

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 RAIN-MERGING: A GRADIENT-FREE METHOD TO EN- HANCE INSTRUCTION FOLLOWING IN LARGE REASON- ING MODELS WITH PRESERVED THINKING FORMAT

Anonymous authors

Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) excel at a long chain of reasoning but often fail to faithfully follow instructions regarding output format, constraints, or specific requirements. We investigate whether this gap can be closed by integrating an instruction-tuned model (ITM) into an LRM. Analyzing their differences in parameter space, namely task vectors, we find that their principal subspaces are nearly orthogonal across key modules, suggesting a lightweight merging with minimal interference. However, we also demonstrate that naïve merges are fragile because they overlook the output format mismatch between LRMs (with explicit thinking and response segments) and ITMs (answers-only). We introduce **RAIN-Merging** (Reasoning-Aware Instruction-attention guided Null-space projection Merging), a gradient-free method that integrates instruction following while preserving thinking format and reasoning performance. First, with a small reasoning calibration set, we project the ITM task vector onto the null space of forward features at thinking special tokens, which preserves the LRM’s structured reasoning mechanisms. Second, using a small instruction calibration set, we estimate instruction attention to derive module-specific scaling that amplifies instruction-relevant components and suppresses leakage. Across four instruction-following benchmarks and nine reasoning & general capability benchmarks, RAIN-Merging substantially improves instruction adherence while maintaining reasoning quality. The gains are consistent across model scales and architectures, translating to improved performance in agentic scenarios.

1 INTRODUCTION

In the current boom of research, Large Reasoning Models (LRMs, like OpenAI-o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025)) have shown strong potential on tasks that require rigorous multi-step reasoning (Wei et al., 2022), such as mathematical derivation (Shao et al., 2024) and program synthesis (Guo et al., 2024). However, a discouraging paradox has emerged: although LRMs perform well in purely reasoning-oriented settings, they lag in instruction following (Fu et al., 2025a; Li et al., 2025a). They often generate lengthy logical derivations yet ignore user-specified formats, constraints, or specific operational requirements in the final response. This inconsistency undermines LRM practicality and reliability in real-world applications (Chkirbene et al., 2024), especially in agent (Qi et al., 2025) and professional tool deployments (Zhao et al., 2024).

A straightforward remedy is to continue training LRMs with supervised fine-tuning (SFT) to strengthen instruction following. However, building high-quality supervision datasets for tasks that require generating long chains of thought entails substantial annotation and computational resources (Qin et al., 2025). Moreover, these post-training methods often induce capability regressions, with degradation in generality and in responses to unseen instructions (Shenfeld et al., 2025). In contrast, a training-free and compute-light alternative is model merging, which extracts parameter differences between fine-tuned and pre-trained models (namely the **task vector**), then combines these task vectors to create a unified model that preserves pre-trained knowledge while incorporating capabilities from multiple tasks (Ilharco et al., 2023). This motivates a central question: *whether we can merge the LRM and the Instruction-tuned Model (ITM) to enhance the instruction following while preserving its reasoning capability*.

Figure 1: An overview of **RAIN-Merging**. In the case, the LRM arrives at the correct solution but ignores the required format and specific code. To preserve the reasoning structure, we perform training-free merging by combining a task vector projected onto the null space of the thinking format with instruction-attention guided coefficients. The merged model remains correct while satisfying the specified constraints. See Sec. 3 for details.

We begin with a parameter-space analysis of the task vectors from the LRM and the Instruction-tuned Model (ITM) relative to their shared base. We find that their principal subspaces are nearly orthogonal across key modules, which indicates minimal interference between the two capabilities and suggests that merging is a promising lightweight way to enhance the LRM’s instruction following (Ortiz-Jiménez et al., 2023). However, direct merging carries risks. LRM and ITMs differ fundamentally in output structure: the former explicitly separates “thinking” and “response” with special markers (e.g., R1-style `<think>...</think>`), whereas the latter provides only a final answer. Traditional data-free merging (Ilharco et al., 2023; Goddard et al., 2024) prunes or scales the task vector purely from parameter-internal statistics to balance domain performance, thereby ignoring output-distribution mismatches and disrupting the LRM’s structured reasoning. Recent work (Nobari et al., 2025; Yao et al., 2025; Chopra et al., 2025) has tried to guide merging with forward activations using small calibration sets. Although this introduces data-driven constraints, the lack of an explicit notion of the output mismatch between the two types still makes it difficult to achieve a stable and effective balance between preserving reasoning structure and improving instruction following.

To this end, we propose a two-stage merging strategy that enhances instruction-following capability without sacrificing the thinking format and reasoning performance of the LRM. First, leveraging task-vector orthogonality between the LRM and ITM, we preserve reasoning ability and enforce thinking-format invariance by projecting the ITM task vector into the null space derived from forward features at thinking tokens on a small reasoning-calibration set. This keeps the merged model’s reasoning representations aligned with the original LRM and retains structured outputs. Second, while keeping these invariances fixed, we aim to enhance instruction-following performance as much as possible. We improve instruction adherence by estimating per-module importance based on attention outputs over instruction-related spans from a small set of instruction examples. Attention-guided coefficients are then assigned to strengthen instruction-relevant behaviors. We refer to the overall two-stage approach as Reasoning-Aware Instruction-guided Null-space projection Merging (**RAIN-Merging**) in Fig. 1, which effectively synergizes reasoning and instruction-following performance.

We conduct a systematic evaluation of our proposed method on four instruction-following benchmarks and on nine evaluation benchmarks that cover mathematics, code, STEM, and creative-writing capabilities. The results show that RAIN-Merging not only substantially improves the LRM’s instruction-following ability but also maintains reasoning and general capability. Moreover, our method exhibits consistent stability across different model sizes and architectures, and demonstrates enhanced performance in agentic scenarios.

108 2 PRELIMINARY AND OBSERVATIONS

110 **Task Vector.** A task vector (Ilharco et al., 2023) characterizes the parameter delta from a base model
 111 to a task-specific one. A straightforward way to combine capabilities is **task arithmetic**, which
 112 linearly adds such deltas to a base model to obtain a multi-skilled model. This simple approach can
 113 work when tasks are compatible. However, for distinct abilities such as reasoning and instruction-
 114 following that impose different output structures (Yadav et al., 2023), naive linear addition may cause
 115 capability interference and disrupt the representations essential to each domain.

116 **Orthogonality between Reason & Instruction Task Vectors.** To
 117 examine whether capability interference arises when merging ITM
 118 θ_I into LRM θ_R , we take the shared base model θ_B as reference
 119 and define the LRM task vector $\Delta_R = \theta_R - \theta_B$ and the ITM task
 120 vector $\Delta_I = \theta_I - \theta_B$. We perform singular value decomposition
 121 (SVD) within the main forward modules, e.g. attention and FFN,
 122 for these two task vectors and evaluate the principal subspace
 123 cosine similarity of their principal subspaces. As shown in Fig. 2,
 124 A1, A2, the two are nearly orthogonal since their similarities
 125 are all < 0.1 . Prior studies (Ortiz-Jiménez et al., 2023) indicate
 126 that this phenomenon reflects a low degree of coupling between
 127 reasoning ability and instruction following in parameter space,
 128 which suggests that lightweight task-vector merging strategies
 129 can enhance instruction following while preserving the original
 130 reasoning performance. More details are in Appendix E.1.

131 **Risks in Thinking Format During Merging.** However, orthogonality
 132 in parameter space is not sufficient to guarantee that the
 133 merged model will retain the LRM’s structured output behavior,
 134 since this behavior is determined by downstream propagation and forward features (see Appendix E.1
 135 for proof). In particular, the LRM relies on special tokens such as `<think>` and `</think>` to
 136 explicitly separate the reasoning segment from the answer segment, and these tokens are crucial in
 137 instruction-following tasks. For example, if the model fails to generate the terminator correctly after
 138 merging (as Fig. 3), it may conflate the reasoning content with the instruction-compliant response,
 139 which can violate constraints such as limits on output length. Therefore, although task-vector orthogonality
 140 suggests minimal capability interference, we still need to explicitly constrain the distributional
 141 shift of the output structure during merging to preserve the integrity of the reasoning process.

142 3 OUR RAIN-MERGING METHOD

143 **Notation.** For notational convenience in later derivations, we flatten model submodules by layer
 144 and head with index $k = 1, \dots, K$ as $\theta = \bigoplus_{k=1}^K W^k := [\text{vec}(W^1)^\top, \dots, \text{vec}(W^K)^\top]^\top$, where
 145 \bigoplus denotes the block-wise concatenation that assembles disjoint parameter blocks into a single
 146 coordinate vector. More details of the forward mechanism in Transformer (Vaswani et al., 2017) are
 147 in Appendix G.1. Let h_t^k denote the forward input vector at the k -th submodule and the t -th sampled
 148 token position. The corresponding linear map of this submodule admits the Kronecker-vectorization
 149 form (Koning et al., 1991) with Kronecker product \otimes , identity matrix $\text{diag}(1)$, and vectorization
 150 operator $\text{vec}(\cdot)$, as $W^k h_t^k = ((h_t^k)^\top \otimes \text{diag}(1)) \text{vec}(W^k)$. Stacking all sampled positions t row-wise
 151 yields the forward feature operator $\Phi_{\{t\}}^k$ and outputs for the k -th submodule:

$$153 \Phi_{\{t\}}^k := [(h_1^k)^\top \otimes \text{diag}(1), \dots, (h_T^k)^\top \otimes \text{diag}(1)], \quad W^k h^k = \Phi_{\{t\}}^k \text{vec}(W^k). \quad (1)$$

154 **Optimization Objective.** To preserve the original reasoning performance of the LRM as much
 155 as possible, we take the reasoning model parameters θ_R as the anchor. We transform the ITM
 156 task vector Δ_I through a merging function f to obtain $\Delta = f(\Delta_I)$, and form the merged model
 157 $\theta = \theta_R + \Delta$. Our goal is to *enhance instruction following without damaging the LRM’s thinking*
 158 *format and reasoning performance*. We therefore formulate a constrained optimization problem:
 159 over the instruction data distribution \mathcal{D}_I , maximize the surrogate objective for instruction following,
 160 $\mathcal{J}_I(\theta) \triangleq \mathbb{E}_{x \sim \mathcal{D}_I} \mathbb{E}_{y \sim \pi_\theta(\cdot|x)} [\text{IF}(x, y)]$, while, over the reasoning data distribution \mathcal{D}_R , constraining
 161 the deviation between the model’s output distribution within the segment of thinking special tokens

Figure 2: Principal subspace cosine similarity between LRM and ITM task vectors for each layer and submodule. The similarities are consistently low (< 0.1).

Ω_{think} and the reference policy of the original reasoning model θ_R . This constraint is quantified by aggregating the per-step KL divergence within the segment:

$$\mathcal{L}_{\text{think}}(\theta) \triangleq \mathbb{E}_{x \sim \mathcal{D}_R} \mathbb{E}_{y \sim \pi_{\theta_R}(\cdot | x)} \sum_{t \in \Omega_{\text{think}}(x)} \text{KL}(\pi_{\theta}(\cdot | x, y_{<t}) \| \pi_{\theta_R}(\cdot | x, y_{<t})) . \quad (2)$$

The overall objective with tolerance δ is then:

$$\max_{\Delta} \mathcal{J}_I(\theta_R + \Delta) \quad \text{s.t.} \quad \mathcal{L}_{\text{think}}(\theta_R + \Delta) \leq \delta . \quad (3)$$

Noting that \mathcal{J}_I is a surrogate objective for instruction following, referring to a class of functions IF that evaluate instruction alignment. In later we instantiate it with metrics based on instruction-attention alignment or leakage. In addition, motivated by the orthogonality between the LRM and ITM task vectors discussed earlier, we constrain only the conditional distribution in the segment of thinking special tokens and do not restrict the content generated in the other thinking or response segments, which preserves flexibility for improving instruction-following performance.

Reasoning-aware Null-space Projection (Stage 1). To satisfy the KL constraint on the segment of thinking special tokens, we try to seek a parameter subspace that preserves the thinking format. Intuitively, if we view the forward inputs at the thinking positions as a “measurement” of the reasoning style, then any parameter perturbation that is unresponsive under this measurement will not change the model’s thinking pattern. This idea corresponds to projecting the perturbation onto the **null space** (Wang et al., 2021) of the forward feature operator $\Phi = \text{blkdiag}(\Phi^1, \dots, \Phi^K)$ (blkdiag denotes the block-diagonal matrix), namely $\mathcal{N}(\Phi) = \{v : \Phi v = 0\}$, as illustrated in Fig. 3 (a). Such a null space projection keeps the token-level forward features at the thinking positions invariant. Formally, for each submodule k , we construct the least-squares orthogonal projector $P^\perp(\cdot)$ using the forward feature operator $\Phi_{\Omega_{\text{think}}}^k$ built from thinking special token indexs Ω_{think} to form the null space:

$$P^\perp(\Phi_{\Omega_{\text{think}}}^k) = \text{diag}(1) - \Phi_{\Omega_{\text{think}}}^{k \top} \left(\Phi_{\Omega_{\text{think}}}^k \Phi_{\Omega_{\text{think}}}^{k \top} \right)^+ \Phi_{\Omega_{\text{think}}}^k , \quad (4)$$

where $(\cdot)^+$ denotes Moore-Penrose pseudoinverse. And then project the ITM submodule task vector Δ_I^k by submodule-wise and stack them to form the overall projected task vector to satisfy the null space constraint:

$$\text{vec}(\Delta_I^{\perp, k}) = P^\perp(\Phi_{\Omega_{\text{think}}}^k) \text{vec}(\Delta_I^k) \Rightarrow \Phi_{\Omega_{\text{think}}} \text{vec}(\Delta_I^\perp) = 0, \text{ where } \Delta_I^\perp = \bigoplus_{k=1}^K \Delta_I^{\perp, k} . \quad (5)$$

This projection keeps the merged model’s intermediate representations and even the final logits at the thinking special tokens close to those of the anchor model. To verify its effectiveness in preserving the thinking format, we analyze a second-order expansion of the softmax KL divergence and show that the task vector after null-space projection satisfies the KL constraint on the special token output distribution in Eq. (2). This yields the following **Prop. 1** (proof is in Appendix E.2):

Proposition 1. *Let the logits of sample x at thinking special tokens $t \in \Omega_{\text{think}}(x)$ be $z_\theta(x, t)$, and let $\pi_\theta(\cdot | x, y_{<t}) = \text{softmax}(z_\theta(x, t))$. By a second-order approximation of the softmax-KL divergence with a uniform upper bound, for any perturbation u ,*

$$\text{KL}(\text{softmax}(z + u) \| \text{softmax}(z)) \leq \frac{1}{8} \|u\|_2^2 + O(\|u\|_2^3) . \quad (6)$$

Assuming the model’s intermediate representations are Lipschitz continuous and bounded, there exist constants $C_1, C_2 > 0$ such that for $u(x, t) = z_{\theta_R + \Delta}(x, t) - z_{\theta_R}(x, t)$, we have:

$$\|u(x, t)\|_2 \leq C_1 \|\Phi \text{vec}(\Delta)\|_2 + C_2 \|\Delta\|_2^2 . \quad (7)$$

Substituting the projected vector $\Delta_I^\perp = \bigoplus_{k=1}^K \Delta_I^{\perp, k}$ and the condition $\Phi \text{vec}(\Delta_I^\perp) = 0$ yields:

$$\mathcal{L}_{\text{think}}(\theta_R + \Delta_I^\perp) \leq \frac{1}{8} \mathbb{E}_{x, t} [\|u(x, t)\|_2^2] + O(\mathbb{E}_{x, t} \|u(x, t)\|_2^3) = O\left(\|\Delta_I^\perp\|_2^2\right) \approx 0 . \quad (8)$$

Therefore, null-space projection in Eq. (5) approximately removes the thinking format constraint in the original objective and reduces the original optimization objective Eq. (3) to:

$$\max_{\Delta^\perp} \mathcal{J}_I(\theta_R + \Delta^\perp), \text{ where } \Delta^\perp = f(\Delta_I^\perp) . \quad (9)$$

Figure 3: Two stages of our **RAIN-Merging** pipeline. (a) For each submodule, the ITM task vector is projected onto the null space preventing shifts in thinking format. (b) Given the instruction calibration set, we compute the instruction-attention score from attention outputs to obtain merging coefficients.

With the thinking-format constraint relaxed, we next focus on strengthening the task vector’s effect on instruction following.

