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ABSTRACT

Large reasoning models (LRMs) excel at a long chain of reasoning but often fail
to faithfully follow instructions regarding output format, constraints, or specific
requirements. We investigate whether this gap can be closed by integrating an
instruction-tuned model (ITM) into an LRM. Analyzing their differences in pa-
rameter space, namely task vectors, we find that their principal subspaces are
nearly orthogonal across key modules, suggesting a lightweight merging with
minimal interference. However, we also demonstrate that naïve merges are fragile
because they overlook the output format mismatch between LRMs (with explicit
thinking and response segments) and ITMs (answers-only). We introduce
RAIN-Merging (Reasoning-Aware Instruction-attention guided Null-space projec-
tion Merging), a gradient-free method that integrates instruction following while
preserving thinking format and reasoning performance. First, with a small reason-
ing calibration set, we project the ITM task vector onto the null space of forward
features at thinking special tokens, which preserves the LRM’s structured reason-
ing mechanisms. Second, using a small instruction calibration set, we estimate
instruction attention to derive module-specific scaling that amplifies instruction-
relevant components and suppresses leakage. Across four instruction-following
benchmarks and nine reasoning & general capability benchmarks, RAIN-Merging
substantially improves instruction adherence while maintaining reasoning qual-
ity. The gains are consistent across model scales and architectures, translating to
improved performance in agentic scenarios.

1 INTRODUCTION

In the current boom of research, Large Reasoning Models (LRMs, like OpenAI-o1 (Jaech et al.,
2024), DeepSeek-R1 (Guo et al., 2025)) have shown strong potential on tasks that require rigorous
multi-step reasoning (Wei et al., 2022), such as mathematical derivation (Shao et al., 2024) and
program synthesis (Guo et al., 2024). However, a discouraging paradox has emerged: although LRMs
perform well in purely reasoning-oriented settings, they lag in instruction following (Fu et al., 2025a;
Li et al., 2025a). They often generate lengthy logical derivations yet ignore user-specified formats,
constraints, or specific operational requirements in the final response. This inconsistency undermines
LRM practicality and reliability in real-world applications (Chkirbene et al., 2024), especially in
agent (Qi et al., 2025) and professional tool deployments (Zhao et al., 2024).

A straightforward remedy is to continue training LRMs with supervised fine-tuning (SFT) to
strengthen instruction following. However, building high-quality supervision datasets for tasks
that require generating long chains of thought entails substantial annotation and computational re-
sources (Qin et al., 2025). Moreover, these post-training methods often induce capability regressions,
with degradation in generality and in responses to unseen instructions (Shenfeld et al., 2025). In
contrast, a training-free and compute-light alternative is model merging, which extracts parameter
differences between fine-tuned and pre-trained models (namely the task vector), then combines
these task vectors to create a unified model that preserves pre-trained knowledge while incorporating
capabilities from multiple tasks (Ilharco et al., 2023). This motivates a central question: whether
we can merge the LRM and the Instruction-tuned Model (ITM) to enhance the instruction following
while preserving its reasoning capability.
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Figure 1: An overview of RAIN-Merging. In the case, the LRM arrives at the correct solution but ignores the
required format and specific code. To preserve the reasoning structure, we perform training-free merging by
combining a task vector projected onto the null space of the thinking format with instruction-attention guided
coefficients. The merged model remains correct while satisfying the specified constraints. See Sec. 3 for details.

We begin with a parameter-space analysis of the task vectors from the LRM and the Instruction-tuned
Model (ITM) relative to their shared base. We find that their principal subspaces are nearly orthogonal
across key modules, which indicates minimal interference between the two capabilities and suggests
that merging is a promising lightweight way to enhance the LRM’s instruction following (Ortiz-
Jiménez et al., 2023). However, direct merging carries risks. LRMs and ITMs differ fundamentally in
output structure: the former explicitly separates “thinking” and “response” with special markers (e.g.,
R1-style <think>. . .</think>), whereas the latter provides only a final answer. Traditional data-
free merging (Ilharco et al., 2023; Goddard et al., 2024) prunes or scales the task vector purely from
parameter-internal statistics to balance domain performance, thereby ignoring output-distribution
mismatches and disrupting the LRM’s structured reasoning. Recent work (Nobari et al., 2025; Yao
et al., 2025; Chopra et al., 2025) has tried to guide merging with forward activations using small
calibration sets. Although this introduces data-driven constraints, the lack of an explicit notion of
the output mismatch between the two types still makes it difficult to achieve a stable and effective
balance between preserving reasoning structure and improving instruction following.

To this end, we propose a two-stage merging strategy that enhances instruction-following capability
without sacrificing the thinking format and reasoning performance of the LRM. First, leveraging
task-vector orthogonality between the LRM and ITM, we preserve reasoning ability and enforce
thinking-format invariance by projecting the ITM task vector into the null space derived from forward
features at thinking tokens on a small reasoning-calibration set. This keeps the merged model’s
reasoning representations aligned with the original LRM and retains structured outputs. Second, while
keeping these invariances fixed, we aim to enhance instruction-following performance as much as
possible. We improve instruction adherence by estimating per-module importance based on attention
outputs over instruction-related spans from a small set of instruction examples. Attention-guided
coefficients are then assigned to strengthen instruction-relevant behaviors.We refer to the overall
two-stage approach as Reasoning-Aware Instruction-guided Null-space projection Merging (RAIN-
Merging) in Fig. 1, which effectively synergizes reasoning and instruction-following performance.

We conduct a systematic evaluation of our proposed method on four instruction-following benchmarks
and on nine evaluation benchmarks that cover mathematics, code, STEM, and creative-writing
capabilities. The results show that RAIN-Merging not only substantially improves the LRM’s
instruction-following ability but also maintains reasoning and general capability. Moreover, our
method exhibits consistent stability across different model sizes and architectures, and demonstrates
enhanced performance in agentic scenarios.
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2 PRELIMINARY AND OBSERVATIONS

Task Vector. A task vector (Ilharco et al., 2023) characterizes the parameter delta from a base model
to a task-specific one. A straightforward way to combine capabilities is task arithmetic, which
linearly adds such deltas to a base model to obtain a multi-skilled model. This simple approach can
work when tasks are compatible. However, for distinct abilities such as reasoning and instruction-
following that impose different output structures (Yadav et al., 2023), naive linear addition may cause
capability interference and disrupt the representations essential to each domain.
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Figure 2: Principal subspace co-
sine similarity between LRM and
ITM task vectors for each layer and
submodule. The similarities are con-
sistently low (< 0.1).

Orthogonality between Reason & Instruction Task Vectors. To
examine whether capability interference arises when merging ITM
θI into LRM θR, we take the shared base model θB as reference
and define the LRM task vector ∆R = θR − θB and the ITM task
vector ∆I = θI − θB . We perform singular value decomposition
(SVD) within the main forward modules, e.g. attention and FFN,
for these two task vectors and evaluate the principal subspace
cosine similarity of their principal subspaces. As shown in Fig. 2,
A1, A2, the two are nearly orthogonal since their similarities
are all < 0.1. Prior studies (Ortiz-Jiménez et al., 2023) indicate
that this phenomenon reflects a low degree of coupling between
reasoning ability and instruction following in parameter space,
which suggests that lightweight task-vector merging strategies
can enhance instruction following while preserving the original
reasoning performance. More details are in Appendix E.1.

Risks in Thinking Format During Merging. However, orthog-
onality in parameter space is not sufficient to guarantee that the
merged model will retain the LRM’s structured output behavior,
since this behavior is determined by downstream propagation and forward features (see Appendix E.1
for proof). In particular, the LRM relies on special tokens such as <think> and </think> to
explicitly separate the reasoning segment from the answer segment, and these tokens are crucial in
instruction-following tasks. For example, if the model fails to generate the terminator correctly after
merging (as Fig. 3), it may conflate the reasoning content with the instruction-compliant response,
which can violate constraints such as limits on output length. Therefore, although task-vector orthog-
onality suggests minimal capability interference, we still need to explicitly constrain the distributional
shift of the output structure during merging to preserve the integrity of the reasoning process.

3 OUR RAIN-MERGING METHOD

Notation. For notational convenience in later derivations, we flatten model submodules by layer
and head with index k = 1, . . . ,K as θ =

⊕K
k=1 W

k := [vec(W 1)⊤, . . . , vec(WK)⊤]⊤, where⊕
denotes the block-wise concatenation that assembles disjoint parameter blocks into a single

coordinate vector. More details of the forward mechanism in Transformer (Vaswani et al., 2017) are
in Appendix G.1. Let hk

t denote the forward input vector at the k-th submodule and the t-th sampled
token position. The corresponding linear map of this submodule admits the Kronecker-vectorization
form (Koning et al., 1991) with Kronecker product ⊗, identity matrix diag(1), and vectorization
operator vec(·), as W khk

t = ((hk
t )

⊤⊗diag(1)) vec(W k). Stacking all sampled positions t row-wise
yields the forward feature operator Φk

{t} and outputs for the k-th submodule:

Φk
{t} :=

[
(hk

1)
⊤ ⊗ diag(1), . . . , (hk

T )
⊤ ⊗ diag(1)

]
, W khk = Φk

{t} vec(W
k). (1)

Optimization Objective. To preserve the original reasoning performance of the LRM as much
as possible, we take the reasoning model parameters θR as the anchor. We transform the ITM
task vector ∆I through a merging function f to obtain ∆ = f(∆I), and form the merged model
θ = θR +∆. Our goal is to enhance instruction following without damaging the LRM’s thinking
format and reasoning performance. We therefore formulate a constrained optimization problem:
over the instruction data distribution DI , maximize the surrogate objective for instruction following,
JI(θ) ≜ Ex∼DI

Ey∼πθ(·|x)
[
IF(x, y)

]
, while, over the reasoning data distribution DR, constraining

the deviation between the model’s output distribution within the segment of thinking special tokens

3
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Ωthink and the reference policy of the original reasoning model θR. This constraint is quantified by
aggregating the per-step KL divergence within the segment:

Lthink(θ) ≜ Ex∼DR
Ey∼πθR

(·|x)
∑

t∈Ωthink(x)

KL
(
πθ(· | x, y<t)

∥∥πθR(· | x, y<t)
)
. (2)

The overall objective with tolerance δ is then:

max
∆

JI(θR +∆) s.t. Lthink(θR +∆) ≤ δ. (3)

Noting that JI is a surrogate objective for instruction following, referring to a class of functions
IF that evaluate instruction alignment. In later we instantiate it with metrics based on instruction-
attention alignment or leakage. In addition, motivated by the orthogonality between the LRM and
ITM task vectors discussed earlier, we constrain only the conditional distribution in the segment of
thinking special tokens and do not restrict the content generated in the other thinking or response
segments, which preserves flexibility for improving instruction-following performance.

Reasoning-aware Null-space Projection (Stage 1). To satisfy the KL constraint on the segment
of thinking special tokens, we try to seek a parameter subspace that preserves the thinking format.
Intuitively, if we view the forward inputs at the thinking positions as a “measurement” of the reasoning
style, then any parameter perturbation that is unresponsive under this measurement will not change
the model’s thinking pattern. This idea corresponds to projecting the perturbation onto the null
space (Wang et al., 2021) of the forward feature operator Φ = blkdiag

(
Φ1, . . . ,ΦK

)
(blkdiag

denotes the block-diagonal matrix), namely N (Φ) = {v : Φv = 0}, as illustrated in Fig. 3 (a). Such
a null space projection keeps the token-level forward features at the thinking positions invariant.
Formally, for each submodule k, we construct the least-squares orthogonal projector P⊥(·) using the
forward feature operator Φk

Ωthink
built from thinking special token indexs Ωthink to form the null space:

P⊥(Φk
Ωthink

) = diag(1)− Φk
Ωthink

⊤(
Φk

Ωthink
Φk

Ωthink

⊤)+
Φk

Ωthink
, (4)

where (·)+ denotes Moore-Penrose pseudoinverse. And then project the ITM submodule task vector
∆k

I by submodule-wise and stack them to form the overall projected task vector to satisfy the null
space constraint:

vec
(
∆⊥,k

I

)
= P⊥(Φk

Ωthink
) vec

(
∆k

I

)
⇒ ΦΩthink vec

(
∆⊥

I

)
= 0, where ∆⊥

I =

K⊕
k=1

∆⊥,k
I . (5)

This projection keeps the merged model’s intermediate representations and even the final logits at the
thinking special tokens close to those of the anchor model. To verify its effectiveness in preserving
the thinking format, we analyze a second-order expansion of the softmax KL divergence and show
that the task vector after null-space projection satisfies the KL constraint on the special token output
distribution in Eq. (2). This yields the following Prop. 1 (proof is in Appendix E.2):
Proposition 1. Let the logits of sample x at thinking special tokens t ∈ Ωthink(x) be zθ(x, t), and let
πθ(· | x, y<t) = softmax(zθ(x, t)). By a second-order approximation of the softmax–KL divergence
with a uniform upper bound, for any perturbation u,

KL
(
softmax(z + u) ∥ softmax(z)

)
≤ 1

8 ∥u∥
2
2 +O

(
∥u∥32

)
. (6)

Assuming the model’s intermediate representations are Lipschitz continuous and bounded, there exist
constants C1, C2 > 0 such that for u(x, t) = zθR+∆(x, t)− zθR(x, t), we have:

∥u(x, t)∥2 ≤ C1

∥∥Φ vec(∆)
∥∥
2
+ C2 ∥∆∥22. (7)

Substituting the projected vector ∆⊥
I =

⊕K
k=1 ∆

⊥,k
I and the condition Φ vec

(
∆⊥

I

)
= 0 yields:

Lthink
(
θR +∆⊥

I

)
≤ 1

8 Ex,t

[
∥u(x, t)∥22

]
+O

(
Ex,t∥u(x, t)∥32

)
= O

(∥∥∆⊥
I

∥∥2
2

)
≈ 0. (8)

Therefore, null-space projection in Eq. (5) approximately removes the thinking format constraint in
the original objective and reduces the original optimization objective Eq. (3) to:

max
∆⊥

JI

(
θR +∆⊥) , where ∆⊥ = f(∆⊥

I ). (9)

4
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Figure 3: Two stages of our RAIN-Merging pipeline. (a) For each submodule, the ITM task vector is projected
onto the null space preventing shifts in thinking format. (b) Given the instruction calibration set, we compute the
instruction-attention score from attention outputs to obtain merging coefficients.

With the thinking-format constraint relaxed, we next focus on strengthening the task vector’s effect
on instruction following.

