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ABSTRACT

Despite the decomposition of convolutional kernels for lightweight CNNs being
well studied, previous works that relied on tensor network diagrams or higher
dimensional abstraction lacked geometry intuition. Our work captures the CNN
kernel as a 3D tensor and explores its various decompositions, allowing for a
straightforward graphical and analytical perspective between different tensor ap-
proximation schemes and efficient CNN components, including pointwise and
depthwise convolutions. Extensive experiments are conducted, showing that a
pointwise-depthwise-pointwise (PDP) configuration via a canonical polyadic de-
composition (CPD) initialization can be a viable starting point for lightweight
CNNs. The compression ratio of VGG-16 can reach over 50% while its perfor-
mance outperforms its randomly initialized counterpart by > 10% in terms of
accuracy. FPGA experiments for the PDP model further demonstrate its hardware
efficacy, namely, 2.4× faster and 1.4× more energy efficient than the standard
conv2d. Furthermore, our framework offers a unique slice-wise illustration and
is the first to ever draw a connection to the shift layer. Such insight inspires a
first-of-its-kind pruning method for shift layers, achieving nearly 50% compression
with < 1% drop in accuracy for ShiftResNet-20.

1 INTRODUCTION

Lightweight deep neural networks (DNNs) are crucial for edge AI where the DNNs are running
on resource-limited hardware, e.g., Lin et al. (2021a). Extra consideration has to be given to
implementation constraints such as compute, storage, throughput and power, just to name a few.
In this regard, a plethora of efficient convolutional neural network (CNN) architectures have been
researched and developed over the years for computer vision application. Prominent examples include
MobileNet Sandler et al. (2018), EfficientNet Tan and Le (2019), and later the ShiftNet Wu et al.
(2018) and its variants Jeon and Kim (2018); Chen et al. (2019). Even in the current era where
Transformers are taking DNN architectures by storm (e.g., Vision Transformer (ViT) Dosovitskiy
et al. (2021), MLP-Mixer Tolstikhin et al. (2021), etc.), CNN is still being re-injected into emerging
Transformer variants (e.g., ConvMixer Trockman and Kolter (2022)). Consequently, it is always of
interest to study and explore lightweight CNNs.

To this end, depthwise separable (DS) convolution Chollet (2017); Sandler et al. (2018); Tan and
Le (2019) has proven to be an efficient substitute of the regular convolutional kernels. In particular,
it segregates the coupled spatial and channel mixing in a conventional CNN filter into separate
depthwise (DW) and pointwise (PW) mixing, respectively. This results in significant savings in
storage and computation, with little or even no loss in the output accuracy. This paper systematically
and analytically shows that this does not come as a surprise, but follows naturally from the underlying
decomposition and approximation schemes of the reshaped CNN kernel tensor.

While tensors and various efficient CNN implementations are not new, it is the first time they are
brought under a highly visualizable, unifying tensor umbrella to provide an intuitive illustration to
their origin of success. The arithmetic under various decompositions further inspire effective ways to
compress the model, and to design accuracy booster when a pretrained or teacher model is available.
The main contributions of this work are:

• A unifying reshaped kernel tensor view whose different approximation schemes are naturally
tied to different efficient CNN architectures.
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• Given an available pretrained network, an analytical way to obtain appropriately tensorized
initialization to potentially boost training accuracy.

• A link of canonical polyadic decomposition (CPD) to the bottleneck CNN layer, plus its
intrinsic connection to the lately proposed hardware-efficient shift layers. This in turn gives
rise to a first-of-its-kind channel pruning scheme for shift layers.

2 RELATED WORK

DNNs have recently been realized on edge devices thanks to advances in network compression
techniques. TinyML takes edge AI one step further, making it possible to run deep learning models
on edge-centric FPGA and microcontroller (MCU), such as hls4ml Aarrestad et al. (2021) and
MCUNetV2 Lin et al. (2021a). In the context of CNN compression, besides channel pruning, quanti-
zation and knowledge distillation, a powerful approach is matrix or tensor decomposition Lebedev
et al. (2015); Kim et al. (2016); Astrid et al. (2018); Hayashi et al. (2019); Ran et al. (2021). Lebedev
et al. (2015) is among the first that proposed CPD of the regular CONV layer whose nature is a 4-D
kernel tensor. Specifically, a CPD of the latter breaks down a CONV layer into two DW and two PW
layers. Astrid et al. (2018) also utilized CPD but treated the CONV layer as a 3-D tensor, which
further reduced the number of parameters. Tucker decomposition is employed in Kim et al. (2016),
which decomposes a CONV layer into two PW layers and a regular CONV layer with smaller input
and output channels. Ran et al. (2021) also used Tucker decomposition, adding a regularizer to the
loss function during training to dynamically assign the Tucker ranks. It is worth noting that all these
works are related in one way or another to efficient CNNs Chollet (2017); Sandler et al. (2018); Tan
and Le (2019), which contain DS or bottleneck layers. Compared with Tucker decomposition Kim
et al. (2016); Ran et al. (2021), CPD is expected to further shrink the number of weights due to its
equivalence to having a diagonal Tucker core. However, the scheme in Lebedev et al. (2015) may
result in unstable training and is bound to vector kernels which are not as effective as a square kernel in
capturing spatial correlations. Astrid et al. (2018) also tested only with the older-generation AlexNet
with few CONV layers, using an ad hoc progressive layer-wise decomposition and fine-tuning scheme
that is not scalable. Hayashi et al. (2019) enumerated various CNN decompositions using tensor
network diagrams. Nevertheless, the high-dimensional and abstract notations hide the geometry and
visual intuitions tied to different DS variants. Prior works have used tensor network diagrams to
encapsulate higher dimensional tensors as well as their decompositions into low rank factors Lebedev
et al. (2015); Kim et al. (2016); Su et al. (2018); Hayashi et al. (2019). Nonetheless, at 4D and
beyond, the geometry view is lost and the underlying arithmetic intuition can become abstract. To
this end, we show it is indeed possible to keep everything in 3D and employ only basic geometry
visualizations for various tensorized convolutions.

On another front of CNN compaction, the idea of shift operation first appeared in Wu et al. (2018),
which is meant to substitute standard spatial convolutions. Ordinary convolutions have a quadratic
complexity with kernel size. In contrast, shift operations have zero parameters and zero FLOPs
regardless of the receptive field, making them ideal for deployment on edge devices with limited
resources. Several variants have been proposed to improve representation power and efficiency of
shift operations Jeon and Kim (2018); Chen et al. (2019). Recently, shift operation is also applied
to video action recognition tasks Lin et al. (2019); Fan et al. (2020), demonstrating that shift layers,
constructed by shift operation and PW convolution, are expressive enough to encode spatio-temporal
information. Although the shift layer may look unconventional from regular CNN algebra, we will
show below that it can be naturally accommodated in the CPD framework by considering shifts as
one-hot kernels. Subject to this view, a novel channel pruning scheme can be derived for a shift
layer which, to the best of our knowledge, is reported for the first time in literature. In short, we
believe such “aggressive” re-implementations of efficient CNN layers, further coupled with recent
advances in structured sparse fully-connected (FC) layers Dao et al. (2019; 2020); Lin et al. (2021b),
can actively contribute to the success of TinyML in the era of edge AI.