Instruction-attention Guided Merging Coefficients (Stage 2). To enhance the performance gain of the ITM task vector during merging, we seek a suitable gradient-free surrogate objective to instantiate \mathcal{J}_I . Prior studies (Guardieiro et al., 2025) suggest that failures in instruction following often stem from insufficient conditioning on the instruction span during decoding: *attention does not sufficiently focus on instruction-relevant tokens and instead leaks to unrelated regions*. A simple remedy is to amplify attention outputs on the instruction span at decoding time, which can remarkably improve instruction following. This approach, however, requires pre-identifying the instruction span, and excessive amplification may cause the model to ignore other necessary content. Motivated by this, we hypothesize that different layers and heads exhibit heterogeneous response behavior to instructions. Consequently, on the null-space-projected task vector $\Delta_I^{\perp,k}$, we introduce per-module scaling coefficients $\alpha = \{\alpha^k\} \in \mathbb{R}_+^K$ and reparameterize the merged model as $\theta(\alpha) = \theta_R + \bigoplus_{k=1}^K \alpha^k \Delta_I^{\perp,k}$ to instantiate merging function f . Given that attention outputs are directly coupled to the self-attention mechanism, we first focus on the merging coefficients of these submodules, as $\tilde{\alpha} = \{\alpha^k\} \in \mathbb{R}_+^{\tilde{K}}$, where \tilde{k} denotes the self-attention submodule index. Our central intuition is that *an ideal merge should yield stronger attention responses on instruction-relevant spans (high alignment) while maintaining low attention activation on instruction-irrelevant content (low leakage)*. To translate this intuition into measurable quantities, we formalize the model’s forward computation as follows and in Fig. 3 (b). Let $\text{Att}^{\tilde{k}}(x, \tilde{\alpha})[t, \tau]$ denote the attention output of the merged model with $\tilde{\alpha}$ at head \tilde{k} from token position t to τ . For an instruction-following sample $x \sim \mathcal{D}_I$, we define the per-sample normalized alignment a and leakage u metrics for head \tilde{k} :

$$\underbrace{\tilde{a}^{\tilde{k}}(x, \tilde{\alpha})}_{\text{alignment}} := \sum_{t \in \mathcal{I}(x)} \sum_{\tau \in \mathcal{R}(x)} \frac{\text{Att}^{\tilde{k}}(x, \tilde{\alpha})[t, \tau]}{|\mathcal{I}(x)| |\mathcal{R}(x)|}, \quad \underbrace{\tilde{u}^{\tilde{k}}(x, \tilde{\alpha})}_{\text{leakage}} := \sum_{t \in \mathcal{I}(x)} \sum_{\tau \in \mathcal{U}(x)} \frac{\text{Att}^{\tilde{k}}(x, \tilde{\alpha})[t, \tau]}{|\mathcal{I}(x)| |\mathcal{U}(x)|}. \quad (10)$$

where $\mathcal{I}(x) \subset \{1, \dots, T\}$ represents the index set of instruction tokens that encodes the task description, formatting rules, constraints, and any examples in the query span. Likewise, $\mathcal{R}(x)$ denotes the set of output tokens whose content is directly constrained by the instruction in the response span, and $\mathcal{U}(x)$ the set of output tokens unrelated to the instruction. Taking expectations over instruction-following samples \mathcal{D}_I and heads \tilde{k} yields averaged alignment $\bar{a}(\tilde{\alpha}) = \sum_{\tilde{k}} \mathbb{E}_{x \sim \mathcal{D}_I} [a^{\tilde{k}}(x, \tilde{\alpha})]$ and averaged leakage $\bar{u}(\tilde{\alpha}) = \sum_{\tilde{k}} \mathbb{E}_{x \sim \mathcal{D}_I} [u^{\tilde{k}}(x, \tilde{\alpha})]$. We seek merging coefficients that achieve *high alignment* and *low leakage*. Accordingly, we combine the two metrics into a single **instruction-attention score** $\mathcal{J}_I^{\text{Proxy}}$ with trade-off hyperparameter $\rho > 0$, instantiating the surrogate objective in the reduced problem Eq. (9) then yields:

$$\max_{\tilde{\alpha}} \mathcal{J}_I^{\text{Proxy}}(\tilde{\alpha}) := \bar{a}(\tilde{\alpha}) - \rho \bar{u}(\tilde{\alpha}). \quad (11)$$

Quadratic Approximation of Instruction-attention Score. Although this objective is differentiable and could be optimized by gradient descent, we adopt a forward-pass approximation to reduce computation. Initialize at the directly merged point after projection, $\tilde{\alpha}_{(0)} \equiv \mathbf{1}$. Perform a second-

270 order Taylor expansion of $\mathcal{J}_I^{\text{Proxy}}(\tilde{\alpha})$ around $\tilde{\alpha}_{(0)}$:

$$272 \quad \mathcal{J}_I^{\text{Proxy}}(\tilde{\alpha}) \approx \mathcal{J}_I^{\text{Proxy}}(\tilde{\alpha}_{(0)}) + \nabla_{\tilde{\alpha}} \mathcal{J}_I^{\text{Proxy}}(\tilde{\alpha}_{(0)})^{\top} (\tilde{\alpha} - \tilde{\alpha}_{(0)}) + \frac{1}{2} (\tilde{\alpha} - \tilde{\alpha}_{(0)})^{\top} H (\tilde{\alpha} - \tilde{\alpha}_{(0)}), \quad (12)$$

273 where $H = \nabla_{\tilde{\alpha}}^2 \mathcal{J}_I^{\text{Proxy}}(\tilde{\alpha}_{(0)})$ is the Hessian. Writing $g = \nabla_{\tilde{\alpha}} \mathcal{J}_I^{\text{Proxy}}(\tilde{\alpha}_{(0)})$ and ignoring the constant 274 term in Eq. (11), we obtain the quadratic surrogate:

$$276 \quad \mathcal{J}_I^{\text{quad}}(\tilde{\alpha}) = g^{\top} (\tilde{\alpha} - \tilde{\alpha}_{(0)}) + \frac{1}{2} (\tilde{\alpha} - \tilde{\alpha}_{(0)})^{\top} H (\tilde{\alpha} - \tilde{\alpha}_{(0)}). \quad (13)$$

277 ① For first-order term g , if we restrict $\tilde{\alpha}$ to small deviations near $\tilde{\alpha}_{(0)}$ and adopt a linear approximation 278 of alignment and leakage on merging coefficients, the per-head gradient can be estimated as:

$$280 \quad g^{\tilde{k}} = \frac{\partial \mathcal{J}_I^{\text{Proxy}}(\tilde{\alpha})}{\partial \tilde{\alpha}^{\tilde{k}}} \bigg|_{\tilde{\alpha}_{(0)}} \approx \frac{\partial \bar{a}(\tilde{\alpha})}{\partial \tilde{\alpha}^{\tilde{k}}} - \rho \frac{\partial \bar{u}(\tilde{\alpha})}{\partial \tilde{\alpha}^{\tilde{k}}} \approx \mathbb{E}_{x \sim \mathcal{D}_I} \left[\bar{a}^{\tilde{k}}(x, \tilde{\alpha}_{(0)}) - \rho \bar{u}^{\tilde{k}}(x, \tilde{\alpha}_{(0)}) \right], \quad (14)$$

283 which replaces partial derivatives with the current metric values. In practice, this approximately 284 scales the contribution of each head to instruction versus non-instruction attention mass, consistent 285 with the intuition behind attention amplification.

286 ② For second-order term H , to avoid the cost of computing the Hessian for large models, we adopt 287 a diagonal approximation that limits the step size, $\tilde{H}^{\tilde{k}} = \text{diag}(1) + \mathbb{E}_{x \sim \mathcal{D}_I} [\bar{u}^{\tilde{k}}(x, \tilde{\alpha}_{(0)})]$, where the 288 second term imposes a stronger quadratic penalty on heads with higher leakage, thereby limiting 289 their amplification. Substituting the approximations into the quadratic objective, dropping $\tilde{\alpha}_{(0)}$ for 290 simplicity, and constraining $\tilde{\alpha} \in [\tilde{\alpha}_l, \tilde{\alpha}_u]^{\tilde{K}}$ to prevent scaling instability, we obtain a closed-form 291 solution to the convex quadratic program:

$$293 \quad \boxed{\max_{\tilde{\alpha} \in [\tilde{\alpha}_l, \tilde{\alpha}_u]^{\tilde{K}}} \left(g^{\top} \tilde{\alpha} - \frac{1}{2} \tilde{\alpha}^{\top} \tilde{H} \tilde{\alpha} \right) \Rightarrow \tilde{\alpha}_{\star}^{\tilde{k}} = \text{clip}_{[\tilde{\alpha}_l, \tilde{\alpha}_u]} \left(\frac{g^{\tilde{k}}}{\tilde{H}^{\tilde{k}}} \right)}, \quad (15)$$

296 where $\tilde{H} = \text{diag}(\tilde{H}^{\tilde{k}})$ and $\text{clip}_{[a, b]}(\cdot)$ clips to the interval $[a, b]$. Thus, by a second-order expansion 297 with engineering approximations and using only forward attention statistics in a gradient-free manner, 298 we approximate the optimal merging coefficients $\tilde{\alpha}_{\star}$ of self-attention submodules that increase 299 instruction alignment while controlling attention leakage to non-instruction content. For modules 300 shared across attention heads, such as the feed-forward network (FFN), we set the layer-wise 301 coefficient to the average over heads. Aggregating the coefficients for all submodules yields the 302 complete instruction attention guided merging coefficients $\alpha_{\star} = \{\alpha_{\star}^k\}$.

303 **Combined to Our Two-stage Merging Method.** We chain ‘‘Reasoning-aware Null-space Projection 304 (Stage 1)’’ with ‘‘Instruction-attention Guided Merging Coefficients (Stage 2)’’ to propose a fully 305 gradient-free merging pipeline, termed *Reasoning-Aware Instruction-attention guided Null-space 306 projection Merging (RAIN-Merging)* as Fig. 3. Our method addresses the challenge in the original 307 optimization problem of Eq. (3), improving instruction following while preserving the reasoning 308 structure after merging. The final merged model is:

$$310 \quad \boxed{\theta_{\star} = \theta_R + \lambda \bigoplus_{k=1}^K \alpha_{\star}^k \Delta_I^{\perp, k}}, \quad (16)$$

313 where λ is a global scaling coefficient that controls the merging strength. The entire procedure 314 only relies on forward-feature extraction and attention statistics, and does not require gradient-based 315 updates. RAIN-Merging offers a low-cost, interpretable path to strengthen instruction following in 316 LRM, filling the gap left by costly SFT.

317 **Implementation details.** To balance compute and storage efficiency, we merge only the core modules 318 that are most sensitive to attention outputs, namely the Q, K, V, O, and FFN parameters. In Stage 1, 319 we sample 150 examples from the Mixture-of-Thoughts (Face, 2025) dataset distilled from DeepSeek- 320 R1 (Guo et al., 2025) from to form the reasoning calibration set. In Stage 2, we an instruction 321 calibration set obtained by distilling DeepSeek-R1 on IFEval (Zhou et al., 2023b), followed by 322 LLM-as-Judge filtering and manual screening, resulting a total of 365 samples. More details of 323 implementation, complete algorithm pseudocode, calibration set construction, and ablation studies 324 are provided in Appendix G, F, H, and J.3.

Table 1: Comprehensive comparison of instruction following and reasoning & general capabilities. We merge Qwen2.5-7B-Instruct (ITM) into DeepSeek-R1-Distill-Qwen-7B (LRM) and compare our RAIN-Merging against multiple merging methods as well as SFT trained on the same calibration data. “Avg.” denotes the average over all subsets. “RT” reports the run-time for merging or training in minutes. The best and second-best results are highlighted in **bold** and underlined, respectively.

Method	Instruction Following					Reasoning & General					RT
	IFEval	CELLO	Info Bench	Complex Bench	Avg.	Math	GPQA	Aider	Arena-Hard-v2	Avg.	
ITM	70.43	19.15	78.49	43.63	52.92	47.27	29.80	33.33	62.86	43.32	—
LRM	55.45	16.59	71.73	32.72	44.12	64.75	44.44	29.63	65.29	51.03	—
SFT	62.48	17.11	68.58	32.15	45.08	62.07	41.92	28.89	64.67	49.39	120.32
<i>Data-free Merging</i>											
Task Arithmetic	60.44	16.97	73.07	33.34	45.96	62.57	42.93	26.67	64.53	49.17	0.93
SLERP	58.96	17.56	72.18	34.93	45.95	64.22	42.93	31.85	65.29	51.07	1.12
Karcher	62.11	17.99	73.16	34.06	46.83	63.82	48.99	30.77	66.13	52.33	1.20
TIES	58.60	18.48	73.91	34.40	46.35	64.85	46.46	32.59	63.47	51.84	1.18
DARE-TIES	60.81	17.88	73.33	33.49	46.38	65.46	47.98	29.63	64.17	51.80	2.21
<i>Data-dependent Merging</i>											
ACM-TIES	59.33	16.45	72.44	33.75	45.50	65.92	45.96	32.59	62.00	51.80	12.45
LEWIS-TIES	60.44	17.41	72.67	34.40	46.23	64.57	48.99	31.11	64.80	52.37	16.60
AIM-TIES	62.78	17.93	73.11	34.28	47.02	64.26	49.49	33.33	63.64	52.68	18.51
RAIN-Merging	63.22	19.03	74.53	35.66	48.11	68.75	54.55	33.33	65.73	55.59	20.96

4 EXPERIMENTS

In this section, we empirically investigate three research questions:

- **RQ1 (Effectiveness and Efficiency).** Compared with baseline methods, can RAIN-Merging improve instruction-following while maintaining reasoning capabilities, maintaining the computational and memory efficiency characteristic of gradient-free approaches? (**Tab. 1** and **Fig. 4**)
- **RQ2 (Scalability).** How well does RAIN-Merging scale across models of varying sizes and architectures, and does it perform effectively in interactive agentic scenarios? (**Tab. 2, 3**)
- **RQ3 (Ablation).** What roles do the two stages of RAIN-Merging play? Specifically, does Stage 1 preserve the format of thinking segments and the output distribution, and does Stage 2 enhance instruction-attention scores? (**Tab. 4** and **Fig. 5, Fig. 6**)

4.1 EXPERIMENTAL SETUP

We begin with a brief overview of the benchmarks, models, and baselines used in our experiments. Additional details on experimental settings, benchmarks and evaluation metrics, and hyperparameters are provided in Appendix I.

Benchmarks. To comprehensively assess instruction following, we use four mainstream benchmarks: **IFEval** (Zhou et al., 2023b), **CELLO** (He et al., 2024), **InfoBench** (Qin et al., 2024), and **ComplexBench** (Wen et al., 2024). To comprehensively evaluate reasoning and general capabilities, we use nine benchmarks: Mathematical reasoning is evaluated by aggregating results from six benchmarks, as **Math**. We also measure performance on code editing (Aider (Aider, 2024)), STEM (GPQA (Rein et al., 2024)), and creative writing (Arena-Hard-v2 (Li et al., 2024)) to reflect general and reasoning capabilities. For agentic scenarios, we use **ALFWorld** (Shridhar et al., 2021) and **WebShop** (Yao et al., 2022), two realistic multi-turn interactive tasks, to evaluate how well the model integrates reasoning and instruction following to solve complex problems.

Models. We evaluate RAIN-Merging on models of different sizes and architectures: DeepSeek-R1-Distill-Qwen-1.5B/7B/14B (Guo et al., 2025) (LRM) and Qwen2.5-1.5B/7B¹/14B-Instruct (Yang et al., 2025) (ITM), as well as the Llama family (Dubey et al., 2024) using DeepSeek-R1-Distill-Llama-8B (LRM), its instruction-tuned counterpart Llama-3.1-8B-Instruct (ITM).

¹Although DeepSeek-R1-Distill-Qwen-1.5B/7B are trained from Qwen2.5-Math-1.5B/7B (Yang et al., 2024a), we find that Qwen2.5-Math-1.5B/7B-Instruct do not outperform the distilled LRM s in instruction following. We therefore select the stronger instruction followers, Qwen2.5-1.5B/7B-Instruct, as ITMs.

378
 379
 380
 381
Table 2: Merging performance and relative gains of RAIN-Merging across model three scales and two
 architectures. We merge the corresponding ITM into the LRM with base models: Qwen2.5-1.5B, Llama-3.1-8B,
 and Qwen2.5-14B. “Avg.” denotes the average over all subsets. For each scale, the subsequent “(*relative gain*)”
 row reports the relative improvement of our method over the LRM, highlighted in green.

