ARI of networks at different values. The results are plotted in Figure 18 and show that higher d values
result in higher isolation. Despite their high isolation score, we find that the modules detected in ds = 1 networks align
poorly with the correlation partitions: the resulting ARI values do not exceed 0.3 and do not increase monotonically with
regularisation. We find that d; = 0.9 offers the greatest ARI relative to return, but the difference between 0.8, 0.9 and 0.95
is relatively minor, so we select ds = 0.95 for its significantly higher isolation scores.

Relationship Between Return and Structural Module Isolation Relationship between Return and Adjusted Rand Index

1 of Structural and Functional Modules
—d_sub=0.8
—d_sub=0.9 1 ol B B —d_sub=0.8
0.9 —d_sub=0.95 —d_sub=0.9
® —d_sub=10 0.8 NG —d_sub =0.95
0.8 3 i —d_sub=1.0
c
S o 0.6
2 —
L 0. 4
8 < 0.4
0.6 :
05 0.2 r
> o
0.4 0 :
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.65 0.7 0.75 0.8 O,éS 0.9 0.95 1
Return Return

Figure 18: The impact of varying ds on the relationship between return and isolation (left) and between return and ARI (right) of the
resulting networks’ partitions.

16

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

C.3. \.c Scheduling

For the pruning fraction and dg, we select the \.. schedule based on the resulting relationships between return and isolation,
and return and ARI. We select a linear introduction of the regularisation loss between 20% and 30% of training steps due its
high relative performance with respect to these metrics, as shown in Figure 19.

Relationship between Return and Structural Module Isolation Relationship between Return and Adjusted Rand Index between
with Different Regularisation Schedules Structural and Functional Modules with Different Regularisation Schedules

0.9
x
()
'E 0.8
§°° E
g 0.6
2 B
0.7 §
204
<
0.61 —[0, 0.4]
—[0.2,0.3] 0.2
[0.2,0.6]
0.5
0.75 0.8 0.85 0.9 0.95 0.75 0.8 0.85 0.9 0.95

Return Return

Figure 19: The impact of different introduction schedules for the CC loss on the relationship between return and isolation (left) and
between return and ARI (right) of the resulting networks’ partitions. A legend value of [X, y] indicates that A.. was increased linearly
between fractions x and y of the total training steps.

17

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

D. Runtime Results
D.1. Regularisation and Relocation

Figure 20 shows the average compilation and training times for 4M steps, comparing a vanilla PPO implementation with
cases where distance weighted regularisation and neuron relocation are implemented in isolation and combined. We find an
overall time increase in the combined case of 17%, which is dominated by the introduction of the connection cost loss.

The Impact of CC Loss and Neuron Relocation on Training Times

Vanilla PPO
Neuron Relocation
CC Loss

NR & CC

o

10 20 30 40 50 60 70 80 90 100

m Compilation Time mTraining Time

Figure 20: The average compilation and training times, for 4M training steps, of the Vanilla PPO implementation compared to PPO with
neuron relocation, with distance weighted regularisation, and with both.

D.2. The Extended Louvain Algorithm

The Louvain algorithm is commonly assumed to have a runtime complexity of O(nlog(n))??(Huang et al., 2021) where n
is number of nodes. However, no definitive analysis of its time complexity has been performed, and other sources instead
find a time complexity of O(m) in the number of edges (Traag, 2015) . We compare the duration of the Louvain method to
our proposed adaptations, with the caveat that this evaluation is limited by the relatively small scale of networks examined.

We observe that for our networks, the standard Louvain time complexity appears to match the O(m) assumption. As our
internal version simply applies Louvain but with fewer nodes and edges, it follows that it also has a linearly increasing
duration with m, and this is what we observe in Figure 21. The figure further shows the duration of the fine-tuning stage,
which also appears to be linear in m. A larger sample of networks, including larger ones, would be necessary to rigorously
demonstrate this, however.

The calculation of the activation correlation matrix dominates the duration of our extended Louvain, and the duration of this
is itself dominated by the model inference over the 10,000 episodes for which we collect activations, as shown in Figure 21.
We note that we parallelise these episodes using JAX, so inference over 10,000 episodes takes negligibly longer than over a
fewer number of episodes, but at 10,000 we reach the memory constraints of the 24GB GPU. Duration appears to increase
slightly as the network size increases, but with multiple outliers. Should activation collections or correlation computations
become prohibitive in terms of memory or computation as we scale to larger models, a number of approaches could be take
to reduce the problem size. For example, we could take advantage of the localised nature of our modules, and separately
collect and process activations for smaller network regions.