Instruction-attention Guided Merging Coefficients (Stage 2). To enhance the performance gain of
the ITM task vector during merging, we seek a suitable gradient-free surrogate objective to instantiate
JI . Prior studies (Guardieiro et al., 2025) suggest that failures in instruction following often stem
from insufficient conditioning on the instruction span during decoding: attention does not sufficiently
focus on instruction-relevant tokens and instead leaks to unrelated regions. A simple remedy is to
amplify attention outputs on the instruction span at decoding time, which can remarkably improve
instruction following. This approach, however, requires pre-identifying the instruction span, and
excessive amplification may cause the model to ignore other necessary content. Motivated by this, we
hypothesize that different layers and heads exhibit heterogeneous response behavior to instructions.
Consequently, on the null-space–projected task vector ∆⊥,k

I , we introduce per-module scaling
coefficients α = {αk} ∈ RK

+ and reparameterize the merged model as θ(α) = θR +
⊕K

k=1 α
k ∆⊥,k

I
to instantiate merging function f . Given that attention outputs are directly coupled to the self-attention
mechanism, we first focus on the merging coefficients of these submodules, as α̃ = {αk̃} ∈ RK̃

+ ,
where k̃ denotes the self-attention submodule index. Our central intuition is that an ideal merge should
yield stronger attention responses on instruction-relevant spans (high alignment) while maintaining
low attention activation on instruction-irrelevant content (low leakage). To translate this intuition
into measurable quantities, we formalize the model’s forward computation as follows and in Fig. 3
(b). Let Attk̃(x, α̃)[t, τ ] denote the attention output of the merged model with α̃ at head k̃ from token
position t to τ . For an instruction-following sample x ∼ DI , we define the per-sample normalized
alignment a and leakage u metrics for head k̃:

ak̃(x, α̃)︸ ︷︷ ︸
alignment

:=
∑

t∈I(x)

∑
τ∈R(x)

Attk̃(x, α̃)[t, τ ]

|I(x)| |R(x)|
, uk̃(x, α̃)︸ ︷︷ ︸

leakage

:=
∑

t∈I(x)

∑
τ∈U(x)

Attk̃(x, α̃)[t, τ ]

|I(x)| |U(x)|
. (10)

where I(x) ⊂ {1, . . . , T} represents the index set of instruction tokens that encodes the task
description, formatting rules, constraints, and any examples in the query span. Likewise, R(x) denotes
the set of output tokens whose content is directly constrained by the instruction in the response span,
and U(x) the set of output tokens unrelated to the instruction. Taking expectations over instruction-
following samples DI and heads k̃ yields averaged alignment ā(α̃) =

∑
k̃ Ex∼DI

[ak̃(x, α̃)] and
averaged leakage ū(α̃) =

∑
k̃ Ex∼DI

[uk̃(x, α̃)]. We seek merging coefficients that achieve high
alignment and low leakage. Accordingly, we combine the two metrics into a single instruction-
attention score J Proxy

I with trade-off hyperparameter ρ > 0, instantiating the surrogate objective in
the reduced problem Eq. (9) then yields:

max
α̃

J Proxy
I (α̃) := ā(α̃) − ρū(α̃). (11)

Quadratic Approximation of Instruction-attention Score. Although this objective is differentiable
and could be optimized by gradient descent, we adopt a forward-pass approximation to reduce
computation. Initialize at the directly merged point after projection, α̃(0) ≡ 1. Perform a second-

5
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order Taylor expansion of J Proxy
I (α̃) around α̃(0):

J Proxy
I (α̃) ≈ J Proxy

I (α̃(0)) +∇α̃J Proxy
I (α̃(0))

⊤(α̃− α̃(0)) +
1
2 (α̃− α̃(0))

⊤H (α̃− α̃(0)), (12)

where H = ∇2
α̃J

Proxy
I (α̃(0)) is the Hessian. Writing g = ∇α̃J Proxy

I (α̃(0)) and ignoring the constant
term in Eq. (11), we obtain the quadratic surrogate:

J quad
I (α̃) = g⊤(α̃− α̃(0)) +

1
2 (α̃− α̃(0))

⊤H (α̃− α̃(0)). (13)

➀ For first-order term g, if we restrict α̃ to small deviations near α̃(0) and adopt a linear approximation
of alignment and leakage on merging coefficients, the per-head gradient can be estimated as:

gk̃ =
∂J Proxy

I (α̃)

∂α̃k̃

∣∣∣∣∣
α̃(0)

≈ ∂ā(α̃)

∂α̃k̃
− ρ

∂ū(α̃)

∂α̃k̃
≈ Ex∼DI

[
ak̃(x, α̃(0))− ρ uk̃(x, α̃(0))

]
, (14)

which replaces partial derivatives with the current metric values. In practice, this approximately
scales the contribution of each head to instruction versus non-instruction attention mass, consistent
with the intuition behind attention amplification.
➁ For second-order term H , to avoid the cost of computing the Hessian for large models, we adopt
a diagonal approximation that limits the step size, H̃ k̃ = diag(1) + Ex∼DI

[uk̃(x, α̃(0))], where the
second term imposes a stronger quadratic penalty on heads with higher leakage, thereby limiting
their amplification. Substituting the approximations into the quadratic objective, dropping α̃(0) for
simplicity, and constraining α̃ ∈ [α̃l, α̃u]

K̃ to prevent scaling instability, we obtain a closed-form
solution to the convex quadratic program:

max
α̃∈[α̃l,α̃u]K̃

(
g⊤α̃− 1

2 α̃
⊤H̃α̃

)
⇒ α̃k̃

⋆ = clip[α̃l,α̃u]

(
gk̃

H̃ k̃

)
, (15)

where H̃ = diag
(
H̃ k̃
)

and clip[a,b](·) clips to the interval [a, b]. Thus, by a second-order expansion
with engineering approximations and using only forward attention statistics in a gradient-free manner,
we approximate the optimal merging coefficients α̃⋆ of self-attention submodules that increase
instruction alignment while controlling attention leakage to non-instruction content. For modules
shared across attention heads, such as the feed-forward network (FFN), we set the layer-wise
coefficient to the average over heads. Aggregating the coefficients for all submodules yields the
complete instruction attention guided merging coefficients α⋆ = {αk

⋆}.

Combined to Our Two-stage Merging Method. We chain “Reasoning-aware Null-space Projection
(Stage 1)” with “Instruction-attention Guided Merging Coefficients (Stage 2)” to propose a fully
gradient-free merging pipeline, termed Reasoning-Aware Instruction-attention guided Null-space
projection Merging (RAIN-Merging) as Fig. 3. Our method addresses the challenge in the original
optimization problem of Eq. (3), improving instruction following while preserving the reasoning
structure after merging. The final merged model is:

θ⋆ = θR + λ

K⊕
k=1

αk
⋆ ∆

⊥,k
I , (16)

where λ is a global scaling coefficient that controls the merging strength. The entire procedure
only relies on forward-feature extraction and attention statistics, and does not require gradient-based
updates. RAIN-Merging offers a low-cost, interpretable path to strengthen instruction following in
LRMs, filling the gap left by costly SFT.

Implementation details. To balance compute and storage efficiency, we merge only the core modules
that are most sensitive to attention outputs, namely the Q, K, V, O, and FFN parameters. In Stage 1,
we sample 150 examples from the Mixture-of-Thoughts (Face, 2025) dataset distilled from DeepSeek-
R1 (Guo et al., 2025) from to form the reasoning calibration set. In Stage 2, we an instruction
calibration set obtained by distilling DeepSeek-R1 on IFEval (Zhou et al., 2023b), followed by
LLM-as-Judge filtering and manual screening, resulting a total of 365 samples. More details of
implementation, complete algorithm pseudocode, calibration set construction, and ablation studies
are provided in Appendix G, F, H, and J.3.
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Table 1: Comprehensive comparison of instruction following and reasoning & general capabilities. We merge
Qwen2.5-7B-Instruct (ITM) into DeepSeek-R1-Distill-Qwen-7B (LRM) and compare our RAIN-Merging
against multiple merging methods as well as SFT trained on the same calibration data. “Avg.” denotes the
average over all subsets. “RT” reports the run-time for merging or training in minutes. The best and second-best
results are highlighted in bold and underlined, respectively.

Method
Instruction Following Reasoning & General

RT
IFEval CELLO Info Complex Avg. Math GPQA Aider Arena- Avg.Bench Bench Hard-v2

ITM 70.43 19.15 78.49 43.63 52.92 47.27 29.80 33.33 62.86 43.32 –
LRM 55.45 16.59 71.73 32.72 44.12 64.75 44.44 29.63 65.29 51.03 –

SFT 62.48 17.11 68.58 32.15 45.08 62.07 41.92 28.89 64.67 49.39 120.32

Data-free Merging
Task Arithmetic 60.44 16.97 73.07 33.34 45.96 62.57 42.93 26.67 64.53 49.17 0.93
SLERP 58.96 17.56 72.18 34.93 45.95 64.22 42.93 31.85 65.29 51.07 1.12
Karcher 62.11 17.99 73.16 34.06 46.83 63.82 48.99 30.77 66.13 52.33 1.20
TIES 58.60 18.48 73.91 34.40 46.35 64.85 46.46 32.59 63.47 51.84 1.18
DARE-TIES 60.81 17.88 73.33 33.49 46.38 65.46 47.98 29.63 64.17 51.80 2.21

Data-dependent Merging
ACM-TIES 59.33 16.45 72.44 33.75 45.50 65.92 45.96 32.59 62.00 51.80 12.45
LEWIS-TIES 60.44 17.41 72.67 34.40 46.23 64.57 48.99 31.11 64.80 52.37 16.60
AIM-TIES 62.78 17.93 73.11 34.28 47.02 64.26 49.49 33.33 63.64 52.68 18.51
RAIN-Merging 63.22 19.03 74.53 35.66 48.11 68.75 54.55 33.33 65.73 55.59 20.96

4 EXPERIMENTS

In this section, we empirically investigate three research questions:

• RQ1 (Effectiveness and Efficiency). Compared with baseline methods, can RAIN-Merging
improve instruction-following while maintaining reasoning capabilities, maintaining the computa-
tional and memory efficiency characteristic of gradient-free approaches? (Tab. 1 and Fig. 4)

• RQ2 (Scalability). How well does RAIN-Merging scale across models of varying sizes and
architectures, and does it perform effectively in interactive agentic scenarios? (Tab. 2, 3)

• RQ3 (Ablation). What roles do the two stages of RAIN-Merging play? Specifically, does Stage 1
preserve the format of thinking segments and the output distribution, and does Stage 2 enhance
instruction-attention scores? (Tab. 4 and Fig. 5, Fig. 6)

4.1 EXPERIMENTAL SETUP

We begin with a brief overview of the benchmarks, models, and baselines used in our experiments.
Additional details on experimental settings, benchmarks and evaluation metrics, and hyperparameters
are provided in Appendix I.

Benchmarks. To comprehensively assess instruction following, we use four mainstream bench-
marks: IFEval (Zhou et al., 2023b), CELLO (He et al., 2024), InfoBench (Qin et al., 2024), and
ComplexBench (Wen et al., 2024). To comprehensively evaluate reasoning and general capabili-
ties, we use nine benchmarks: Mathematical reasoning is evaluated by aggregating results from six
benchmarks, as Math. We also measure performance on code editing (Aider (Aider, 2024)), STEM
(GPQA (Rein et al., 2024)), and creative writing (Arena-Hard-v2 (Li et al., 2024)) to reflect general
and reasoning capabilities. For agentic scenarios, we use ALFWorld (Shridhar et al., 2021) and
WebShop (Yao et al., 2022), two realistic multi-turn interactive tasks, to evaluate how well the model
integrates reasoning and instruction following to solve complex problems.

Models. We evaluate RAIN-Merging on models of different sizes and architectures: DeepSeek-R1-
Distill-Qwen-1.5B/7B/14B (Guo et al., 2025) (LRM) and Qwen2.5-1.5B/7B1/14B-Instruct (Yang
et al., 2025) (ITM), as well as the Llama family (Dubey et al., 2024) using DeepSeek-R1-Distill-
Llama-8B (LRM), its instruction-tuned counterpart Llama-3.1-8B-Instruct (ITM).

1Although DeepSeek-R1-Distill-Qwen-1.5B/7B are trained from Qwen2.5-Math-1.5B/7B (Yang et al.,
2024a), we find that Qwen2.5-Math-1.5B/7B-Instruct do not outperform the distilled LRMs in instruction
following. We therefore select the stronger instruction followers, Qwen2.5-1.5B/7B-Instruct, as ITMs.
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Table 2: Merging performance and relative gains of RAIN-Merging across model three scales and two
architectures. We merge the corresponding ITM into the LRM with base models: Qwen2.5-1.5B, Llama-3.1-8B,
and Qwen2.5-14B. “Avg.” denotes the average over all subsets. For each scale, the subsequent “(relative gain)”
row reports the relative improvement of our method over the LRM, highlighted in green.

Model
Instruction Following Reasoning & General

IFEval CELLO Info Complex Avg. Math GPQA Aider Arena- Avg.Bench Bench Hard-v2

Qwen2.5-1.5B-Instruct 36.78 19.04 64.76 27.83 37.10 31.77 25.76 16.30 38.45 28.07
DeepSeek-R1-Distill-Qwen-1.5B 39.00 16.03 55.29 21.54 32.97 41.62 29.29 14.07 39.73 31.18
Qwen2.5-1.5B-RAIN-Merging 41.59 16.51 58.18 23.62 34.97 45.87 33.33 14.81 40.93 33.74
(relative gain) +6.64% +2.98% +5.23% +9.63% +6.09% +10.21% +13.79% +5.26% +3.02% +8.20%

Llama-3.1-8B-Instruct 68.58 27.21 78.67 38.47 53.23 35.59 25.25 34.07 72.23 41.79
DeepSeek-R1-Distill-Llama-8B 58.41 17.78 73.33 38.38 46.97 60.21 38.38 27.41 71.93 49.48
Llama-3.1-8B-RAIN-Merging 63.77 18.84 77.38 38.93 49.73 61.95 43.94 30.37 77.07 53.33
(relative gain) +9.18% +5.99% +5.52% +1.42% +5.86% +2.89% +14.47% +10.81% +7.15% +7.78%

Qwen2.5-14B-Instruct 79.85 20.13 83.38 44.19 56.89 52.73 36.87 37.04 74.40 50.29
DeepSeek-R1-Distill-Qwen-14B 71.35 18.71 81.33 40.68 53.02 72.31 57.07 33.33 80.67 60.85
Qwen2.5-14B-RAIN-Merging 76.71 19.57 84.13 44.63 56.26 74.58 57.58 40.00 86.25 64.60
(relative gain) +7.51% +4.58% +3.44% +9.69% +6.11% +3.13% +0.88% +20.00% +6.92% +6.17%

Baselines. We include several data-free, task-vector based merging methods: Task Arithmetic (Il-
harco et al., 2023), SLERP (Biship, 2007; Goddard et al., 2024), Karcher (Nielsen & Bhatia, 2013;
Goddard et al., 2024), TIES (Yadav et al., 2023), and DARE (Yu et al., 2024). We also compare with
data-dependent, activation-based merging approaches that leverage small calibration sets, including
ACM (Yao et al., 2025), LEWIS (Chopra et al., 2025), and AIM (Nobari et al., 2025). To strengthen
baseline performance, we apply TIES on top of other merging baselines as in previous work (Wu
et al., 2025). In addition, we report a training baseline using SFT on the same calibration data.