3 KERNEL TENSOR AND ITS APPROXIMATION

We begin by instantiating the kernel tensor which is reshaped from 4-way [ci, co, k, k] (ci, co denote
the numbers of input and output channels, and k × k the spatial size) into 3-way [ci, co, k

2] for
visualization, see upper left corner of Fig. 1. We then enumerate different views, decompositions and
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Figure 1: (I.) The reshaped kernel tensor and its different views: (a) frontal slices; (b) horizontal slices;
(c) lateral slices; (d) CPD. We slightly abuse notations and use co, ci and k2 for both the axis names
and index labels. This example has dimensions |ci| = 3, |co| = 6 and |k2| = 9. (II.) Approximating
front slices with rank-1 terms translates into the standard depthwise separable convolution (viz.
depthwise + pointwise, abbreviated as DP in this work). (III.) Approximating horizontal slices
with rank-1 terms translates into an “inverted” depthwise separable convolution (viz. pointwise +
depthwise, called PD in this work). (IV.) Approximating the kernel tensor with multiple rank-1 CPD
terms (CPD rank rcp = 2 here) translates into a linear bottleneck (viz. pointwise + depthwise +
pointwise, called PDP in this work).

approximations of this original tensor, which in turn spin off different efficient CNN architectures. We
remark such visual links to various CNN implementations is first-of-its-kind, and differs significantly
from the notational and diagrammatic views in Guo et al. (2018); Hayashi et al. (2019) which easily
overshadow the underlying intuition.

3.1 FRONTAL SLICES

Referring to Fig. 1.I(a), each slice or matrix can be decomposed into a sum of multiple rank-1 terms
with decreasing dominance. An obvious way is to use singular value decomposition (SVD), but
advanced options like variational Bayesian matrix factorization (VBMF) can also be employed for
rank determination Nakajima et al. (2013) in noisy data. Fig. 1.II depicts a rank-1 approximation
to each front slice. Here we draw the spatial (k2) axis vectors with rectangular bars to differentiate
them from other axes (using balls) to highlight their window sliding nature along the input channels
they act on. With reference to Fig. 1.II, now we fix a particular output channel, e.g., co = 5, for
illustration. It can be seen that there is one kernel filter along each ci index, corresponding to a DW
convolution along each input channel. Once the DW convolution is performed, 3 convolved output
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Figure 2: Lateral slices positioned with one-hot kernel filters translates into a ShiftNet (viz. pointwise
+ shift + pointwise) convolution.

slices are produced which are then contracted by the 3 colored balls along the ci axis, namely, a PW
operation to obtain the co = 5 channel. Such sequence of operations cannot be swapped because the
DW kernels are tied with the ci indices, and need to be applied on the input channels. The number of
CNN weight parameters involved is (|co|+ |k2|)|ci| which equals 45 in this example. We abbreviate
this CNN replacement by DW+PW as the DP scheme which coincides with the standard DS scheme.

Similarly, we study Fig. 1.I(b) with its corresponding rank-1 slices shown in Fig. 1.III. As before,
we fix a particular output channel co = 5, then it can be seen that there are six kernels along each co
index, each corresponding to a DW convolution operating on the PW (1× 1)-contracted slices along
the ci axis by the colored balls. Again, such sequence of operations cannot be interchanged, since the
6 DW kernels are tied with the co indices and need to be applied right before the output channels.
The number of weight parameters in this setting is (|ci|+ |k2|)|co| which equals 72 in our example.
We call this PW+DW operation the PD scheme in this work.

3.2 CANONICAL POLYADIC DECOMPOSITION

We detour to the CPD view in Fig. 1.I(d) before getting back to the lateral slices, which turns out to be
a more natural order of illustration. Referring to Fig. 1.IV and borrowing from previous sections, we
can segregate the contraction/convolution into three stages, namely, PW along ci to generate a number
of slices equal to the CPD rank rcp (i.e. number of CPD terms), followed by DW along these slices
and finally PW along the desired co. This view corresponds to the celebrated bottleneck layer Sandler
et al. (2018), whose residual variant is depicted in the upper part of Fig. 3. Apparently, whether it is a
bottleneck or an inverted bottleneck is determined by rcp, which decides the center DW block being
wider or thinner than its ‘entrance’ and ‘exit’ PW layers. We name this PW+DW+PW combination
the PDP scheme. In this example, the number of weight parameters is (|ci|+ |co|+ |k2|)rcp which
equals 36. Note that this number depends heavily on the rcp which we can tune for different tradeoffs
between complexity and representation capacity.

3.3 LATERAL SLICES

Finally, we turn back to Fig. 1.I(c) for the lateral slices. It is clear we can view the original tensor as
a slice-wise aggregation by positioning them at the appropriate k2-axis index via a one-hot kernel
vector, as shown in Fig. 2. Like before, each slice can be decomposed into multiple rank-1 terms, all
sharing the same one-hot kernel vector. For instance, the leftmost term in Fig. 2 can spin off into
three CPD terms, resembling those in Fig. 1.IV. The one-hot nature of the kernel vector effectively
performs simple shifting, as advocated in Wu et al. (2018). As such, we draw equivalence of lateral
slices to their ShiftNet counterparts Wu et al. (2018); Chen et al. (2019); Jeon and Kim (2018). If we
use rcp to denote the total number of 3-way rank-1 terms selected, say, according to their importance
characterized by their singular values, then the number of weights equals (|ci|+ |co|)rcp.

3.3.1 SHIFT LAYER PRUNING

To elaborate further, if a pretrained ShiftNet is available, then one way to do pruning of its shifted
channels is to collect rank-1 terms corresponding to the same shift, and then add up the co-ci mode
rank-1 terms into a matrix (cf. lower part of Fig. 3). An SVD is then performed on this |co| × |ci|
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Figure 3: (Upper) A generic PW+DW/Shift+PW block where the dashed-line shortcuts and nonlin-
earity blocks are optional. (Lower) Assuming a shift layer, one can collect co-ci mode rank-1 terms
of the same shift and sum them for derivation of principal components.

(a) (b)

Figure 4: Shift distribution of ShiftResNet-20 trained on CIFAR-10 after uneven shift pruning with
ϕ = 16−1. There are three stages in ShiftResNet-20, each having three shift layers. (a) The number
of channels in each shift group; (b) The relative importance of each shift in various layers based on
their singular values. Singular values are summed at each position and normalized within each layer.

matrix to decide the number of dominant terms for retention and the number of terms to prune away.
As far as we know, this is the first-ever shift layer pruning scheme.