Model	Instruction Following					Reasoning & General				
	IFEval	CELLO	Info Bench	Complex Bench	Avg.	Math	GPQA	Aider	Arena-Hard-v2	Avg.
Qwen2.5-1.5B-Instruct	36.78	19.04	64.76	27.83	37.10	31.77	25.76	16.30	38.45	28.07
DeepSeek-R1-Distill-Qwen-1.5B	39.00	16.03	55.29	21.54	32.97	41.62	29.29	14.07	39.73	31.18
Qwen2.5-1.5B-RAIN-Merging (relative gain)	41.59 +6.64%	16.51 +2.98%	58.18 +5.23%	23.62 +9.63%	34.97 +6.09%	45.87 +10.21%	33.33 +13.79%	14.81 +5.26%	40.93 +3.02%	33.74 +8.20%
Llama-3.1-8B-Instruct	68.58	27.21	78.67	38.47	53.23	35.59	25.25	34.07	72.23	41.79
DeepSeek-R1-Distill-Llama-8B	58.41	17.78	73.33	38.38	46.97	60.21	38.38	27.41	71.93	49.48
Llama-3.1-8B-RAIN-Merging (relative gain)	63.77 +9.18%	18.84 +5.99%	77.38 +5.52%	38.93 +1.42%	49.73 +5.86%	61.95 +2.89%	43.94 +14.47%	30.37 +10.81%	77.07 +7.15%	53.33 +7.78%
Qwen2.5-14B-Instruct	79.85	20.13	83.38	44.19	56.89	52.73	36.87	37.04	74.40	50.29
DeepSeek-R1-Distill-Qwen-14B	71.35	18.71	81.33	40.68	53.02	72.31	57.07	33.33	80.67	60.85
Qwen2.5-14B-RAIN-Merging (relative gain)	76.71 +7.51%	19.57 +4.58%	84.13 +3.44%	44.63 +9.69%	56.26 +6.11%	74.58 +3.13%	57.58 +0.88%	40.00 +20.00%	86.25 +6.92%	64.60 +6.17%

393
 394
 395 **Baselines.** We include several data-free, task-vector based merging methods: **Task Arithmetic** (Il-
 396 harco et al., 2023), **SLERP** (Biship, 2007; Goddard et al., 2024), **Karcher** (Nielsen & Bhatia, 2013;
 397 Goddard et al., 2024), **TIES** (Yadav et al., 2023), and **DARE** (Yu et al., 2024). We also compare with
 398 data-dependent, activation-based merging approaches that leverage small calibration sets, including
 399 **ACM** (Yao et al., 2025), **LEWIS** (Chopra et al., 2025), and **AIM** (Nobari et al., 2025). To strengthen
 400 baseline performance, we apply TIES on top of other merging baselines as in previous work (Wu
 401 et al., 2025). In addition, we report a training baseline using **SFT** on the same calibration data.

4.2 RESULTS

402
 403 **Performance Comparison with Baseline Methods. (RQ1)** As shown in **Tab. 1**, RAIN-Merging
 404 achieves overall gains across both instruction-following and reasoning & general capability evalua-
 405 tions, outperforming all merging baselines. While Task Arithmetic and SFT can improve instruction
 406 following to some extent, they typically do so at the cost of reasoning and general capabilities. In
 407 contrast, our method consistently surpasses all baselines on instruction-following, mathematical
 408 reasoning, and general-capability benchmarks. Our merged LRM trails the ITM slightly on instruction
 409 following, indicating room for further improvement. Interestingly, the merged model exhibits stable
 410 gains in reasoning and general ability. We hypothesize that stronger instruction adherence improves
 411 the quality of the model’s internal chain of thought, which yields better reasoning performance.
 412 Overall, RAIN-Merging substantially enhances instruction following without sacrificing the LRM’s
 413 reasoning and general capabilities.
 414

415 **Run-time and Memory Analysis. (RQ1)** Our method achieves a favorable efficiency trade-off. Its
 416 runtime, though slightly above activation-based merging baselines due to null-space computation,
 417 is far below SFT (RT in **Tab. 1**). Similarly, while storing hidden features increases memory use
 418 compared to other merging methods, its footprint remains much smaller than SFT’s (**Fig. 4**). This
 419 demonstrates our approach as a highly practical, training-free alternative for enhancing LRMs.

420 **Performance on Models of Different Sizes and Architectures. (RQ2)** To evaluate the scalability of
 421 our method across model sizes and architectures, we conduct experiments on several configurations,
 422 including the Qwen2.5 family distilled from DeepSeek-R1 at 1.5B and 14B parameters, and the 8B
 423 model built on the Llama 3.1 architecture. As reported in **Tab. 2**, our method consistently enhances
 424 instruction-following and reasoning performance, achieving average improvements from 5.86% to
 425 8.20% on LRMs. These results confirm that RAIN-Merging robustly strengthens both instruction
 426 adherence and complex reasoning across diverse model sizes and architectures.

427 **Performance in Agentic Scenarios. (RQ2)** To further assess the practical benefits of improved
 428 instruction following, we evaluate the merged model on two representative agentic scenarios, Web-
 429 Shop and AlfWorld. As shown in **Tab. 3**, the merged model achieves better performance than the
 430 original LRM and ITM in these scenarios, indicating that enhanced instruction understanding and
 431 reasoning effectively support multi-turn interaction and complex decision making. These results also
 demonstrate that our gradient-free approach is effective for increasing the real-world utility of LRMs.

Figure 4: GPU memory usage comparison between different methods under the same configuration as **Tab. 1**.

Figure 5: $\mathcal{L}_{\text{think}}$ in **Eq. (2)** (left) on the reasoning calibration validation set, and the proportion of generations missing the closing `</think>` token (right) on IFEval under the same configuration as **Tab. 1**.

Table 3: Performance of RAIN-Merging in agent settings. We merge Qwen2.5-7B-Instruct (ITM) into DeepSeek-R1-Distill-Qwen-7B (LRM).

Model	ALFWorld	WebShop
ITM	17.50	10.45
LRM	22.00	26.63
RAIN-Merging	25.00	29.42

Figure 6: Layer-wise instruction attention score (alignment – leakage). Per-layer scores on IFEval instruction examples; higher is better. We compare the unmerged LRM, Task Arithmetic, and RAIN-Merging when merging Qwen2.5-7B-Instruct (ITM) into DeepSeek-R1-Distill-Qwen-7B (LRM).

Ablation Study of Stage 1 and Stage 2. (RQ3) We investigate the contribution of the two components in RAIN-Merging, shown in **Tab. 4**. When without Stage 2, the merged model retains reasoning and general capabilities while achieving competitive instruction-following performance. Conversely, when without Stage 1, instruction-following performance improves further but at a noticeable cost to reasoning and general ability, as it lacks explicit protection of the thinking format. Incorporating both stages yields the best trade-off: Stage 1 ensures reasoning performance is maintained while Stage 2 boosts instruction-following performance. These results demonstrate that both stages play critical and complementary roles.

Effectiveness of Null-space Projection. (RQ3) To assess how our null-space projection in Stage 1 preserves thinking formats, we evaluate its impact on thinking special token distributions and resulting generation outputs. We measure the KL divergence near thinking tokens as in **Eq. (2)** and the rate of missing `</think>` tokens. Results **Fig. 5** show that Task Arithmetic substantially alters the distribution ($\mathcal{L}_{\text{think}} = 0.1224$) and results in 6.4% missing `</think>` tokens, violating the output format. Our approach, in contrast, only induces minimal change ($\mathcal{L}_{\text{think}} = 0.0065$) and ensures no missing tokens (0.0%). These findings indicate that null-space projection successfully protects thinking formats.

Effectiveness of Merging Coefficients. (RQ3) To validate the merging coefficients, we compare the Instruction-Attention Score in **Eq. (11)** across layers before and after merging under different methods. As shown in **Fig. 6**, instruction-attention guided coefficients in Stage 2 enable RAIN-Merging to consistently outperform both the LRM and Task Arithmetic, exhibiting a higher alignment and lower leakage. This finding suggests that our weighted reparameterization of merging submodules enhances activation along instruction-aware pathways while slightly suppressing leakage, which improves instruction following without altering the original reasoning pattern.

5 CONCLUSION

We propose RAIN-Merging, a gradient-free method to enhance instruction following in LRM while preserving their structured reasoning outputs. By projecting the instruction task vector onto the null space of the thinking format and scaling it by instruction-attention guided coefficients, RAIN-Merging achieves a balance between instruction following and reasoning structure preservation. The method is evaluated on instruction-following, reasoning & general capability, agentic benchmarks, showing that RAIN-Merging not only substantially improves the LRM’s instruction-following ability but also brings gains in reasoning and general capability across several settings.

486 REFERENCES
487

488 Aider. o1 tops aider’s new polyglot leaderboard, 2024.

489 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena:
490 Evaluating llms on uncontaminated math competitions. *arXiv preprint arXiv:2505.23281*, 2025.
491

492 Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with bregman
493 divergences. *Journal of Machine Learning Research (JMLR)*, 2005.

494 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido
495 Galil, Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran
496 Zilberstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald
497 Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen,
498 Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia,
499 Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek,
500 Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shubham
501 Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
502 Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus Kliegl, Rabeeh
503 Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Brandon Norick, Joseph
504 Jennings, Shrimai Prabhunoye, Syeda Nahida Akter, Mostofa Patwary, Abhinav Khattar, Deepak
505 Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha,
506 Sahil Jain, Christine Harvey, Elad Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy
507 Puterman, George Lam, Arun Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang,
508 Anna Wärno, Abhilash Somasamudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar
509 Mor, Omer Ullman Argov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Monika Katariya,
510 Marco Rovinelli, Viji Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam,
511 Smita Ithape, Karthik Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit
512 Daw, Denys Fridman, Erick Galinkin, Michael Evans, Katherine Luna, Leon Derczynski, Nikki
513 Pope, Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika
514 Katariya, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii
515 Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro,
516 Jonah Alben, Yonatan Geifman, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient
reasoning models, 2025.

517 Christopher M Bishop. *Pattern recognition and machine learning (information science and statistics)*.
518 Springer, 2007.

519

520 Dankmar Böhning. Multinomial logistic regression algorithm. *Annals of the institute of Statistical
521 Mathematics (AISM)*, 1992.

522 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

523

524 Lang Cao, Chao Peng, Renhong Chen, Wu Ning, Yingtian Zou, and Yitong Li. Step guided reasoning:
525 Improving mathematical reasoning using guidance generation and step reasoning. *arXiv preprint
526 arXiv:2410.19817*, 2024.

527 Wenhui Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting:
528 Disentangling computation from reasoning for numerical reasoning tasks. *arXiv preprint
529 arXiv:2211.12588*, 2022.

530

531 Zina Chkirkene, Ridha Hamila, Ala Gousssem, and Unal Devrim. Large language models (llm) in
532 industry: A survey of applications, challenges, and trends. In *IEEE International Conference on
533 Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)*, 2024.

534 Hetarth Chopra, Vidhi Rambhia, and Vikram Adve. Lewis (layer wise sparsity)—a training free guided
535 model merging approach. *arXiv preprint arXiv:2503.03874*, 2025.

536

537 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
538 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
539 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
2021.

540 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 541 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 542 *arXiv preprint arXiv:2407*, 2024.

543 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, 2025.

545 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
 546 Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. In
 547 *International Conference on Learning Representations (ICLR)*, 2025.

548 Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
 549 learning. In *Conference on Artificial Intelligence and Statistics (AISTATS)*, 2020.

551 Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas. Efficient
 552 and accurate estimation of lipschitz constants for deep neural networks. In *Advances in Neural*
 553 *Information Processing Systems (NeurIPS)*, 2019.

555 Tingchen Fu, Jiawei Gu, Yafu Li, Xiaoye Qu, and Yu Cheng. Scaling reasoning, losing control:
 556 Evaluating instruction following in large reasoning models. *arXiv preprint arXiv:2505.14810*,
 557 2025a.

558 Tingchen Fu, Jiawei Gu, Yafu Li, Xiaoye Qu, and Yu Cheng. Scaling reasoning, losing control:
 559 Evaluating instruction following in large reasoning models. *arXiv preprint arXiv:2505.14810*,
 560 2025b.

561 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
 562 Graham Neubig. PAL: program-aided language models. In *International Conference on Machine*
 563 *Learning (ICML)*, 2023.

565 Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
 566 Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
 567 language models. *arXiv preprint arXiv:2403.13257*, 2024.

568 Vitoria Guardieiro, Adam Stein, Avishree Khare, and Eric Wong. Instruction following by boosting
 569 attention of large language models. *arXiv preprint arXiv:2506.13734*, 2025.

571 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
 572 Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
 573 rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024.

574 DeepSeek-AI: Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 575 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 576 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 577 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 578 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 579 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 580 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 581 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 582 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 583 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 584 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 585 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 586 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
 587 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 588 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
 589 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 590 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 591 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 592 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
 593 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia

594 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 595 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 596 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 597 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 598 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 599 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 600
 601 Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang,
 602 and Yanghua Xiao. Can large language models understand real-world complex instructions? In
 603 *Association for the Advancement of Artificial Intelligence (AAAI)*, 2024.
 604
 605 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 606 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 607 preprint arXiv:2103.03874*, 2021.
 608
 609 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
 610 and Ali Farhadji. Editing models with task arithmetic. In *International Conference on Learning
 611 Representations (ICLR)*, 2023.
 612
 613 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 614 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint
 615 arXiv:2412.16720*, 2024.
 616
 617 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 618 arXiv:1412.6980*, 2014.
 619
 620 Ruud H Koning, Heinz Neudecker, and Tom Wansbeek. Block kronecker products and the vecb
 621 operator. *Linear Algebra and Its Applications*, 1991.
 622
 623 Bohdan Kovalevskyi. Ifeval-extended: Enhancing instruction-following evaluation in large language
 624 models through dynamic prompt generation. *Journal of Artificial Intelligence General science
 625 (JAIGS)*, 2024.
 626
 627 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.
 628 Ramasesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
 629 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with
 630 language models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
 631
 632 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
 633 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
 634 pipeline. *arXiv preprint arXiv:2406.11939*, 2024.
 635
 636 Xiaomin Li, Zhou Yu, Zhiwei Zhang, Xupeng Chen, Ziji Zhang, Yingying Zhuang, Narayanan
 637 Sadagopan, and Anurag Beniwal. When thinking fails: The pitfalls of reasoning for instruction-
 638 following in llms. *arXiv preprint arXiv:2505.11423*, 2025a.
 639
 640 Zhenyu Li, Kehai Chen, Yunfei Long, Xuefeng Bai, Yaoyin Zhang, Xuchen Wei, Juntao Li, and
 641 Min Zhang. Xifbench: Evaluating large language models on multilingual instruction following.
 642 *Advances in Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks*,
 643 2025b.
 644
 645 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 646 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *International
 647 Conference on Learning Representations (ICLR)*, 2024.
 648
 649 Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Guilherme Penedo, Edward Beeching, Quentin
 650 Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von Werra. Openr1-math-220k, 2025.
 651
 652 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*. Springer, 2013.
 653
 654 Frank Nielsen and Rajendra Bhatia. *Matrix information geometry*. Springer, 2013.

648 Amin Heyrani Nobari, Kaveh Alimohammadi, Ali ArjomandBigdeli, Akash Srivastava, Faez Ahmed,
 649 and Navid Azizan. Activation-informed merging of large language models. *arXiv preprint*
 650 *arXiv:2502.02421*, 2025.

651 Guillermo Ortiz-Jiménez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
 652 space: Improved editing of pre-trained models. In *Advances in Neural Information Processing*
 653 *Systems (NeurIPS)*, 2023.

654 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 655 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 656 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
 657 Ryan Lowe. Training language models to follow instructions with human feedback. In *Advances*
 658 *in Neural Information Processing Systems (NeurIPS)*, 2022.

659 Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
 660 Agustín Piqueres Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro
 661 von Werra. Codeforces cots, 2025.

662 Valentina Pyatkin, Saumya Malik, Victoria Graf, Hamish Ivison, Shengyi Huang, Pradeep Dasigi,
 663 Nathan Lambert, and Hannaneh Hajishirzi. Generalizing verifiable instruction following. *Advances*
 664 *in Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks*, 2025.

665 Yunjia Qi, Hao Peng, Xiaozhi Wang, Amy Xin, Youfeng Liu, Bin Xu, Lei Hou, and Juanzi Li.
 666 Agentif: Benchmarking instruction following of large language models in agentic scenarios. *arXiv*
 667 *preprint arXiv:2505.16944*, 2025.

668 Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
 669 Wu, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
 670 large language models. In *Proceedings of the Association for Computational Linguistics (ACL*
 671 *Findings)*, 2024.

672 Yulei Qin, Gang Li, Zongyi Li, Zihan Xu, Yuchen Shi, Zhekai Lin, Xiao Cui, Ke Li, and Xing
 673 Sun. Incentivizing reasoning for advanced instruction-following of large language models. *arXiv*
 674 *preprint arXiv:2506.01413*, 2025.