Time Taken by Different Stages of the Module Detection Time Taken to Calculate the Correlation Matrix with
Process with Increasing Numbers of Network Edges Increasing Numbers of Network Edges
Louvain . 101 ° @ Correlation Matrix
17 @ Internal Louv. ¢ . © (of which) Inference
© Finetuning
08+ 8 L
@ st 2 °
© 06 ° - 9 Py °
£ 2 o o Eol® L)
= S e *e =
04 R o @ ° S °
® o ® o ° o P ge o % °
0e ®° o a4 00 o, oo & o, *& o oo g°
oo ® "(*’ o © € g0 ° ° 4
e o LAY 3 e o ° e
- ¢ g . ° .1

t t i + + + +
200 300 400 100 200 300 400

Number of Network Edges Number of Network Edges

Figure 21: The observed duration of the Louvain algorithm and of the isolated components of our extended version.

Zhttps://www.ultipa.com/document/ultipa-graph-analytics-algorithms/louvain/v4.5 (Accessed 9/01/25)
3https://perso.uclouvain.be/vincent.blondel/research/louvain.html (Accessed 9/01/25)

18

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

E. Emergence of Modularity
E.1. Additional Modularity Examples

We show two further examples of modularity emergence for each environment in Figure 22, and further show these networks
partitioned using the fine-tuned internal Louvain in Figure 23. We find that the navigational modules emerge consistently
and with the same structure in the DO and 3D-DO tasks. In the G2K task, we observe two structures: one which closely
resembles the DO modules, and one where an action becomes disconnected from the network (but can still be selected based
on its relative logit value compared to the remaining actions). As shown in Figure 23, we are still able to separate X and Y
navigational modules controlling the remaining three connected actions.

We also show, in Figure 24, the impact of continuing to increase \.. beyond the emergence of fully isolated modules: the
prioritisation of goal information increases till these are the only features considered, but at a certain threshold we observe a
collapse in both sparsity and return.

DO

3D-DO

G2K

0.01

Figure 22: The emergence of modularity with increasing A.. across two seeds in each environments.

19

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

0.02

Figure 23: The networks shown in Figure 22 partitioned using our fine-tuned internal Louvain approach. The ordering of detected modules
varies between A.. values due to randomness in the order in which the Louvain algorithm considers nodes.

Left Right up
\ |
\
\
\
o o 13 ° o o
B2x B1x ox =3 B3v or Y

Down Lett Right
o
o o o
B2y B2 B3 ox Bax

Acc . 0.5 .
Return 0.73 0.62 0.23

Figure 24: The network structures and returns observed when continuing to increase A.. above the range considered in the main text.

20

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

E.2. Isolating the Impacts of Regularisation, Distance and Relocation

While the emergence of visually distinct modules is evidently reliant on local connectivity induced by the connection cost
loss and neuron relocation, we here analyse how these protocols contribute to the non-visual modularity measures. We
conduct ablation experiments comparing networks trained with and without distance weighting and neuron relocation across
different regularization strengths, and show how this affects module isolation and correlation alignment (ARI) in relation to
return (Figure 25).

Naturally, networks without regularization (A.. = 0) have significantly less isolated modules than any regularized variant.
We further find that both distance weighting and relocation increase isolation, but with a diminishing impact as regularisation
increases. We expect this occurs occurs because strong sparsity constraints force isolated pathways regardless of their locality.
The alignment (ARI) between weight-based and correlation-based partitions shows a different pattern: distance weighting
but not relocation increases ARI scores, but in a manner that increases as regularisation increases. Examining sparsity,
shown in Figure 26, we observe that distance weighting reduces sparsity relative to return, but relocation compensates for
this, particularly at high regularisation levels. This suggests that relocation enables important but initially distant weights to
be preserved, allowing sparsity to be achieved in a manner that is less damaging for return.

