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ABSTRACT

We present “probe scaling”: a post-hoc recipe for calibrating the predictions of
modern neural networks. Our recipe is inspired by several lines of work, which
demonstrate that early layers in the neural network learn general rules whereas
later layers specialize. We show how such observations can be utilized in a post-
hoc manner to calibrate the predictions of trained neural networks by injecting lin-
ear probes on the network’s intermediate representations. Similar to temperature
scaling, probe scaling neither retrains the architecture nor requires significantly
more parameters. Unlike temperature scaling, however, it utilizes intermediate
layers in the neural network. We demonstrate that probe scaling improves per-
formance over temperature scaling on benchmark datasets across all five metrics:
expected calibration error (ECE), negative log-likelihood, Brier score, classifica-
tion accuracy, and the area under the ROC curve.

1 INTRODUCTION

Calibration is a measure of how accurate a model is in estimating its own uncertainty. It is an
important metric for evaluating predictive models, particularly in critical domains such as medical
diagnosis. In the latter case, having the ability to highlight predictions with low confidence is crucial
in order for them to be handled separately, such as by referring to consultants for second opinions
or by supplying additional information (e.g. lab tests), among others (Kompa et al., 2021). Pro-
viding an accurate estimate of uncertainty is also important in selective predictions (a.k.a. reject
option classifiers) in which one optimizes a weighted combination of the cost of abstention and the
cost of providing an incorrect prediction (Geifman & El-Yaniv, 2017)). It is also important when
debiasing trained models via post-processing, where group-specific thresholding rules are adjusted
to maximize accuracy subject to prescribed fairness guarantees (Corbett-Davies et al., 2017; Menon
& Williamson, 2018; Celis et al., 2019; Alabdulmohsin & Lucic, 2021).

In order to achieve such objectives, however, trained machine learning models need to be cali-
brated, i.e. their predicted probabilities of outcomes should closely match with the observed em-
pirical frequencies. More formally, writing X for the instance space (e.g. the space of images),
Y = {0, 1, 2, . . . ,K − 1} for the target set, and ∆K for the probability simplex in RK , a proba-
bilistic multiclass classifier f : X → ∆K that outputs class probabilities for K classes is said to be
calibrated if (Guo et al., 2017):

∀y ∈ Y : p(y = y |f(x) = q) = qy, (1)

where qy is the y-th coordinate of the probability distribution q ∈ ∆K . In a slightly weaker notion,
f : X → ∆K is said to be classwise calibrated if (Kull et al., 2019):

∀y ∈ Y : p(y = y |fy(x) = qy) = qy. (2)

Unfortunately, several lines of work observed that modern neural networks lack such calibration
(Guo et al., 2017; Thulasidasan et al., 2019; Ovadia et al., 2019; Kumar & Sarawagi, 2019; Kull
et al., 2019), particularly under distribution shift (Ovadia et al., 2019). To remedy this prob-
lem, various approaches have been proposed including Monte Carlo dropout (Gal & Ghahramani,
2016), deep ensembles (Lakshminarayanan et al., 2016), training multiple independent subnetworks
(Havasi et al., 2021), and augmentation (Thulasidasan et al., 2019). Often, such calibration methods
inject diversity by generating multiple predictions for the same instance x ∈ X .
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Figure 1: In probe scaling, d linear probes are injected into the intermediate representations of the
neural network. Each probe is trained to maximize a proper score, such as the cross-entropy. Af-
terward, the logits of all probes are concatenated together to form a new representation. Finally, a
classifier with d parameters (shown as β’s) is trained to output the calibrated scores using a 1D con-
volutional layer with strides d (equivalent to matrix multiplication) followed by softmax activations.

Besides diversity-based approaches, one particularly effective calibration rule is temperature scaling
(Guo et al., 2017). It is an extension of the classical Platt scaling algorithm (Platt et al., 1999) to the
multiclass setting. Temperature scaling rescales the neural networks’ logits by a scalar τ ∈ R+ cho-
sen according to a separate validation dataset to optimize a proper scoring rule, where proper scores
are those that guarantee to yield a perfectly calibrated classifier at its minimum at the infinite data
limit (Gneiting & Raftery, 2007). Proper scores include, for example, the negative log-likelihood
(a.k.a. cross-entropy loss) and the Brier score (a.k.a. squared loss). Despite the fact that temperature
scaling is a post-hoc rule that neither requires changes to the training procedure nor adds significantly
more parameters, it has been observed to yield competitive results in practice for in-distribution data
(Guo et al., 2017; Ovadia et al., 2019; Kull et al., 2019).

In this work, we propose extending temperature scaling to “probe scaling”, which is a post-hoc cali-
bration method that utilizes the learned representations of intermediate layers in the neural network.
An overview of probe scaling is presented in Figure 1. First, given a deep neural network that can be
partitioned into d blocks (e.g. convolutional blocks in the standard ResNet and VGG architectures
(He et al., 2016; Simonyan & Zisserman, 2015)), the k-th linear probe is trained to predict the final
class y ∈ Y given the representation learned at block k for the instance x ∈ X . In total, d− 1 linear
probes are trained accordingly while the d-th probe is an identity mapping that preserves the logits of
the original classifier. Finally, the logits of all probes are concatenated to form a new representation
in the logit space with |Y| × d features as shown in Figure 1, where |Y| is the number of classes.
A final linear classifier is trained to optimize a proper score, such as the cross-entropy, on the new
representation. Full pseudocode is provided in Algorithm 1.