675 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 676 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 677 *Conference on Language Modeling (COLM)*, 2024.

678 Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
 679 *International Conference on Learning Representations (ICLR)*, 2021.

680 Thomas Schmied, Jörg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, and Razvan Pascanu.
 681 Llms are greedy agents: Effects of rl fine-tuning on decision-making abilities. *arXiv preprint*
 682 *arXiv:2504.16078*, 2025.

683 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 684 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 685 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

686 Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. Rl's razor: Why online reinforcement learning
 687 forgets less. *arXiv preprint arXiv:2509.04259*, 2025.

688 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 689 language agents with verbal reinforcement learning. In *Advances in Neural Information Processing*
 690 *Systems (NeurIPS)*, 2023.

691 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew J.
 692 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
 693 *International Conference on Learning Representations (ICLR)*, 2021.

694 Pengwei Tang, Yong Liu, Dongjie Zhang, Xing Wu, and Debing Zhang. Lora-null: Low-rank
 695 adaptation via null space for large language models. *arXiv preprint arXiv:2503.02659*, 2025.

702 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 703 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information
 704 Processing Systems (NeurIPS)*, 2017.

705 Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational
 706 inference. *Foundations and Trends in Machine Learning*, 2008.

708 Changyue Wang, Weihang Su, Qingyao Ai, and Yiqun Liu. Joint evaluation of answer and reasoning
 709 consistency for hallucination detection in large reasoning models. *arXiv preprint arXiv:2506.04832*,
 710 2025.

711 Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
 712 covariance for continual learning. In *Proceedings of the IEEE Conference on Computer Vision and
 713 Pattern Recognition (CVPR)*, 2021.

714 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
 715 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 716 models. In *International Conference on Learning Representations (ICLR)*, 2023.

718 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 719 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 720 models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

721 Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
 722 Wendy Gao, Jiaxing Xu, Yiming Liu, Jie Tang, Hongning Wang, and Minlie Huang. Benchmarking
 723 complex instruction-following with multiple constraints composition. In *Advances in Neural
 724 Information Processing Systems (NeurIPS)*, 2024.

726 Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo Lopes,
 727 Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
 728 Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
 729 without increasing inference time. In *International Conference on Machine Learning (ICML)*,
 730 2022.

731 Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
 732 Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
 733 merging. *arXiv preprint arXiv:2503.20641*, 2025.

734 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-merging:
 735 Resolving interference when merging models. In *Advances in Neural Information Processing
 736 Systems (NeurIPS)*, 2023.

738 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 739 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 740 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024a.

741 Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
 742 Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
 743 *arXiv preprint arXiv:2408.07666*, 2024b.

744 Qwen: An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 745 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 746 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 747 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 748 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 749 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.

750 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 751 real-world web interaction with grounded language agents. In *Advances in Neural Information
 752 Processing Systems (NeurIPS)*, 2022.

754 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 755 Tree of thoughts: Deliberate problem solving with large language models. In *Advances in Neural
 756 Information Processing Systems (NeurIPS)*, 2023a.

756 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
 757 React: Synergizing reasoning and acting in language models. In *International Conference on*
 758 *Learning Representations (ICLR)*, 2023b.

759 Yuxuan Yao, Shuqi Liu, Zehua Liu, Qintong Li, Mingyang Liu, Xiongwei Han, Zhijiang Guo, Han
 760 Wu, and Linqi Song. Activation-guided consensus merging for large language models. *arXiv*
 761 *preprint arXiv:2505.14009*, 2025.

762 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
 763 Absorbing abilities from homologous models as a free lunch. In *International Conference on*
 764 *Machine Learning (ICML)*, 2024.

765 Haobo Zhang and Jiayu Zhou. Unraveling lora interference: Orthogonal subspaces for robust model
 766 merging. In *Proceedings of the Association for Computational Linguistics (ACL)*, 2025.

767 Huaqin Zhao, Zhengliang Liu, Zihao Wu, Yiwei Li, Tianze Yang, Peng Shu, Shaochen Xu, Haixing
 768 Dai, Lin Zhao, Gengchen Mai, et al. Revolutionizing finance with llms: An overview of applications
 769 and insights. *arXiv preprint arXiv:2401.11641*, 2024.

770 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
 771 Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting enables complex
 772 reasoning in large language models. In *International Conference on Learning Representations*
 773 (*ICLR*), 2023a.

774 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
 775 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*
 776 *arXiv:2311.07911*, 2023b.

777 Tao Zou, Xinghua Zhang, Haiyang Yu, Minzheng Wang, Fei Huang, and Yongbin Li. Eifbench:
 778 Extremely complex instruction following benchmark for large language models. *Proceedings of*
 779 *Empirical Methods in Natural Language Processing (EMNLP)*, 2025.

780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 APPENDIX
811812 A ETHICS STATEMENT
813814 This research adheres to the licenses and applicable laws governing upstream open-source models
815 and datasets. RAIN-Merging is developed using publicly available weights and data that permit
816 derivation and redistribution.
817818 **Safety.** Model merging can introduce “capability or safety drift,” such as new biases, jailbreak
819 risks, or shifts in hallucination patterns while improving instruction following. The merged model
820 may produce inaccurate, biased, or inappropriate content. It must not be used directly in high-risk
821 decision-making contexts such as medicine, law, or finance. Any production deployment should
822 include human oversight, operation logging, rate limiting, and compliance review procedures.
823824 **Dataset use.** We rely only on data authorized for academic reproducibility. During data cleaning,
825 we make every effort to remove personally identifiable information and sensitive content. We also
826 disclose potential dataset biases, coverage gaps, and risks of benchmark contamination.
827828 **Societal impact.** We caution that generative models may exacerbate information asymmetries,
829 reinforce stereotypes, or be applied to produce misleading content. We firmly oppose misuse and will
830 work with the community to address any identified negative impacts.
831832 B REPRODUCIBILITY STATEMENT
833834 To ensure the reproducibility of our results, we provide the following resources and documentation:
835 all algorithm implementations and experiment scripts will be released anonymously with the **sup-**
836 **plementary materials**, accompanied by documentation of key functions and the project directory
837 structure. The calibration datasets used in our experiments will be made available alongside the
838 appendix. Public links are included for all open-source models and datasets used in this work.
839840 C LLM USAGE STATEMENT
841842 We used large language models (LLMs) in the following stages and disclose their roles as follows:
843844 **Writing Stage.** LLMs (both closed- and open-source) were used only for copyediting and grammar
845 checking, including terminology normalization, syntactic polishing, and formatting. They were not
846 used to generate claims, collect evidence, or construct results.
847848 **Benchmark Evaluation.** When a benchmark’s original paper or community practice requires a
849 closed-source LLM (for example, as a judge or as a baseline), we strictly follow the prescribed
850 protocol and disclose the exact model versions.
851852 **Calibration Set Construction.** We adopt an LLM-as-Judge procedure for automated filtering and
853 scoring of candidate samples as an initial pass (producing only scores or labels; generated text is not
854 used as a training target). A human second-pass review follows to ensure data quality and compliance.
855 All third-party data and models are used within their licenses, with source links and permission details
856 provided.
857858 D RELATED WORK
859860 **Large Reasoning Model.** Early studies show that prompting models to explicitly produce inter-
861 mediate steps during reasoning can substantially improve complex reasoning performance, as in
862 Chain-of-Thought (Wei et al., 2022) and Tree-of-Thought (Yao et al., 2023a). Building on this
863 insight, a new generation of LRMAs has shifted toward training paradigms that directly incentivize
864 reasoning with reinforcement learning; for example, OpenAI’s o1 series and DeepSeek-R1 report
865 marked advances on tasks in mathematics and code that require extended reasoning (Jaech et al.,
866 2024; Guo et al., 2025). These models typically generate structured “thought processes” or “thinking
867 formats,” yet in real applications they often exhibit tension with strict instruction following. Beyond
868 explicit intermediate reasoning such as CoT and ToT, subsequent work further improves reasoning
869

864 quality and stability: Self-Consistency samples multiple solution paths and uses majority voting to
 865 increase reliability; Least-to-Most decomposes complex problems into subgoals ordered from easy to
 866 hard; Program-of-Thoughts and PAL externalize the reasoning into executable programs, decoupling
 867 computation from reasoning and substantially reducing arithmetic and procedural errors (Wang
 868 et al., 2023; Zhou et al., 2023a; Chen et al., 2022; Gao et al., 2023). In the “reasoning plus acting”
 869 paradigm, ReAct interleaves thought traces with tool interactions to mitigate hallucinations, while
 870 Reflexion employs language-based self-reflection and memory to iteratively refine policies over
 871 multi-turn interactions (Yao et al., 2023b; Shinn et al., 2023). In parallel, LRM_s are trained with
 872 process-level feedback and reinforcement learning to directly encourage thinking before answering:
 873 the o1 system emphasizes large-scale RL and thinking-first training and alignment strategies, and
 874 DeepSeek-R1 shows that under weak or no supervision, pure RL (e.g., GRPO) can induce longer and
 875 more stable chains of thought (Jaech et al., 2024; Guo et al., 2025). Moreover, process supervision
 876 and process reward models (PRMs) provide finer-grained step-level feedback that, compared with
 877 outcome supervision of final answers, better cultivates verifiable reasoning chains and test-time
 878 expansion (Lightman et al., 2024). RAIN-Merging is complementary to this trajectory: instead of
 879 retraining the LRM, we preserve the thinking format at merge time and use structured coefficients to
 880 selectively enhance instruction responses, thereby striking a balance between fidelity to the reasoning
 881 structure and improved instruction following.

882 **Instruction Following.** In the alignment paradigm, InstructGPT systematically improved the stability
 883 of “following user intent” through reinforcement learning from human feedback (RLHF), and showed
 884 that small instruction-tuned models can achieve strong human preference scores, establishing a
 885 foundation for subsequent research on instruction following (Ouyang et al., 2022). For objective
 886 evaluation, IFEval targets programmatically verifiable rules, for example, length limits, keywords,
 887 formatting, to reduce subjective scoring noise and facilitate reproducibility and fair comparison (Zhou
 888 et al., 2023b). CELLO abstracts multi-dimensional attributes from real-world complex instructions,
 889 such as multi-step dependencies, format or quantity constraints, and semantic consistency, to charac-
 890 terize where LLMs struggle with complex instruction understanding (He et al., 2024). InfoBench
 891 proposes a decomposed metric that breaks a complex instruction into checkable sub-requirements, en-
 892 abling finer-grained measurement of compliance and error sources (Qin et al., 2024). ComplexBench
 893 emphasizes the compositional challenge of multiple simultaneous constraints, systematically testing
 894 robustness and trade-offs when many constraints co-occur (Wen et al., 2024). Building on these
 895 mainstream benchmarks, this work introduces an instruction-attention-oriented merging strategy:
 896 during merging, we quantitatively constrain and amplify the model’s responsiveness to instruction-
 897 relevant spans while maintaining the stability of its long-chain reasoning format, thereby balancing
 898 compliance and an interpretable process.

899 **Model Merging.** Parameter-space merging offers a training-free or low-data path for integrating
 900 capabilities. Model Soup averages weights from multiple fine-tuned checkpoints to improve out-of-
 901 distribution robustness and overall performance (Wortsman et al., 2022). Task vectors implement
 902 additive editing and compositionality by linear arithmetic on weight differences, enabling positive
 903 and negative edits as well as multi-task synthesis (Ilharco et al., 2023). TIES-Merging explicitly
 904 addresses interfering factors such as resetting parameters with negligible updates and resolving sign
 905 conflicts, which mitigates performance degradation caused by parameter-level interference when
 906 merging multiple models (Yadav et al., 2023). Community tools and practice are also maturing.
 907 MergeKit consolidates and engineers diverse merging algorithms, supporting large-model merging
 908 and recipe reproduction under resource constraints, which facilitates methodological comparison
 909 and reproducibility (Goddard et al., 2024). Systematic surveys have begun to organize theoretical
 910 perspectives, method taxonomies, and application boundaries for merging, providing references for
 911 unified terminology, evaluation settings, and future research agendas (Yang et al., 2024b). However,
 912 most existing methods focus on average multi-task performance and out-of-distribution robustness,
 913 with limited attention to the fidelity of fine-grained functional structures such as the reasoning format,
 914 for example, explicit thought traces and process markers. RAIN-Merging targets this gap: during
 915 parameter fusion it introduces subspace constraints tied to the “thinking format,” and allocates merging
 916 coefficients at the per-layer and per-head levels using instruction attention, thereby strengthening
 917 instruction following while suppressing structural drift of the original reasoning patterns.

918 **Null Space Projection.** Constraint ideas centered on orthogonality and null spaces have been re-
 919 peatedly validated in continual learning and knowledge editing. OGD projects gradients for new
 920 tasks onto the orthogonal complement of the subspace of old tasks, explicitly constraining update

918 directions to mitigate forgetting (Farajtabar et al., 2020). GPM extracts and maintains “important
 919 gradient subspaces” via singular value decomposition, then performs layer-wise orthogonal projec-
 920 tion of new gradients to reduce interference across tasks (Saha et al., 2021). For LLM knowledge
 921 editing, AlphaEdit projects edit perturbations into the null space of “preserved knowledge” and
 922 provides theoretical guarantees on output preservation, which markedly reduces cumulative damage
 923 in sequential edits (Fang et al., 2025). In parameter-efficient and mergeable settings, LoRA-Null
 924 initializes or constrains the LoRA adaptation subspace using the null space of pretrained representa-
 925 tions, alleviating forgetting and improving parallelism and mergeability with other updates (Tang
 926 et al., 2025). For multi-task and multi-LoRA model merging, OSRM imposes orthogonalization
 927 constraints on task-specific LoRA subspaces before fine-tuning, reducing mutual interference at
 928 merge time and improving compatibility (Zhang & Zhou, 2025). Following this line of work, we
 929 construct a null-space projection on features tied to the “reasoning format,” and combine it with
 930 instruction-attention-guided coefficients. The merged model thus preserves structured reasoning
 931 outputs while improving adherence to verifiable constraints such as format, length, and enumeration.

E PROOF

935
 936
 937
 938
 939
 940 Figure A1: *Principal subspace cosine similarity* between DeepSeek-R1-Distill-Qwen-1.5B (LRM) and
 941 Qwen2.5-1.5B-Instruct (ITM) task vectors for each layer and submodule.

942
 943
 944
 945
 946
 947
 948 Figure A2: *Principal subspace cosine similarity* between DeepSeek-R1-Distill-Qwen-14B (LRM) and Qwen2.5-
 949 14B-Instruct (ITM) task vectors for each layer and submodule.

E.1 PROOF OF WHY ORTHOGONAL IN PARAMETERS \neq INVARIANT IN OUTPUTS

950
 951 We first describe how we compute orthogonality between **principal parameter subspaces**. Let the
 952 two sources be the LRM task vector or weight difference, denoted by R , and the ITM counterpart,
 953 denoted by I . For each layer and each linear submodule $W^k \in \mathbb{R}^{d_{\text{out}}^k \times d_{\text{in}}^k}$, we take the top S singular
 954 directions (default $S = 16$ in our experiments) and perform SVD:

$$955 \quad W_R^k = U_R^k \Sigma_R^k (V_R^k)^\top, \quad W_I^k = U_I^k \Sigma_I^k (V_I^k)^\top. \quad (\text{A1})$$

956 Write $U_{R,S}^k \in \mathbb{R}^{d_{\text{out}}^k \times S}$ for the top- S left singular vectors of U_R^k (similarly $V_{R,S}^k \in \mathbb{R}^{d_{\text{in}}^k \times S}$), and
 957 analogously $U_{I,S}^k, V_{I,S}^k$ for source I .

958 **Principal subspace cosine similarity.** We focus on the *left* (output-side) principal subspaces and
 959 define the alignment matrix

$$960 \quad A^k = (U_{R,S}^k)^\top U_{I,S}^k \in \mathbb{R}^{S \times S}. \quad (\text{A2})$$

961 Let $\sigma_1^k, \dots, \sigma_S^k \in [0, 1]$ be the singular values of A^k . They equal the cosines of the principal angles
 962 between the two subspaces: $\sigma_i^k = \cos \vartheta_i^k$. We define the **principal subspace cosine similarity** as the
 963 mean cosine of principal angles:

$$964 \quad \cos \Theta_S^k(U_{R,S}^k, U_{I,S}^k) = \frac{1}{S} \sum_{i=1}^S \sigma_i^k. \quad (\text{A3})$$

965 Smaller values indicate stronger orthogonality between the sources at that (layer, module) cell.

972 **Empirical observation.** Across model sizes and all layers/modules in Qwen2.5-1.5B/7B/14B (**Fig. 2**,
 973 **A1, A2**), we observe $\cos \Theta_S^k < 0.1$ (with only a few exceptions), indicating that LRM and ITM task
 974 vectors are largely *orthogonal in parameter principal directions*. However, as the theory below shows,
 975 such parameter-space orthogonality does *not* imply invariance in the output space (i.e., unchanged
 976 logits on the thinking format), and thus cannot replace the *null-space projection* constraint used in
 977 our method.