Overall, these results indicate that both distance weighting and relocation contribute to structural modularity, while distance
weighting is particularly important for aligning structural and functional modularity. Although these effects are dependant
on the strength of regularisation, both are observed in the most useful regularisation ranges where modularity is observed,
but the impact on return is still relatively low. Intuitively, the distance weighting encourages additional sparsity and thus
isolation by encouraging computations to be distributed across few weights, since each weight beyond the first weight is
necessarily longer and more expensive. The neuron relocation likely enables to network to restructure in a manner that
makes the weights with a greater performance impact shorter and thus less costly, promoting greater sparsity among less
important weights (although weight is not a direct measure of importance it appears to be a relatively good proxy for it).
This is particularly important given the connection cost scheduling: by the time sparsity is introduced, the network has
already learnt effective computations which we wish to preserve. Further analysis will be required to fully understand and
formalise how these impacts arise.

The Relationship Between Return and Isolation with The Relationship Between Return and Adjusted Rand Index
Different Regularisation and Relocation Protocol with Different Regularisation and Relocation Protocol

-

0.6

0.4 \
\\

0.2 - e X

o
©

o
@

o
3

Isolation

o
>
Adjusted Rand Index

X Vanilla PPO, Mean 01 X Vanilla PPO, Mean

Distance-weighted sparsity with relocation Distance-weighted sparsity with relocation
— No distance weighting — No distance weighting
—No neuron relocation =021 — No neuron relocation

=3
o

o
~

0.75 0.8 0.85 0.9 0.95 0.75 0.8 0.85 0.9 0.95
Return Return

Figure 25: The relationships between return and isolation (left) and between return and ARI (right) with the distance weighting and
neuron weighting separately ablated, across a range of A values([0.005, 0.1] where distance weighting is included and [0.0005, 0.01]
otherwise, to achieve equivalent regularisation levels and returns). We include the mean values achieved with the Vanilla PPO case, which
corresponds to A.. = 0 and no relocation for comparison.

21

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

The Relationship Between Return and Sparsity
with Different Regularisation and Relocation Protocol

0.9

Sparsity
o
®

0.7+ X Vanilla PPO, Mean N
Distance-weighted sparsity with relocation N N
. \

— No distance weighting
—No neuron relocation
0.6
0.75 0.8 0.85 0.9 0.95
Return

Figure 26: The relationships between return and sparsity, defined as the proportion of weights with a magnitude below 1% of the maximum
magnitude in their layer, for the ablation cases considered in Figure 25. The vanilla PPO case has a significantly lower mean sparsity of

0.028, so is not shown.

22

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

F. Pong Results

In this section we demonstrate the utility of our approach on Pong. We show that the sparse training protocol learns a single
sparse module, which enables identification of a flaw in learnt Pong policies, as previously identified by Delfosse et al.
(2024).

We train an MLP policy network on a custom implementation of Pong in JAX, which we modify to return symbolic
observations. The observation consists of the agent paddle y position, the opponent paddle y position, the x and y positions
of the ball and the x and y velocities of the ball. The opponent adopts the standard ‘follow ball’ policy and the agent receives
sparse rewards of -1 and 1 when the opponent and agents score points respectively. We fix the regularisation parameters
ds, k and the relocation intervals to use the same values as the Minigrid experiments, and conduct a small sweep over A
values. Full training parameters are shown in Table 2.

Table 2: PPO Hyperparameters

ARCHITECTURE
HIDDEN SI1ZE 16
NUMBER OF LAYERS 2
TRAINING
PARALLEL ENVIRONMENTS 16
STEPS PER ENVIRONMENT 128
MINIBATCHES 8
EPOCHS 16
LEARNING RATE 1E-5
MAX GRADIENT NORM 0.1
GAE A\ 0.99
CLIP € 0.2
ENTROPY COEFFICIENT 0.01
VALUE FUNCTION COEFFICIENT 0.5
TRAIN STEPS 10M
PRUNE FRACTION (APPENDIX C.1) 0.01
FINETUNE STEPS (APPENDIX C.1) 10M
REGULARISATION
ds (EQUATION 1) 0.95
K (SECTION 3.2) 10
RELOCATION INTERVAL (SECTION 3.2) 2
Ace SCHEDULING (APPENDIX C.1) 0.4-0.41

Unlike in the Minigrid tasks, the Pong agent moves along a single axis. We thus observe a single module in the computational
graph, which becomes increasingly sparse as A.. is increased, as shown in Figure 27. We show the impact of regularisation
on agent performance and the number of network parameters in Figure 28. Up to a .. of 0.05, we observe a negligible
impact on agent performance, with all policies with A\.. = 0.045 achieving a perfect average score of 21. Beyond this
we observe variability between seeds and a significant deterioration in performance in some cases. As in the Minigrid
experiments, the regularisation and pruning also significantly reduces the number of parameters in the network, and we find
we can achieve a mean game score of 21 with just 37 parameters.

o o c) °
ball vel y ball x paddiez y paddlel y bally ball_vel x

0.06

Figure 27: We observe sparsity increasing with A in the Pong policy network. The simplicity of the task means a single module is learnt.