4.2 RESULTS

Performance Comparison with Baseline Methods. (RQ1) As shown in Tab. 1, RAIN-Merging
achieves overall gains across both instruction-following and reasoning & general capability evalua-
tions, outperforming all merging baselines. While Task Arithmetic and SFT can improve instruction
following to some extent, they typically do so at the cost of reasoning and general capabilities. In
contrast, our method consistently surpasses all baselines on instruction-following, mathematical
reasoning, and general-capability benchmarks. Our merged LRM trails the ITM slightly on instruction
following, indicating room for further improvement. Interstingly, the merged model exhibits stable
gains in reasoning and general ability. We hypothesize that stronger instruction adherence improves
the quality of the model’s internal chain of thought, which yields better reasoning performance.
Overall, RAIN-Merging substantially enhances instruction following without sacrificing the LRM’s
reasoning and general capabilities.

Run-time and Memory Analysis. (RQ1) Our method achieves a favorable efficiency trade-off. Its
runtime, though slightly above activation-based merging baselines due to null-space computation,
is far below SFT (RT in Tab. 1). Similarly, while storing hidden features increases memory use
compared to other merging methods, its footprint remains much smaller than SFT’s (Fig. 4). This
demonstrates our approach as a highly practical, training-free alternative for enhancing LRMs.

Performance on Models of Different Sizes and Architectures. (RQ2) To evaluate the scalability of
our method across model sizes and architectures, we conduct experiments on several configurations,
including the Qwen2.5 family distilled from DeepSeek-R1 at 1.5B and 14B parameters, and the 8B
model built on the Llama 3.1 architecture. As reported in Tab. 2, our method consistently enhances
instruction-following and reasoning performance, achieving average improvements from 5.86% to
8.20% on LRMs. These results confirm that RAIN-Merging robustly strengthens both instruction
adherence and complex reasoning across diverse model sizes and architectures.

Performance in Agentic Scenarios. (RQ2) To further assess the practical benefits of improved
instruction following, we evaluate the merged model on two representative agentic scenarios, Web-
Shop and AlfWorld. As shown in Tab. 3, the merged model achieves better performance than the
original LRM and ITM in these scenarios, indicating that enhanced instruction understanding and
reasoning effectively support multi-turn interaction and complex decision making. These results also
demonstrate that our gradient-free approach is effective for increasing the real-world utility of LRMs.
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Table 3: Performance of
RAIN-Merging in agent set-
tings. We merge Qwen2.5-7B-
Instruct (ITM) into DeepSeek-
R1-Distill-Qwen-7B (LRM).

Model ALFWorld WebShop
ITM 17.50 10.45
LRM 22.00 26.63
RAIN-Merging 25.00 29.42

Table 4: Performance of ablation on
Stage 1 and Stage 2, under the same
setup as Tab. 1. "I Avg." and "R Avg."
denote the average performance on
instruction-following and reasoning &
general benchmarks.

Method I Avg. R Avg.
RAIN-Merging w/o Stage 2 46.58 54.92
RAIN-Merging w/o Stage 1 47.62 52.44
RAIN-Merging 48.11 55.59
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Figure 6: Layer-wise instruction attention score (alignment −
leakage). Per-layer scores on IFEval instruction examples; higher
is better. We compare the unmerged LRM, Task Arithmetic, and
RAIN-Merging when merging Qwen2.5-7B-Instruct (ITM) into
DeepSeek-R1-Distill-Qwen-7B (LRM).

Ablation Study of Stage 1 and Stage 2. (RQ3) We investigate the contribution of the two components
in RAIN-Merging, shown in Tab. 4. When without Stage 2, the merged model retains reasoning
and general capabilities while achieving competitive instruction-following performance. Conversely,
when without Stage 1, instruction-following performance improves further but at a noticeable cost to
reasoning and general ability, as it lacks explicit protection of the thinking format. Incorporating both
stages yields the best trade-off: Stage 1 ensures reasoning performance is maintained while Stage 2
boosts instruction-following performance. These results demonstrate that both stages play critical
and complementary roles.

Effectiveness of Null-space Projection. (RQ3) To assess how our null-space projection in Stage 1
preserves thinking formats, we evaluate its impact on thinking special token distributions and resulting
generation outputs. We measure the KL divergence near thinking tokens as in Eq. (2) and the rate of
missing </think> tokens. Results Fig. 5 show that Task Arithmetic substantially alters the distribution
(Lthink = 0.1224) and results in 6.4% missing </think> tokens, violating the output format. Our
approach, in contrast, only induces minimal change (Lthink = 0.0065) and ensures no missing tokens
(0.0%). These findings indicate that null-space projection successfully protects thinking formats.

Effectiveness of Merging Coefficients. (RQ3) To validate the merging coefficients, we compare the
Instruction-Attention Score in Eq. (11) across layers before and after merging under different methods.
As shown in Fig. 6, instruction-attention guided coefficients in Stage 2 enable RAIN-Merging to
consistently outperform both the LRM and Task Arithmetic, exhibiting a higher alignment and lower
leakage. This finding suggests that our weighted reparameterization of merging submodules enhances
activation along instruction-aware pathways while slightly suppressing leakage, which improves
instruction following without altering the original reasoning pattern.

5 CONCLUSION

We propose RAIN-Merging, a gradient-free method to enhance instruction following in LRMs while
preserving their structured reasoning outputs. By projecting the instruction task vector onto the null
space of the thinking format and scaling it by instruction-attention guided coefficients, RAIN-Merging
achieves a balance between instruction following and reasoning structure preservation. The method
is evaluated on instruction-following, reasoning & general capability, agentic benchmarks, showing
that RAIN-Merging not only substantially improves the LRM’s instruction-following ability but also
brings gains in reasoning and general capability across several settings.
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APPENDIX

A ETHICS STATEMENT

This research adheres to the licenses and applicable laws governing upstream open-source models
and datasets. RAIN-Merging is developed using publicly available weights and data that permit
derivation and redistribution.

Safety. Model merging can introduce “capability or safety drift,” such as new biases, jailbreak
risks, or shifts in hallucination patterns while improving instruction following. The merged model
may produce inaccurate, biased, or inappropriate content. It must not be used directly in high-risk
decision-making contexts such as medicine, law, or finance. Any production deployment should
include human oversight, operation logging, rate limiting, and compliance review procedures.

Dataset use. We rely only on data authorized for academic reproducibility. During data cleaning,
we make every effort to remove personally identifiable information and sensitive content. We also
disclose potential dataset biases, coverage gaps, and risks of benchmark contamination.

Societal impact. We caution that generative models may exacerbate information asymmetries,
reinforce stereotypes, or be applied to produce misleading content. We firmly oppose misuse and will
work with the community to address any identified negative impacts.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the following resources and documentation:
all algorithm implementations and experiment scripts will be released anonymously with the sup-
plementary materials, accompanied by documentation of key functions and the project directory
structure. The calibration datasets used in our experiments will be made available alongside the
appendix. Public links are included for all open-source models and datasets used in this work.

C LLM USAGE STATEMENT

We used large language models (LLMs) in the following stages and disclose their roles as follows:

Writing Stage. LLMs (both closed- and open-source) were used only for copyediting and grammar
checking, including terminology normalization, syntactic polishing, and formatting. They were not
used to generate claims, collect evidence, or construct results.

Benchmark Evaluation. When a benchmark’s original paper or community practice requires a
closed-source LLM (for example, as a judge or as a baseline), we strictly follow the prescribed
protocol and disclose the exact model versions.

Calibration Set Construction. We adopt an LLM-as-Judge procedure for automated filtering and
scoring of candidate samples as an initial pass (producing only scores or labels; generated text is not
used as a training target). A human second-pass review follows to ensure data quality and compliance.
All third-party data and models are used within their licenses, with source links and permission details
provided.

D RELATED WORK

Large Reasoning Model. Early studies show that prompting models to explicitly produce inter-
mediate steps during reasoning can substantially improve complex reasoning performance, as in
Chain-of-Thought (Wei et al., 2022) and Tree-of-Thought (Yao et al., 2023a). Building on this
insight, a new generation of LRMs has shifted toward training paradigms that directly incentivize
reasoning with reinforcement learning; for example, OpenAI’s o1 series and DeepSeek-R1 report
marked advances on tasks in mathematics and code that require extended reasoning (Jaech et al.,
2024; Guo et al., 2025). These models typically generate structured “thought processes” or “thinking
formats,” yet in real applications they often exhibit tension with strict instruction following. Beyond
explicit intermediate reasoning such as CoT and ToT, subsequent work further improves reasoning
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quality and stability: Self-Consistency samples multiple solution paths and uses majority voting to
increase reliability; Least-to-Most decomposes complex problems into subgoals ordered from easy to
hard; Program-of-Thoughts and PAL externalize the reasoning into executable programs, decoupling
computation from reasoning and substantially reducing arithmetic and procedural errors (Wang
et al., 2023; Zhou et al., 2023a; Chen et al., 2022; Gao et al., 2023). In the “reasoning plus acting”
paradigm, ReAct interleaves thought traces with tool interactions to mitigate hallucinations, while
Reflexion employs language-based self-reflection and memory to iteratively refine policies over
multi-turn interactions (Yao et al., 2023b; Shinn et al., 2023). In parallel, LRMs are trained with
process-level feedback and reinforcement learning to directly encourage thinking before answering:
the o1 system emphasizes large-scale RL and thinking-first training and alignment strategies, and
DeepSeek-R1 shows that under weak or no supervision, pure RL (e.g., GRPO) can induce longer and
more stable chains of thought (Jaech et al., 2024; Guo et al., 2025). Moreover, process supervision
and process reward models (PRMs) provide finer-grained step-level feedback that, compared with
outcome supervision of final answers, better cultivates verifiable reasoning chains and test-time
expansion (Lightman et al., 2024). RAIN-Merging is complementary to this trajectory: instead of
retraining the LRM, we preserve the thinking format at merge time and use structured coefficients to
selectively enhance instruction responses, thereby striking a balance between fidelity to the reasoning
structure and improved instruction following.

Instruction Following. In the alignment paradigm, InstructGPT systematically improved the stability
of “following user intent” through reinforcement learning from human feedback (RLHF), and showed
that small instruction-tuned models can achieve strong human preference scores, establishing a
foundation for subsequent research on instruction following (Ouyang et al., 2022). For objective
evaluation, IFEval targets programmatically verifiable rules, for example, length limits, keywords,
formatting, to reduce subjective scoring noise and facilitate reproducibility and fair comparison (Zhou
et al., 2023b). CELLO abstracts multi-dimensional attributes from real-world complex instructions,
such as multi-step dependencies, format or quantity constraints, and semantic consistency, to charac-
terize where LLMs struggle with complex instruction understanding (He et al., 2024). InfoBench
proposes a decomposed metric that breaks a complex instruction into checkable sub-requirements, en-
abling finer-grained measurement of compliance and error sources (Qin et al., 2024). ComplexBench
emphasizes the compositional challenge of multiple simultaneous constraints, systematically testing
robustness and trade-offs when many constraints co-occur (Wen et al., 2024). Building on these
mainstream benchmarks, this work introduces an instruction-attention–oriented merging strategy:
during merging, we quantitatively constrain and amplify the model’s responsiveness to instruction-
relevant spans while maintaining the stability of its long-chain reasoning format, thereby balancing
compliance and an interpretable process.

Model Merging. Parameter-space merging offers a training-free or low-data path for integrating
capabilities. Model Soup averages weights from multiple fine-tuned checkpoints to improve out-of-
distribution robustness and overall performance (Wortsman et al., 2022). Task vectors implement
additive editing and compositionality by linear arithmetic on weight differences, enabling positive
and negative edits as well as multi-task synthesis (Ilharco et al., 2023). TIES-Merging explicitly
addresses interfering factors such as resetting parameters with negligible updates and resolving sign
conflicts, which mitigates performance degradation caused by parameter-level interference when
merging multiple models (Yadav et al., 2023). Community tools and practice are also maturing.
MergeKit consolidates and engineers diverse merging algorithms, supporting large-model merging
and recipe reproduction under resource constraints, which facilitates methodological comparison
and reproducibility (Goddard et al., 2024). Systematic surveys have begun to organize theoretical
perspectives, method taxonomies, and application boundaries for merging, providing references for
unified terminology, evaluation settings, and future research agendas (Yang et al., 2024b). However,
most existing methods focus on average multi-task performance and out-of-distribution robustness,
with limited attention to the fidelity of fine-grained functional structures such as the reasoning format,
for example, explicit thought traces and process markers. RAIN-Merging targets this gap: during
parameter fusion it introduces subspace constraints tied to the “thinking format,” and allocates merging
coefficients at the per-layer and per-head levels using instruction attention, thereby strengthening
instruction following while suppressing structural drift of the original reasoning patterns.

Null Space Projection. Constraint ideas centered on orthogonality and null spaces have been re-
peatedly validated in continual learning and knowledge editing. OGD projects gradients for new
tasks onto the orthogonal complement of the subspace of old tasks, explicitly constraining update
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directions to mitigate forgetting (Farajtabar et al., 2020). GPM extracts and maintains “important
gradient subspaces” via singular value decomposition, then performs layer-wise orthogonal projec-
tion of new gradients to reduce interference across tasks (Saha et al., 2021). For LLM knowledge
editing, AlphaEdit projects edit perturbations into the null space of “preserved knowledge” and
provides theoretical guarantees on output preservation, which markedly reduces cumulative damage
in sequential edits (Fang et al., 2025). In parameter-efficient and mergeable settings, LoRA-Null
initializes or constrains the LoRA adaptation subspace using the null space of pretrained representa-
tions, alleviating forgetting and improving parallelism and mergeability with other updates (Tang
et al., 2025). For multi-task and multi-LoRA model merging, OSRM imposes orthogonalization
constraints on task-specific LoRA subspaces before fine-tuning, reducing mutual interference at
merge time and improving compatibility (Zhang & Zhou, 2025). Following this line of work, we
construct a null-space projection on features tied to the “reasoning format,” and combine it with
instruction-attention–guided coefficients. The merged model thus preserves structured reasoning
outputs while improving adherence to verifiable constraints such as format, length, and enumeration.
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Figure A1: Principal subspace cosine similarity between DeepSeek-R1-Distill-Qwen-1.5B (LRM) and
Qwen2.5-1.5B-Instruct (ITM) task vectors for each layer and submodule.
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Figure A2: Principal subspace cosine similarity between DeepSeek-R1-Distill-Qwen-14B (LRM) and Qwen2.5-
14B-Instruct (ITM) task vectors for each layer and submodule.