Specifically, under the same shift, the co-ci rank-1 terms are summed up into a |co| × |ci| matrix
for principal component analysis, e.g., via SVD. Then, the most dominant terms are retained as the
new PW filters on the ci and co modes. As an illustrative example, suppose for two channels with
the same shift, the ci-mode 1 × 1 filters are v, v̂ ∈ R|ci|×1 whose corresponding co-mode 1 × 1

filters are u, û ∈ R|co|×1, respectively. Then the summed matrix is [ u û ]

[
vT

v̂T

]
. Suppose the

flattened input channel matrix is X and there exists nonlinearity (say, ReLU) after the first PW layer.
Then, if v̂ ≈ v, whether in terms of cosine or Euclidean distance, the mapped channel matrices
ReLU(vTX) ≈ ReLU(v̂TX), especially when the feature dimension is high. The same argument
also holds when û ≈ u which, together with v̂ ≈ v, implies the above matrix would be close to
rank-1 and its principal ci and co filters can be obtained from an SVD and further fine-tuned through
backpropagation. Subsequently, when the entrance and exit PW layers have close PW filters, then
they can be consolidated into fewer principal filters. Note that our pruning approach is different from
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Chen et al. (2019), where shift operations are sparsified through a loss regularizer, while keeping the
size of the intermediate feature map unchanged. In contrast, we treat the one-hot shift kernel vector
as an on/off switch carrying information of its associated ci-co rank-1 term. Once pruned, the entire
3-way rank-1 term is dropped, so the feature map size (thus also representation capacity) reduces.

Here, we define a new hyperparameter dubbed pruning ratio ϕ = ϵnew/ϵold, where the notion of
expansion ratio ϵ is borrowed from Wu et al. (2018) which specifies the ratio of bottleneck’s channel
size to the output channel size of the exit PW. Obviously, ϕ controls the degree of compression,
allowing for a tradeoff between accuracy and model size. There are two strategies to select the
principal filters. The first involves comparing singular values within the same shift and preserving the
same amount of dominant terms in each group. Concretely, suppose we have a 3× 3 DW shift layer,
then there are 9 shift groups each corresponding to one direction of shift (including zero shift). This
method guarantees equal number of channels in each shift group. Another approach is to compare
singular values across all shift groups and retain the most dominant terms. Fig. 4 shows the shift
distribution under “uneven” shift pruning, where missing bars in Fig. 4(a) illustrate that the whole
shift group is pruned. The complete pseudocode for shift layer pruning, as well as additional visuals,
can be found in the Appendix C.

4 EXPERIMENTS

To showcase the power of the proposed tensor machinery, extensive experiments are conducted
on image classification tasks, using CIFAR Krizhevsky et al. (2009), TinyImageNet and Ima-
geNet2012 Deng et al. (2009) as datasets. The popular VGG-16 Simonyan and Zisserman (2014) is
chosen to demonstrate the power of CPD initialization as a performance booster. Then, we select
the latest Transformer-like ConvMixer Trockman and Kolter (2022) to articulate the advantages
of CPD-induced PDP over the heavier DS convolution. We further compare our advocated PDP
decomposed kernels to other tensor decomposition methods, using ResNet He et al. (2016) as the
backbone. To verify the newly proposed shift layer pruning, we employ ShiftResNet Wu et al. (2018)
as a backbone and evaluate on CIFAR datasets. Finally, FPGA benchmarking showcases the hardware
advantages of lightweight bottlenecks. All models are trained on a single NVIDIA GeForce RTX
3090 Graphics Card with 24GB frame buffer. We refer to the appendix for further implementation
details and results.

Table 1: VGG-16 with SVD vs randomly initial-
ized DP/PD kernels on CIFAR-10.

Method CR (%) #Params(M) Acc (%)
Random/SVD

DP 88.53 1.69 92.81/92.70

PD 88.49 1.69 93.72/93.54

Table 2: VGG-16 with CPD vs randomly initial-
ized PDP kernels on CIFAR-10.

Rank rcp CR (%) #Params(M) Acc (%)
Random/CPD

4 99.65 0.05 51.31/62.48

8 99.44 0.08 61.63/72.27

16 99.00 0.15 65.06/86.09

32 98.12 0.28 75.19/89.73

4.1 VGG-16

Here approximations with different tensor views discussed in Section 3 are realized by replacing
every CONV layers of a VGG-16. A baseline VGG-16 is first trained on CIFAR-10 for 200 epochs.
The pretrained CONV kernels are then decomposed into various configurations followed by 300
epochs of fine-tuning. Table 1 shows the results of using DP and PD schemes to decompose the
kernel tensors. The PD configuration has a slightly better performance as compared to DP with the
same degree of compression. In this paper, compression is measured by the model-wise compression
rate (CR) which will be used throughout. Surprisingly, random initialization leads to a higher test
accuracy in both cases as compared to SVD initialization. We believe that the reason is approximation
using a single rank-1 term for each tensor slice is insufficient.

Table 2, on the other hand, highlights the significance of CPD initialization when every CONV layer
in the VGG-16 is turned into a PDP configuration comprising rcp DW filters. VGG-16 with CPD-
initialized kernels outperforms its random-initialized counterpart by a significant margin, ranging
from 11% to 14%. By gradually raising the CPD rank (rcp) from 4 to 32, classification accuracy
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rises from 62.48% to 89.73% with only a slight decrease in compression ratio (99.65% vs 98.12%).
Indeed, PDP slimming of a dense network has a distinct advantage over DP and PD, which achieves
an additional ≈ 6× parametric reduction than the latter two. Utilizing CPD initialization for PDP, the
final accuracy is mostly regained.

Table 3: Effects of different compression methods
on PDP VGG-16 evaluated using CIFAR-10.

Method #Params(M) Size(MB) Acc (%)

Baseline 14.73 56.25 94.13
PDP (rcp = 32) 0.28 1.19 89.73

+ QAT (8W8A) 0.28 0.52 89.16
+ KD 0.28 1.19 91.25
+ HRank 0.11 0.54 90.00

We highlight that CPD-initialized PDP kernels
can be used in conjunction with existing com-
pression methods. Here, we apply, separately,
three compression techniques on top of a PDP
VGG-16, including quantization-aware train-
ing (QAT), knowledge distillation (KD) Hinton
et al. (2015) and HRank Lin et al. (2020) filter
pruning. Table 3 shows classification results
on CIFAR-10 as well as their corresponding
model sizes in terms of parameters and stor-
age (MB). The PDP-based model can be further
compressed to > 100× smaller than the original
baseline by using QAT with 8-bit weights and activations (i.e. 8W8A). KD, on the other hand, can
be utilized to boost the performance (91.25% vs 89.73%) of a CNN with PDP decomposed kernels.
Besides, we can apply PDP to a CNN with pruned channels using HRank to further obtain a more
compact model. The pruned model has 1.87M parameters, which shrinks to 0.11M after being
decomposed into PDP kernels at rcp = 32. Using CPD initialization, the accuracy of this extremely
compact model is 90.00%, which soars even higher than applying CPD directly on the original model,
with a size even smaller than the rcp = 16 case in Table 2. The above results show CPD-induced
PDP kernels are highly versatile and can effectively supplement other compression techniques in an
orthogonal manner.

4.2 TRANSFORMER

Next, we apply PDP to a transformer-like architecture named ConvMixer Trockman and Kolter
(2022). It is derived from the simplistic MLP-Mixer Tolstikhin et al. (2021) featuring repetitive
square (viz. same I/O channels) CNN mixer blocks with an entrance DW layer for spatial mixing and
an exit PW layer for channel mixing, each having an equal number of channels and is succeeded by
a Gaussian error linear unit (GELU) Hendrycks and Gimpel (2016) and batch normalization (BN).
While it is generally believed an inverted bottleneck (i.e., an expanded number of DW channels) is
needed for intact information flow, we demonstrate a counter-intuition that using a relatively much
narrower DW layer can as well handle the task without much sacrifice in accuracy, while enabling a
remarkable compression in the number of parameters.