Clearly, temperature scaling is a particular instance of probe scaling in which a single probe is used
(i.e. d = 1). However, unlike temperature scaling, probe scaling often improves the accuracy of the
original classifier besides improving its calibration. In fact, as discussed in Section 3, probe scaling
performs better than temperature scaling on all considered five metrics: expected calibration error
(ECE), negative log-likelihood, Brier score, classification accuracy, and the area under the ROC
curve. The following proposition provides a formal argument for the advantage of probe scaling
over temperature scaling when the aggregator is trained to optimize a proper, convex, Lipschitz
scoring function, such as the logistic loss in the binary classification setting:

Proposition 1 Let f : Rd × X × Y → R be a scoring function that is convex and ρ-Lipschitz
continuous on its first argument. For a given instance space X and a target set Y , denote by S ∈
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(X × Y)N ∼ DN a hold-out validation dataset of size N . Let βprobe be the aggregator weights in
probe scaling that minimize the regularized empirical loss on the hold-out sample:

βprobe = arg min
β∈Rd

Ex,y∈S
[
(λ/2) ||β||2 + f(β, x, y)

]
, (3)

Then, the probability that the solution of temperature scaling βtemp performs better than probe
scaling βprobe with respect to f by more than ε > 0 over the random choice of the hold-out sample
is bounded by:

pS∼DN

{
Ex,y∈D

[
f(βtemp, x, y)

]
≤ Ex,y∈D

[
f(βprobe, x, y)

]
− ε
}
≤ 1

ε

(
λ||β?||2 +

2ρ2

λN

)
, (4)

where β? is the optimal probe scaling parameters at the limit of an infinite validation data size
N → ∞. Consequently, by setting λ = 1/

√
N , the probability bound (||β?||2 + 2ρ2)/(ε

√
N) can

be made arbitrarily small for a sufficiently large N for any fixed ε > 0.

In addition, one informal justification for why probe scaling improves calibration (and accuracy) is
that early layers tend to learn general-purpose representations whereas later layers specialize. This
has been observed in several works, such as when studying transfer learning (Raghu et al., 2019;
Yosinski et al., 2014), memorization (Arpit et al., 2017; Cohen et al., 2018), and pretraining with
random labels (Maennel et al., 2020). In particular, “easy” examples tend to be classified correctly
by all layers of the neural network while difficult examples tend to be classified correctly by the last
layers alone (Cohen et al., 2018; Baldock et al., 2021). By injecting linear probes on the intermediate
representations of the neural network, the model improves its estimate of its own uncertainty by
comparing the predictions at different layers.

2 CONTRIBUTION AND RELATED WORK

Measures of Calibration To evaluate calibration, several scores have been introduced in the lit-
erature. One popular score is the expected calibration error (ECE), which in its confidence-based
version is given by (Naeini et al., 2015; Guo et al., 2017; Nixon et al., 2019):

ECE =

M∑
j=1

|Bj |
n

∣∣acc(Bj) − p(Bj)
∣∣, (5)

where {Bj}j=1,...,M are the bins, |Bj | is the size of the bin, acc(Bj) is the model’s accuracy within
the bin, and p(Bj) is the model’s average confidence. While often used as a default measure of
calibration, ECE has its own limitations including high sensitivity to the number of chosen bins
(Nixon et al., 2019). As a result, proper scoring rules are used as well. As discussed earlier, a
scoring function is called proper if it is optimized by the true probability distribution, and it is called
strictly proper if it has a unique optima (Gneiting & Raftery, 2007). One commonly used proper
scoring function is the Brier score (Brier et al., 1950):

Brier = Ex,y
[∑
y∈Y

p(y | x)2 − 2p(y | x)
]
, (6)

where y is the true label and p(y | x) is the probability assigned by the model to the class y ∈ Y when
the instance is x. Note that the Brier score is an affine transformation of the square loss and can be
negative when Equation 6 is used. Besides, the negative log-likelihood (NLL), a.k.a. cross entropy,
is a second proper score, which assigns a more aggressive penalty than the Brier score for events
that occur when their predicted probabilities were quite small (Bickel, 2007). In our evaluation, we
use the implementation of the ECE, Brier score, and NLL in Tensorflow (Abadi et al., 2015).

Calibration Methods. Several methods have been proposed to improve the calibration of neural
networks. These include regularization-based methods, such as the Maximum Mean Calibration
Error (MMCE), which adds a penalty term to the loss that is analogous to the Maximum Mean Dis-
crepancy (MMD) method for testing the difference between two probability distributions (Kumar
et al., 2018). They also include Bayesian methods, such as Stochastic Weight Average Gaussian
(SWAG), which estimates uncertainty by sampling from the posterior distribution of the weights
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Figure 2: Reliability diagrams are plotted for all five calibration methods when ResNet50 is trained
on CIFAR100. Red shaded regions indicate the discrepancy between the confidence of the classifier
and its accuracy. In general, both temperature scaling and probe scaling perform better than the
other post-hoc methods with probe scaling performing best overall (see details in Section 3).