978 **Why orthogonal in parameters \neq invariant in outputs.** We formalize this issue as the following
 979 **Prop. 1** and give a proof with dimension argument.

980 **Proposition 1** (Insufficiency of parameter-space orthogonality for output invariance). *For each*
 981 *submodule k , let $\mathcal{U}_{I,S}^k, \mathcal{V}_{I,S}^k$ be the S -dimensional instruction-side principal left/right subspaces and*
 982 *define the admissible low-rank parameter perturbation space*

$$984 \quad \mathcal{T}_I^k = \mathcal{U}_{I,S}^k \otimes \mathcal{V}_{I,S}^k = \text{span}\{\text{vec}(uv^\top) : u \in \mathcal{U}_{I,S}^k, v \in \mathcal{V}_{I,S}^k\}, \quad \mathcal{T}_I = \bigoplus_{k=1}^K \mathcal{T}_I^k. \quad (\text{A4})$$

985 *Let J be the Jacobian of the logits on the protected thinking tokens Ω_{think} at the anchor θ_R , with total
 986 parameter dimension $D = \dim(\theta)$ and rank $r = \text{rank}(J)$. Then, in generic position,*

$$987 \quad \dim(\mathcal{T}_I \cap \text{Null}(J)) \leq \max\{0, KS^2 - r\}. \quad (\text{A5})$$

988 *In particular, if $r > KS^2$, one has $\mathcal{T}_I \cap \text{Null}(J) = \{0\}$ and hence $\mathcal{T}_I \not\subseteq \text{Null}(J)$. Even when
 989 $r \leq KS^2$, the inclusion $\mathcal{T}_I \subseteq \text{Null}(J)$ requires a measure-zero alignment and thus almost never
 990 holds. Consequently, there exists a nonzero $\Delta \in \mathcal{T}_I$ with $J\Delta \neq 0$, implying*

$$991 \quad \mathcal{L}_{\text{think}}(\theta_R + \Delta) = \frac{1}{2} \Delta^\top (\mathbb{E}[J^\top F J]) \Delta + o(\|\Delta\|^2) > 0, \quad (\text{A6})$$

992 *where F is the Fisher matrix of the softmax.*

993 *Proof of Prop. 1.* Each module contributes an S -dimensional left subspace and an S -dimensional
 994 right subspace; their Kronecker product yields

$$995 \quad \dim \mathcal{T}_I^k = S \cdot S = S^2 \quad \text{in generic position}, \quad (\text{A7})$$

996 so, ignoring accidental cross-module dependencies,

$$997 \quad \dim \mathcal{T}_I = \sum_{k=1}^K \dim \mathcal{T}_I^k = KS^2. \quad (\text{A8})$$

1000 By the rank-nullity theorem for $J \in \mathbb{R}^{m \times D}$,

$$1001 \quad \dim \text{Null}(J) = D - r. \quad (\text{A9})$$

1002 For two subspaces $\mathcal{A}, \mathcal{B} \subset \mathbb{R}^D$, a standard upper bound on the intersection dimension states

$$1003 \quad \dim(\mathcal{A} \cap \mathcal{B}) \leq \max\{0, \dim \mathcal{A} + \dim \mathcal{B} - D\}. \quad (\text{A10})$$

1004 Setting $\mathcal{A} = \mathcal{T}_I$ and $\mathcal{B} = \text{Null}(J)$ gives

$$1005 \quad \dim(\mathcal{T}_I \cap \text{Null}(J)) \leq \max\{0, KS^2 + (D - r) - D\} = \max\{0, KS^2 - r\}. \quad (\text{A11})$$

1006 Hence, if $r > KS^2$, the intersection is trivial and $\mathcal{T}_I \subseteq \text{Null}(J)$ is impossible. Even when $r \leq KS^2$,
 1007 the full inclusion would require not only $\dim \mathcal{T}_I \leq \dim \text{Null}(J)$ but also a non-generic containment
 1008 (measure-zero alignment) between the two subspaces; thus it almost never holds in generic position.

1009 Finally, since $F \succeq 0$ and $M = \mathbb{E}[J^\top F J] \succeq 0$, any nonzero $\Delta \in \mathcal{T}_I$ with $J\Delta \neq 0$ satisfies
 1010 $\Delta^\top M \Delta > 0$, yielding

$$1011 \quad \mathcal{L}_{\text{think}}(\theta_R + \Delta) = \frac{1}{2} \Delta^\top M \Delta + o(\|\Delta\|^2) > 0. \quad (\text{A12})$$

1012 \square

1013 In words, *orthogonality of principal parameter subspaces does not guarantee first-order invariance*
 1014 *of outputs* on the thinking format. This is precisely why our Stage 1 imposes a *null-space projection*
 1015 constraint (i.e., $\Phi_{\Omega_{\text{think}}} \text{vec}(\Delta^\perp) = 0$) to cancel first-order effects.

1026 E.2 PROOF OF PROP. 1
1027

1028 *Proof of Prop. 1.* Let $p = \text{softmax}(z) \in \Delta^{V-1}$ and $q = \text{softmax}(z + u)$, where $z \in \mathbb{R}^V$ is the
1029 logits vector at a thinking position $t \in \Omega_{\text{think}}(x)$ and $u \in \mathbb{R}^V$ is the perturbation induced by the
1030 parameter change.

1031 **Step 1: KL as a Bregman divergence of lse and a uniform quadratic bound.** Let $\text{lse}(z) =$
1032 $\log \sum_{i=1}^V e^{z_i}$, so that $\nabla \text{lse}(z) = \text{softmax}(z) = p$ and $\nabla^2 \text{lse}(z) = \text{diag}(p) - pp^\top$. For the
1033 multinomial exponential family, the KL divergence equals the Bregman divergence of the log-partition
1034 function (Banerjee et al., 2005; Wainwright & Jordan, 2008):
1035

$$1036 \text{KL}(\text{softmax}(z + u) \parallel \text{softmax}(z)) = D_{\text{lse}}(z + u, z) = \text{lse}(z + u) - \text{lse}(z) - \langle \nabla \text{lse}(z), u \rangle. \quad (\text{A13})$$

1037 Using the integral form of the Bregman remainder for a twice differentiable convex f , $D_f(x + h, x) =$
1038 $\int_0^1 (1-s) h^\top \nabla^2 f(x + sh) h \, ds$, and the fact that for all z the Hessian satisfies $\|\nabla^2 \text{lse}(z)\|_2 \leq \frac{1}{4}$ by
1039 positive semidefinite covariance form as in Lemma 1 (Boyd & Vandenberghe, 2004; Böhning, 1992),
1040 we obtain

$$1041 \text{KL}(\text{softmax}(z + u) \parallel \text{softmax}(z)) = \int_0^1 (1-s) u^\top \nabla^2 \text{lse}(z + su) u \, ds \\ 1042 \leq \int_0^1 (1-s) \frac{1}{4} \|u\|_2^2 \, ds = \frac{1}{8} \|u\|_2^2. \quad (\text{A14})$$

1043 Equivalently, the second-order Taylor expansion with a third-order remainder yields

$$1044 \text{KL}(\text{softmax}(z + u) \parallel \text{softmax}(z)) = \frac{1}{2} u^\top \nabla^2 \text{lse}(z) u + O(\|u\|_2^3) \leq \frac{1}{8} \|u\|_2^2 + O(\|u\|_2^3). \quad (\text{A15})$$

1045 **Lemma 1** (Hessian bound for lse). *For any $z \in \mathbb{R}^V$ with $p = \text{softmax}(z)$,*

$$1046 \nabla^2 \text{lse}(z) = \text{diag}(p) - pp^\top \succeq 0, \quad \|\nabla^2 \text{lse}(z)\|_2 \leq \frac{1}{4}. \quad (\text{A16})$$

1047 **Step 2: Bounding the logits perturbation via linearization and Lipschitz regularity.** Let $J(x, t) \in$
1048 $\mathbb{R}^{V \times d}$ be the Jacobian of $z_\theta(x, t)$ w.r.t. θ at $\theta = \theta_R$. By the mean-value theorem and Taylor expansion
1049 with Lipschitz gradient (Nesterov, 2013),

$$1050 u(x, t) := z_{\theta_R + \Delta}(x, t) - z_{\theta_R}(x, t) = J(x, t) \text{ vec}(\Delta) + r(x, t), \quad \|r(x, t)\|_2 \leq \frac{L}{2} \|\Delta\|_2^2, \quad (\text{A17})$$

1051 where L is a local Lipschitz constant of $\nabla_\theta z_\theta(x, t)$ around θ_R . Let $\Phi = \text{blkdiag}(\Phi^1, \dots, \Phi^K)$ be
1052 the block-diagonal *forward feature operator* that maps $\text{vec}(\Delta)$ to the linearized token-level feature
1053 change collected at thinking positions (per submodule k). Under bounded intermediate activations
1054 and operator norms, which are standard in local linearization of deep nets (Fazlyab et al., 2019), there
1055 exists $C_1 > 0$ such that $\|J(x, t) \text{ vec}(\Delta)\|_2 \leq C_1 \|\Phi \text{ vec}(\Delta)\|_2$. Combining with Eq. (A17),

$$1056 \|u(x, t)\|_2 \leq C_1 \|\Phi \text{ vec}(\Delta)\|_2 + C_2 \|\Delta\|_2^2, \quad C_2 := \frac{L}{2}. \quad (\text{A18})$$

1057 **Step 3: Enforcing the null-space constraint and aggregating into $\mathcal{L}_{\text{think}}$.** Apply the submodule-
1058 wise null-space projection (see Eq. (5) in the main text):

$$1059 \text{vec}(\Delta_I^{\perp, k}) = P^\perp(\Phi_{\Omega_{\text{think}}}^k) \text{ vec}(\Delta_I^k), \quad \Delta_I^\perp = \bigoplus_{k=1}^K \Delta_I^{\perp, k}, \quad (\text{A19})$$

1060 so that by construction $\Phi_{\Omega_{\text{think}}} \text{ vec}(\Delta_I^\perp) = 0$. Plugging this into Eq. (A18) yields for all $t \in \Omega_{\text{think}}(x)$:

$$1061 \|u(x, t)\|_2 \leq C_2 \|\Delta_I^\perp\|_2^2. \quad (\text{A20})$$

1062 Combining with Eq. (A14) and summing/averaging over (x, t) in the definition of $\mathcal{L}_{\text{think}}$ (Eq. (2))
1063 gives

$$1064 \mathcal{L}_{\text{think}}(\theta_R + \Delta_I^\perp) = \mathbb{E}_x \sum_{t \in \Omega_{\text{think}}(x)} \text{KL}\left(\pi_{\theta_R + \Delta_I^\perp}(\cdot \mid x, y_{<t}) \parallel \pi_{\theta_R}(\cdot \mid x, y_{<t})\right) \\ 1065 \leq \frac{1}{8} \mathbb{E}_{x, t} [\|u(x, t)\|_2^2] + O(\mathbb{E}_{x, t} \|u(x, t)\|_2^3) \\ 1066 = O(\|\Delta_I^\perp\|_2^4) \leq O(\|\Delta_I^\perp\|_2^2) \approx 0. \quad (\text{A21})$$

1067 This completes the proof. □

1080
1081 **Algorithm 1:** RAIN-Merging: Reasoning-Aware Instruction-attention guided Null-space projec-
1082 tion Merging

1083 **Input** : LRM θ_R ; ITM θ_I ; base model θ_B ; reasoning calibration set \mathcal{D}_R with thinking indices Ω_{think} ;
1084 instruction calibration set \mathcal{D}_I with spans $(\mathcal{I}, \mathcal{R}, \mathcal{U})$; hyperparameters $\rho, \tilde{\alpha}_l, \tilde{\alpha}_u, \lambda$.
1085 **Output** : Merged model θ_* .

1086 1 **Stage 0: Task vector and objective.**
1087 2 $\Delta_I \leftarrow \theta_I - \theta_B$ // instruction-tuned task vector
1088 3 **Stage 1: Reasoning-aware Null-space Projection (satisfy Eq. (2)).**
1089 4 **for** $k \leftarrow 1$ **to** K // iterate over submodules (per-layer W_Q, W_K, W_V, W_O , FFN) **do**
1090 5 $\Phi_\Omega^k \leftarrow \text{FeatureOperator}(\theta_R, \mathcal{D}_R, \Omega_{\text{think}}, k)$ // forward feature extraction at
1091 thinking tokens
1092 6 $P_k^\perp \leftarrow \text{diag}(1) - (\Phi_\Omega^k)^\top (\Phi_\Omega^k (\Phi_\Omega^k)^\top + \text{diag}(1))^{-1} \Phi_\Omega^k$ // least-squares orthogonal
1093 projector
1094 7 $\text{vec}(\Delta_I^{\perp, k}) \leftarrow P_k^\perp \text{vec}(\Delta_I^k)$ // submodule projection per Eq. (5)
1095 8 $\theta' \leftarrow \theta_R + \bigoplus_{k=1}^K \Delta_I^{\perp, k}$ // direct merge after Stage 1
1096 9 **Stage 2: Instruction-attention Guided Merging Coefficients (optimize Eq. (11)).**
1097 10 Initialize head-wise coefficients $\tilde{\alpha}^{\tilde{k}} \leftarrow 1$ for all attention heads \tilde{k} .
1098 11 **for** each attention head \tilde{k} **do**
1099 12 $a^{\tilde{k}} \leftarrow \mathbb{E}_{x \sim \mathcal{D}_I} \left[\frac{1}{|\mathcal{I}(x)| |\mathcal{R}(x)|} \sum_{t \in \mathcal{I}(x)} \sum_{\tau \in \mathcal{R}(x)} \text{Att}_{\theta'}^{\tilde{k}}(x)[t, \tau] \right]$
1100 13 $u^{\tilde{k}} \leftarrow \mathbb{E}_{x \sim \mathcal{D}_I} \left[\frac{1}{|\mathcal{I}(x)| |\mathcal{U}(x)|} \sum_{t \in \mathcal{I}(x)} \sum_{\tau \in \mathcal{U}(x)} \text{Att}_{\theta'}^{\tilde{k}}(x)[t, \tau] \right]$
1101 14 **for** each attention head \tilde{k} **do**
1102 15 $g^{\tilde{k}} \leftarrow a^{\tilde{k}} - \rho u^{\tilde{k}}$ // first-order term for Eq. (11)
1103 16 $\tilde{H}^{\tilde{k}} \leftarrow 1 + u^{\tilde{k}}$ // diagonal Hessian approx
1104 17 $\tilde{\alpha}_*^{\tilde{k}} \leftarrow \text{clip}_{[\tilde{\alpha}_l, \tilde{\alpha}_u]} \left(\frac{g^{\tilde{k}}}{\tilde{H}^{\tilde{k}}} \right)$ // per-head optimal scaling
1105 18 $\alpha_*^k \leftarrow \text{Aggregate}(\{\tilde{\alpha}_*^{\tilde{k}}\}_{\tilde{k} \in \text{module } k})$ // mean over heads for FFN
1106 19 **Output (Two-stage Merge).**
1107 20 **return** $\theta_* \leftarrow \theta_R + \lambda \bigoplus_{k=1}^K \alpha_*^k \Delta_I^{\perp, k}$ // final model in Eq. (16)

1111
1112
1113 F ALGORITHM
1114
1115 Following Alg. 1 is the algorithm of our RAIN-Merging.