Table 4: Classification result on different datasets. Replacing DS in ConvMixer-256/8 with Conv2d.

Method CIFAR-10 CIFAR-100 TinyImageNet
#Params(M) Acc (%) #Params(M) Acc (%) #Params(M) Top-1/Top-5 (%)

Baseline (DS) 0.59 94.80 0.62 75.59 0.65 59.44/81.14
Conv2d remake 13.12 94.23 13.14 75.23 13.18 57.76/78.38

Table 5: Ablation of ConvMixer with CPD initialized PDP kernels on CIFAR. −− indicates training
diverges. ACTivation : GELU or ReLU.

Method CIFAR-10 Acc(%) (G/R) CIFAR-100 Acc(%) (G/R)
rcp = 8 rcp = 16 rcp = 32 rcp = 8 rcp = 16 rcp = 32

CPD 80.86/79.35 88.10/88.39 −− 50.57/47.88 64.45/64.53 70.51/69.36
+ Residual 2 79.72/80.11 88.71/88.64 92.54/92.26 53.76/55.18 63.70/64.81 69.58/69.40
+ Residual 1 86.77/86.33 90.84/90.69 92.87/92.90 61.51/62.25 69.19/67.60 70.89/71.15
+ Residual 1 w/o ACT after DW 86.89/86.99 91.22/91.47 93.42/93.36 62.44/62.2 68.83/67.75 72.26/70.90

In the following, ConvMixer-256/8 is selected as the baseline, where 256 and 8 denote the hidden
dimension and depth, respectively. To acquire the CPD-initialized PDP kernels, DS layers in the
original mixer are first replaced by a standard CONV layer (Conv2d), with GELU and BN after PW
remaining unchanged. Models are first trained on various datasets shown in Table 4, which shows that
redoing ConvMixer with Conv2d results in slight performance degradation. Afterwards, we apply
CPD on the Conv2d kernel tensors to initialize the PDP configuration and fine-tune for another 200
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epochs. An ablation study on CIFAR datasets is conducted to find the optimal design using various
nonlinearities and residual connections He et al. (2016), depicted in Table 5. Residual 1 and Residual
2 refer to the long and short dashed line arrows in Fig. 3, respectively. Residual 1 connecting two
PW layers allows communication via more channels as compared to Residual 2 that wires across the
relative narrow DW filters, leading to better performance. Motivated by Sandler et al. (2018), we
further remove nonlinearity after the DW layer to prevent information loss, yielding the best result.

Table 6: Classification result on TinyImageNet. CR is
computed with respect to Baseline (DS) in Table 4.

Rank rcp CR (%) #Params (M) Top-1(%) Top-5(%)

8 83.85 0.11 46.82 72.46
16 78.52 0.14 52.98 77.60
32 67.86 0.21 55.96 79.16
64 46.55 0.35 58.26 80.18

Now we focus on TinyImageNet which is
a subset of ImageNet Deng et al. (2009)
with 100k training and 10k test images.
Each image is classified into one of
200 categories. The goal of evaluating
on TinyImageNet is to demonstrate that
CPD-initialized narrow bottleneck can
handle complicated tasks with perfor-
mance on par with the heavier, original
DS in ConvMixer. Based on the ablation
study on CIFAR datasets, we select the configuration in the bottom row of Table 5 with GELU
activation as our building block. Table 6 shows that the narrow bottleneck with rcp = 64 can achieve
comparable accuracies at Top-1 (58.26% vs 59.44%) and Top-5 (80.18% vs 81.14%), with 1.9×
reduction in number of parameters compared to the baseline in Table 4. This reveals isotropic
design (i.e. uniform width) may introduce significant channel redundancy that can be exploited for
compression.

4.3 RESNET

In this section, we conduct extensive experiments to compare the lightweight PDP kernels with
other tensorized CONV kernels. Two sets of experiments are carried out. First, we demonstrate the
PDP on large-scale ImageNet2012 dataset using ResNet-34 as backbone and compare with Tucker-2
decomposition Kim et al. (2016). Table 7 shows that CPD initialized PDP kernels outperform Tucker
counterpart by a significant margin (67.72% vs. 62.73%) under approximately the same compression
ratio (≈ 92%). We then compare PDP with CP layers proposed in Lebedev et al. (2015) and
an enhanced version of Tensor Train (mTT) in Su et al. (2018) on CIFAR-10 with ResNet-32 as
backbone. According to the Table 8, the more sophisticated Tensor Train decomposition does not
show superior performance versus the simpler CPD in terms of accuracy. Furthermore, because
of the intuitive connection between CPD decomposition and PDP bottleneck, highly optimized
cuDNN convolutional operations can be used in our framework, whereas mTT requires customized
CUDA kernels or the use of less optimized tensor contractions, resulting in a 1.7X slower inference
speed than ours. Furthermore, PDP exhibits more stable training than the CP layers suggested in
Lebedev et al. (2015), wherein CPD is performed along relatively short spatial dimensions, resulting
in diverging training.

Table 7: Comparison of PDP with Tucker-2 on
ImageNet2012.

Method MC (%) Acc@1 (%) Acc@5 (%)

Baseline (ResNet-34) −− 73.30 91.42
PDP 92.35 67.72 88.39

Tucker-2 92.49 62.73 84.70

Table 8: Comparison of PDP with other tensor
decomposition methods on CIFAR-10. Latency
is evaluated on single RTX3090 GPU.

Method MC (%) Acc (%) Latency (ms)

PDP-ResNet-32 90.79 90.30 5.20
CP-ResNet-32 89.23 −− 10.63

mTT-ResNet-32 89.67 90.21 8.65

4.4 SHIFT LAYER PRUNING

To demonstrate the idea of shift layer pruning, ShiftResNet-20 Wu et al. (2018) with an expansion
ratio ϵ = 9 is chosen as our backbone. A shift module in the ShiftResNet consists of a 3 × 3 DW
shift layer surrounded by two PW layers, interleaved with BN and nonlinearity. By varying ϵnew, we
obtain a set of pruning ratios ϕ ∈ { 1

2 ,
1
4 ,

1
8 ,

1
16}. Baseline models are first obtained by training on

target datasets for 200 epochs. Shift layer pruning as described in Section 3.3.1 is then applied to
every shift module in the pretrained network, followed by another 200 epochs of fine-tuning. The
result is shown in Table 9. Shift layer pruning achieves nearly 50% compression with < 1% accuracy
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drop for both CIFAR-10 (92.88% vs 93.37%) and CIFAR-100 (70.58% vs 71.47%). The results also
suggest that uneven shift pruning exhibits higher accuracies than even pruning in most circumstances.

Table 9: Shift Layer Pruning. Baseline accuracies are 93.37%@CIFAR-10, 71.47%@CIFAR-100.

ϕ
CIFAR-10 CIFAR-100

CR(%) Acc (%) (Even) Acc (%) (Uneven) CR(%) Acc (%) (Even) Acc (%) (Uneven)

1
2 49.18 92.81 92.88 48.17 70.48 70.58

1
4 73.78 91.41 91.50 72.25 67.16 67.62

1
8 86.07 89.09 89.11 84.30 62.21 63.13

1
16 92.22 85.57 85.84 90.32 57.25 56.83

4.5 HARDWARE BENCHMARKING

Table 10: Energy consumption and latency on
FPGA using VGG-16 as backbone. PDP-VGG-
16 refers to rcp = 32 of Table 2.