(Maddox et al., 2019). Other popular choices include ensemble-based approaches such as by train-
ing multiple networks with different seeds (Lakshminarayanan et al., 2017), augmentation-based
methods such as Mix-Up (Thulasidasan et al., 2019), or variational inference based methods such as
the Monte Carlo dropout (Gal & Ghahramani, 2016).

The proposed probe scaling method, on the other hand, is a post-hoc recipe for improving the cal-
ibration of modern neural networks. It extends temperature scaling (Guo et al., 2017) to inter-
mediate layers in the neural network. Besides temperature scaling, an alternative post-hoc recipe
for calibrating the predictions of neural networks is isotonic regression, which learns a monotonic
transformation of the model’s predictions into the true labels (Zadrozny & Elkan, 2002). In Gupta
et al. (2021), another post-hoc recipe is proposed that is inspired by the Kolmogorov-Smirnov test,
which approximates cumulative distribution functions using splines and estimates uncertainty us-
ing derivatives. For illustration, Figure 2 displays the reliability diagrams of these post-hoc rules
when applied to ResNet50 (He et al., 2016) on the CIFAR100 dataset (Krizhevsky, 2009). A more
thorough evaluation of all three post-hoc methods as well as probe scaling is provided in Section 3.

Statement of Contribution. In summary, we propose extending temperature scaling to interme-
diate layers in the neural network using linear probes. We provide a comprehensive evaluation
showing that “probe scaling” outperforms other post-hoc rules in common benchmark datasets, in-
cluding under distribution shift. We also demonstrate that probe scaling can complement other
existing techniques, such as Monte Carlo dropout.

3 EXPERIMENTAL SETUP

3.1 COMPARISON WITH OTHER POST-HOC METHODS

Data Splits. To calibrate deep neural networks using post-hoc methods, we split the data into
three parts: a training dataset (90% of standard training split), a hold-out dataset (10% of standard
training split), and a test dataset (standard test split). In all methods, the original architecture is
trained on the training dataset while the post-hoc rule is trained on the hold-out dataset. Final results
are reported on the test data. In addition, the linear probes in the proposed probe scaling algorithm
are trained on the training dataset as well. Nevertheless, we remark that the latter is by no means
necessary since the probes can be applied to architectures that were pretrained on large datasets,
such as ImageNet-21k (a superset of ILSVRC2012 that contains 21k classes (Deng et al., 2009)).

Datasets and Architectures. In our experiments, we train the models on CIFAR10/100
(Krizhevsky, 2009), Street View House Numbers (SVHN) (Netzer et al., 2011), and Fashion-MNIST
(Xiao et al., 2017). We use five architectures: VGG16 and VGG19 (Simonyan & Zisserman, 2015),
ResNet18 and ResNet50 (He et al., 2016), and Wide-ResNet-28-10 (Zagoruyko & Komodakis,
2016). We also conduct experiments on ImageNet ILSVRC2012 (Deng et al., 2009) using ResNet50
(He et al., 2016). To assess the impact of distribution shift, we evaluate ImageNet trained models on
both clean images as well as the ImageNet-C corrupted images (Hendrycks & Dietterich, 2019).

Training Procedure. For reproducibility, we use a simple input training pipeline. We implement
standard architectures with default `2 regularization of 10−4. We train the model for 200 epochs on
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Algorithm 1 Pseudocode of Probe Scaling

Input: (1) Trained neural network with identified sequence of d− 1 ≥ 0 blocks; (2) Hold-out dataset.
Output: Calibrated model.
Training:

1: Insert d−1 linear probes, where probe k is trained to predict the target y ∈ Y given the output (intermediate
representation) of block k.

2: Concatenate the logits of all d − 1 probes in addition to the logits of the original neural network, forming
a new representation with d× |Y| features. Let:

R(x) =

 r1,1 r2,1 · · · rd,1
r1,2 r2,2 · · · rd,2
· · · · · · · · · · · ·
r1,|Y| r2,|Y| · · · rd,|Y|


be the new representation, where ri,y is the logit of the i-th probe for the class y.

3: Initialize β0 = (0, 0, . . . , 1)T ∈ Rd.
4: Train an aggregator using the projected stochastic gradient descent (SGD) that minimizes:

Ex,y

[
l
(
softmax

(
R(x)β

)
, y
)]
,

over the d parameters β ∈ Rd subject to the constraint β ≥ 0, and starting from the initial value β0, for
some proper scoring function l such as the cross-entropy. Here, R(x)β is matrix multiplication, which can
be implemented using 1D convolutional layers with strides d.