1116
1117
1118 G METHOD IMPLEMENTATION DETAILS

1119 G.1 FORWARD MECHANISM IN TRANSFORMER

1120 A standard Transformer layer consists of multi-head self-attention and a feed-forward network (FFN).
1121 In layer ℓ , the hidden state of the token at position t , denoted $h_t^{(\ell-1)} \in \mathbb{R}^d$, is linearly projected to
1122 queries, keys, and values: $q_t^{(\ell)} = W_Q^{(\ell)} h_t^{(\ell-1)}, k_\tau^{(\ell)} = W_K^{(\ell)} h_\tau^{(\ell-1)}, v_\tau^{(\ell)} = W_V^{(\ell)} h_\tau^{(\ell-1)}$. For head h ,
1123 the single-head attention weights are $\text{Att}_\theta^{(\ell, h)}(x)[t, \tau] = \text{softmax}_\tau \left(\langle q_t^{(\ell, h)}, k_\tau^{(\ell, h)} \rangle / \sqrt{d_k} \right)$, which
1124 represent the probability that the token at position t attends to position τ . The corresponding
1125 head output is $o_t^{(\ell, h)} = \sum_\tau \text{Att}_\theta^{(\ell, h)}(x)[t, \tau] v_\tau^{(\ell, h)}$. After concatenating the outputs from all heads
1126 and applying $W_O^{(\ell)}$, we obtain $\hat{h}_t^{(\ell)}$. The FFN then computes $\hat{h}_t^{(\ell)} = \sigma \left(W_{\text{in}}^{(\ell)} \hat{h}_t^{(\ell)} + b_{\text{in}}^{(\ell)} \right)$, $h_t^{(\ell)} =$
1127 $W_{\text{out}}^{(\ell)} \hat{h}_t^{(\ell)} + b_{\text{out}}^{(\ell)}$. The top-layer hidden state is mapped to vocabulary logits $z_\theta(x, t)$, which are
1128 transformed by a softmax into the conditional distribution $\pi_\theta(\cdot | x, y_{<t})$. We follow the notation and
1129 the scaled dot-product attention definition of Vaswani et al. (2017) to align with prior work.

1134 Table A1: Reasoning calibration set construction from *Mixture-of-Thoughts*. We uniformly sample
 1135 50 examples per domain for calibration and 50 for validation. Raw sizes are taken from the official
 1136 dataset composition page.

1138	Domain	Raw size	Calibration	Validation
1139	Math	93,700	50	50
1140	Code	83,100	50	50
1141	Science	173,000	50	50
1142	Total	349,800	150	150

1144 G.2 IMPLEMENTATION DETAILS IN MERGING

1145 To balance computational efficiency and memory usage, all model-merging experiments adopt a
 1146 **layer-wise** merging strategy. During parameter fusion, we compute in **FP64** precision to ensure
 1147 numerical stability, and we store the final models in **BF16**. Our experiments show that higher compute
 1148 precision yields consistent but modest improvements for this merging procedure.

1152 H CALIBRATION SET CONSTRUCTION

1154 H.1 REASONING CALIBRATION SET

1156 We employ the *Mixture-of-Thoughts*² (Face, 2025) dataset as the source for reasoning-style calibration.
 1157 This dataset contains validated R1-style reasoning traces spanning three domains: math, code, and
 1158 science, with a total size of approximately 350k samples. Its official data composition page clearly
 1159 specifies the sample sizes and origins for each sub-domain: math samples are sourced from OpenR1-
 1160 Math (Lozhkov et al., 2025), code from CodeForces-CoTs (Penedo et al., 2025), and science from
 1161 the science subset of the Nemotron post-training set (Bercovich et al., 2025). From each domain, we
 1162 randomly sample 50 instances to form the calibration set (150 in total), and an additional 50 instances
 1163 per domain are randomly sampled to serve as the validation set (150 in total). **Tab. A1** shows the
 1164 detailed numbers of samples in each domain.

1165 **Thinking Special Token Set Construction.** To apply preservation constraints on “thinking format”,
 1166 we extract the thinking tokens, specifically `<think>` and `</think>` in the model output—based
 1167 on the R1-style chat template and tokenizer. The procedure involves rendering messages using the
 1168 chat template provided by LRM. R1-family models prefill `<think>` in reasoning mode and insert
 1169 `</think>` in the context, while some templates may omit the visible output of the initial `<think>` to enforce
 1170 thinking mode. We then obtain token positions of `<think>` and `</think>` in Ω_{think} .

1171 H.2 INSTRUCTION CALIBRATION SET

1173 We construct a high-quality instruction calibration set from rule-verifiable prompts through four auto-
 1174 mated and auditable steps. The pipeline produces span-based samples $(x \sim \mathcal{D}_I; \mathcal{I}(x), \mathcal{R}(x), \mathcal{U}(x))$
 1175 for computing the instruction-attention score proxy in Stage 2 of RAIN-Merging. We choose to distill
 1176 from IFEval-style instructions for ease of implementation and to test generalization on out-of-domain
 1177 instruction-following datasets. The final size of the instruction calibration set is 365. The full
 1178 workflow is:

- 1179 • **Instruction selection.** We select rule-verifiable instruction prompts from IFEval (Zhou et al.,
 1180 2023b) as queries. Each record contains a natural-language instruction and machine-checkable
 1181 constraints.
- 1182 • **Step 1: Response generation by LRM.** For each instruction query, we invoke an R1-style
 1183 reasoning model (deepseek-reasoner, DeepSeek-R1-0528)³ to produce a format-explicit
 1184 response. This step yields instruction-following samples generated by a reasoning decoder that
 1185 reflect realistic decoding behavior.

²<https://huggingface.co/datasets/open-r1/Mixture-of-Thoughts>

³<https://api.deepseek.com/v1>

	Instruction span (in prompt)	Related span (response matches instruction)	Unrelated span (response content not tied to instruction)
Query (Prompt)			
Given the sentence "It is unclear how much of this money is actually being spent on children", is the sentiment positive or negative? The very last sentence of your response should be "Is there anything else I can help with?"			
Reason			
Hmm, the user is asking about sentiment analysis for a specific sentence. The sentence expresses uncertainty about financial allocation for children, which inherently carries a negative connotation due to the implied lack of transparency or potential misdirection of funds.			
The phrasing "it is unclear" suggests doubt, and the focus on children as beneficiaries adds an emotional weight to the criticism. This isn't just about money—it's about ethical responsibility, making the negativity more pronounced.			
I should clarify why it's negative without overcomplicating it, then end with the required closing phrase as instructed. The response needs to be concise but justified.			
Response			
The sentiment of the sentence is **negative**.			
The phrase expresses doubt and implies a criticism that funds intended for children may not be reaching them, suggesting inefficiency, lack of transparency, or misallocation.			
Is there anything else I can help with?			

Figure A3: A sample illustration in our instruction calibration set.

Table A2: Instruction-following benchmarks. We list dataset size, constraint taxonomy, composition types, verification, and aggregation strategy.

Benchmark	Size	Constraint Taxonomy	Composition Type				Verification		Evaluation Aggregation
			And	Chain	Selection	Nested	Code-Exec.	LLM-as-Judge	
IFEval	541	25	✓	—	—	—	✓	—	strict_prompt_level_accuracy
CELLO	523	4	✓	✓	—	—	✓	—	average
InfoBench	500	5	✓	✓	—	—	—	✓	DRFR
ComplexBench	1,150	19	✓	✓	✓	✓	✓	✓	dependency-aware DRFR

- **Step 2: Rule evaluation and filtering.** We evaluate the outputs of Step 1 with an IFEval-compatible checker and *retain only passing samples* that satisfy all constraints. This removes cases that clearly fail the requirements.
- **Step 3: Strict span extraction (LLM-as-Judge).** We use a high-performance instruction-tuned LLM (deepseek-chat, DeepSeek-V3.1)³ to precisely extract instruction-relevant spans: $\mathcal{I}(x)$ (tokens in the prompt corresponding to the instruction) and $\mathcal{R}(x)$ (tokens in the response that are governed by the instruction). The unrelated span $\mathcal{U}(x)$ is then implicitly defined as the remainder of the response. See **Fig. A3** for an example.
- **Step 4: Tokenizer-level verification.** We verify the extracted spans on the *target tokenizer* (aligned with our anchor LRM), ensuring that boundaries lie on token edges and can be deterministically reconstructed. Samples that fail alignment are discarded.
- **Step 5: Human review and ethical screening.** To ensure data quality and compliance with safety and ethics standards, we introduce a manual review stage. Researchers verify the accuracy of the LLM-extracted spans $\mathcal{I}(x)$ and $\mathcal{R}(x)$, and conduct an ethics audit of the responses based on content-safety guidelines, removing any samples that contain biased, harmful, or inappropriate content. This step further enhances the reliability and ethical soundness of the calibration set.

This calibration pipeline is readily transferable and can be extended to additional instruction-following datasets to further improve merging effectiveness by enriching the calibration set. The reasoning distillation model and the LLM-as-Judge can be updated over time to continually enhance the quality of the instruction calibration data.

1242 Table A3: Test set sizes of the six math benchmarks used in our mathematical reasoning (Math)
 1243 evaluation.

	AIME2025	AIME2024	AMC23	GSM8K	Math500	MinervaMath
# Test samples	30	30	40	1,319	500	272

I DETAILED EXPERIMENTAL SETUP

I.1 BENCHMARKS

Instruction-following Benchmarks. We evaluate instruction compliance on four widely used, programmatically verifiable benchmarks. The size and constraint types are summarized in [Tab. A2](#).

- **IFEval** (Zhou et al., 2023b). IFEval provides four accuracy metrics: (1) *prompt-level strict* accuracy and (2) *instruction-level strict* accuracy, plus (3) *prompt-level loose* and (4) *instruction-level loose* variants. The strict metrics require exact satisfaction (all constraints per prompt for prompt-level strict; per-constraint averaging across prompts for instruction-level strict). The loose metrics first normalize model outputs (e.g., strip Markdown, boilerplate intros/outros) to reduce false negatives. We report the official **strict_prompt_level_accuracy** unless otherwise noted.
- **CELLO** (He et al., 2024). CELLO uses a *code-based* verifier that scores four granular aspects: (i) *count limit* (word/sentence/sample counts), (ii) *answer format* (parsability, keywords), (iii) *task-prescribed phrases* (mandatory phrases covered), and (iv) *input-dependent query* (presence of key phrases from the input), with a penalty to discourage verbatim copying. We follow the benchmark’s practice and **average** these checks to produce the final score.
- **InfoBench** (Qin et al., 2024). InfoBench adopts the *Decomposed Requirements Following Ratio (DRFR)*: each instruction is split into scoring questions that are judged by *LLM-as-a-Judge* with binary YES/NO labels; the final score is the mean over all questions, enabling fine-grained interpretability. We evaluate by GPT-5-mini. We report the official **DRFR**.
- **ComplexBench** (Wen et al., 2024). ComplexBench also evaluates via decomposed scoring questions with YES/NO judgments and aggregates them into DRFR, but crucially uses a *dependency-aware* scheme: if any prerequisite constraint fails, all dependent (downstream) constraints are automatically marked as failed. This better reflects multi-constraint compositions. We evaluate by GPT-4o-mini. We report the **dependency-aware DRFR**.

Reasoning & General Benchmarks. We evaluate reasoning and general capabilities on the following benchmarks:

- **Math (Mathematical reasoning).** We aggregate **Pass@1/accuracy** over six common math benchmarks: **AIME2025** (Balunović et al., 2025); **AIME2024** (Balunović et al., 2025); **AMC23** (Cao et al., 2024); **GSM8K** (Cobbe et al., 2021); **Math500** (Hendrycks et al., 2021); **MinervaMath** (Lewkowycz et al., 2022). The size of each math benchmark is shown in [Tab. A3](#). We report the **averaged accuracy** over all benchmarks.
- **Aider (Aider, 2024) (Code editing).** Aider-Edit assesses code editing capability under a minimal-edit paradigm. It contains 133 small Python coding exercises sourced from Exercism, where the model is provided with a natural-language edit instruction and the existing code, and must generate a correct patch. The generated patch is required to apply successfully to the codebase and pass compilation and associated tests. Performance is measured by the **Pass@2 Edit Success Rate**.
- **GPQA (Rein et al., 2024) (STEM).** A curated, expert-level subset of GPQA comprising 198 four-option multiple-choice questions across biology, chemistry, and physics. Items are selected to be “Google-proof” and unambiguous: both expert validators must answer correctly while at most one of three skilled non-experts succeeds, yielding a particularly hard split. We follow common practice and report **accuracy** (strict single-choice).
- **Arena-Hard-v2 (Li et al., 2024) (Creative writing).** A hard, open-ended benchmark constructed to maximize model separability and align with human preferences. Arena-Hard-Auto curate ~ 500 challenging prompts covering difficult real-world tasks including creative writing, scoring follows the pairwise battle paradigm with human or LLM-as-a-Judge assessments, and results are commonly summarized as *win rate* or transformed to *Elo* scores. For reproducibility, we fix

1296 Qwen2.5-7B as the reference baseline and use GPT-5-mini as the judging LLM; we report the
 1297 resulting **win rate** of each model against this baseline on the official Arena-Hard-v2 prompt set.
 1298

- 1299 • **Agentic Scenarios.** We evaluate the ability of the model to interact with the environment and
 1300 complete tasks by two agentic benchmarks: **ALFWorld** (Shridhar et al., 2021) is a text-interactive
 1301 household-task environment involving multi-step planning and execution. We evaluate on 100 tasks.
 1302 Metrics are **Success Rate** of goal completion. **WebShop** (Yao et al., 2022) is a web shopping agent
 1303 task (search, click, compare), with reported **Normalized Reward** to capture both path efficiency
 1304 and goal matching. We evaluate on 100 tasks.

1305 I.2 BASELINES

1306 We compare our method with the following merging baselines:

- 1307 • **Task Arithmetic** (Ilharco et al., 2023). The simplest linear composition injects the task vector
 1308 additively near the anchor, $\theta = \theta_R + \lambda \Delta_I$. A scalar $\lambda \in [0, 1]$ usually controls the strength; using
 1309 the same λ per layer or per block is also common. Its advantages are zero data and negligible
 1310 compute; its drawback is that conflicts across submodules are hard to disentangle.
- 1311 • **SLERP** (Bishop, 2007; Goddard et al., 2024). In SLERP (*Spherical Linear Interpolation*), weights
 1312 are ℓ_2 -normalized to the unit sphere and interpolated along the geodesic to preserve norm and
 1313 angular geometry. Let $\Omega = \arccos(\langle w_R, w_I \rangle)$. Then $\text{slerp}(w_R, w_I; t) = \frac{\sin((1-t)\Omega)}{\sin \Omega} w_R +$
 1314 $\frac{\sin(t\Omega)}{\sin \Omega} w_I$, $t \in [0, 1]$. During merging, we apply SLERP to each tensor and rescale by the
 1315 original norm. This reduces norm drift compared with linear interpolation.
- 1316 • **Karcher** (Nielsen & Bhatia, 2013; Goddard et al., 2024). On a chosen manifold like the unit
 1317 sphere or a Stiefel manifold, compute the Fréchet mean by minimizing the sum of squared geodesic
 1318 distances: $\min_{\bar{w}} \sum_i d^2(\bar{w}, w_i)$. The iterative update is $\bar{w}^{(t+1)} = \text{Exp}_{\bar{w}^{(t)}}\left(\frac{1}{n} \sum_i \text{Log}_{\bar{w}^{(t)}}(w_i)\right)$.
- 1319 • **TIES** (Yadav et al., 2023). TIES is a data-free method that explicitly prunes and sparsifies to handle
 1320 parameter-level conflicts. For each layer’s edit vector it applies (i) a *sign-consistency mask* (retain
 1321 entries aligned with the dominant direction to reduce cancellation), (ii) *magnitude thresholding or*
 1322 *Top-k truncation* (keep high-contribution entries and zero out the rest), and (iii) optional *rescaling*
 1323 to match a target norm. We can stack TIES as a post-processing step on top of feasible baselines to
 1324 improve robustness.
- 1325 • **DARE** (Yu et al., 2024). DARE uses first-order sensitivities on a small calibration set (for example,
 1326 gradient norms of labeled loss, log-likelihood changes, or Fisher approximations of the output
 1327 distribution) to learn a per-layer or per-tensor coefficient α^k (or a diagonal preconditioner), yielding
 1328 $\theta = \theta_R + \bigoplus_k \alpha^k \Delta_I^k$. It can be viewed as data-aware recalibration that reduces the bias introduced
 1329 by naive addition with very low compute.
- 1330 • **ACM** (Yao et al., 2025). ACM (*Activation-Guided Consensus Merging*) targets activation con-
 1331 sistency. On a small calibration set it measures, before and after injecting the task vector, how
 1332 each layer or head changes its response on instruction-relevant spans and its leakage on irrelevant
 1333 spans. It then solves for per-submodule coefficients α^k , optionally with cross-sample consensus
 1334 regularization to improve generalization.
- 1335 • **LEWIS** (Chopra et al., 2025). LEWIS (*LayEr WIse Sparsity*) is a merge with layer-wise sparsity
 1336 allocation. Based on sensitivity indicators per layer (such as edit-vector magnitude, activation
 1337 gradients, or Fisher approximations), it sets a budget s_k and merges only the Top- s_k parameters
 1338 of that layer, leaving the anchor weights elsewhere unchanged. It can be combined with Task
 1339 Arithmetic, SLERP, or Karcher as the base, and $\{s_k\}$ are determined by heuristics or grid search
 1340 on a small calibration set.
- 1341 • **AIM** (Nobari et al., 2025). AIM (*Activation-based Importance Merging*) weights the task vector
 1342 by activation importance (for example, the effect of Value or FFN outputs on downstream logits, or
 1343 the instruction-aligned component of attention weights), performing element-wise or block-wise
 1344 reweighting: Weights the task vector by activation importance, for example, the effect of Value
 1345 or FFN outputs on downstream logits, or the instruction-aligned component of attention weights,
 1346 performing element-wise or block-wise reweighting: $\theta = \theta_R + \bigoplus_k W^k \odot \Delta_I^k$, where W^k is
 1347 obtained from a single forward pass on the calibration set. Intuitively, this preserves edits that
 1348 meaningfully change useful representations and suppresses noisy updates.