Delfosse et al. (2024) train Successive Concept Bottleneck Agents (SCBots) in the Pong environment and find a brittle
reliance on the opponent position in the resulting policies. This is an artefact of the opponent policy, which attempts to keep

23

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

Average player score for different lambda values

Number of parameters in the pruned model for different lambda values

25

204

seed 66
@ Seed661
® Seed 6613

Mean Player Score at Game End
-
G

94 @

801

704 &

604

50 4

Parameter Count

40

30 4

204

5 T T
0.030 0.035

T
0.040

T
0.050
Lambda CC value

T
0.055

T
0.060

0.065

Seed 66
® Seed 661
@ Seed 6613

T
0.030

T T
0.045 0.050
Lambda CC value

T T
0.035 0.040

T T
0.055 0.060 0.065

Figure 28: Left: The impact of A.. regularisation on the mean player score at game end, with 21 indicating a 100% win rate. Right: The
impact of \.. regularisation on the number of network parameters post pruning, where the baseline non-regularised network uses 435

parameters.

the paddle centre aligned with the centre of the ball. While this results in high performance in training, it is an example of
proxy gaming and is undesirable: if the opponent policy changes, the agent loses the ability to perform its target task of

returning the ball.

Based on this observation, we retrain a set of policies with the opponent position removed from the observation space. The
results, shown in Figure 29, show an increase in score variability at lower A, values, but still demonstrate the ability to
achieve an 100% win rate up to a A\.. = 0.55. By necessity, this policy relies solely on agent and ball information and is
thus robust to the more realistic scenario of a variable opponent policy.

Mean Player Score at Game End

Average player score for different lambda values - unseen opponent
25

0] 8

Seed 66
@ Seed 661
® Seed 6613

o T
0.030

0.035

0.040

0.045 0.050
Lambda CC value

0.055 0.060 0.065

Figure 29: The impact of \.. regularisation on the mean player score at game end, when the opponent position is removed from the

observation space during training.

24

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

G. Module Detection Method Data

Table 3: The Isolation and Functional Alignment (ARI) of actor network modules detected using the weights, correlation, internal,
fine-tuned and fine-tuned internal versions of the Louvain algorithm. Results are averaged across 10 seeds in each of the DO, 3D-DO and
G2K environment.

ISOLATION
Aee W Lv. CLv. INT. FT FT INT.

FUNCTIONAL ALIGNMENT (ARI)

Aee W Lv. CLv. INT. FT FT INT.
0.01 0.165 - 0.140 | 0.305 0.237
0.03 0.273 - 0.256 | 0.639 0.462
0.05 0.282 - 0.273 | 0.675 0.571
0.07 0.310 - 0.321 0.676 0.625
0.09 | 0.335 - 0.343 | 0.714 0.715
0.11 0.385 - 0.436 | 0.750 0.804
0.13 0.378 - 0.478 | 0.724 0.834
0.15 0.383 - 0.489 | 0.721 0.825

Table 4: The Isolation and Functional Alignment (ARI) of actor network modules detected using the weights, correlation, internal,
fine-tuned and fine-tuned internal versions of the Louvain algorithm. Results are averaged across 10 seeds in the G2K environment only.

ISOLATION
Aee W Lv. CLv. INT. FT FT INT.