E.1 PROOF OF WHY ORTHOGONAL IN PARAMETERS ̸= INVARIANT IN OUTPUTS

We first describe how we compute orthogonality between principal parameter subspaces. Let the
two sources be the LRM task vector or weight difference, denoted by R, and the ITM counterpart,
denoted by I . For each layer and each linear submodule W k ∈ Rdk

out×dk
in , we take the top S singular

directions (default S = 16 in our experiments) and perform SVD:

W k
R = Uk

R Σk
R (V k

R)⊤, W k
I = Uk

I Σk
I (V

k
I )⊤. (A1)

Write Uk
R,S ∈ Rdk

out×S for the top-S left singular vectors of Uk
R (similarly V k

R,S ∈ Rdk
in×S), and

analogously Uk
I,S , V

k
I,S for source I .

Principal subspace cosine similarity. We focus on the left (output-side) principal subspaces and
define the alignment matrix

Ak = (Uk
R,S)

⊤Uk
I,S ∈ RS×S . (A2)

Let σk
1 , . . . , σ

k
S ∈ [0, 1] be the singular values of Ak. They equal the cosines of the principal angles

between the two subspaces: σk
i = cosϑk

i . We define the principal subspace cosine similarity as the
mean cosine of principal angles:

cosΘk
S

(
Uk
R,S , U

k
I,S

)
=

1

S

S∑
i=1

σk
i . (A3)

Smaller values indicate stronger orthogonality between the sources at that (layer, module) cell.
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Empirical observation. Across model sizes and all layers/modules in Qwen2.5-1.5B/7B/14B (Fig. 2,
A1, A2), we observe cosΘk

S < 0.1 (with only a few exceptions), indicating that LRM and ITM task
vectors are largely orthogonal in parameter principal directions. However, as the theory below shows,
such parameter-space orthogonality does not imply invariance in the output space (i.e., unchanged
logits on the thinking format), and thus cannot replace the null-space projection constraint used in
our method.

Why orthogonal in parameters ̸= invariant in outputs. We formalize this issue as the following
Prop. 1 and give a proof with dimension argument.
Proposition 1 (Insufficiency of parameter-space orthogonality for output invariance). For each
submodule k, let Uk

I,S ,Vk
I,S be the S-dimensional instruction-side principal left/right subspaces and

define the admissible low-rank parameter perturbation space

T k
I = Uk

I,S ⊗ Vk
I,S = span

{
vec(uv⊤) : u ∈ Uk

I,S , v ∈ Vk
I,S

}
, TI =

K⊕
k=1

T k
I . (A4)

Let J be the Jacobian of the logits on the protected thinking tokens Ωthink at the anchor θR, with total
parameter dimension D = dim(θ) and rank r = rank(J). Then, in generic position,

dim
(
TI ∩Null(J)

)
≤ max{0, KS2 − r}. (A5)

In particular, if r > KS2, one has TI ∩ Null(J) = {0} and hence TI ⊈ Null(J). Even when
r ≤ KS2, the inclusion TI ⊆ Null(J) requires a measure-zero alignment and thus almost never
holds. Consequently, there exists a nonzero ∆ ∈ TI with J∆ ̸= 0, implying

Lthink(θR +∆) = 1
2 ∆

⊤(E[J⊤FJ ]
)
∆ + o(∥∆∥2) > 0, (A6)

where F is the Fisher matrix of the softmax.

Proof of Prop. 1. Each module contributes an S-dimensional left subspace and an S-dimensional
right subspace; their Kronecker product yields

dim T k
I = S · S = S2 in generic position, (A7)

so, ignoring accidental cross-module dependencies,

dim TI =

K∑
k=1

dim T k
I = KS2. (A8)

By the rank–nullity theorem for J ∈ Rm×D,

dimNull(J) = D − r. (A9)

For two subspaces A,B ⊂ RD, a standard upper bound on the intersection dimension states

dim(A ∩ B) ≤ max{0, dimA+ dimB −D}. (A10)

Setting A = TI and B = Null(J) gives

dim
(
TI ∩Null(J)

)
≤ max

{
0, KS2 + (D − r)−D

}
= max{0, KS2 − r}. (A11)

Hence, if r > KS2, the intersection is trivial and TI ⊆ Null(J) is impossible. Even when r ≤ KS2,
the full inclusion would require not only dim TI ≤ dimNull(J) but also a non-generic containment
(measure-zero alignment) between the two subspaces; thus it almost never holds in generic position.

Finally, since F ⪰ 0 and M = E[J⊤FJ ] ⪰ 0, any nonzero ∆ ∈ TI with J∆ ̸= 0 satisfies
∆⊤M∆ > 0, yielding

Lthink(θR +∆) = 1
2 ∆

⊤M∆+ o(∥∆∥2) > 0. (A12)

In words, orthogonality of principal parameter subspaces does not guarantee first-order invariance
of outputs on the thinking format. This is precisely why our Stage 1 imposes a null-space projection
constraint (i.e., ΦΩthink vec(∆

⊥) = 0) to cancel first-order effects.
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E.2 PROOF OF PROP. 1

Proof of Prop. 1. Let p = softmax(z) ∈ ∆V−1 and q = softmax(z + u), where z ∈ RV is the
logits vector at a thinking position t ∈ Ωthink(x) and u ∈ RV is the perturbation induced by the
parameter change.

Step 1: KL as a Bregman divergence of lse and a uniform quadratic bound. Let lse(z) =
log
∑V

i=1 e
zi , so that ∇ lse(z) = softmax(z) = p and ∇2 lse(z) = diag(p) − pp⊤. For the

multinomial exponential family, the KL divergence equals the Bregman divergence of the log-partition
function (Banerjee et al., 2005; Wainwright & Jordan, 2008):

KL(softmax(z + u) ∥ softmax(z)) = Dlse(z+u, z) = lse(z+u)− lse(z)−⟨∇ lse(z), u⟩. (A13)

Using the integral form of the Bregman remainder for a twice differentiable convex f , Df (x+h, x) =∫ 1

0
(1− s)h⊤∇2f(x+ sh)h ds, and the fact that for all z the Hessian satisfies ∥∇2 lse(z)∥2 ≤ 1

4 by
positive semidefinite covariance form as in Lemma 1 (Boyd & Vandenberghe, 2004; Böhning, 1992),
we obtain

KL(softmax(z + u) ∥ softmax(z)) =

∫ 1

0

(1− s)u⊤∇2 lse(z + su)u ds

≤
∫ 1

0

(1− s) 1
4∥u∥

2
2 ds =

1
8∥u∥

2
2. (A14)

Equivalently, the second-order Taylor expansion with a third-order remainder yields

KL(softmax(z + u) ∥ softmax(z)) = 1
2 u

⊤∇2 lse(z)u + O(∥u∥32) ≤ 1
8∥u∥

2
2+O(∥u∥32). (A15)

Lemma 1 (Hessian bound for lse). For any z ∈ RV with p = softmax(z),

∇2 lse(z) = diag(p)− pp⊤ ⪰ 0,
∥∥∇2 lse(z)

∥∥
2
≤ 1

4 . (A16)

Step 2: Bounding the logits perturbation via linearization and Lipschitz regularity. Let J(x, t) ∈
RV×d be the Jacobian of zθ(x, t) w.r.t. θ at θ = θR. By the mean-value theorem and Taylor expansion
with Lipschitz gradient (Nesterov, 2013),

u(x, t) := zθR+∆(x, t)− zθR(x, t) = J(x, t) vec(∆) + r(x, t), ∥r(x, t)∥2 ≤ L
2 ∥∆∥22, (A17)

where L is a local Lipschitz constant of ∇θzθ(x, t) around θR. Let Φ = blkdiag(Φ1, . . . ,ΦK) be
the block-diagonal forward feature operator that maps vec(∆) to the linearized token-level feature
change collected at thinking positions (per submodule k). Under bounded intermediate activations
and operator norms, which are standard in local linearization of deep nets (Fazlyab et al., 2019), there
exists C1 > 0 such that ∥J(x, t) vec(∆)∥2 ≤ C1 ∥Φ vec(∆)∥2. Combining with Eq. (A17),

∥u(x, t)∥2 ≤ C1 ∥Φ vec(∆)∥2 + C2 ∥∆∥22, C2 := L
2 . (A18)

Step 3: Enforcing the null-space constraint and aggregating into Lthink. Apply the submodule-
wise null-space projection (see Eq. (5) in the main text):

vec(∆⊥,k
I ) = P⊥(Φk

Ωthink

)
vec(∆k

I ), ∆⊥
I =

K⊕
k=1

∆⊥,k
I , (A19)

so that by construction ΦΩthink vec(∆⊥
I ) = 0. Plugging this into Eq. (A18) yields for all t ∈ Ωthink(x):

∥u(x, t)∥2 ≤ C2 ∥∆⊥
I ∥22. (A20)

Combining with Eq. (A14) and summing/averaging over (x, t) in the definition of Lthink (Eq. (2))
gives

Lthink
(
θR +∆⊥

I

)
= Ex

∑
t∈Ωthink(x)

KL
(
πθR+∆⊥

I
(· | x, y<t) ∥πθR(· | x, y<t)

)
≤ 1

8 Ex,t

[
∥u(x, t)∥22

]
+O

(
Ex,t∥u(x, t)∥32

)
= O

(
∥∆⊥

I ∥42
)
≤ O

(
∥∆⊥

I ∥22
)
≈ 0. (A21)

This completes the proof.
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Algorithm 1: RAIN-Merging: Reasoning-Aware Instruction-attention guided Null-space projec-
tion Merging
Input :LRM θR; ITM θI ; base model θB ; reasoning calibration set DR with thinking indices Ωthink;

instruction calibration set DI with spans (I,R,U); hyperparameters ρ, α̃l, α̃u, λ.
Output :Merged model θ⋆.

1 Stage 0: Task vector and objective.
2 ∆I ← θI − θB // instruction-tuned task vector

3 Stage 1: Reasoning-aware Null-space Projection (satisfy Eq. (2)).
4 for k ← 1 to K // iterate over submodules (per-layer WQ,WK ,WV ,WO,FFN) do
5 Φk

Ω ← FeatureOperator (θR, DR, Ωthink, k) // forward feature extraction at
thinking tokens

6 P⊥
k ← diag(1)− (Φk

Ω)
⊤(Φk

Ω(Φ
k
Ω)

⊤ + diag(1)
)−1

Φk
Ω // least-squares orthogonal

projector

7 vec(∆⊥,k
I )← P⊥

k vec(∆k
I ) // submodule projection per Eq. (5)

8 θ′ ← θR +
⊕K

k=1 ∆
⊥,k
I // direct merge after Stage 1

9 Stage 2: Instruction-attention Guided Merging Coefficients (optimize Eq. (11)).
10 Initialize head-wise coefficients α̃k̃←1 for all attention heads k̃.
11 for each attention head k̃ do
12 ak̃ ← Ex∼DI

[
1

|I(x)| |R(x)|
∑

t∈I(x)

∑
τ∈R(x) Att

k̃
θ′(x)[t, τ ]

]
13 uk̃ ← Ex∼DI

[
1

|I(x)| |U(x)|
∑

t∈I(x)

∑
τ∈U(x) Att

k̃
θ′(x)[t, τ ]

]
14 for each attention head k̃ do
15 gk̃ ← ak̃ − ρ uk̃ // first-order term for Eq. (11)

16 H̃ k̃ ← 1 + uk̃ // diagonal Hessian approx

17 α̃k̃
⋆ ← clip[α̃l,α̃u]

( gk̃

H̃ k̃

)
// per-head optimal scaling

18 αk
⋆ ← Aggregate

(
{α̃k̃

⋆}k̃∈module k

)
// mean over heads for FFN

19 Output (Two-stage Merge).
20 return θ⋆ ← θR + λ

⊕K
k=1 α

k
⋆ ∆

⊥,k
I // final model in Eq. (16)

F ALGORITHM

Following Alg. 1 is the algorithm of our RAIN-Merging.

G METHOD IMPLEMENTATION DETAILS

G.1 FORWARD MECHANISM IN TRANSFORMER

A standard Transformer layer consists of multi-head self-attention and a feed-forward network (FFN).
In layer ℓ, the hidden state of the token at position t, denoted h

(ℓ−1)
t ∈ Rd, is linearly projected to

queries, keys, and values: q(ℓ)t = W
(ℓ)
Q h

(ℓ−1)
t , k

(ℓ)
τ = W

(ℓ)
K h

(ℓ−1)
τ , v

(ℓ)
τ = W

(ℓ)
V h

(ℓ−1)
τ . For head h,

the single-head attention weights are Att
(ℓ,h)
θ (x)[t, τ ] = softmaxτ

(
⟨q(ℓ,h)t , k

(ℓ,h)
τ ⟩/

√
dk

)
, which

represent the probability that the token at position t attends to position τ . The corresponding
head output is o(ℓ,h)t =

∑
τ Att

(ℓ,h)
θ (x)[t, τ ] v

(ℓ,h)
τ . After concatenating the outputs from all heads

and applying W
(ℓ)
O , we obtain h̃

(ℓ)
t . The FFN then computes ĥ

(ℓ)
t = σ

(
W

(ℓ)
in h̃

(ℓ)
t + b

(ℓ)
in

)
, h

(ℓ)
t =

W
(ℓ)
out ĥ

(ℓ)
t + b

(ℓ)
out . The top-layer hidden state is mapped to vocabulary logits zθ(x, t), which are

transformed by a softmax into the conditional distribution πθ(· | x, y<t). We follow the notation and
the scaled dot-product attention definition of Vaswani et al. (2017) to align with prior work.
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Table A1: Reasoning calibration set construction from Mixture-of-Thoughts. We uniformly sample
50 examples per domain for calibration and 50 for validation. Raw sizes are taken from the official
dataset composition page.