Method Power (W) Latency(ms)

PDP-VGG-16 3.7 96.58
standard conv2d Aarrestad et al. (2021) 5.01 234.37
CNNA Kim Bjerge (2020) 4.74 2200
VGG-16 Guo et al. (2017) 3 − 4 175.43

Since an obvious niche of our compressed mod-
els lies in their extreme light weight, we further
realize them on a field-programmable gate array
(FPGA) prototyping platform to contrast against
standard convolution Aarrestad et al. (2021) by
a customized hardware architecture. All mod-
els are compiled and synthesized with Vivado
2020.2 for deployment onto a Xilinx Ultra96
v2 FPGA board featuring a Zynq UltraScale+
MPSoC device(ZU3EG) clocked at 250MHz.
Ultra96-v2 contains 71k LUTs, 7.6Mb BRAMs
and 360 DSPs.Our accelerator supports both
32 × 32 and 224 × 224 input formats with 8-bit weights and activations. Here, we employ the
224 × 224 format which is widely adopted in various datasets such as ImageNet2012. For fair
comparison, we compare our PDP accelerator to prior works, all of which realize VGG-16, includ-
ing Aarrestad et al. (2021), Kim Bjerge (2020) and Guo et al. (2017). The standard implementation
of convolutional layers from hls4ml library Aarrestad et al. (2021) is latency oriented. However, such
implementation comes at the high expense of resource usage. CNNA Kim Bjerge (2020), on the other
hand, uses a scalable architecture with an auto-scaled fixed-point format, leading to a reduction in en-
ergy consumption but an increase in latency. Among all the baselines, an efficient software-hardware
co-design accelerator tailored for VGG-16 proposed in Guo et al. (2017) performs the best in terms
of energy consumption and latency. To strike a balance between resource consumption and latency,
our implementation uses an optimized semi-parallel computation algorithm, which parallelizes the
majority of channels while pipelineing the remaining. As is obvious from the Table 10, with our
custom accelerator, the PDP-compressed VGG overtakes all its competitors, achieving a > 2.4×
speedup and > 1.4× reduction in energy consumption as compared to the standard conv2d Aarrestad
et al. (2021) implementation. We remark that such speedup is the result of an adaptively parallel
dataflow stream without any bells and whistles. This provides strong evidence that PDP compression
scheme is highly practical and valuable for edge AI running on resource-limited devices.

5 CONCLUSION

This work first presents an elegant tensor exposition of how different approximations of the CNN
kernel tensor are intimately connected to separable pointwise and depthwise convolutions. Such
perspective allows an analytical lens for characterizing the importance of the associated pointwise
and depthwise filters, plus the development of a first-ever channel pruning scheme for zero-flop shift
layers. Using these basic components and pushing them to their limits, we demonstrate through
extensive experiments an astonishing degree of compression and high performance. The proposed
schemes thereby constitute a set of powerful tools for designing lightweight CNNs favorable for edge
AI running on resource-limited hardware. Such unifying tensor view for various CNN modules also
serves as a neat starter to CNN approximation theory, as well as a basis to discover new architectures.
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APPENDIX

The Appendix covers the following contents:

• PDP-ResNet on CIFAR-10. (Appendix A)
• Ablation study of VGG-16 on CIFAR-10. (Appendix B)
• The pseudocode and additional visualizations for shift layer pruning. (Appendix C)
• Implementation details and experimental settings. (Appendix D)
• A comparison between SVD and VBMF initialization. (Appendix E)
• Iterative fine-tuning. (Appendix F)

A PDP-RESNET ON CIFAR-10

To emphasize the significance of CPD initialised PDP kernels, we repeat the experiment described in
Section 4.1, except this time we use ResNet-34 He et al. (2016) as the backbone. Similarly, we convert
every CONV layers of a ResNet-34 to PDP kernels, excluding those PW convolutions employed in
shortcut connections. In PDP-ResNet, the performance gap between CPD and randomly initialization
is much narrower than in PDP-VGG. CPD initialization has a greater influence on performance when
the CPD rank rcp is higher, as seen in Table 11. When rcp = 4, PDP-ResNet with CPD initialization
performs similarly to the randomly initialized one. When the rcp grows, however, the effect of CPD
initialization becomes considerably more important and exceeds the randomly initialized counterpart
by a large margin (93.47% vs. 90.86%). This is because the higher the rcp, the more accurate of the
CPD initialized PDP kernels are at approximating the original CONV kernel, resulting in a higher
chance of recovering performance.

Table 11: ResNet-34 with CPD vs randomly initialized PDP kernels on CIFAR-10. Baseline has
21.28M parameters with accuracy of 95.71%.

Rank rcp CR (%) #Params(M) Acc (%)
Random/CPD

4 98.81 0.25 87.02/87.13

8 98.52 0.31 89.65/90.28

16 97.96 0.44 90.11/91.88

32 96.83 0.68 90.86/93.47

B ABLATION STUDY OF VGG-16 ON CIFAR-10

CP decomposition is an optimisation problem which tries to minimize the difference between the
decomposed tensor and the target tensor. The Alternating Least Squares (ALS) is the most extensively
used approach, whereas the Tensor Power Method (TPM) is another method which is known to
explain the same variance with less rank than ALS Allen (2012); Astrid and Lee (2017). In this
ablation study, we explore the impact of these two initialization schemes, whereas, in the paper as well
as other parts of the supplemental materials, we select the best result amongst the two for simplicity.
Table 12 illustrates that TPM initialization tends to perform better at lower ranks (rcp = 4, 8) while
ALS performs better at higher ranks (rcp = 16, 32).

Furthermore, an ablation study similar to that in Section 4.2 is carried out to better the design of the
PDP-VGG building block. ReLU and BN are added after the entrance PW and DW, whereas the
nonlinearity and BN in the baseline VGG-16 remain intact for the exit PW. Previous research Sandler
et al. (2018) suggests that ReLU may lead to information loss when the number of channels in the
bottleneck is too small. As a result, ReLU after DW is removed to examine the effect. In Table 13, it
is shown that ReLU and BN makes training harder if we have a very narrow bottleneck (i.e. rcp = 4)
and even leads to diverge training. By removing the ReLU after DW stabilizes the training and
achieves better result. Comparing to Table 12, accuracy is up by more than 5% at rcp = 8 (77.57%
vs. 72.27%).
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Table 12: PDP-VGG using CPD with ALS vs. TPM initialization schemes on CIFAR-10.

Setting Initialization Rank Optimisation CR (%) Acc (%)Random Pretrained 4 8 16 32 ALS TPM

1
√ √

99.65
51.34

2
√ √ √

58.76
3

√ √ √
62.48

4
√ √

99.44
61.63

5
√ √ √

67.23
6

√ √ √
72.27

7
√ √

99.00
65.06

8
√ √ √

86.09
9

√ √ √
80.87

10
√ √

98.12
75.19

11
√ √ √

89.73
12

√ √ √
86.73

Table 13: Ablation of VGG-16 with CPD initialised kernels on CIFAR-10. −− indicates that the
training diverges.