CIFAR10/100, for 100 epochs on SVHN, and for 50 epochs on Fashion-MNIST, all with a batch
size of 128. We use SGD with an initial learning rate of 0.1 and momentum of 0.9. We decay the
learning rate with cosine learning rate decay (Loshchilov & Hutter, 2016). On the input pipeline, we
standardize the input to have values in the unit interval [0, 1] and use only right-left random flipping
as data augmentation. For ImageNet experiments, we use the pretrained ResNet50 architecture
available in Keras (Chollet et al., 2015). We train on NVIDIA Tesla V100 GPUs for the medium-
size datasets and train the probes in ImageNet on 32 TPUs. After training, we freeze the weights.

In probe scaling, each probe comprises of a fully connected classifier head layer with softmax acti-
vations trained using the cross-entropy loss. Before the classifier head, we flatten the intermediate
representation that the probe is connected to, and we don’t use any non-linearity between the back-
bone layers and the probe. For simplicity and reproducibility, we place a linear probe after every
convolutional block in the ResNet and Wide-ResNet architectures, and after every convolutional
layer in the VGG architectures. This results in 9 probes in ResNet18 (including the logits of the
original classifier), 19 probes in ResNet50, 13 probes in Wide-ResNet-28-10, 17 probes in VGG16,
and 20 probes in VGG19. Since the backbone network is frozen, training the probes can be carried
out quickly. We train each probe with a learning rate of 0.005 and momentum 0.9 for 50 epochs,
although we observe that they converge much faster. After each probe is trained, we also freeze it.

The final step in probe scaling is to train the final model, which aggregates the logits of all probes.
It takes as input the concatenated output of each probe and performs a strided 1D convolution on it
(See Figure 1 and Algorithm 1), which is equivalent to using one parameter per probe. We train the
aggregator model for 50 epochs with a fixed learning rate of 0.005, using the hold-out part of the
dataset. We repeat all experiments five times and report averages. Section 4.1 presents the results.

3.2 COMPLEMENTING EXISTING ALGORITHMS

The proposed probe scaling algorithm can also be combined with other existing techniques to im-
prove calibration further. We illustrate this using the popular Monte Carlo dropout method (Gal &
Ghahramani, 2016). In Monte Carlo dropout, multiple predictions are generated for the same in-
stance x ∈ X by adding dropout layers to the model and using them at both training and test time.
Then, the model’s uncertainty can be estimated by averaging the predictions.

In our experiments, we use the implementation of the Monte Carlo dropout available at the Un-
certainty Baselines Benchmark (Nado et al., 2021). We use the same implementation details and
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Table 1: Empirical evaluation of post-hoc calibration methods on CIFAR100 (Krizhevsky, 2009) for
the five metrics: ECE, negative log-likelihood (NLL), Brier score, accuracy (ACC), and AUC.

ECE ↓ NLL ↓ Brier ↓ ACC ↑ AUC ↑

VGG16

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.201± 0.006
0.041± 0.003
0.069± 0.005
0.049± 0.010
0.025± 0.004

1.759± 0.044
1.238± 0.026
1.392± 0.039
3.382± 0.231
0.981± 0.020

-0.513± 0.011
-0.582± 0.008
-0.565± 0.009
-0.273± 0.030
-0.628± 0.007

0.698± 0.007
0.698± 0.007
0.687± 0.006
0.459± 0.025
0.726± 0.006

0.923± 0.002
0.969± 0.002
0.959± 0.003
0.847± 0.016
0.984± 0.001

VGG19

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.217± 0.005
0.046± 0.005
0.057± 0.007
0.052± 0.012
0.026± 0.003

2.002± 0.040
1.303± 0.022
1.436± 0.029
3.929± 0.313
0.969± 0.018

-0.497± 0.010
-0.581± 0.008
-0.568± 0.008
-0.221± 0.033
-0.633± 0.006

0.697± 0.006
0.697± 0.006
0.686± 0.007
0.412± 0.035
0.731± 0.005

0.908± 0.002
0.963± 0.001
0.956± 0.002
0.818± 0.020
0.986± 0.001

RESNET18

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.119± 0.004
0.037± 0.004
0.060± 0.005
0.048± 0.011
0.025± 0.003

1.183± 0.033
1.047± 0.025
1.245± 0.031
2.975± 0.285
0.925± 0.021

-0.604± 0.009
-0.627± 0.007
-0.597± 0.008
-0.328± 0.035
-0.651± 0.007

0.728± 0.006
0.728± 0.006
0.706± 0.006
0.486± 0.029
0.746± 0.005

0.960± 0.002
0.979± 0.001
0.968± 0.002
0.870± 0.020
0.985± 0.001

RESNET50

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.185± 0.006
0.021± 0.003
0.058± 0.006
0.041± 0.007
0.018± 0.003

1.675± 0.033
0.965± 0.015
1.353± 0.028
2.769± 0.202
0.949± 0.015

-0.561± 0.009
-0.634± 0.006
-0.545± 0.008
-0.343± 0.025
-0.637± 0.006

0.731± 0.006
0.731± 0.006
0.670± 0.007
0.499± 0.021
0.733± 0.007

0.933± 0.002
0.983± 0.001
0.967± 0.002
0.885± 0.014
0.984± 0.001

WIDE-RESNET-28-10

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.054± 0.004
0.054± 0.004
0.046± 0.004
0.054± 0.011
0.053± 0.004