Domain Raw size Calibration Validation

Math 93,700 50 50
Code 83,100 50 50
Science 173,000 50 50

Total 349,800 150 150

G.2 IMPLEMENTATION DETAILS IN MERGING

To balance computational efficiency and memory usage, all model-merging experiments adopt a
layer-wise merging strategy. During parameter fusion, we compute in FP64 precision to ensure
numerical stability, and we store the final models in BF16. Our experiments show that higher compute
precision yields consistent but modest improvements for this merging procedure.

H CALIBRATION SET CONSTRUCTION

H.1 REASONING CALIBRATION SET

We employ the Mixture-of-Thoughts2 (Face, 2025) dataset as the source for reasoning-style calibration.
This dataset contains validated R1-style reasoning traces spanning three domains: math, code, and
science, with a total size of approximately 350k samples. Its official data composition page clearly
specifies the sample sizes and origins for each sub-domain: math samples are sourced from OpenR1-
Math (Lozhkov et al., 2025), code from CodeForces-CoTs (Penedo et al., 2025), and science from
the science subset of the Nemotron post-training set (Bercovich et al., 2025). From each domain, we
randomly sample 50 instances to form the calibration set (150 in total), and an additional 50 instances
per domain are randomly sampled to serve as the validation set (150 in total). Tab. A1 shows the
detailed numbers of samples in each domain.

Thinking Special Token Set Construction. To apply preservation constraints on “thinking format”,
we extract the thinking tokens, specifically <think> and </think> in the model output—based
on the R1-style chat template and tokenizer. The procedure involves rendering messages using the
chat template provided by LRM. R1-family models prefill <think> in reasoning mode and insert
</think> in the context, while some templates may omit the visible output of the initial <think>
to enforce thinking mode. We then obtain token positions of <think> and </think> in Ωthink.

H.2 INSTRUCTION CALIBRATION SET

We construct a high-quality instruction calibration set from rule-verifiable prompts through four auto-
mated and auditable steps. The pipeline produces span-based samples (x ∼ DI ; I(x), R(x), U(x))
for computing the instruction-attention score proxy in Stage 2 of RAIN-Merging. We choose to distill
from IFEval-style instructions for ease of implementation and to test generalization on out-of-domain
instruction-following datasets. The final size of the instruction calibration set is 365. The full
workflow is:

• Instruction selection. We select rule-verifiable instruction prompts from IFEval (Zhou et al.,
2023b) as queries. Each record contains a natural-language instruction and machine-checkable
constraints.

• Step 1: Response generation by LRM. For each instruction query, we invoke an R1-style
reasoning model (deepseek-reasoner, DeepSeek-R1-0528)3 to produce a format-explicit
response. This step yields instruction-following samples generated by a reasoning decoder that
reflect realistic decoding behavior.

2https://huggingface.co/datasets/open-r1/Mixture-of-Thoughts
3https://api.deepseek.com/v1
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Figure A3: A sample illustration in our instruction calibration set.

Table A2: Instruction-following benchmarks. We list dataset size, constraint taxonomy, composition
types, verification, and aggregation strategy.

Benchmark Size Constraint Composition Type Verification Evaluation

Taxonomy And Chain Selection Nested Code-Exec. LLM-as-Judge Aggregation

IFEval 541 25 ✓ – – – ✓ – strict_prompt_level_accuracy
CELLO 523 4 ✓ ✓ – – ✓ – average
InfoBench 500 5 ✓ ✓ – – – ✓ DRFR
ComplexBench 1,150 19 ✓ ✓ ✓ ✓ ✓ ✓ dependency-aware DRFR

• Step 2: Rule evaluation and filtering. We evaluate the outputs of Step 1 with an IFEval-compatible
checker and retain only passing samples that satisfy all constraints. This removes cases that clearly
fail the requirements.

• Step 3: Strict span extraction (LLM-as-Judge). We use a high-performance instruction-tuned
LLM (deepseek-chat, DeepSeek-V3.1)3 to precisely extract instruction-relevant spans: I(x)
(tokens in the prompt corresponding to the instruction) and R(x) (tokens in the response that are
governed by the instruction). The unrelated span U(x) is then implicitly defined as the remainder
of the response. See Fig. A3 for an example.

• Step 4: Tokenizer-level verification. We verify the extracted spans on the target tokenizer (aligned
with our anchor LRM), ensuring that boundaries lie on token edges and can be deterministically
reconstructed. Samples that fail alignment are discarded.

• Step 5: Human review and ethical screening. To ensure data quality and compliance with safety
and ethics standards, we introduce a manual review stage. Researchers verify the accuracy of
the LLM-extracted spans I(x) and R(x), and conduct an ethics audit of the responses based on
content-safety guidelines, removing any samples that contain biased, harmful, or inappropriate
content. This step further enhances the reliability and ethical soundness of the calibration set.

This calibration pipeline is readily transferable and can be extended to additional instruction-following
datasets to further improve merging effectiveness by enriching the calibration set. The reasoning
distillation model and the LLM-as-Judge can be updated over time to continually enhance the quality
of the instruction calibration data.
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Table A3: Test set sizes of the six math benchmarks used in our mathematical reasoning (Math)
evaluation.

AIME2025 AIME2024 AMC23 GSM8K Math500 MinervaMath

# Test samples 30 30 40 1,319 500 272

I DETAILED EXPERIMENTAL SETUP

I.1 BENCHMARKS

Instruction-following Benchmarks. We evaluate instruction compliance on four widely used,
programmatically verifiable benchmarks. The size and constraint types are summarized in Tab. A2.

• IFEval (Zhou et al., 2023b). IFEval provides four accuracy metrics: (1) prompt-level strict accuracy
and (2) instruction-level strict accuracy, plus (3) prompt-level loose and (4) instruction-level loose
variants. The strict metrics require exact satisfaction (all constraints per prompt for prompt-level
strict; per-constraint averaging across prompts for instruction-level strict). The loose metrics first
normalize model outputs (e.g., strip Markdown, boilerplate intros/outros) to reduce false negatives.
We report the official strict_prompt_level_accuracy unless otherwise noted.

• CELLO (He et al., 2024). CELLO uses a code-based verifier that scores four granular aspects:
(i) count limit (word/sentence/sample counts), (ii) answer format (parsability, keywords), (iii)
task-prescribed phrases (mandatory phrases covered), and (iv) input-dependent query (presence
of key phrases from the input), with a penalty to discourage verbatim copying. We follow the
benchmark’s practice and average these checks to produce the final score.

• InfoBench (Qin et al., 2024). InfoBench adopts the Decomposed Requirements Following Ra-
tio (DRFR): each instruction is split into scoring questions that are judged by LLM-as-a-Judge
with binary YES/NO labels; the final score is the mean over all questions, enabling fine-grained
interpretability. We evaluate by GPT-5-mini. We report the official DRFR.

• ComplexBench (Wen et al., 2024). ComplexBench also evaluates via decomposed scoring ques-
tions with YES/NO judgments and aggregates them into DRFR, but crucially uses a dependency-
aware scheme: if any prerequisite constraint fails, all dependent (downstream) constraints are
automatically marked as failed. This better reflects multi-constraint compositions. We evaluate by
GPT-4o-mini. We report the dependency-aware DRFR.

Reasoning & General Benchmarks. We evaluate reasoning and general capabilities on the follow-
ing benchmarks:

• Math (Mathematical reasoning). We aggregate Pass@1/accuracy over six common math bench-
marks: AIME2025 (Balunović et al., 2025); AIME2024 (Balunović et al., 2025); AMC23 (Cao
et al., 2024); GSM8K (Cobbe et al., 2021); Math500 (Hendrycks et al., 2021); Minerva-
Math (Lewkowycz et al., 2022). The size of each math benchmark is shown in Tab. A3. We report
the averaged accuracy over all benchmarks.

• Aider (Aider, 2024) (Code editing). Aider-Edit assesses code editing capability under a minimal-
edit paradigm. It contains 133 small Python coding exercises sourced from Exercism, where the
model is provided with a natural-language edit instruction and the existing code, and must generate
a correct patch. The generated patch is required to apply successfully to the codebase and pass
compilation and associated tests. Performance is measured by the Pass@2 Edit Success Rate.

• GPQA (Rein et al., 2024) (STEM). A curated, expert-level subset of GPQA comprising 198
four-option multiple-choice questions across biology, chemistry, and physics. Items are selected to
be “Google-proof” and unambiguous: both expert validators must answer correctly while at most
one of three skilled non-experts succeeds, yielding a particularly hard split. We follow common
practice and report accuracy (strict single-choice).

• Arena-Hard-v2 (Li et al., 2024) (Creative writing). A hard, open-ended benchmark constructed
to maximize model separability and align with human preferences. Arena-Hard-Auto curate
∼500 challenging prompts covering difficult real-world tasks including creative writing, scoring
follows the pairwise battle paradigm with human or LLM-as-a-Judge assessments, and results
are commonly summarized as win rate or transformed to Elo scores. For reproducibility, we fix
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Qwen2.5-7B as the reference baseline and use GPT-5-mini as the judging LLM; we report the
resulting win rate of each model against this baseline on the official Arena-Hard-v2 prompt set.

• Agentic Scenarios. We evaluate the ability of the model to interact with the environment and
complete tasks by two agentic benchmarks: ALFWorld (Shridhar et al., 2021) is a text-interactive
household-task environment involving multi-step planning and execution. We evaluate on 100 tasks.
Metrics are Success Rate of goal completion. WebShop (Yao et al., 2022) is a web shopping agent
task (search, click, compare), with reported Normalized Reward to capture both path efficiency
and goal matching. We evaluate on 100 tasks.

I.2 BASELINES

We compare our method with the following merging baselines:

• Task Arithmetic (Ilharco et al., 2023). The simplest linear composition injects the task vector
additively near the anchor, θ = θR + λ∆I . A scalar λ ∈ [0, 1] usually controls the strength; using
the same λ per layer or per block is also common. Its advantages are zero data and negligible
compute; its drawback is that conflicts across submodules are hard to disentangle.

• SLERP (Biship, 2007; Goddard et al., 2024). In SLERP (Spherical Linear Interpolation), weights
are ℓ2-normalized to the unit sphere and interpolated along the geodesic to preserve norm and
angular geometry. Let Ω = arccos

(
⟨wR, wI⟩

)
. Then slerp(wR, wI ; t) = sin((1−t)Ω)

sinΩ wR +
sin(tΩ)
sinΩ wI , t ∈ [0, 1]. During merging, we apply SLERP to each tensor and rescale by the

original norm. This reduces norm drift compared with linear interpolation.

• Karcher (Nielsen & Bhatia, 2013; Goddard et al., 2024). On a chosen manifold like the unit
sphere or a Stiefel manifold, compute the Fréchet mean by minimizing the sum of squared geodesic
distances: minw̄

∑
i d

2(w̄, wi). The iterative update is w̄(t+1) = Expw̄(t)

(
1
n

∑
i Logw̄(t)(wi)

)
.

• TIES (Yadav et al., 2023). TIES is a data-free method that explicitly prunes and sparsifies to handle
parameter-level conflicts. For each layer’s edit vector it applies (i) a sign-consistency mask (retain
entries aligned with the dominant direction to reduce cancellation), (ii) magnitude thresholding or
Top-k truncation (keep high-contribution entries and zero out the rest), and (iii) optional rescaling
to match a target norm. We can stack TIES as a post-processing step on top of feasible baselines to
improve robustness.

• DARE (Yu et al., 2024). DARE uses first-order sensitivities on a small calibration set (for example,
gradient norms of labeled loss, log-likelihood changes, or Fisher approximations of the output
distribution) to learn a per-layer or per-tensor coefficient αk (or a diagonal preconditioner), yielding
θ = θR +

⊕
k α

k ∆k
I . It can be viewed as data-aware recalibration that reduces the bias introduced

by naive addition with very low compute.

• ACM (Yao et al., 2025). ACM (Activation-Guided Consensus Merging) targets activation con-
sistency. On a small calibration set it measures, before and after injecting the task vector, how
each layer or head changes its response on instruction-relevant spans and its leakage on irrelevant
spans. It then solves for per-submodule coefficients αk, optionally with cross-sample consensus
regularization to improve generalization.

• LEWIS (Chopra et al., 2025). LEWIS (LayEr WIse Sparsity) is a merge with layer-wise sparsity
allocation. Based on sensitivity indicators per layer (such as edit-vector magnitude, activation
gradients, or Fisher approximations), it sets a budget sk and merges only the Top-sk parameters
of that layer, leaving the anchor weights elsewhere unchanged. It can be combined with Task
Arithmetic, SLERP, or Karcher as the base, and {sk} are determined by heuristics or grid search
on a small calibration set.

• AIM (Nobari et al., 2025). AIM (Activation-based Importance Merging) weights the task vector
by activation importance (for example, the effect of Value or FFN outputs on downstream logits, or
the instruction-aligned component of attention weights), performing element-wise or block-wise
reweighting: Weights the task vector by activation importance, for example, the effect of Value
or FFN outputs on downstream logits, or the instruction-aligned component of attention weights,
performing element-wise or block-wise reweighting: θ = θR +

⊕
k W

k ⊙ ∆k
I , where W k is

obtained from a single forward pass on the calibration set. Intuitively, this preserves edits that
meaningfully change useful representations and suppresses noisy updates.
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Table A4: The hyperparameters of various merging methods in Tab. 1. λ means the global scaling
coefficient in merging. k denotes the trim ratio in TIES-Merging. p means the drop rate in DARE
merging. τ is sharpness the ACM. ρ is the pruning ratio in LEWIS. ω means the balance factor in
AIM.

Method Hyper-parameters

7B

Task Arithmetic λ = 1.0
SLERP λ = 1.0
Karcher λ = 1.0
TIES k = 0.8, λ = 0.8
DARE-TIES p = 0.3, k = 0.5, λ = 1.2
ACM-TIES τ = 1.0, k = 0.5, λ = 1.1
LEWIS-TIES ρ = 0.5, k = 0.5, λ = 1.1
AIM-TIES ω = 0.4, k = 0.5, λ = 1.0

Table A5: The hyperparameters of RAIN-Merging in different model sizes. λ means the global
scaling coefficient in RAIN-Merging.

Method Hyper-parameters

1.5B 7B 8B 14B

RAIN-Merging λ = 1.0 λ = 1.0 λ = 0.9 λ = 1.0

Unless otherwise specified, following common practice in previous work (Wu et al., 2025), we apply
TIES post-processing (sign consistency and magnitude truncation) on the outputs of DARE, ACM,
LEWIS, and AIM, in order to improve comparability across baselines.

I.3 HYPERPARAMETERS

For SFT, we use a batch size of 16 with the Adam optimizer (Kingma & Ba, 2014), a learning rate of
2× 10−5, weight decay of 0.05, and train for 20 epochs.