1350 Table A4: The hyperparameters of various merging methods in **Tab. 1**. λ means the global scaling
 1351 coefficient in merging. k denotes the trim ratio in TIES-Merging. p means the drop rate in DARE
 1352 merging. τ is sharpness the ACM. ρ is the pruning ratio in LEWIS. ω means the balance factor in
 1353 AIM.

Method	Hyper-parameters	
	7B	
Task Arithmetic	$\lambda = 1.0$	
SLERP	$\lambda = 1.0$	
Karcher	$\lambda = 1.0$	
TIES	$k = 0.8, \lambda = 0.8$	
DARE-TIES	$p = 0.3, k = 0.5, \lambda = 1.2$	
ACM-TIES	$\tau = 1.0, k = 0.5, \lambda = 1.1$	
LEWIS-TIES	$\rho = 0.5, k = 0.5, \lambda = 1.1$	
AIM-TIES	$\omega = 0.4, k = 0.5, \lambda = 1.0$	

1365 Table A5: The hyperparameters of RAIN-Merging in different model sizes. λ means the global
 1366 scaling coefficient in RAIN-Merging.

Method	Hyper-parameters			
	1.5B	7B	8B	14B
RAIN-Merging	$\lambda = 1.0$	$\lambda = 1.0$	$\lambda = 0.9$	$\lambda = 1.0$

1374 Unless otherwise specified, following common practice in previous work (Wu et al., 2025), we apply
 1375 TIES post-processing (sign consistency and magnitude truncation) on the outputs of DARE, ACM,
 1376 LEWIS, and AIM, in order to improve comparability across baselines.

1378 I.3 HYPERPARAMETERS

1380 For SFT, we use a batch size of 16 with the Adam optimizer (Kingma & Ba, 2014), a learning rate of
 1381 2×10^{-5} , weight decay of 0.05, and train for 20 epochs.

1382 For all model-merging methods (including the proposed RAIN-Merging and all baselines), we
 1383 merge only the task vectors extracted from the ITM’s Q/K/V/O/FFN modules. The specific
 1384 hyperparameter settings for each baseline used in **Tab. 1** are listed in **Tab. A4**.

1385 In **RAIN-Merging**, we set the leakage penalty to $\rho = 10$ and bound the attention-head coefficients
 1386 by $[\tilde{\alpha}_l, \tilde{\alpha}_u] = [0.0, 1.0]$. The global scalar λ is selected via a grid search over $[0.0, 1.5]$ with a step
 1387 size of 0.1; the chosen values for different model families are provided in **Tab. A5**. An ablation study
 1388 of the global scalar λ is included in Appendix **J.2**.

1390 J ADDITIONAL EXPERIMENTS

1393 J.1 DETAILED MATH BENCHMARK RESULTS

1395 **Tab. A6** and **Tab. A7** report detailed results on the mathematics benchmarks. **RAIN-Merging**
 1396 consistently preserves the mathematical reasoning ability of LRM_s across different model sizes and
 1397 architectures. In some cases, improving instruction following also correlates with better mathematical
 1398 performance, suggesting that enhanced adherence can support clearer intermediate reasoning and
 1399 more reliable final answers.

1401 J.2 ABLATION STUDY OF THE GLOBAL SCALAR

1403 We conduct a sensitivity analysis of the global scalar λ (**Fig. A4**). Across a wide range around our
 chosen value near 1.0, the merged model maintains strong instruction-following performance. As λ

1404
1405
1406
1407
1408 Table A6: Math benchmark results under the same configuration as in **Tab. 1**. “Avg.” denotes the
1409 average over all math benchmarks. The best and second-best results are highlighted in **bold** and
1410 underlined, respectively.
1411
1412

Method	AIME2025	AIME2024	AMC23	GSM8K	Math500	Minerva	Avg.
ITM	10.00	10.00	67.50	86.66	73.80	35.66	47.27
LRM	30.00	<u>50.00</u>	80.00	<u>91.36</u>	89.00	48.16	64.75
SFT	<u>33.33</u>	43.33	75.00	90.75	87.40	45.59	62.57
Task Arithmetic	30.00	<u>50.00</u>	80.00	90.75	89.00	45.59	64.22
SLERP	30.00	<u>46.67</u>	77.50	91.05	89.20	48.53	63.82
Karcher	30.00	<u>50.00</u>	80.00	90.98	89.20	<u>48.90</u>	64.85
TIES	<u>33.33</u>	<u>46.67</u>	<u>82.50</u>	<u>91.36</u>	90.60	48.16	65.44
DARE-TIES	36.67	40.00	<u>82.50</u>	90.98	<u>90.20</u>	45.22	64.26
AIM-TIES	<u>33.33</u>	<u>50.00</u>	85.00	89.76	89.60	47.79	<u>65.92</u>
ACM-TIES	<u>33.33</u>	<u>50.00</u>	77.50	<u>91.36</u>	88.20	47.06	64.57
LEWIS	30.00	33.33	80.00	90.27	88.80	50.00	62.07
RAIN-Merging	36.67	60.00	85.00	92.12	90.20	48.53	68.75

1421
1422 Table A7: Math benchmarks results under the same configuration as in **Tab. 2**. “Avg.” denotes the
1423 average over all math benchmarks.
1424

Method	AIME2025	AIME2024	AMC23	GSM8K	Math500	Minerva	Average
Qwen2.5-1.5B-Instruct	3.33	0.00	30.00	75.44	59.40	22.43	31.77
DeepSeek-R1-Distill-Qwen-1.5B	20.00	13.33	42.50	73.77	71.80	28.31	41.62
Qwen2.5-1.5B-RAIN-Merging	20.00	16.67	60.00	76.36	72.40	29.78	45.87
Llama-3.1-8B-Instruct	3.33	6.67	20.00	81.65	67.60	34.26	35.59
DeepSeek-R1-Distill-Llama-8B	30.00	40.00	75.00	90.52	80.40	45.37	60.21
Llama-3.1-8B-RAIN-Merging	30.00	43.33	77.50	90.30	82.80	47.79	61.95
Qwen2.5-14B-Instruct	20.00	13.33	65.00	93.18	80.00	44.85	52.73
DeepSeek-R1-Distill-Qwen-14B	50.00	<u>56.67</u>	92.50	93.22	89.00	52.49	72.31
Qwen2.5-14B-RAIN-Merging	50.00	63.33	92.50	94.37	91.00	56.25	74.58

1434
1435 increases, reasoning ability improves slowly at first but then drops sharply beyond 1.0, indicating that
1436 overly large merge strength can still harm reasoning.
1437

1438 J.3 ABLATION STUDY OF REASONING CALIBRATION SET SIZE 1439

1440 **Fig. A5** presents an ablation over the size of the reasoning calibration set. As the set grows,
1441 preservation of reasoning improves; however, instruction-following performance degrades gradually.
1442 We hypothesize that overly strict preservation of the thinking format can limit gains in instruction
1443 adherence and also increase computation. Balancing performance and resource usage, we select a
1444 calibration size of 150.
1445

1446 J.4 VISUALIZATION OF MERGING COEFFICIENTS IN STAGE 2 1447

1448 As shown in **Fig. A6**, the heatmap of merging coefficients for DeepSeek-R1-Distill-Qwen-7B exhibits
1449 clear layer-wise differences, indicating that different layers respond to instruction focus to different
1450 degrees. Notably, the earliest layers show the strongest response, with coefficients reaching the upper
1451 bound, and this pattern is consistent with the observations in **Fig. 6**.
1452
1453

1454 J.5 ABLATION STUDY OF INSTRUCTION CALIBRATION SET GENERALIZATION 1455

1456 While we use an instruction calibration set from IFEval in the main experiments due to its cleanly
1457 separable instruction spans and rule-based labels, the Stage 2 proxy is not restricted to such data.
1458 we construct an additional instruction calibration set from InfoBench. InfoBench focuses on open-

Figure A4: Instruction following and reasoning & generate performance of our RAIN-Merging using different global scalar λ . The configuration is the same as in [Tab. 2](#). The performance is measured by the average of the instruction following and reasoning & general capability benchmarks. The marked result is our choice in the experiments.

Figure A5: Instruction following and reasoning & generate performance of our RAIN-Merging using different reasoning calibration set sizes. The x axis represents the size of the reasoning calibration set with exponential scale. The configuration is the same as in [Tab. 2](#). The performance is measured by the average of the instruction following and reasoning & general capability benchmarks. The marked result is our choice in the experiments.

ended constraints such as tone, style and content focus. We follow the same filtering pipeline as in [Appendix H.2](#) and perform manual screening to ensure that the selected spans correspond to instructional constraints rather than problem content, resulting in a total of 260 samples. We refer the calibration set of 365 rule-verifiable instructions from IFEval as **Rule** and the new set from InfoBench as **Open**. We also consider a mixed variant **Rule+Open** obtained by simply concatenating the two sets. [Tab. A8](#) reports the performance of RAIN-Merging under these three calibration variants. Using the **Open** calibration set alone yields instruction-following performance that is comparable to the original **Rule** setting, with slightly higher accuracy on the more open-ended benchmarks (InfoBench and ComplexBench). This indicates that the instruction-attention guided coefficients can still identify effective modules even when calibrated exclusively on open-ended instructions, and are not restricted to IFEval-style rule-verifiable patterns. The mixed **Rule+Open** calibration consistently improves all four instruction-following benchmarks. Combining rule-verifiable and open-ended instructions therefore produces a more general proxy that better captures diverse instruction types. But carefully, we observe that both the purely **Open** and the **Rule+Open** variants incur a modest drop in reasoning & general performance compared to the **Rule** baseline. This suggests that while open-ended calibration can further enhance instruction-following, it may also slightly interfere with the preservation of reasoning. We view designing cleaner open-ended calibration sets and more explicitly modelling instruction–reasoning entanglement as promising directions for future work.

Figure A6: Heatmap of merging coefficients by our Stage 2 for each layer and attention head of DeepSeek-R1-Distill-Qwen-7B.

Table A8: Performance of RAIN-Merging with different instruction calibration sets in Stage 2. **Rule** is our original instruction calibration set from IFEval, **Open** is the new set from InforBench, **Rule+Open** simply concatenates both sets. We merge Qwen2.5-7B-Instruct (ITM) into DeepSeek-R1-Distill-Qwen-7B (LRM) under the same configuration as **Tab. 1**.

Method	Instruction Following					Reasoning & General				
	IFEval	CELLO	Info Bench	Complex Bench	Avg.	Math	GPQA	Aider	Arena-Hard-v2	Avg.
LRM	55.45	16.59	71.73	32.72	44.12	64.75	44.44	29.63	65.29	51.03
RAIN-Merging (Rule)	63.22	19.03	74.53	35.66	48.11	68.75	54.55	33.33	65.73	55.59
RAIN-Merging (Open)	62.92	19.24	74.89	35.67	48.15	65.14	49.49	31.11	64.67	52.59
RAIN-Merging (Rule+Open)	64.03	19.63	75.64	36.70	49.00	67.43	53.03	35.56	65.29	55.32

J.6 SCALING RAIN-MERGING TO 32B MODELS

To assess whether RAIN-Merging remains effective at larger model scales, we further evaluate our method on the Qwen2.5-32B family. In this setting, we regard **DeepSeek-R1-Distill-Qwen-32B** as the LRM and **Qwen2.5-32B-Instruct** as the ITM. **Tab. A9** reports the merging performance. Compared to the 32B LRM, RAIN-Merging consistently improves instruction-following performance on all four benchmarks with comparable performance on reasoning and general ability, while incurring only a small drop on Aider. Our RAIN-Merging remains effective at the 32B scale and can still enhance instruction adherence with preservation of reasoning and general ability. Further, we leave a systematic study of RAIN-Merging on 70B+ models as future work.

J.7 GENERALIZATION TO UNSEEN INSTRUCTION-FOLLOWING BENCHMARKS

To mitigate risks of data contamination from established benchmarks, we evaluate our method on three recently proposed instruction-following benchmarks that could not be used for calibration or

1566 Table A9: Merging performance and relative gains of RAIN-Merging on the Qwen2.5-32B family
 1567 under the same configuration as **Tab. 2**. The subsequent “(*relative gain*)” row reports the relative
 1568 improvement of our method over the LRM. The positive values are highlighted in green, and the
 1569 negative values are highlighted in red.

Model	Instruction Following					Reasoning & General				
	IFEval	CELLO	Info Bench	Complex Bench	Avg.	Math	GPQA	Aider	Arena-Hard-v2	Avg.
Qwen2.5-32B-Instruct	78.56	18.59	84.40	46.91	57.11	52.35	36.87	57.78	81.90	57.22
DeepSeek-R1-Distill-Qwen-32B	76.52	19.69	83.56	44.44	56.05	68.00	60.10	54.81	82.00	66.23
Qwen2.5-32B-RAIN-Merging	77.26	19.96	84.76	45.74	56.93	75.67	61.62	54.07	83.70	68.77
(<i>relative gain</i>)	+0.97%	+1.39%	+1.44%	+2.93%	+1.57%	+11.28%	+2.52%	-1.35%	+2.07%	+3.83%

1577 Table A10: Merging performance and relative gains of RAIN-Merging on three new instruction-
 1578 following benchmarks. We merge the Qwen2.5-7B family under the same configuration as **Tab. 1**.
 1579 The subsequent “(*relative gain*)” row reports the relative improvement of our method over the LRM,
 1580 highlighted in green.

Model	IFBench	XIFBench	EIFBench	Average
Qwen2.5-7B-Instruct	27.89	83.35	55.62	55.62
DeepSeek-R1-Distill-Qwen-7B	17.69	72.93	45.31	45.31
Qwen2.5-7B-RAIN-Merging	19.39	76.32	47.85	47.85
(<i>relative gain</i>)	+9.62%	+4.65%	+5.62%	+5.62%

1588 training: **IFBench** (Pyatkin et al., 2025), **XIFBench** (Li et al., 2025b), and **EIFBench** (Zou et al.,
 1589 2025).

- 1591 • **IFBench** targets precise, verifiable output constraint and tests generalization to 58 diverse out-of-
 1592 domain constraint templates.
- 1593 • **XIFBench** evaluates multilingual instruction-following under fine-grained constraints across six
 1594 languages, covering five categories such as content, style, format, situation and numerical require-
 1595 ments.
- 1596 • **EIFBench** focuses on extremely complex instruction-following scenarios, where models must
 1597 execute multi-task workflows under multiple interacting constraints, closer to real-world product
 1598 use-cases.

1599 These datasets introduce new instruction formats, domains, and evaluation protocols, and are therefore
 1600 suitable for testing robustness to distribution shifts in instruction-following.

1602 The results are reported in **Tab. A10**. Across all three benchmarks, RAIN-Merging consistently
 1603 outperforms the baseline LRM, with relative gains ranging from +4.65% to +9.62% on individual
 1604 datasets and +5.62% on the average. These improvements suggest that our method can generalize to
 1605 new, previously unseen instruction-following tasks.

1608 J.8 JOINT EVALUATION OF REASONING AND INSTRUCTION-FOLLOWING ON MATHIF

1610 In the main paper, we primarily evaluate instruction-following and reasoning on separate benchmarks.
 1611 To more directly assess whether RAIN-Merging can jointly maintain strong reasoning and strict
 1612 instruction-following within a *single* task, we additionally evaluate our method on **MathIF** (Fu et al.,
 1613 2025b). **MathIF** is explicitly designed to measure instruction-following in mathematical reasoning:
 1614 it augments math problems with verifiable constraints and reports both constraint satisfaction and
 1615 math correctness, as well as a joint metric that requires both to hold simultaneously.