Setting ReLU after DW Rank Optimisation CR (%) Acc (%)True False 4 8 16 32 ALS TPM

1
√ √ √

99.65

−−
2

√ √ √
−−

3
√ √ √

−−
4

√ √ √
55.43

5
√ √ √

99.44

54.15
6

√ √ √
−−

7
√ √ √

76.94
8

√ √ √
77.57

9
√ √ √

99.00

81.83
10

√ √ √
81.65

11
√ √ √

85.31
12

√ √ √
86.27

13
√ √ √

98.12

88.49
14

√ √ √
88.22

15
√ √ √

89.94
16

√ √ √
89.2

C SHIFT LAYER PRUNING

A shift module, or the building block of ShiftNet, is usually composed of one DW shift surrounded
by two PW layers, interleaved with BN and nonlinearity. In additional to uneven shift pruning
as described in Section 3.3.1, BN folding is also adopted to further boost the performance. BN
folding Krishnamoorthi (2018) is a standard procedure to be applied preparatory to neural network
quantization, wherein kernel weights W are scaled using BN parameters γ and σ2. The BN parameters
contain information summarising mini-batch statistics. Applying BN folding before shift layer
pruning allows those valuable information to be captured by the principal filters. Employing a
PyTorch-like notation, the detailed steps in shift layer pruning are shown in Algorithm 1.

Fig. 5- 7(a) visualize the shift distributions of ShiftResNet-20 trained on CIFAR-10 under uneven
shift pruning with different pruning ratios ϕ ∈ { 1

2 ,
1
4 ,

1
8}. When the pruning ratio is low (ϕ = 1

2 ),
there are plenty channels in each shift group, particularly in the last few layers. In such situation,
we can observe that the channels are divided rather evenly. However, when the pruning ratio slowly
increases from ϕ = 1

2 to 1
8 , the algorithm tends to assign channels in a more uneven manner, as

clearly shown in first three layers (i.e. top rows of figures). Fig. 4(a) demonstrates that certain shift
groups can be totally trimmed when the pruning ratio is sufficiently high (i.e. ϕ = 1

16 in our case).

On the other hand, Fig. 5- 7(b) describes the relative importance of each shift under different pruning
ratios. Interestingly, certain shift groups appear much darker in color (i.e. larger sum) (cf. the lower
right corner of Fig. 5(b)) while the channels are spread relatively uniformly (cf. the lower right corner
of Fig. 5(a)). This is due to the fact that there are a few dominating terms in that shift group with very
large singular values. More study is required to evaluate the impact of those highly dominant terms.

2



Under review as a conference paper at ICLR 2023

Algorithm 1 Pseudocode of Shift Layer Pruning with PyTorch-like Style Notation.
Input: pruning ratio ϕ; kernel size k; 4-D kernel tensors W1 and W2 for the entrance and exit PW of a

shift module, respectively; batch normalization layers BN1 and BN2 following the entrance and exit PW,
respectively.

Output: the pruned 4-D kernel tensors W ′
1 and W ′

2.
1: ce, cin, _, _ = W1.shape ◁ Get the shape of the 4-D kernel tensor.
2: cout, _, _, _ = W2.shape
3: if fold BN then
4: for i ∈ {1, 2} do
5: γ, σ2, ϵ = GetParams(BNi) ◁ Get BN parameters.
6: Wi =

γ√
σ2+ϵ

Wi ◁ Scale Wi with BN statistics.

7: end for
8: end if
9: nc = ce//k

2 ◁ nc is the number of channels per shift before pruning.
10: vT = W1.reshape(k

2, nc, cin) ◁ Collect ci-mode 1× 1 filters.
11: u = W2.transpose(0, 1).reshape(k

2, nc, cout).transpose(2, 1) ◁ Collect co-mode 1× 1 filters.
12: A = u@vT ◁ Compute the batch matrix-matrix product where A ∈ Rk2×cout×cin .
13: n′

c = floor(nc ∗ ϕ) ◁ n′
c is the number of channels per shift after pruning.

14: c′e = floor(n′
c ∗ k2) ◁ c′e is the number of channels in the bottleneck after pruning.

15: U, S, V T = SVD(A) ◁ Perform SVD on A
16: if even pruning then
17: U ′, S′, V T ′

= U [:, :, : n′
c], S[:, : n

′
c], U [:, : n′

c, :] ◁ Select n′
c evenly from each shift group.

18: W ′
1 = (diag(S′)◦

1
2@VT′

).reshape(c′e, cin) ◁ Equally split the SVs for ci and co-modes.
19: W ′

2 = (U ′@diag(S′)◦
1
2 ).transpose(0, 1).reshape(cout, c

′
e)

20: else
21: S′ = SelectTopkSV(S, c′e) ◁ Mask all except the top c′e SVs across all shifts, dim(S′) = dim(S).
22: W1 = (diag(S′)◦

1
2@VT′

).reshape(ce, cin) ◁

23: W2 = (U@diag(S′)◦
1
2 ).transpose(0, 1).reshape(cout, ce)

24: W ′
1 = RemoveZeroRows(W1) ◁ Remove co-mode filters with SV equal to zero.

25: W ′
2 = RemoveZeroColumns(W2) ◁ Remove ci-mode filters with SV equal to zero.

26: end if
27: W ′

1 = W ′
1.reshape(c

′
e, cin, 1, 1)

28: W ′
2 = W ′

2.reshape(cout, c
′
e, 1, 1)

29: return W ′
1, W ′

2

(a) (b)

Figure 5: ϕ = 1
2

. (a) The number of channels in each shift group; (b) The relative importance of
each shift in various layers based on their singular values. Singular values are first summed at each
position and then normalized within each layer.
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(a) (b)

Figure 6: ϕ = 1
4

. (a) The number of channels in each shift group; (b) The relative importance of
each shift in various layers based on their singular values. Singular values are first summed at each
position and then normalized within each layer.

(a) (b)

Figure 7: ϕ = 1
8

. (a) The number of channels in each shift group; (b) The relative importance of
each shift in various layers based on their singular values. Singular values are first summed at each
position and then normalized within each layer.

4



Under review as a conference paper at ICLR 2023

D IMPLEMENTATION DETAILS AND EXPERIMENTAL SETTINGS

D.1 VGG-16 AND RESNET

We follow the setting from a popular public-domain PyTorch training framework1 for CIFAR-10
experiments, wherein models are trained with SGD with momentum 0.9 and weight decay 5e−4

using a batch size of 128. Learning rate is set to 0.1 with a cosine annealing scheduler. Random
crop and random horizontal flip are employed during training. Baseline models are obtained by
training from scratch for 200 epochs. After that, pretrained CONV layers are decomposed to different
configurations (i.e. PD, DP and PDP) while parameters in FC layers are reset. For ResNet-34, we also
reinitialize the PW convolutions in the shortcut connections. We use TensorLy Kossaifi et al. (2016)
to implement CPD for PDP configurations and PyTorch built-in SVD for PD and DP configurations.
All models are fine-tuned under the same setting for another 200 epochs.