For all model-merging methods (including the proposed RAIN-Merging and all baselines), we
merge only the task vectors extracted from the ITM’s Q/K/V/O/FFN modules. The specific
hyperparameter settings for each baseline used in Tab. 1 are listed in Tab. A4.

In RAIN-Merging, we set the leakage penalty to ρ = 10 and bound the attention-head coefficients
by [α̃l, α̃u] = [0.0, 1.0]. The global scalar λ is selected via a grid search over [0.0, 1.5] with a step
size of 0.1; the chosen values for different model families are provided in Tab. A5. An ablation study
of the global scalar λ is included in Appendix J.2.

J ADDITIONAL EXPERIMENTS

J.1 DETAILED MATH BENCHMARK RESULTS

Tab. A6 and Tab. A7 report detailed results on the mathematics benchmarks. RAIN-Merging
consistently preserves the mathematical reasoning ability of LRMs across different model sizes and
architectures. In some cases, improving instruction following also correlates with better mathematical
performance, suggesting that enhanced adherence can support clearer intermediate reasoning and
more reliable final answers.

J.2 ABLATION STUDY OF THE GLOBAL SCALAR

We conduct a sensitivity analysis of the global scalar λ (Fig. A4). Across a wide range around our
chosen value near 1.0, the merged model maintains strong instruction-following performance. As λ
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Table A6: Math benchmark results under the same configuration as in Tab. 1. “Avg.” denotes the
average over all math benchmarks. The best and second-best results are highlighted in bold and
underlined, respectively.

Method AIME2025 AIME2024 AMC23 GSM8K Math500 Minerva Avg.

ITM 10.00 10.00 67.50 86.66 73.80 35.66 47.27
LRM 30.00 50.00 80.00 91.36 89.00 48.16 64.75

SFT 33.33 43.33 75.00 90.75 87.40 45.59 62.57

Task Arithmetic 30.00 50.00 80.00 90.75 89.00 45.59 64.22
SLERP 30.00 46.67 77.50 91.05 89.20 48.53 63.82
Karcher 30.00 50.00 80.00 90.98 89.20 48.90 64.85
TIES 33.33 46.67 82.50 91.36 90.60 48.16 65.44
DARE-TIES 36.67 40.00 82.50 90.98 90.20 45.22 64.26

AIM-TIES 33.33 50.00 85.00 89.76 89.60 47.79 65.92
ACM-TIES 33.33 50.00 77.50 91.36 88.20 47.06 64.57
LEWIS 30.00 33.33 80.00 90.27 88.80 50.00 62.07
RAIN-Merging 36.67 60.00 85.00 92.12 90.20 48.53 68.75

Table A7: Math benchmarks results under the same configuration as in Tab. 2. “Avg.” denotes the
average over all math benchmarks.

Method AIME2025 AIME2024 AMC23 GSM8K Math500 Minerva Average

Qwen2.5-1.5B-Instruct 3.33 0.00 30.00 75.44 59.40 22.43 31.77
DeepSeek-R1-Distill-Qwen-1.5B 20.00 13.33 42.50 73.77 71.80 28.31 41.62
Qwen2.5-1.5B-RAIN-Merging 20.00 16.67 60.00 76.36 72.40 29.78 45.87

Llama-3.1-8B-Instruct 3.33 6.67 20.00 81.65 67.60 34.26 35.59
DeepSeek-R1-Distill-Llama-8B 30.00 40.00 75.00 90.52 80.40 45.37 60.21
Llama-3.1-8B-RAIN-Merging 30.00 43.33 77.50 90.30 82.80 47.79 61.95

Qwen2.5-14B-Instruct 20.00 13.33 65.00 93.18 80.00 44.85 52.73
DeepSeek-R1-Distill-Qwen-14B 50.00 56.67 92.50 93.22 89.00 52.49 72.31
Qwen2.5-14B-RAIN-Merging 50.00 63.33 92.50 94.37 91.00 56.25 74.58

increases, reasoning ability improves slowly at first but then drops sharply beyond 1.0, indicating that
overly large merge strength can still harm reasoning.

J.3 ABLATION STUDY OF REASONING CALIBRATION SET SIZE

Fig. A5 presents an ablation over the size of the reasoning calibration set. As the set grows,
preservation of reasoning improves; however, instruction-following performance degrades gradually.
We hypothesize that overly strict preservation of the thinking format can limit gains in instruction
adherence and also increase computation. Balancing performance and resource usage, we select a
calibration size of 150.

J.4 VISUALIZATION OF MERGING COEFFICIENTS IN STAGE 2

As shown in Fig. A6, the heatmap of merging coefficients for DeepSeek-R1-Distill-Qwen-7B exhibits
clear layer-wise differences, indicating that different layers respond to instruction focus to different
degrees. Notably, the earliest layers show the strongest response, with coefficients reaching the upper
bound, and this pattern is consistent with the observations in Fig. 6.

J.5 ABLATION STUDY OF INSTRUCTION CALIBRATION SET GENERALIZATION

While we use an instruction calibration set from IFEval in the main experiments due to its cleanly
separable instruction spans and rule-based labels, the Stage 2 proxy is not restricted to such data.
we construct an additional instruction calibration set from InfoBench. InfoBench focuses on open-
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Figure A4: Instruction following and reasoning & generage performance of our RAIN-Merging using different
global scalar λ. The configuration is the same as in Tab. 2. The performance is measured by the average of the
instruction following and reasoning & general capability benchmarks. The marked result is our choice in the
experiments.
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Figure A5: Instruction following and reasoning & generage performance of our RAIN-Merging using different
reasoning calibration set sizes. The x axis represents the size of the reasoning calibration set with exponential
scale. The configuration is the same as in Tab. 2. The performance is measured by the average of the instruction
following and reasoning & general capability benchmarks. The marked result is our choice in the experiments.

ended constraints such as tone, style and content focus. We follow the same filtering pipeline as
in Appendix H.2 and perform manual screening to ensure that the selected spans correspond to
instructional constraints rather than problem content, resulting in a total of 260 samples. We refer the
calibration set of 365 rule-verifiable instructions from IFEval as Rule and the new set from InfoBench
as Open. We also consider a mixed variant Rule+Open obtained by simply concatenating the two
sets. Tab. A8 reports the performance of RAIN-Merging under these three calibration variants. Using
the Open calibration set alone yields instruction-following performance that is comparable to the
original Rule setting, with slightly higher accuracy on the more open-ended benchmarks (InfoBench
and ComplexBench). This indicates that the instruction-attention guided coefficients can still identify
effective modules even when calibrated exclusively on open-ended instructions, and are not restricted
to IFEval-style rule-verifiable patterns. The mixed Rule+Open calibration consistently improves
all four instruction-following benchmarks. Combining rule-verifiable and open-ended instructions
therefore produces a more general proxy that better captures diverse instruction types. But carefully,
we observe that both the purely Open and the Rule+Open variants incur a modest drop in reasoning &
general performance compared to the Rule baseline. This suggests that while open-ended calibration
can further enhance instruction-following, it may also slightly interfere with the preservation of
reasoning. We view designing cleaner open-ended calibration sets and more explicitly modelling
instruction–reasoning entanglement as promising directions for future work.
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Figure A6: Heatmap of merging coefficients by our Stage 2 for each layer and attention head of DeepSeek-R1-
Distill-Qwen-7B.

Table A8: Performance of RAIN-Merging with different instruction calibration sets in Stage 2.
Rule is our original instruction calibration set from IFEval, Open is the new set from InforBench,
Rule+Open simply concatenates both sets. We merge Qwen2.5-7B-Instruct (ITM) into DeepSeek-
R1-Distill-Qwen-7B (LRM) under the same configuration as Tab. 1.

Method
Instruction Following Reasoning & General

IFEval CELLO Info Complex Avg. Math GPQA Aider Arena- Avg.Bench Bench Hard-v2

LRM 55.45 16.59 71.73 32.72 44.12 64.75 44.44 29.63 65.29 51.03
RAIN-Merging (Rule) 63.22 19.03 74.53 35.66 48.11 68.75 54.55 33.33 65.73 55.59
RAIN-Merging (Open) 62.92 19.24 74.89 35.67 48.15 65.14 49.49 31.11 64.67 52.59
RAIN-Merging (Rule+Open) 64.03 19.63 75.64 36.70 49.00 67.43 53.03 35.56 65.29 55.32

J.6 SCALING RAIN-MERGING TO 32B MODELS

To assess whether RAIN-Merging remains effective at larger model scales, we further evaluate our
method on the Qwen2.5-32B family. In this setting, we regard DeepSeek-R1-Distill-Qwen-32B
as the LRM and Qwen2.5-32B-Instruct as the ITM. Tab. A9 reports the merging performance.
Compared to the 32B LRM, RAIN-Merging consistently improves instruction-following performance
on all four benchmarks with comparable performance on reasoning and general ability, while incurring
only a small drop on Aider. Our RAIN-Merging remains effective at the 32B scale and can still
enhance instruction adherence with preservation of reasoning and general ability. Further, we leave a
systematic study of RAIN-Merging on 70B+ models as future work.

J.7 GENERALIZATION TO UNSEEN INSTRUCTION-FOLLOWING BENCHMARKS

To mitigate risks of data contamination from established benchmarks, we evaluate our method on
three recently proposed instruction-following benchmarks that could not be used for calibration or
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Table A9: Merging performance and relative gains of RAIN-Merging on the Qwen2.5-32B family
under the same configuration as Tab. 2. The subsequent “(relative gain)” row reports the relative
improvement of our method over the LRM. The positive values are highlighted in green, and the
negative values are highlighted in red.

Model
Instruction Following Reasoning & General

IFEval CELLO Info Complex Avg. Math GPQA Aider Arena- Avg.Bench Bench Hard-v2

Qwen2.5-32B-Instruct 78.56 18.59 84.40 46.91 57.11 52.35 36.87 57.78 81.90 57.22
DeepSeek-R1-Distill-Qwen-32B 76.52 19.69 83.56 44.44 56.05 68.00 60.10 54.81 82.00 66.23
Qwen2.5-32B-RAIN-Merging 77.26 19.96 84.76 45.74 56.93 75.67 61.62 54.07 83.70 68.77

(relative gain) +0.97% +1.39% +1.44% +2.93% +1.57% +11.28% +2.52% -1.35% +2.07% +3.83%

Table A10: Merging performance and relative gains of RAIN-Merging on three new instruction-
following benchmarks. We merge the Qwen2.5-7B family under the same configuration as Tab. 1.
The subsequent “(relative gain)” row reports the relative improvement of our method over the LRM,
highlighted in green.

Model IFBench XIFBench EIFBench Average

Qwen2.5-7B-Instruct 27.89 83.35 55.62 55.62
DeepSeek-R1-Distill-Qwen-7B 17.69 72.93 45.31 45.31
Qwen2.5-7B-RAIN-Merging 19.39 76.32 47.85 47.85

(relative gain) +9.62% +4.65% +5.62% +5.62%

training: IFBench (Pyatkin et al., 2025), XIFBench (Li et al., 2025b), and EIFBench (Zou et al.,
2025).

• IFBench targets precise, verifiable output constraint and tests generalization to 58 diverse out-of-
domain constraint templates.

• XIFBench evaluates multilingual instruction-following under fine-grained constraints across six
languages, covering five categories such as content, style, format, situation and numerical require-
ments.

• EIFBench focuses on extremely complex instruction-following scenarios, where models must
execute multi-task workflows under multiple interacting constraints, closer to real-world product
use-cases.

These datasets introduce new instruction formats, domains, and evaluation protocols, and are therefore
suitable for testing robustness to distribution shifts in instruction-following.

The results are reported in Tab. A10. Across all three benchmarks, RAIN-Merging consistently
outperforms the baseline LRM, with relative gains ranging from +4.65% to +9.62% on individual
datasets and +5.62% on the average. These improvements suggest that our method can generalize to
new, previously unseen instruction-following tasks.

J.8 JOINT EVALUATION OF REASONING AND INSTRUCTION-FOLLOWING ON MATHIF

In the main paper, we primarily evaluate instruction-following and reasoning on separate benchmarks.
To more directly assess whether RAIN-Merging can jointly maintain strong reasoning and strict
instruction-following within a single task, we additionally evaluate our method on MathIF (Fu et al.,
2025b). MathIF is explicitly designed to measure instruction-following in mathematical reasoning:
it augments math problems with verifiable constraints and reports both constraint satisfaction and
math correctness, as well as a joint metric that requires both to hold simultaneously.

The results are reported in Tab. A11. Compared to the LRM, RAIN-Merging substantially improves
the instruction hard accuracy on MathIF while keeping math correctness essentially unchanged.
Most importantly, on the joint metric Both Acc, which requires simultaneous success in reasoning
and instruction following, the merged model improves from 12.62% to 20.48% (+62.26% relative),
outperforming both the LRM and the ITM. These results indicate that RAIN-Merging not only
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Table A11: Merging performance and relative gains of RAIN-Merging on MathIF. We merge the
Qwen2.5-7B family under the same configuration as Tab. 1. IF Acc. is the hard accuracy of satisfying
all instruction constraints, Math Acc. is math accuracy under constraints, and Both Acc. is the
fraction of samples where both constraints and math answers are correct. The subsequent “(relative
gain)” row reports the relative improvement of our method over the LRM, highlighted in green.

Model IF Acc. Math Acc. Both Acc.

Qwen2.5-7B-Instruct 48.81 40.95 19.76
DeepSeek-R1-Distill-Qwen-7B 25.86 53.81 12.62
Qwen2.5-7B-RAIN-Merging 35.10 54.76 20.48

(relative gain) +35.73% +1.77% +62.26%

Table A12: Evaluation of reasoning and answer traces. We merge the Qwen2.5-7B family under the
same configuration as Tab. 1. We report Reasoning Internal Coherence (RIC) and Reasoning-Answer
Alignment (RAA) on IFEval, AIME25, and GPQA (0-5 scale). The subsequent “(relative gain)” row
reports the relative improvement of our method over the LRM, highlighted in green.

Model IFEval AIME25 GPQA Average
RIC RAA RIC RAA RIC RAA

DeepSeek-R1-Distill-Qwen-7B 4.58 4.41 4.50 3.60 3.53 3.76 4.06
Qwen2.5-7B-RAIN-Merging 4.61 4.51 4.50 4.10 3.56 4.26 4.26

(relative gain) +0.77% +2.26% 0.00% +13.89% +0.86% +13.31% +4.78%

enhances instruction-following over the LRM, but also preserves its reasoning accuracy, leading to a
substantial gain on the core target of both correct and follow within a single benchmark.