0.890± 0.017
0.890± 0.017
0.980± 0.024
3.312± 0.263
0.887± 0.017

-0.691± 0.005
-0.691± 0.005
-0.686± 0.006
-0.300± 0.035
-0.691± 0.005

0.785± 0.004
0.785± 0.004
0.775± 0.005
0.470± 0.029
0.785± 0.004

0.981± 0.001
0.981± 0.001
0.972± 0.002
0.839± 0.020
0.982± 0.001

Table 2: This table lists the p-values using the non-parametric Wilcoxon signed-rank test for each
post-hoc method compared against probe scaling. In all cases, statistics are in favor of probe scaling.
The p-values shown in bold remain statistically significant at the 95% confidence level even after
correcting for multiple hypothesis testing using Holm’s step-down procedure (Demšar, 2006).

ECE NLL Brier ACC AUC

BASELINE 1× 10−4 8× 10−5 9× 10−5 2× 10−4 9× 10−5

TEMP 8× 10−3 3× 10−4 9× 10−5 2× 10−4 9× 10−4

ISOTONIC 3× 10−1 3× 10−4 5× 10−4 1× 10−3 2× 10−4

SPLINES 1× 10−1 9× 10−5 1× 10−4 1× 10−4 9× 10−5

hyper-parameters suggested by the benchmark, which uses the Wide-ResNet-28-10 architecture,
and follow it by probe scaling as described earlier in Section 3.1. We also test on different values of
the dropout rate. The final results are presented in Section 4.2.

4 RESULTS AND DISCUSSION

4.1 POST-HOC CALIBERATION RESULTS

Tables 1-5 present the empirical results of using probe scaling to calibrate neural networks in a post-
hoc manner. Five metrics are used in this evaluation: expected calibration error (ECE), negative log-
likelihood (NLL), Brier score (Brier), accuracy (ACC), and the area under the ROC curve (AUC). We
compare probe scaling to vanilla training (baseline), temperature scaling (Guo et al., 2017), isotonic
regression (Zadrozny & Elkan, 2002), and splines (Gupta et al., 2021). We observe that probe scaling
consistently outperforms other post-hoc methods in all metrics except on ECE in which no method
seems to dominate. Also, probe scaling is the only post-hoc method that consistently improves the
accuracy of the model and its AUC. For ImageNet and ImageNet-C, on the other hand, probe scaling
seems to offer a modest gain over temperature scaling as shown in Table 6.

Statistical Significance. To determine if the improvement of probe scaling over other post-hoc
methods is statistically significant, we used the non-parametric Wilcoxon signed-rank test and cor-
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Table 3: Empirical evaluation of post-hoc calibration methods on CIFAR10 (Krizhevsky, 2009) for
the five metrics: ECE, negative log-likelihood (NLL), Brier score, accuracy (ACC) and AUC.

ECE ↓ NLL ↓ Brier ↓ ACC ↑ AUC ↑

VGG16

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.060± 0.002
0.025± 0.003
0.018± 0.003
0.013± 0.002
0.016± 0.003

0.423± 0.018
0.263± 0.009
0.260± 0.009
0.298± 0.011
0.226± 0.007

-0.869± 0.004
-0.885± 0.004
-0.887± 0.003
-0.886± 0.003
-0.892± 0.004

0.926± 0.002
0.926± 0.002
0.924± 0.003
0.924± 0.003
0.927± 0.002

0.979± 0.001
0.994± 0.000
0.993± 0.001
0.992± 0.001
0.996± 0.000

VGG19

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.061± 0.003
0.023± 0.003
0.017± 0.004
0.012± 0.002
0.017± 0.002

0.444± 0.021
0.269± 0.009
0.269± 0.013
0.313± 0.018
0.226± 0.006

-0.869± 0.005
-0.885± 0.004
-0.886± 0.004
-0.885± 0.003
-0.892± 0.003

0.927± 0.002
0.927± 0.002
0.926± 0.003
0.924± 0.003
0.928± 0.002

0.977± 0.001
0.994± 0.001
0.993± 0.001
0.991± 0.001
0.996± 0.000

RESNET18

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.038± 0.002
0.013± 0.003
0.015± 0.004
0.011± 0.004
0.015± 0.002

0.265± 0.016
0.191± 0.010
0.240± 0.026
0.247± 0.036
0.184± 0.009

-0.904± 0.004
-0.912± 0.004
-0.893± 0.011
-0.903± 0.014
-0.912± 0.004

0.941± 0.003
0.941± 0.003
0.928± 0.008
0.933± 0.014
0.941± 0.002

0.989± 0.001
0.996± 0.001
0.994± 0.001
0.994± 0.001
0.996± 0.000

RESNET50

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.046± 0.002
0.010± 0.002
0.028± 0.008
0.046± 0.016
0.010± 0.002