0.13 0.698 0.607 | 0.712 | 0.824 0.821
0.15 0.707 0.539 | 0.762 | 0.837 0.820

FUNCTIONAL ALIGNMENT (ARI)

Ace W Lv. CLv. INT. FT FT INT.
0.01 0.145 - 0.111 0.346 0.215
0.03 0.180 - 0.180 | 0.618 0.398
0.05 0.170 - 0.195 | 0.514 0.439
0.07 0.184 - 0.253 | 0.560 0.466
0.09 0.196 - 0.220 | 0.510 0.519
0.11 0.210 - 0.361 0.419 0.608
0.13 0.149 - 0.499 | 0.311 0.697
0.15 0.145 - 0.494 | 0.287 0.652

25

Inducing, Detecting and Characterising Neural Modules for Functional Interpretability in RL

H. Intervention Data

We present full action statistics for the networks interpreted in Section 4.6 showing the frequency of actions and their
outcomes for the unmodified network, and for versions where modules are modified through negative saturation or negation.
We bold the data corresponding to the axes the targeted community is associated with.

Table 5: Action Statistics for a 3D-DO network (A.. = 0.06, Figure 9a).

Directions Freq. Failure | Success | Continue
Initial Network | up/down 21.33% 8.62% 29.67% 61.71%

Return = 0.77 left/right 42.55% 8.29% 21.70% 70.01%

fwd/bwd 36.12% 9.81% 37.48% 52.71%

Negative Saturation
Community 0 up/down 40.74% 2.11% 1.20% 96.69%
Return = 0.40 left/right 52.92% 2.51% 1.23% 96.26%
fwd/bwd 6.34% 3.12% 6.80% 90.07 %
Community 1 up/down 22.59% 3.47% 2.81% 93.73%
Return = 0.45 left/right 6.18% 5.72% 14.34% 79.94%
fwd/bwd 71.23% 3.49% 2.03% 94.48%
Community 2 up/down 6.02% 4.01% 15.16% 80.84%
Return = 0.53 left/right 22.91% 5.59% 6.37% 88.04%
fwd/bwd 71.07% 3.32% 2.82% 93.86%

Negation
Community 0 up/down 5.16% 2.79% 1.60% 95.61%
Return = 0.14 left/right 11.14% 2.43% 1.12% 96.45%
fwd/bwd 83.70% 1.15% 0.02% 98.83%
Community 1 up/down 0.99% 10.03% 4.47% 85.50%
Return = 0.09 left/right 97.01% 1.11% 0.01% 98.88%
fwd/bwd 2.00% 12.36% 4.11% 83.53%
Community 2 up/down 89.59% 1.00% 0.01% 99.00 %
Return = 0.39 left/right 3.53% 8.48% 13.27% 78.26%
fwd/bwd 6.87% 5.92% 8.15% 85.93%

Table 6: Action Statistics for a G2K network (A.. = 0.12, Figure 9b)

Directions Freq. Failure | Success | Continue
Initial Network | up/down 51.03% 1.16% 42.99% 55.85%

Return = 0.94 left/right 48.97% 3.57% 28.96% 67.47%

Negative Saturation
Community 0 up/down 2.38% 1.38% 12.57% 86.05%
Return = 0.35 left/right 97.62% 1.18% 0.36% 98.46%
Community 1 up/down 97.05% 1.23% 0.41% 98.36%
Return = 0.39 left/right 2.95% 1.36% 13.64 % 85.00%

Negation

Community 0 up/down 98.64 % 1.03% 0.01% 98.96 %
Return = 0.14 left/right 1.36% 4.25% 12.22% 83.53%
Community 1 up/down 1.07% 7.79% 7.53% 84.68%

Return = 0.08 left/right 98.93 % 1.06 % 0.01% 98.93 %

Table 7: Action Statistics for a G2K network (A.. = 0.02, Figure 9c)

Directions Freq. Failure | Success | Continue
Initial Network | up/down 50.09% 0.21% 32.44% 67.34%
Return = 0.99 left/right 49.91% 0.41% 40.51% 59.07%
Negative Saturation
Community 0 up/down 4.78% 2.56% 7.06 % 90.38%

Return = 0.40 left/right 95.22% 1.36% 0.63% 98.00%
Community 1 up/down 72.00% 1.20% 0.30% 98.50%
Return = 0.16 left/right 28.00% 1.01% 0.01% 98.98 %
Negation

Community 0 up/down 78.39% 1.07 % 0.57% 98.36%
Return = 0.57 left/right 21.61% 1.04% 4.47% 94.50%
Community 1 up/down 82.10% 1.46% 1.31% 97.23%
Return = 0.49 left/right 17.90 % 3.35% 3.63% 93.02 %

26