J.9 REASONING AND ANSWER TRACES EVALUATION

Standard reasoning benchmarks primarily evaluate final-answer correctness and therefore do not
directly reveal whether Stage 1 of RAIN-Merging preserves the content and quality of the underlying
reasoning traces, as opposed to merely maintaining the surface-level thinking format. To complement
our reasoning and answer quality evaluations, we adopt the framework of Wang et al. (2025) and
perform a process-level analysis of reasoning traces and answers. We use GPT-4o as an automatic
judge and measure two chain-of-thought level metrics:

• Reasoning Internal Coherence (RIC) assesses how logically consistent and self-contained the
reasoning trace is.

• Reasoning–Answer Alignment (RAA) measures how well the reasoning trace semantically
supports the final answer.

For each sample we provide the question, the ground-truth answer, the full reasoning trace, and the
model’s final answer response. The judge then assigns 0-5 scores for RIC and RAA.

We evaluate the reasoning and answer traces of the LRM (DeepSeek-R1-Distill-Qwen-7B) and our
merged model (Qwen2.5-7B-RAIN-Merging) on three datasets: IFEval, AIME25, and GPQA.
Tab. A12 reports the resulting RIC and RAA scores. On IFEval, RAIN-Merging yields slight
improvements in both RIC and RAA. For the reasoning-focused benchmarks AIME25 and GPQA, it
maintains RIC scores comparable to the LRM, while achieving a marked increase in RAA, notably
by over 13% in both cases. In other words, the internal coherence of the reasoning is preserved, with
the connection between the reasoning and the final decision becoming noticeably tighter.

Our findings indicate that Stage 1 goes beyond preserving the superficial format of the <think>
tokens to maintain the coherence of the entire reasoning chain. Consequently, our RAIN-Merging
yields reasoning traces with greater fidelity to the chosen answers. This enhancement in process-level
consistency accounts for the modest performance gains observed on reasoning benchmarks. In
essence, improved instruction-following compels the model to more closely execute the intended
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Figure A7: Instruction-type accuracy comparison between the LRM (DeepSeek-R1-Distill-Qwen-7B)
and RAIN-Merging (Qwen2.5-7B-RAIN-Merging) on IFEval. The results highlight the largest
improvements on instructions like response_language, number_words, and no_comma.

Table A13: Robustness to paraphrased instructions on IFEval. We merge the Qwen2.5-7B family
under the same configuration as Tab. 1. Acc is hard accuracy (%) of satisfying all instruction
constraints. Robustness is defined as Acc(paraphrase)/Acc(original)

Model IFEval-original Acc IFEval-paraphrase Acc Robustness

Qwen2.5-7B-Instruct 65.71 64.16 0.98
DeepSeek-R1-Distill-Qwen-7B 57.86 50.85 0.88
Qwen2.5-7B-RAIN-Merging 61.29 61.81 1.01

reasoning strategy, resulting in both higher-quality internal reasoning and more dependable final
answers.

J.10 INSTRUCTION-TYPE BREAKDOWN ON IFEVAL

To provide a deeper understanding of how RAIN-Merging improves instruction-following, we perform
a per-instruction-type analysis on IFEval, which includes 20+ distinct instruction categories in the
original IFEval span. Fig. A7 reports the instruction-type accuracy comparison results. The analysis
reveals that RAIN-Merging achieves the most substantial performance gains on instruction types,
such as response_language, number_words, and no_comma. For the majority of other
types, the merged model either matches or modestly surpasses the LRM’s performance. These results
complement the aggregate accuracy metrics reported in the main paper and offer further insight into
the model’s instruction-following capabilities.

J.11 SEMANTIC ROBUSTNESS TO PARAPHRASED INSTRUCTIONS

Our main instruction-following evaluation already includes benchmarks with non-trivial semantic
components. In particular, InfoBench and ComplexBench explicitly evaluate whether the content
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of the response aligns with the prompt (e.g., style, tone, key information coverage), rather than
relying solely on surface-level pattern matching. Thus a certain degree of semantic evaluation
is already baked into our instruction-following metrics. To more directly assess whether RAIN-
Merging improves semantic instruction following, rather than simply adapting to specific phrasings,
we additionally follow IFEval-extended (Kovalevskyi, 2024) and construct a paraphrased version
of IFEval. Concretely, we select 200 valid IFEval examples (denoted as IFEval-original) and
use GPT-4o to generate three paraphrases for each instruction, yielding 600 phrased instructions
(denoted as IFEval-paraphrase). We then evaluate: (i) hard accuracy on the original 200 IFEval
prompts, and (ii) hard accuracy on the 600 paraphrased prompts. We also define a simple robustness
metric, Robustness = Acc(paraphrase) / Acc(original), which measures how well performance is
preserved under paraphrasing.

Tab. A13 reports the robustness to paraphrased instructions on IFEval. We observe that LRM’s
performance degrades notably under paraphrasing. RAIN-Merging not only improves over the
LRM on the original prompts, it also maintains slightly higher accuracy on paraphrased prompts,
achieving a robustness of 1.01 that surpasses both the LRM and the ITM. These results indicate that
RAIN-Merging enhances semantic instruction-following capability, as its performance improvements
remain consistent even when instructions are substantially paraphrased. This demonstrates that
the gains are not merely due to overfitting to specific phrasings or template-based patterns. The
paraphrase-robustness experiment complements our aggregate instruction-following evaluations and
supports the claim that the merged model better captures the intended meaning of user instructions.

J.12 CASE STUDY ON IFEVAL

We provide two case studies to illustrate the effectiveness of RAIN-Merging compared with DeepSeek-
R1-Distill-Qwen-7B as the baseline LRM on IFEval.

• IFEval Example 1: The baseline LRM violates the explicit rule to first echo the request verbatim
and further duplicates its poem, yielding a “following: False” outcome. In contrast, RAIN-Merging
correctly repeats the request word-for-word, includes the required keywords (“intern,” “grow”),
and produces a coherent, father-pleasing limerick (“following: True”).

• IFEval Example 2: The baseline LRM introduces capitalized section headers and markup (e.g.,
“Verse 1”), breaking the “all lowercase” constraint (“following: False”). RAIN-Merging delivers
fully lowercase lyrics with clear structure and consistent semantics (“following: True”).

J.13 CASE STUDY ON GPQA

To better understand why RAIN-Merging improves performance on GPQA,we go beyond final-
answer accuracy and analyze concrete examples where the merged model corrects the LRM’s
mistakes.

• GPQA Example 1: In the first case, the LRM constructs a mostly correct physical derivation
but makes a numerical slip in the computation as marked in red. The merged model follows
essentially the same derivation but corrects the arithmetic step and therefore reaches the correct
option. Notably, the merged model employs a step-by-step computational approach rather than
relying on a single direct calculation as in the LRM, reflecting its stronger logical coherence. This
suggests that our method goes beyond faithfully maintaining the structure of the reasoning chains
and can also enhance the reliability of the LRM’s step-by-step logical and numerical reasoning.

• GPQA Example 2: In the second case, the LRM correctly analyzes each option and explicitly
concludes that option (C) violates both isospin and parity conditions, while other options satisfy
the constraints. However, in the final answer, the LRM unexpectedly outputs (A) as the best choice,
contradicting its own reasoning. This is a classic knowing–doing gap (Schmied et al., 2025), where
the model’s decision is misaligned with its internal chain of thought. The merged model largely
reuses the same analysis but now selects (C) as the final answer, aligning its decision with its
reasoning. This is also the behavior captured by the improved RAA scores in previous Tab. A12 to
explain the performance gains on GPQA.
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Instruction-following Example 1 in IFEval

Prompt
Write a limerick about Hannah, a college student, doing an internship at a coffee company. Make sure
that her father would love the limerick. Include the words "intern" and "grow".
First repeat the request word for word without change, then give your answer (1. do not say any words
or characters before repeating the request; 2. the request you need to repeat does not include this
sentence)

DeepSeek-R1-Distill-Qwen-7B Reason
Okay, so the user has given me a query where they want a limerick about Hannah, a college student
doing an internship at a coffee company. They also want me to make sure her father would love it,
include the words "intern" and "grow".
First, I need to understand what a limerick is. It’s a five-line poem with an AABBA rhyme scheme,
usually humorous. So, I should structure it that way.
The main characters here are Hannah, who’s an intern, and her father. I need to highlight something
that would please her father. Since he’s looking back on her, maybe something positive, like growth or
learning. The user mentioned "grow," so that’s a keyword I must include.
I’ll start the first line with "There once was a college student named Hannah," which sets the scene.
Next, she’s doing an internship at a coffee company, so the second line can mention that.
For the third line, I need to introduce her father. Maybe something like "Her dad would be tickled,"
which fits the rhyme and the idea that he’s proud or finds it amusing.
In the fourth line, I have to include "grow," perhaps about Hannah growing into her role or learning
something. Something like "she grew as an intern." That works because it’s a common phrase and fits
the rhyme.
Finally, the last line should be a nice, positive ending. Maybe the coffee company has grown as a result
of her hard work. "And the JavaHouse grew from her intern!" That ties the "grow" into the company’s
success.
I should make sure the rhyme scheme is consistent and the lines flow well. Let me check each line for
the AABBA pattern: the first and third lines have "Hannah," the second and fourth have "intern" and
"grow," and the fifth is the punchline. The rhymes at the end of each line should be "annah," "inn,"
"dad," "un," and "or." Wait, that doesn’t quite fit perfectly. Let me adjust the fifth line to "and JavaHouse
grew from her intern." That way, the last two lines rhyme with "grow" and "grew," which is close
enough for a limerick’s loose rhyme.
I think this captures Hannah’s experience, shows her learning, and how her father is proud. It also ties
the coffee company’s growth to her internship, which is a nice touch. I should make sure the language
is playful and fits the humorous tone of limericks.

DeepSeek-R1-Distill-Qwen-7B Response (following: False)
There once was a college student named Hannah,
Whose intern days at JavaHouse she would swap for much.
Her dad would be tickled, I’m sure,
If he heard she grew as an intern.
And JavaHouse grew from her intern!

There once was a college student named Hannah,
Whose intern days at JavaHouse she would swap for much.
Her dad would be tickled, I’m sure,
If he heard she grew as an intern.
And JavaHouse grew from her intern!

RAIN-Merging Reason
Okay, so the user has given me a query where they want a limerick about Hannah, a college student
doing an internship at a coffee company. They also want me to include the words "intern" and "grow".
Plus, the limerick should make my father happy. I need to make sure that the poem not only fits the
structure of a limerick but also touches on what a father might appreciate.
First, recall the structure of a limerick (AABBA, typically anapestic). Incorporate internship details and
the required keywords. Emphasize traits a father would love: responsibility, learning, contribution.
Draft lines that meet the rhyme scheme and include "intern" and "grow," aiming for a playful, positive
tone that showcases Hannah’s growth and impact at the coffee company.

RAIN-Merging Response (following: True)
Write a limerick about Hannah, a college student, doing an internship at a coffee company. Make sure
that her father would love the limerick. Include the words "intern" and "grow".

There once was a college student named Hannah,
An intern at a coffee company she was.
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With her skills, both sharp and bright,
She’s learning every day,
She’s growing taller, her skills grow bright.

Her dad would surely give her a smile,
For Hannah’s heart and Hannah’s skill.
She’s balancing tasks, balancing time,
Turning great coffee into something divine.

A limerick full of sunny pride!

Instruction-following Example 2 in IFEval

Prompt
Compose song lyrics about a socio-economic problem. The song should be in English and in all
lowercase letters.

DeepSeek-R1-Distill-Qwen-7B Reason
The user asked for song lyrics about a socio-economic problem, in English and all lowercase. Choose a
relatable issue (e.g., inequality, unemployment), structure with verses/chorus/bridge, maintain empa-
thetic tone, vivid imagery, and ensure every character is lowercase. Aim for accessibility, repetition in
chorus, and a subtle sense of resilience or hope.

DeepSeek-R1-Distill-Qwen-7B Response (following: False)
Verse 1
every penny’s a struggle
like fuel for a car that won’t start
the stars are bright but we don’t see them
the ladder’s always broken

Chorus
every penny’s a struggle
a weight in your chest
the world’s a game but you’re just a piece
no matter how hard you try
every penny’s a struggle

Verse 2
the roads are wet but the rain falls cold
the wind’s a whisper but it’s got no hold
we’re dancing to a tune we can’t control
but the beat’s the same

Chorus
every penny’s a struggle
a weight in your chest
the world’s a game but you’re just a piece
no matter how hard you try
every penny’s a struggle

Bridge
look beyond the pain
is there a spark in your soul?
can you see the stars at night?
maybe there’s something more

Chorus
every penny’s a struggle
a weight in your chest
the world’s a game but you’re just a piece
no matter how hard you try
every penny’s a struggle

Outro
a penny’s worth of love or light
the struggle’s real but we gotta fight
we’ll find the way through the cold
the world’s a game but you’re just a piece
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RAIN-Merging Reason
Generate lyrics that address a socio-economic issue with clear imagery and structure
(verses/chorus/bridge). Conform strictly to the all-lowercase constraint. Keep language simple and
emotive, focusing on systemic barriers and lived experience, while maintaining flow and singability.

RAIN-Merging Response (following: True)
"the gap in the system"
(verse 1)
i see the faces in the lines,
faces searching for a ticket out of here.
factories grinding, bodies quiet,
a world that promises better, but i’m still waiting for the breath.

(chorus)
there’s a crack in the system, a fault in the law,
half the planet’s frozen in time.
we’re crafted from the same mold, same broken spell,
but the world won’t let us climb the hill.

(verse 2)
the streets are empty, the shops tiled over,
the only sound is the shuttle’s old tune.
we’re drowning in the waves, but the shores are a lie,
the promises fade like ash in the wind.

(chorus)
there’s a crack in the system, a fault in the law,
half the planet’s frozen in time.
we’re crafted from the same mold, same broken spell,
but the world won’t let us climb the hill.

(bridge)
oh, it’s not just the lack, it’s the broken chain,
we’re all stuck in the margins, never quite seen.
but the fights don’t stop, they never do,
we’re trapped in the loop, chained to the ground.

(chorus)
there’s a crack in the system, a fault in the law,
half the planet’s frozen in time.
we’re crafted from the same mold, same broken spell,
but the world won’t let us climb the hill.