0.341± 0.016
0.190± 0.006
0.440± 0.065
0.740± 0.146
0.189± 0.006

-0.893± 0.003
-0.907± 0.002
-0.791± 0.031
-0.718± 0.049
-0.907± 0.002

0.936± 0.002
0.936± 0.002
0.857± 0.022
0.769± 0.041
0.936± 0.002

0.986± 0.001
0.997± 0.000
0.986± 0.003
0.961± 0.014
0.997± 0.000

WIDE-RESNET-28-10

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.026± 0.002
0.012± 0.002
0.012± 0.002
0.009± 0.002
0.011± 0.001

0.176± 0.010
0.149± 0.007
0.157± 0.008
0.192± 0.014
0.147± 0.006

-0.928± 0.003
-0.932± 0.003
-0.932± 0.003
-0.929± 0.003
-0.932± 0.003

0.956± 0.002
0.956± 0.002
0.955± 0.002
0.953± 0.003
0.956± 0.002

0.994± 0.001
0.997± 0.000
0.997± 0.001
0.995± 0.001
0.997± 0.000

Table 4: Empirical evaluation of post-hoc calibration methods on SVHN (Netzer et al., 2011) for
the five metrics: ECE, negative log-likelihood (NLL), Brier score, accuracy (ACC) and AUC.

ECE ↓ NLL ↓ Brier ↓ ACC ↑ AUC ↑

VGG16

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.021± 0.003
0.012± 0.002
0.006± 0.001
0.013± 0.004
0.011± 0.002

0.227± 0.009
0.218± 0.011
0.208± 0.009
0.420± 0.033
0.191± 0.009

-0.907± 0.005
-0.909± 0.005
-0.914± 0.004
-0.869± 0.009
-0.920± 0.004

0.940± 0.004
0.940± 0.004
0.944± 0.003
0.917± 0.005
0.947± 0.003

0.993± 0.001
0.995± 0.000
0.994± 0.001
0.980± 0.002
0.996± 0.000

VGG19

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.019± 0.002
0.012± 0.002
0.006± 0.001
0.013± 0.004
0.010± 0.003

0.205± 0.011
0.199± 0.009
0.194± 0.010
0.408± 0.044
0.181± 0.007

-0.918± 0.004
-0.920± 0.004
-0.922± 0.004
-0.877± 0.010
-0.925± 0.003

0.947± 0.003
0.947± 0.003
0.949± 0.003
0.923± 0.005
0.951± 0.002

0.993± 0.001
0.995± 0.000
0.994± 0.000
0.981± 0.003
0.996± 0.000

RESNET18

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.026± 0.002
0.012± 0.003
0.007± 0.001
0.011± 0.003
0.013± 0.002

0.250± 0.018
0.228± 0.016
0.218± 0.014
0.409± 0.031
0.205± 0.013

-0.901± 0.007
-0.904± 0.007
-0.908± 0.006
-0.868± 0.006
-0.912± 0.006

0.937± 0.005
0.937± 0.005
0.940± 0.004
0.917± 0.004
0.942± 0.004

0.991± 0.001
0.995± 0.001
0.994± 0.001
0.981± 0.003
0.996± 0.001

RESNET50

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.013± 0.002
0.016± 0.002
0.006± 0.001
0.011± 0.003
0.014± 0.002

0.209± 0.018
0.205± 0.018
0.183± 0.013
0.397± 0.029
0.191± 0.014

-0.914± 0.008
-0.914± 0.008
-0.924± 0.006
-0.879± 0.008
-0.919± 0.007

0.944± 0.006
0.944± 0.006
0.952± 0.004
0.925± 0.005
0.947± 0.005

0.994± 0.001
0.995± 0.001
0.995± 0.001
0.981± 0.002
0.996± 0.000

WIDE-RESNET-28-10

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.020± 0.002
0.009± 0.001
0.005± 0.001
0.012± 0.004
0.009± 0.001

0.196± 0.010
0.181± 0.011
0.175± 0.009
0.421± 0.042
0.174± 0.008

-0.923± 0.005
-0.925± 0.005
-0.928± 0.004
-0.878± 0.008
-0.927± 0.004

0.951± 0.004
0.951± 0.004
0.954± 0.003
0.924± 0.005
0.953± 0.003

0.993± 0.000
0.996± 0.000
0.995± 0.000
0.980± 0.003
0.996± 0.000

rected it for multiple hypothesis testing using Holm’s step down procedure (Demšar, 2006). Our
analysis reveals that probe scaling outperforms both vanilla training (baseline) and temperature
scaling in ECE, and outperforms all post-hoc methods on all remaining four metrics: NLL, Brier,
accuracy, and AUC with a statistically significant evidence at the 95% confidence level. Details are
provided in Table 2.
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Table 5: Empirical evaluation of post-hoc calibration methods on Fashion MNIST (Xiao et al., 2017)
for the five metrics: ECE, negative log-likelihood (NLL), Brier score, accuracy (ACC) and AUC.