D.2 CONVMIXER-256/8

Our implementation is adapted from the code2 provided by the authors Trockman and Kolter (2022),
where AdamW optimizer with weight decay 0.05 is used. After a simple grid search, we set the
learning rate to 0.05. A Slanted Triangular Learning Rates (STLR) scheduler is adopted. As described
in Section 4.2, we redo the ConvMixer-256/8 by replacing the DS layers in repeating modules with
standard CONV layers (Conv2d) and train it from scratch for 200 epochs. After that, pretrained
Conv2d layers are replaced with CPD initialized PDP kernels while other layers, including the stem
and classifier layers, are reinitialized. The resultant models are fine-tuned for another 300 epochs.
The same set of data augmentations is used for CIFAR-10, CIFAR-100, and TinyImageNet, with the
exception of TinyImageNet, where the resolution after random resized crop is 64 × 64 instead of
32× 32. A batch size of 512 is used for all ConvMixer experiments.

D.3 SHIFTRESNET-20

We use the PyTorch implementation of ShiftResNet-203 given by the authors Wu et al. (2018), wherein
we reimplement the 3× 3 DW shift operation with PyTorch. Instead of adopting the training settings
provided by the authors, we employ a similar setting as Appendix D.2 with minor modifications. We
set both learning rate and weight decay to 0.01 and use a batch size of 1024 instead. After training
for 200 epochs, our baseline achieves a slightly higher accuracy in both CIFAR-10 (93.37 vs. 91.79)
and CIFAR-100 (71.47 vs. 70.77) than the those reported by the authors. Shift layer pruning is then
applied to every shift module in the pretrained network. Similar to previous experiments, parameters
in all other layers are reset.

E COMPARISON BETWEEN SVD AND VBMF INITIALIZATION

In Fig. 8, we show how ranks affect the approximation error of a given tensor using CP decomposition.
The approximation error is defined as ||X−X′||2

||X||2 , where X is the original tensor, and X ′ is the
reconstructed tensor. The original tensor is CONV8 (model.features[24]) of the pretrained VGG-16
on CIFAR-10. When employing VBMF to select the rank, the determined value is 270. For the ranks
we considered for CPD_svd are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 150, 200, 270. It can
be observed that the approximation error decreases as the rank increases. When the rank is fixed to
270, the approximation error obtained by CPD_svd and CPD_vbmf are very similar.

In Fig. 9, we compare the test accuracy of VGG-16 after the selected layer being replaced at different
ranks. Taking Fig. 8 into account, it is seen that a smaller approximation error does not guarantee a
higher accuracy. Besides, under the same rank setting, SVD obtains higher accuracy than VBMF
(93.99% vs. 93.90%), which reflects that VBMF is a good tool to determine the ranks but not that
good to do initialization.

1https://github.com/kuangliu/pytorch-cifar
2https://github.com/locuslab/convmixer-cifar10
3https://github.com/alvinwan/shiftresnet-cifar
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Figure 8: Approximation errors vs. ranks.

Figure 9: Test accuracy under different ranks.

F ITERATIVE FINE-TUNING

Implementation Details

1. Conduct CPD individually for each layer by setting CPD_rank = 4, 8, 16 and using CPD_svd
to initialize the VGG-16. Choose the model having the highest test accuracy as the baseline
structure for the next round experiment.

2. Perform task 1 individually for each layer (excepting the layer already decomposed in the
form step) by setting CPD_rank = 4, 8, 16 and using CPD_svd to initialize the model.
Choose the model having the highest accuracy as the baseline structure for the next round.

3. Repeat step (b) until all CONV layers are decomposed.
4. The number of epochs for fine-tuning is set to be 200.
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ROUND 1

In round 1, no layer is decomposed in advance. In this round, we obtain 39 different models, each
decomposes only one layer at different ranks (cf. Table 14).

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 94.04 92.47 92.08 91.30 91.75 92.36 93.03 93.50 94.02 94.16 94.08 94.08 94.08
rank = 8 94.12 93.54 93.43 92.38 92.63 92.15 93.24 93.45 93.90 94.00 94.23 93.98 93.91
rank = 16 93.79 93.50 93.63 93.23 93.31 92.58 92.98 93.84 94.17 94.11 94.07 93.94 94.30

Table 14: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

ROUND 2

According to the results in round 1:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.

Therefore, we obtain 36 different models, each decomposes two layers, and layer 13 is fixed to be
decomposed at rank 16 (cf. Table 15). For following rounds, the tables can be interpreted similarly.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 93.87 92.50 92.03 91.29 91.24 91.95 92.54 93.34 93.98 93.91 93.77 93.94 ——
rank = 8 93.24 93.01 92.91 92.14 92.70 92.48 92.67 93.79 93.92 93.98 94.07 93.90 ——
rank = 16 93.48 93.47 93.24 92.83 92.78 92.80 93.00 93.21 93.94 94.02 93.92 93.98

√

Table 15: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the accuracy in the last round.

ROUND 3

According to the results in round 2:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.
2. the 11-th CONV layer is selected to be decomposed with rank = 8.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 93.64 92.21 91.81 90.99 90.93 91.73 92.30 93.21 93.56 93.85 —— 93.96 ——
rank = 8 94.01 92.97 92.67 91.69 92.12 91.96 92.52 93.26 93.76 93.89

√
93.76 ——

rank = 16 93.30 93.46 93.08 93.05 92.75 92.21 92.59 93.60 93.75 94.19 —— 93.94
√

Table 16: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the accuracy in the last round.
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ROUND 4

According to the results in round 3:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.

2. the 11-th CONV layer is selected to be decomposed with rank = 8.

3. the 10-th CONV layer is selected to be decomposed with rank = 16.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 93.36 91.95 91.90 90.58 90.36 91.13 92.03 92.51 93.77 —— —— 93.72 ——
rank = 8 93.61 92.78 92.42 92.24 91.76 91.87 92.68 93.55 93.85 ——

√
93.77 ——

rank = 16 93.47 90.16 92.57 92.63 92.52 91.92 92.56 93.01 93.82
√

—— 94.00
√

Table 17: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

ROUND 5

According to the results in round 4:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.

2. the 11-th CONV layer is selected to be decomposed with rank = 8.

3. the 10-th CONV layer is selected to be decomposed with rank = 16.

4. the 12-th CONV layer is selected to be decomposed with rank = 16.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 92.99 91.77 90.57 90.46 89.33 90.51 10.00 92.59 93.47 —— —— —— ——
rank = 8 93.14 92.47 92.13 91.23 91.72 91.78 91.78 93.50 93.39 ——

√
—— ——

rank = 16 93.10 90.82 92.35 91.88 92.16 10.00 92.38 92.64 93.44
√

——
√ √

Table 18: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

ROUND 6

According to the results in round 5:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.

2. the 11-th CONV layer is selected to be decomposed with rank = 8.

3. the 10-th CONV layer is selected to be decomposed with rank = 16.

4. the 12-th CONV layer is selected to be decomposed with rank = 16.