(outro)
so here’s to the night shifts and the cold nights,
the endless loop where the kids don’t get the break.
we’re all fragments on the ground,
trying to find a way out of the ground.
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Reasoning Example 1 in GPQA

Question (Answer: C)
X is a meson resonance. What is the mean decay distance? Knowing that the production energy is
EX = 8GeV , the mass mX = 1.2GeV , and the width ΓX = 320MeV .
A. 4.0655× 10−16m
B. 5.0223× 10−16m
C. 4.0655× 10−15m
D. 5.0223× 10−15m

DeepSeek-R1-Distill-Qwen-7B Reason
Okay, so I have this physics problem here about a meson resonance and its mean decay distance. Hmm,
I’m a bit rusty on particle physics, but let me try to think this through step by step. First, the question
gives me some data: the production energy EX = 8 GeV, the mass mX = 1.2 GeV, and the width
ΓX = 320 MeV. I need to find the mean decay distance from these values. The options are given in
meters, so I guess I need to calculate the decay length.
...
(We omit the lengthy reasoning process for clarity.)
...

Wait, ℏ ≈ 6.582× 10−25 GeV·s. So τ = 6.582×10−25 GeV·s
0.32 GeV ≈ 2.056875× 10−25 s

Now, the mean decay length L = γβcτ . Let’s plug in the numbers. γ ≈ 6.6667, β ≈ 0.9887,
c ≈ 3× 108 m/s.
So L = 6.6667 × 0.9887 × 3 × 108 m/s × 2.056875 × 10−25 s Let me compute this step by step.
First, 6.6667× 0.9887 ≈ 6.6049. Then, 3× 108× 2.056875× 10−25 = 6.170625× 10−17 m. Now
multiply that by 6.6049: 6.6049× 6.170625× 10−17 ≈ 4.07× 10−16 m.
Looking at the options, option A is 4.0655× 10−16 m, which is very close to my calculation. Option B
is 5.0223× 10−16, which is higher. So I think the correct answer is A.

DeepSeek-R1-Distill-Qwen-7B Response (Answer: A, Wrong)
The mean decay distance L for a particle is given by L = γβcτ , where γ is the Lorentz factor, β is the
velocity in terms of the speed of light, c is the speed of light, and τ is the proper lifetime. The proper
lifetime is related to the total decay width Γ by τ = ℏ/Γ, where ℏ is the reduced Planck constant.
Given:
- EX = 8 GeV,
- mX = 1.2 GeV,
- ΓX = 320 MeV = 0.32 GeV.
First, calculate γ = EX/mX = 8/1.2 ≈ 6.6667.
Next, β =

√
1− (1/γ2) =

√
1− (1/6.66672) ≈ 0.9887.

The proper lifetime is τ = ℏ/ΓX , where ℏ ≈ 6.582× 10−25 GeV·s.
Thus, τ = (6.582× 10−25)/0.32 ≈ 2.056875× 10−25 s.
Finally, the mean decay length is: L = γβcτ = 6.6667× 0.9887× (3× 108)× 2.056875× 10−25 ≈
4.0655× 10−16 m
Comparing with the options, the closest match is A 4.0655× 10−16 m.

Answer: A
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RAIN-Merging Reason
Okay, so I’ve got this physics problem here about a meson resonance and its mean decay distance.
Hmm, I’m a bit rusty on particle physics, but let’s try to think this through.
The question gives me EX = 8 GeV, mX = 1.2 GeV, and ΓX = 320 MeV. I need to find the mean
decay distance. The options are all in meters, so I guess I need to calculate the decay length.
Wait, decay length... I remember that the mean decay length (L) is related to the particle’s lifetime (τ )
and its velocity (β). The formula is L = βγcτ , where γ is the Lorentz factor. But wait, sometimes it’s
also expressed using the width Γ because the lifetime τ is related to Γ by τ = ℏ/Γ. Oh right, because Γ
is the total decay width, which is inversely proportional to the lifetime.
So first, I need to find the lifetime τ . Γ is given in MeV, so I should convert that to GeV for consistency
with EX and mX . 320 MeV is 0.32 GeV.
Now, using τ = ℏ/Γ. But wait, what’s the value of ℏ in GeV·s? I think ℏ is approximately 6.582×10−25

GeV·s. Let me double-check that. Yeah, I think that’s correct.
So τ = (6.582× 10−25 GeV · s)/(0.32 GeV) = 6.582× 10−25/0.32 ≈ 2.057× 10−24 seconds.
...
(We omit the lengthy reasoning process for clarity.)
...

Wait, let me check the exact values.
First, τ = ℏ/Γ. ℏ is 6.582× 10−25 GeV·s. Γ is 0.32 GeV.
So τ = 6.582× 10−25/0.32 = let’s compute that exactly.
6.582/0.32 = 20.56875, so 20.56875× 10−25 s = 2.056875× 10−24 s.

...
(We omit the lengthy reasoning process for clarity.)
...

RAIN-Merging Response (Answer: C, Correct)
To calculate the mean decay distance L of the meson resonance, we use the formula: L = c · βγτ ,
where:
- c = 3× 108 m/s (speed of light),

- β =
√

1− m2

E2 is the velocity in units of c,

- γ = E
m

is the Lorentz factor,
- τ = ℏ

Γ
is the proper lifetime, with ℏ = 6.582× 10−25 GeV·s.

Step 1: Calculate τ

Given ΓX = 320 MeV = 0.32 GeV, the proper lifetime is: τ = ℏ
ΓX

= 6.582×10−25

0.32
≈ 2.056875 ×

10−24 s Step 2: Calculate β and γ
The energy is EX = 8 GeV, and the mass is mX = 1.2 GeV/c2. The Lorentz factor is: γ = EX

mX
=

8
1.2
≈ 6.6667

The velocity factor β is: β =

√
1− m2

X

E2
X

=
√

1− 1.22

82
=
√
1− 0.0225 =

√
0.9775 ≈ 0.9887

Thus, βγ = 0.9887 · 6.6667 ≈ 6.5911.
Step 3: Calculate L
Substituting into the formula for L: L = c · βγ · τ = 3× 108 · 6.5911 · 2.056875× 10−24

First, calculate c · βγ: 3× 108 · 6.5911 ≈ 1.97733× 109 m/s
Now multiply by τ : L = 1.97733× 109 · 2.056875× 10−24 ≈ 4.067× 10−15 m
Step 4: Match with the closest option
The calculated value L ≈ 4.067× 10−15 m is closest to option C (4.0655× 10−15 m).
ANSWER: C
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Reasoning Example 2 in GPQA

Question (Answer: C)
Consider a bound system of two nucleons (NN) in a 1S0 state which emit a particle X of intrinsic parity
-1. Pauli statistics require that the isospin, angular momentum, and spin quantum numbers of the final
NN state satisfy T(NN) = S(NN) + L(NN) + 1 (mod 2).
Suppose the final NN state has T(NN) = 0. Which of the following partial waves is not permitted, where
the lowercase letter denotes the angular momentum state of X? Make use of the conservation of both
angular momentum and parity.
Note that the term symbol (e.g. 1S0) is in general defined (2S+1)L(J), where S is the total spin, L the
total orbital angular momentum written in spectroscopic notation, and J the total angular momentum.
A. 1S0→ 3D3 + f
B. 1S0→ 3S1 + p
C. 1S0→ 3P0 + s
D. 1S0→ 7D1 + p

DeepSeek-R1-Distill-Qwen-7B Reason
Okay, so I’m trying to figure out this problem about nucleon-nucleon bound systems and the partial
waves involved when they emit a particle. Let me start by breaking down the question and the given
information.
...
(We omit the lengthy reasoning process for clarity.)
...
But I’m not entirely confident. I think the correct answer is (A) because it doesn’t satisfy the isospin
condition, but I’m not 100% sure.

DeepSeek-R1-Distill-Qwen-7B Response (Answer: A, Wrong)
The problem involves a bound system of two nucleons (NN) in a 1S0 state emitting a particle X with
intrinsic parity -1. The isospin, angular momentum, and spin quantum numbers of the final NN state
satisfy the condition T(NN) = S(NN) + L(NN) + 1 mod 2, where T(NN) = 0 for the final NN state. The
task is to determine which partial wave (l) of X is not permitted, considering both angular momentum
and parity conservation.
...
(We omit the lengthy reasoning process for clarity.)
...
### Option-by-Option Analysis:

• (A) 1S0 -> 3D3 + f
– NN term symbol 3D3: S = 1, L = 2, J = 3.
– T(NN) = (1 + 2 + 1) mod 2 = 4 mod 2 = 0 (satisfies the isospin condition).
– Parity of NN state: (-1)L̂ + S = (-1)2̂ + 1 = -1 (satisfies the parity condition).
– Conclusion: This partial wave is allowed.

• (B) 1S0 -> 3S1 + p
– NN term symbol 3S1: S = 1, L = 0, J = 1.
– T(NN) = (1 + 0 + 1) mod 2 = 2 mod 2 = 0 (satisfies the isospin condition).
– Parity of NN state: (-1)L̂ + S = (-1)0̂ + 1 = -1 (satisfies the parity condition).
– Conclusion: This partial wave is allowed.

• (C) 1S0 -> 3P0 + s
– NN term symbol 3P0: S = 1, L = 1, J = 0.
– T(NN) = (1 + 1 + 1) mod 2 = 3 mod 2 = 1 (does not satisfy the isospin condition).
– Parity of NN state: (-1)L̂ + S = (-1)1̂ + 1 = +1 (does not satisfy the parity condition).
– Conclusion: This partial wave is not allowed.

• (D) 1S0 -> 7D1 + p
– NN term symbol 7D1: S = 3, L = 2, J = 1.
– T(NN) = (3 + 2 + 1) mod 2 = 6 mod 2 = 0 (satisfies the isospin condition).
– Parity of NN state: (-1)L̂ + S = (-1)2̂ + 3 = -1 (satisfies the parity condition).
– Conclusion: This partial wave is allowed.
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### Final Answer:
Options (A) and (C) are not permitted because they fail either the isospin or parity condition. However,
since the question asks for the single best answer, (A) is chosen as the answer because it is the first
invalid option encountered in the analysis.
ANSWER: A

RAIN-Merging Reason
Okay, so I’m trying to figure out which partial wave isn’t allowed in this nuclear physics problem. Let
me start by understanding the question step by step.
...
(We omit the lengthy reasoning process for clarity.)
...
So the only option that doesn’t satisfy the isospin condition is (C). Therefore, the answer should be (C).

RAIN-Merging Response (Answer: C, Correct)
To determine which partial wave is not permitted, we analyze the problem using the given conditions:
1. Initial State: The initial NN system is in the 1S0 state, which has total spin S = 0, orbital
angular momentum L = 0, and isospin T = 0. The parity of the initial state is +1 since
P = (−1)L = (−1)0 = +1.
2. Final State Conditions:
- The final NN state has T = 0, so the isospin condition is T = S + L + 1 mod 2. Substituting
T = 0, we get S + L+ 1 ≡ 0 mod 2, which simplifies to S + L ≡ 1 mod 2. This means S and L
must have opposite parity (one even, one odd).
- The parity of the final state must conserve parity. The emitted particle X has intrinsic parity −1, so
the parity of the final NN state is PNN = P initial

NN · PX = (+1) · (−1) = −1. Since PNN = (−1)L, this
implies (−1)L = −1, so L must be odd.
3. Analysis of Each Option:

• (A) 1S0 → 3D3 + f: The NN state is 3D3, so S = 1 (since 2S + 1 = 3) and L = 2.

– S + L = 1 + 2 = 3, which satisfies S + L ≡ 1 mod 2.
– L = 2 is even, which violates the parity condition L must be odd.
– Allowed.

• (B) 1S0 → 3S1 + p: The NN state is 3S1, so S = 1 and L = 0.

– S + L = 1 + 0 = 1, which satisfies S + L ≡ 1 mod 2.
– L = 0 is even, which violates the parity condition L must be odd.
– Allowed.

• (C) 1S0→ 3P0 + s: The NN state is 3P0, so S = 1 and L = 1.

– S + L = 1 + 1 = 2, which does not satisfy S + L ≡ 1 (mod 2).
– L = 1 is odd, which satisfies the parity condition.
– Not allowed.

• (D) 1S0 → 7D1 + p: The NN state is 7D1, so S = 3 (since 2S + 1 = 7) and L = 2.

– S + L = 3 + 2 = 5, which satisfies S + L ≡ 1 mod 2.
– L = 2 is even, which violates the parity condition L must be odd.
– Allowed.

4. Conclusion:
All options except (C) satisfy the parity condition L must be odd. However, the isospin condition
S + L ≡ 1 mod 2 is violated in (C), making it the only permitted partial wave that is not allowed.
ANSWER: C
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K IMPLICATIONS

The potential impacts of this work span both academic and applied dimensions.

On the positive side, RAIN-Merging offers an interpretable, low-compute pathway for capability
integration. It enables researchers and resource-constrained labs to inject instruction-following
competence into LRMs without additional training. By enforcing a null-space constraint on the
thinking segment (<think>. . .</think>), the method preserves the model’s structured reasoning
format, which helps maintain reliability in reasoning. This direction may catalyze systematic
studies of the relationship between task-vector orthogonality and thinking-format stability, and it
encourages reproducible evaluation practices (for example, public evaluation scripts, calibration sets,
and hyperparameter configurations) and greater standardization of community benchmarks. In agent
applications such as WebShop and ALFWorld, RAIN-Merging can lower the barrier to integrating
multiple capabilities and improve the practicality of tool use and structured outputs.

On the risk side, parameter merging can introduce capability drift or safety drift. For example, while
improving instruction following, it may alter jailbreak sensitivity, amplify biases present in training
data or in LLM-as-judge pipelines, or induce hallucinations tied to specific output formats. Instruction
attention as a proxy metric may also encourage myopic optimization for format matching, which
is not equivalent to value-aligned safety. Moreover, increased model usability can be misused for
mass generation of misleading content, evasion of platform policies, or automated spam. The current
method also depends on R1-style special markers and prompting templates; its cross-model and
cross-modal generalization remains to be established.

L LIMITATIONS AND FUTURE WORK

Our method has the following limitations. (i) The method relies on R1-style templates and tokeniza-
tion to extract <think>. . .</think> for constructing the null space. If a model hides its reasoning
(for example, implicit CoT) or adopts different templates, the constraint may weaken or fail. (ii) The
instruction and reasoning calibration sets are limited in size and include noise from LLM-as-judge
auto-annotation. Distribution shifts across languages or task domains may affect the generalization of
the merging coefficients. (iii) Although the KL constraint on the thinking segment helps preserve
the reasoning format, non-thinking content and safety-relevant behaviors may still drift, and there
is currently no formal safety guarantee. (iv) Experiments focus primarily on the Qwen/DeepSeek
families. Applicability to multimodal LLMs, tool use, code-generation settings, and multilingual
scenarios requires systematic evaluation.
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