ECE ↓ NLL ↓ Brier ↓ ACC ↑ AUC ↑

VGG16

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.049± 0.007
0.017± 0.003
0.016± 0.003
0.016± 0.005
0.010± 0.002

0.323± 0.039
0.274± 0.021
0.273± 0.018
0.340± 0.077
0.199± 0.007

-0.858± 0.010
-0.866± 0.009
-0.872± 0.008
-0.857± 0.028
-0.898± 0.004

0.910± 0.005
0.910± 0.005
0.914± 0.005
0.895± 0.031
0.931± 0.003

0.988± 0.003
0.994± 0.001
0.993± 0.001
0.991± 0.003
0.997± 0.000

VGG19

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.040± 0.012
0.015± 0.003
0.016± 0.003
0.014± 0.004
0.023± 0.025

0.298± 0.064
0.267± 0.048
0.269± 0.028
0.320± 0.070
0.280± 0.178

-0.864± 0.026
-0.869± 0.023
-0.873± 0.014
-0.862± 0.030
-0.889± 0.026

0.912± 0.015
0.912± 0.015
0.915± 0.010
0.902± 0.031
0.928± 0.010

0.990± 0.003
0.994± 0.002
0.994± 0.001
0.992± 0.003
0.992± 0.010

RESNET18

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.053± 0.006
0.014± 0.003
0.020± 0.005
0.030± 0.015
0.014± 0.004

0.358± 0.043
0.261± 0.019
0.323± 0.030
0.568± 0.200
0.210± 0.005

-0.863± 0.011
-0.875± 0.009
-0.847± 0.016
-0.773± 0.072
-0.897± 0.003

0.915± 0.006
0.915± 0.006
0.898± 0.010
0.812± 0.063
0.931± 0.002

0.986± 0.002
0.994± 0.001
0.991± 0.001
0.975± 0.017
0.996± 0.000

RESNET50

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.064± 0.006
0.014± 0.002
0.017± 0.004
0.026± 0.014
0.012± 0.002

0.433± 0.021
0.331± 0.012
0.318± 0.017
0.480± 0.160
0.282± 0.021

-0.823± 0.008
-0.836± 0.007
-0.845± 0.008
-0.801± 0.057
-0.859± 0.010

0.887± 0.004
0.887± 0.004
0.896± 0.004
0.849± 0.054
0.904± 0.006

0.984± 0.001
0.992± 0.001
0.992± 0.001
0.982± 0.012
0.994± 0.001

WIDE-RESNET-28-10

BASELINE
TEMP
ISOTONIC
SPLINES
PROBE

0.043± 0.004
0.013± 0.002
0.013± 0.002
0.013± 0.002
0.010± 0.001

0.300± 0.014
0.252± 0.009
0.242± 0.008
0.270± 0.011
0.242± 0.007

-0.873± 0.005
-0.879± 0.004
-0.886± 0.003
-0.884± 0.003
-0.882± 0.003

0.920± 0.003
0.920± 0.003
0.925± 0.003
0.923± 0.003
0.922± 0.002

0.989± 0.001
0.994± 0.001
0.994± 0.001
0.994± 0.001
0.995± 0.000

Table 6: Empirical evaluation on ResNet50 trained on ImageNet ILSVRC2012 (Deng et al., 2009)
and ImageNet-C (Hendrycks & Dietterich, 2019). Here, the splines-based method is excluded from
the comparison because it failed to perform better than the baseline.

ECE ↓ NLL ↓ Brier ↓ ACC ↑ AUC ↑

ImageNet

BASELINE 0.0640 1.1481 -0.6173 0.7276 0.6659
ISOTONIC 0.0447 1.3849 -0.5978 0.7093 0.6947
TEMP 0.0247 1.1066 -0.6220 0.7276 0.6735
PROBE 0.0239 1.1065 -0.6220 0.7272 0.6736

ImageNet-C

BASELINE 0.0846 1.6544 -0.5005 0.6316 0.6548
ISOTONIC 0.0402 1.8061 -0.4965 0.6249 0.6858
TEMP 0.0271 1.5903 -0.5102 0.6316 0.6646
PROBE 0.0259 1.5903 -0.5101 0.6316 0.6646

4.2 COMPLEMENTING METHODS RESULTS

Table 7 presents the empirical results when combining Monte Carlo dropout with probe scaling.
We evaluate on the Uncertainty Baselines Benchmark (Nado et al., 2021) as mentioned earlier,
which uses the Wide-ResNet-28-10 architecture. The results indicate that in most of the cases,
probe scaling improves the calibration and uncertainty estimation of the model when combined with
Monte Carlo dropout, sometimes quite significantly such as in the Fashion MNIST dataset. Out of
the four datasets, only SVHN does not reveal a notable gain by combining probe scaling with Monte
Carlo dropout.

4.3 CONTRIBUTION OF PROBES.

In Figure 3, we plot the contribution of the probes as a function of their relative depths for models
trained on CIFAR100. One stark difference appears between the ResNet architectures with skip
connections and the classical VGG architectures. In VGG16/19, probes assigned to the early lay-
ers in the neural network play a significant role in estimating the model’s uncertainty. In ResNet
architectures, on the other hand, only the probes assigned to the upper layers play a significant role.
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Table 7: Empirical evaluation on Wide-ResNet-28-10 with Monte Carlo dropout. Probe scaling can
complement other techniques to improve calibration further.