5. the 8-th CONV layer is selected to be decomposed with rank = 8.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 92.74 10.00 89.46 89.13 88.19 89.63 91.97 —— 92.39 —— —— —— ——
rank = 8 92.71 91.80 90.95 90.56 89.69 90.90 91.97

√
92.82 ——

√
—— ——

rank = 16 92.85 10.0 91.06 90.95 90.53 91.37 91.87 —— 92.88
√

——
√ √

Table 19: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.
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ROUND 7

According to the results in round 5:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.
2. the 11-th CONV layer is selected to be decomposed with rank = 8.
3. the 10-th CONV layer is selected to be decomposed with rank = 16.
4. the 12-th CONV layer is selected to be decomposed with rank = 16.
5. the 8-th CONV layer is selected to be decomposed with rank = 8.
6. the 9-th CONV layer is selected to be decomposed with rank = 16.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 91.92 90.33 89.14 88.56 85.21 89.50 91.06 —— —— —— —— —— ——
rank = 8 91.45 91.66 10.00 90.51 88.95 90.07 91.80

√
—— ——

√
—— ——

rank = 16 91.94 89.07 90.41 89.05 90.25 81.19 91.62 ——
√ √

——
√ √

Table 20: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

ROUND 8

According to the results in round 5:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.
2. the 11-th CONV layer is selected to be decomposed with rank = 8.
3. the 10-th CONV layer is selected to be decomposed with rank = 16.
4. the 12-th CONV layer is selected to be decomposed with rank = 16.
5. the 8-th CONV layer is selected to be decomposed with rank = 8.
6. the 9-th CONV layer is selected to be decomposed with rank = 16.
7. the 1-th CONV layer is selected to be decomposed with rank = 16.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 —— 89.36 89.12 10.0 86.09 87.63 10.0 —— —— —— —— —— ——
rank = 8 —— 10.0 89.95 88.98 88.69 89.21 91.23

√
—— ——

√
—— ——

rank = 16
√

10.0 90.62 89.73 88.85 90.26 10.0 ——
√ √

——
√ √

Table 21: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

ROUND 9

According to the results in round 5:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.
2. the 11-th CONV layer is selected to be decomposed with rank = 8.
3. the 10-th CONV layer is selected to be decomposed with rank = 16.
4. the 12-th CONV layer is selected to be decomposed with rank = 16.
5. the 8-th CONV layer is selected to be decomposed with rank = 8.
6. the 9-th CONV layer is selected to be decomposed with rank = 16.
7. the 1-th CONV layer is selected to be decomposed with rank = 16.
8. the 7-th CONV layer is selected to be decomposed with rank = 8.
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1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 —— 84.84 86.51 85.05 65.69 79.19 —— —— —— —— —— —— ——
rank = 8 —— 89.46 89.26 88.42 85.70 89.47

√ √
—— ——

√
—— ——

rank = 16
√

88.79 89.44 87.75 87.43 90.15 —— ——
√ √

——
√ √

Table 22: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

ROUND 10

According to the results in round 5:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.

2. the 11-th CONV layer is selected to be decomposed with rank = 8.

3. the 10-th CONV layer is selected to be decomposed with rank = 16.

4. the 12-th CONV layer is selected to be decomposed with rank = 16.

5. the 8-th CONV layer is selected to be decomposed with rank = 8.

6. the 9-th CONV layer is selected to be decomposed with rank = 16.

7. the 1-th CONV layer is selected to be decomposed with rank = 16.

8. the 7-th CONV layer is selected to be decomposed with rank = 8.

9. the 6-th CONV layer is selected to be decomposed with rank = 16.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 —— 10.00 10.00 10.00 81.95 —— —— —— —— —— —— —— ——
rank = 8 —— 85.61 85.42 10.00 10.00 ——

√ √
—— ——

√
—— ——

rank = 16
√

82.50 87.64 84.68 10.00
√

—— ——
√ √

——
√ √

Table 23: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

ROUND 11

According to the results in round 5:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.

2. the 11-th CONV layer is selected to be decomposed with rank = 8.

3. the 10-th CONV layer is selected to be decomposed with rank = 16.

4. the 12-th CONV layer is selected to be decomposed with rank = 16.

5. the 8-th CONV layer is selected to be decomposed with rank = 8.

6. the 9-th CONV layer is selected to be decomposed with rank = 16.

7. the 1-th CONV layer is selected to be decomposed with rank = 16.

8. the 7-th CONV layer is selected to be decomposed with rank = 8.

9. the 6-th CONV layer is selected to be decomposed with rank = 16.

10. the 3-th CONV layer is selected to be decomposed with rank = 16.

ROUND 12

According to the results in round 5:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.

2. the 11-th CONV layer is selected to be decomposed with rank = 8.
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1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 —— 80.02 —— 10.00 10.00 —— —— —— —— —— —— —— ——
rank = 8 —— 84.53 —— 10.00 65.53 ——

√ √
—— ——

√
—— ——

rank = 16
√

10.00
√

82.14 82.92
√

—— ——
√ √

——
√ √

Table 24: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

3. the 10-th CONV layer is selected to be decomposed with rank = 16.

4. the 12-th CONV layer is selected to be decomposed with rank = 16.

5. the 8-th CONV layer is selected to be decomposed with rank = 8.

6. the 9-th CONV layer is selected to be decomposed with rank = 16.

7. the 1-th CONV layer is selected to be decomposed with rank = 16.

8. the 7-th CONV layer is selected to be decomposed with rank = 8.

9. the 6-th CONV layer is selected to be decomposed with rank = 16.

10. the 3-th CONV layer is selected to be decomposed with rank = 16.

11. the 2-th CONV layer is selected to be decomposed with rank = 8.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 —— —— —— 10.00 73.89 —— —— —— —— —— —— —— ——
rank = 8 ——

√
—— 81.85 73.50 ——

√ √
—— ——

√
—— ——

rank = 16
√

——
√

79.63 80.44
√

—— ——
√ √

——
√ √

Table 25: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.

ROUND 13

According to the results in round 5:

1. the 13-th CONV layer is selected to be first decomposed with rank = 16.

2. the 11-th CONV layer is selected to be decomposed with rank = 8.

3. the 10-th CONV layer is selected to be decomposed with rank = 16.

4. the 12-th CONV layer is selected to be decomposed with rank = 16.

5. the 8-th CONV layer is selected to be decomposed with rank = 8.

6. the 9-th CONV layer is selected to be decomposed with rank = 16.

7. the 1-th CONV layer is selected to be decomposed with rank = 16.

8. the 7-th CONV layer is selected to be decomposed with rank = 8.

9. the 6-th CONV layer is selected to be decomposed with rank = 16.

10. the 3-th CONV layer is selected to be decomposed with rank = 16.

11. the 2-th CONV layer is selected to be decomposed with rank = 8.

12. the 4-th CONV layer is selected to be decomposed with rank = 8.

1 2 3 4 5 6 7 8 9 10 11 12 13

Acc.(%)

rank = 4 —— —— —— —— 10.00 —— —— —— —— —— —— —— ——
rank = 8 ——

√
——

√
69.50 ——

√ √
—— ——

√
—— ——

rank = 16
√

——
√

—— 10.00
√

—— ——
√ √

——
√ √

Table 26: Acc. means the test accuracy, and the baseline is 94.13%. (Red) The highest test accuracy.
(Blue) The performance that is comparable or even higher than the baseline.
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According to the results shown in rounds 1 - 13, it is seen that the accuracy decreases significantly
since round 10. It is also worth noting that the accuracy obtained by adaptive substitution is worse
than that of compressing all CONV layers at one time with pretrained parameters.
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