ECE ↓ NLL ↓ Brier ↓ ACC ↑ AUC ↑

CIFAR10

Dropout rate 0.1 MC Dropout
Probes + MC Dropout

0.023± 0.001
0.010± 0.001

0.160± 0.004
0.144± 0.003

-0.932± 0.001
-0.935± 0.001

0.958± 0.001
0.957± 0.001

0.995± 0.000
0.997± 0.000

Dropout rate 0.2 MC Dropout
Probes + MC Dropout

0.019± 0.001
0.005± 0.000

0.151± 0.002
0.144± 0.001

-0.929±0.001
-0.930± 0.000

0.954± 0.001
0.953± 0.001

0.996± 0.000
0.998± 0.000

CIFAR100

Dropout rate 0.1 MC Dropout
Probes + MC Dropout

0.044± 0.002
0.033± 0.002

0.754± 0.002
0.751± 0.002

-0.717± 0.002
-0.719± 0.002

0.802± 0.002
0.802± 0.002

0.985± 0.000
0.988± 0.000

Dropout rate 0.2 MC Dropout
Probes + MC Dropout

0.035± 0.003
0.016± 0.002

0.709± 0.005
0.716± 0.004

-0.718± 0.002
-0.716± 0.002

0.798± 0.002
0.794± 0.002

0.988± 0.000
0.991± 0.001

SVHN

Dropout rate 0.1 MC Dropout
Probes + MC Dropout

0.003± 0.001
0.009± 0.001

0.166± 0.010
0.165± 0.010

-0.929± 0.005
-0.930± 0.005

0.953± 0.004
0.954± 0.004

0.996± 0.000
0.996± 0.000

Dropout rate 0.2 MC Dropout
Probes + MC Dropout

0.016± 0.004
0.014± 0.002

0.168± 0.007
0.166± 0.008

-0.929± 0.004
-0.930± 0.004

0.955± 0.003
0.955± 0.003

0.997± 0.000
0.997± 0.000

FASHION MNIST

Dropout rate 0.1 MC Dropout
Probes + MC Dropout

0.038± 0.005
0.011± 0.001

0.295± 0.033
0.237± 0.015

-0.857± 0.015
-0.881± 0.006

0.905± 0.010
0.918± 0.004

0.992± 0.001
0.996± 0.001

Dropout rate 0.2 MC Dropout
Probes + MC Dropout

0.018± 0.003
0.009± 0.001

0.233± 0.012
0.212± 0.006

-0.879± 0.005
-0.890± 0.003

0.917± 0.004
0.923± 0.002

0.996± 0.001
0.996± 0.000

Figure 3: The relative contribution of each probe is plotted as a function of its relative depth. In
classical VGG architectures with no skip connections, probes assigned to the early layers play a
significant role in estimating the model’s uncertainty. This is not the case in ResNet architectures
with skip connections, where only the probes assigned to the upper layers are used for calibration.

5 CONCLUSION

In this paper, we develop “probe scaling”, a simple, effective post-hoc technique to improve the cal-
ibration of deep neural networks. We empirically demonstrate that using the representations learned
by the intermediate layers of a neural network can be utilized to estimate its uncertainty. Besides
the theoretical argument for the advantage of probe scaling over temperature scaling, we conduct an
empirical evaluation against several post-hoc calibration methods across several architectures and
show that probe scaling outperforms other post-hoc methods in standard calibration metrics, such
as the Brier score and the negative log-likelihood with statistically significant evidence. In addition,
probe scaling is the only post-hoc method that exhibits a consistent improvement over the baseline
in both accuracy and AUC. Finally, we show that probe scaling can complement other techniques,
such as Monte Carlo dropout, to improve calibration further.
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A PROOF OF PROPOSITION 1

The proof of this proposition uses Corollary 13.8 in Shalev-Shwartz & Ben-David (2014). Let
LS(w) be the empirical loss w.r.t. f and write LD(w) for the population loss of w. If f is a
convex function that is ρ-Lipschitz continuous, then the solution to the regularized empirical risk
minimization problem:

ŵ = arg min
w

{
λ||w||2 + LS(w)

}
,

satisfies the oracle inequality:

∀w : ES
[
LD(ŵ

]
≤ LD(w) + λ||w||2 +

2ρ2

λN
.

Choosing w = w? .
= arg minw{LD(w)}:

ES
[
LD(ŵ

]
≤ LD(w?) + λ||w?||2 +

2ρ2

λN
.

Using the definition of w? and applying Markov’s inequality, we have for any w:

pS

{
LD(ŵ)− LD(w) ≥ ε

}
≤ pS

{
LD(ŵ)− LD(w?) ≥ ε

}
≤ 1

ε

(
λ ||w?||2 +

2ρ2

λN

)
Setting ŵ for the solution learned by probe scaling and w for temperature scaling (which is valid
because temperature scaling belongs to the search space of probe scaling), we obtain the statement
of the proposition.
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