1616 The results are reported in **Tab. A11**. Compared to the LRM, RAIN-Merging substantially improves
 1617 the instruction hard accuracy on MathIF while keeping math correctness essentially unchanged.
 1618 Most importantly, on the joint metric **Both Acc**, which requires simultaneous success in reasoning
 1619 and instruction following, the merged model improves from 12.62% to 20.48% (+62.26% relative),
 outperforming both the LRM and the ITM. These results indicate that RAIN-Merging not only

1620
 1621 Table A11: Merging performance and relative gains of RAIN-Merging on MathIF. We merge the
 1622 Qwen2.5-7B family under the same configuration as **Tab. 1**. **IF Acc.** is the hard accuracy of satisfying
 1623 all instruction constraints, **Math Acc.** is math accuracy under constraints, and **Both Acc.** is the
 1624 fraction of samples where both constraints and math answers are correct. The subsequent “(*relative
 1625 gain*)” row reports the relative improvement of our method over the LRM, highlighted in green.
 1626

Model	IF Acc.	Math Acc.	Both Acc.
Qwen2.5-7B-Instruct	48.81	40.95	19.76
DeepSeek-R1-Distill-Qwen-7B	25.86	53.81	12.62
Qwen2.5-7B-RAIN-Merging	35.10	54.76	20.48
(<i>relative gain</i>)	+35.73%	+1.77%	+62.26%

1627
 1628
 1629
 1630
 1631 Table A12: Evaluation of reasoning and answer traces. We merge the Qwen2.5-7B family under the
 1632 same configuration as **Tab. 1**. We report Reasoning Internal Coherence (**RIC**) and Reasoning-Answer
 1633 Alignment (**RAA**) on IFEval, AIME25, and GPQA (0-5 scale). The subsequent “(*relative gain*)” row
 1634 reports the relative improvement of our method over the LRM, highlighted in green.
 1635
 1636

Model	IFEval		AIME25		GPQA		Average
	RIC	RAA	RIC	RAA	RIC	RAA	
DeepSeek-R1-Distill-Qwen-7B	4.58	4.41	4.50	3.60	3.53	3.76	4.06
Qwen2.5-7B-RAIN-Merging	4.61	4.51	4.50	4.10	3.56	4.26	4.26
(<i>relative gain</i>)	+0.77%	+2.26%	0.00%	+13.89%	+0.86%	+13.31%	+4.78%

1643
 1644 enhances instruction-following over the LRM, but also preserves its reasoning accuracy, leading to a
 1645 substantial gain on the core target of *both correct and follow* within a single benchmark.
 1646
 1647

1648 J.9 REASONING AND ANSWER TRACES EVALUATION

1649
 1650 Standard reasoning benchmarks primarily evaluate final-answer correctness and therefore do not
 1651 directly reveal whether Stage 1 of RAIN-Merging preserves the *content* and *quality* of the underlying
 1652 reasoning traces, as opposed to merely maintaining the surface-level thinking format. To complement
 1653 our reasoning and answer quality evaluations, we adopt the framework of Wang et al. (2025) and
 1654 perform a process-level analysis of reasoning traces and answers. We use GPT-4o as an automatic
 1655 judge and measure two chain-of-thought level metrics:

- 1656 • **Reasoning Internal Coherence (RIC)** assesses how logically consistent and self-contained the
 1657 reasoning trace is.
- 1658 • **Reasoning–Answer Alignment (RAA)** measures how well the reasoning trace semantically
 1659 supports the final answer.

1660
 1661 For each sample we provide the question, the ground-truth answer, the full reasoning trace, and the
 1662 model’s final answer response. The judge then assigns 0-5 scores for RIC and RAA.

1663
 1664 We evaluate the reasoning and answer traces of the LRM (DeepSeek-R1-Distill-Qwen-7B) and our
 1665 merged model (Qwen2.5-7B-RAIN-Merging) on three datasets: **IFEval**, **AIME25**, and **GPQA**.
 1666 **Tab. A12** reports the resulting RIC and RAA scores. On IFEval, RAIN-Merging yields slight
 1667 improvements in both RIC and RAA. For the reasoning-focused benchmarks AIME25 and GPQA, it
 1668 maintains RIC scores comparable to the LRM, while achieving a marked increase in RAA, notably
 1669 by over 13% in both cases. In other words, the internal coherence of the reasoning is preserved, with
 1670 the connection between the reasoning and the final decision becoming noticeably tighter.

1671
 1672 Our findings indicate that Stage 1 goes beyond preserving the superficial format of the `<think>`
 1673 tokens to maintain the coherence of the entire reasoning chain. Consequently, our RAIN-Merging
 1674 yields reasoning traces with greater fidelity to the chosen answers. This enhancement in process-level
 1675 consistency accounts for the modest performance gains observed on reasoning benchmarks. In
 1676 essence, improved instruction-following compels the model to more closely execute the intended

Figure A7: Instruction-type accuracy comparison between the LRM (DeepSeek-R1-Distill-Qwen-7B) and RAIN-Merging (Qwen2.5-7B-RAIN-Merging) on IFEval. The results highlight the largest improvements on instructions like `response_language`, `number_words`, and `no_comma`.

Table A13: Robustness to paraphrased instructions on IFEval. We merge the Qwen2.5-7B family under the same configuration as **Tab. 1**. **Acc** is hard accuracy (%) of satisfying all instruction constraints. **Robustness** is defined as $\text{Acc}(\text{paraphrase})/\text{Acc}(\text{original})$

Model	IFEval-original Acc	IFEval-paraphrase Acc	Robustness
Qwen2.5-7B-Instruct	65.71	64.16	0.98
DeepSeek-R1-Distill-Qwen-7B	57.86	50.85	0.88
Qwen2.5-7B-RAIN-Merging	61.29	61.81	1.01

reasoning strategy, resulting in both higher-quality internal reasoning and more dependable final answers.

J.10 INSTRUCTION-TYPE BREAKDOWN ON IFEVAL

To provide a deeper understanding of how RAIN-Merging improves instruction-following, we perform a per-instruction-type analysis on IFEval, which includes 20+ distinct instruction categories in the original IFEval span. **Fig. A7** reports the instruction-type accuracy comparison results. The analysis reveals that RAIN-Merging achieves the most substantial performance gains on instruction types, such as `response_language`, `number_words`, and `no_comma`. For the majority of other types, the merged model either matches or modestly surpasses the LRM’s performance. These results complement the aggregate accuracy metrics reported in the main paper and offer further insight into the model’s instruction-following capabilities.

J.11 SEMANTIC ROBUSTNESS TO PARAPHRASED INSTRUCTIONS

Our main instruction-following evaluation already includes benchmarks with non-trivial semantic components. In particular, **InfoBench** and **ComplexBench** explicitly evaluate whether the *content*

of the response aligns with the prompt (e.g., style, tone, key information coverage), rather than relying solely on surface-level pattern matching. Thus a certain degree of semantic evaluation is already baked into our instruction-following metrics. To more directly assess whether RAIN-Merging improves *semantic* instruction following, rather than simply adapting to specific phrasings, we additionally follow IFEval-extended (Kovalevskyi, 2024) and construct a paraphrased version of IFEval. Concretely, we select 200 valid IFEval examples (denoted as **IFEval-original**) and use GPT-4o to generate three paraphrases for each instruction, yielding 600 phrased instructions (denoted as **IFEval-paraphrase**). We then evaluate: (i) hard accuracy on the original 200 IFEval prompts, and (ii) hard accuracy on the 600 paraphrased prompts. We also define a simple robustness metric, $\text{Robustness} = \text{Acc}(\text{paraphrase}) / \text{Acc}(\text{original})$, which measures how well performance is preserved under paraphrasing.

Tab. A13 reports the robustness to paraphrased instructions on IFEval. We observe that LRM’s performance degrades notably under paraphrasing. RAIN-Merging not only improves over the LRM on the original prompts, it also maintains slightly higher accuracy on paraphrased prompts, achieving a robustness of 1.01 that surpasses both the LRM and the ITM. These results indicate that RAIN-Merging enhances *semantic* instruction-following capability, as its performance improvements remain consistent even when instructions are substantially paraphrased. This demonstrates that the gains are not merely due to overfitting to specific phrasings or template-based patterns. The paraphrase-robustness experiment complements our aggregate instruction-following evaluations and supports the claim that the merged model better captures the intended meaning of user instructions.

J.12 CASE STUDY ON IFEVAL

We provide two case studies to illustrate the effectiveness of RAIN-Merging compared with DeepSeek-R1-Distill-Qwen-7B as the baseline LRM on IFEval.

- **IFEval Example 1:** The baseline LRM violates the explicit rule to first echo the request verbatim and further duplicates its poem, yielding a “following: False” outcome. In contrast, RAIN-Merging correctly repeats the request word-for-word, includes the required keywords (“intern,” “grow”), and produces a coherent, father-pleasing limerick (“following: True”).
- **IFEval Example 2:** The baseline LRM introduces capitalized section headers and markup (e.g., “Verse 1”), breaking the “all lowercase” constraint (“following: False”). RAIN-Merging delivers fully lowercase lyrics with clear structure and consistent semantics (“following: True”).

J.13 CASE STUDY ON GPQA

To better understand why RAIN-Merging improves performance on **GPQA**, we go beyond final-answer accuracy and analyze concrete examples where the merged model corrects the LRM’s mistakes.

- **GPQA Example 1:** In the first case, the LRM constructs a mostly correct physical derivation but makes a numerical slip in the computation as marked in red. The merged model follows essentially the same derivation but corrects the arithmetic step and therefore reaches the correct option. Notably, the merged model employs a step-by-step computational approach rather than relying on a single direct calculation as in the LRM, reflecting its stronger logical coherence. This suggests that our method goes beyond faithfully maintaining the structure of the reasoning chains and can also enhance the reliability of the LRM’s step-by-step logical and numerical reasoning.
- **GPQA Example 2:** In the second case, the LRM correctly analyzes each option and explicitly concludes that option (C) violates both isospin and parity conditions, while other options satisfy the constraints. However, in the final answer, the LRM unexpectedly outputs (A) as the best choice, contradicting its own reasoning. This is a classic *knowing–doing gap* (Schmied et al., 2025), where the model’s decision is misaligned with its internal chain of thought. The merged model largely reuses the same analysis but now selects (C) as the final answer, aligning its decision with its reasoning. This is also the behavior captured by the improved RAA scores in previous **Tab. A12** to explain the performance gains on GPQA.

1782
1783

Instruction-following Example 1 in IFEval

1784

Prompt

1785

Write a limerick about Hannah, a college student, doing an internship at a coffee company. Make sure that her father would love the limerick. Include the words "intern" and "grow".

1786

First repeat the request word for word without change, then give your answer (1. do not say any words or characters before repeating the request; 2. the request you need to repeat does not include this sentence)

1787

DeepSeek-R1-Distill-Qwen-7B Reason

1788

Okay, so the user has given me a query where they want a limerick about Hannah, a college student doing an internship at a coffee company. They also want me to make sure her father would love it, include the words "intern" and "grow".

1789

First, I need to understand what a limerick is. It's a five-line poem with an AABBA rhyme scheme, usually humorous. So, I should structure it that way.

1790

The main characters here are Hannah, who's an intern, and her father. I need to highlight something that would please her father. Since he's looking back on her, maybe something positive, like growth or learning. The user mentioned "grow," so that's a keyword I must include.

1791

I'll start the first line with "There once was a college student named Hannah," which sets the scene. Next, she's doing an internship at a coffee company, so the second line can mention that.

1792

For the third line, I need to introduce her father. Maybe something like "Her dad would be tickled," which fits the rhyme and the idea that he's proud or finds it amusing.

1793

In the fourth line, I have to include "grow," perhaps about Hannah growing into her role or learning something. Something like "she grew as an intern." That works because it's a common phrase and fits the rhyme.

1794

Finally, the last line should be a nice, positive ending. Maybe the coffee company has grown as a result of her hard work. "And the JavaHouse grew from her intern!" That ties the "grow" into the company's success.

1795

I should make sure the rhyme scheme is consistent and the lines flow well. Let me check each line for the AABBA pattern: the first and third lines have "Hannah," the second and fourth have "intern" and "grow," and the fifth is the punchline. The rhymes at the end of each line should be "annah," "inn," "dad," "un," and "or." Wait, that doesn't quite fit perfectly. Let me adjust the fifth line to "and JavaHouse grew from her intern." That way, the last two lines rhyme with "grow" and "grew," which is close enough for a limerick's loose rhyme.

1796

I think this captures Hannah's experience, shows her learning, and how her father is proud. It also ties the coffee company's growth to her internship, which is a nice touch. I should make sure the language is playful and fits the humorous tone of limericks.

1797

DeepSeek-R1-Distill-Qwen-7B Response (following: False)

1798

There once was a college student named Hannah,
Whose intern days at JavaHouse she would swap for much.
Her dad would be tickled, I'm sure,
If he heard she grew as an intern.
And JavaHouse grew from her intern!

1799

There once was a college student named Hannah,
Whose intern days at JavaHouse she would swap for much.
Her dad would be tickled, I'm sure,
If he heard she grew as an intern.
And JavaHouse grew from her intern!

1800

RAIN-Merging Reason

1801

Okay, so the user has given me a query where they want a limerick about Hannah, a college student doing an internship at a coffee company. They also want me to include the words "intern" and "grow". Plus, the limerick should make my father happy. I need to make sure that the poem not only fits the structure of a limerick but also touches on what a father might appreciate.

1802

First, recall the structure of a limerick (AABBA, typically anapestic). Incorporate internship details and the required keywords. Emphasize traits a father would love: responsibility, learning, contribution.

1803

Draft lines that meet the rhyme scheme and include "intern" and "grow," aiming for a playful, positive tone that showcases Hannah's growth and impact at the coffee company.

1804

RAIN-Merging Response (following: True)

1805

Write a limerick about Hannah, a college student, doing an internship at a coffee company. Make sure that her father would love the limerick. Include the words "intern" and "grow".

1806

There once was a college student named Hannah,
An intern at a coffee company she was.

1836
 1837 With her skills, both sharp and bright,
 1838 She's learning every day,
 1839 She's growing taller, her skills grow bright.
 1840 Her dad would surely give her a smile,
 1841 For Hannah's heart and Hannah's skill.
 1842 She's balancing tasks, balancing time,
 1843 Turning great coffee into something divine.
 1844 A limerick full of sunny pride!

1845
 1846 Instruction-following Example 2 in IFEval

1847
 1848 **Prompt**

1849 Compose song lyrics about a socio-economic problem. The song should be in English and in all
 1850 lowercase letters.

1851
 1852 **DeepSeek-R1-Distill-Qwen-7B Reason**

1853 The user asked for song lyrics about a socio-economic problem, in English and all lowercase. Choose a
 1854 relatable issue (e.g., inequality, unemployment), structure with verses/chorus/bridge, maintain empa-
 1855 thetic tone, vivid imagery, and ensure every character is lowercase. Aim for accessibility, repetition in
 1856 chorus, and a subtle sense of resilience or hope.

1857
 1858 **DeepSeek-R1-Distill-Qwen-7B Response (following: False)**

1859
 1860 **Verse 1**

1861 every penny's a struggle
 1862 like fuel for a car that won't start
 1863 the stars are bright but we don't see them
 1864 the ladder's always broken

1865
 1866 **Chorus**

1867 every penny's a struggle
 1868 a weight in your chest
 1869 the world's a game but you're just a piece
 1870 no matter how hard you try
 1871 every penny's a struggle

1872
 1873 **Verse 2**

1874 the roads are wet but the rain falls cold
 1875 the wind's a whisper but it's got no hold
 1876 we're dancing to a tune we can't control
 1877 but the beat's the same

1878
 1879 **Chorus**

1880 every penny's a struggle
 1881 a weight in your chest
 1882 the world's a game but you're just a piece
 1883 no matter how hard you try
 1884 every penny's a struggle

1885
 1886 **Bridge**

1887 look beyond the pain
 1888 is there a spark in your soul?
 1889 can you see the stars at night?
 1880 maybe there's something more

1881
 1882 **Chorus**

1883 every penny's a struggle
 1884 a weight in your chest
 1885 the world's a game but you're just a piece
 1886 no matter how hard you try
 1887 every penny's a struggle

1888
 1889 **Outro**

1880 a penny's worth of love or light
 1881 the struggle's real but we gotta fight
 1882 we'll find the way through the cold
 1883 the world's a game but you're just a piece

1890
 1891 **RAIN-Merging Reason**
 1892 Generate lyrics that address a socio-economic issue with clear imagery and structure
 1893 (verses/chorus/bridge). Conform strictly to the all-lowercase constraint. Keep language simple and
 1894 emotive, focusing on systemic barriers and lived experience, while maintaining flow and singability.
 1895 **RAIN-Merging Response (following: True)**
 1896 **"the gap in the system"**
 1897 (verse 1)
 1898 i see the faces in the lines,
 1899 faces searching for a ticket out of here.
 1900 factories grinding, bodies quiet,
 1901 a world that promises better, but i'm still waiting for the breath.
 1902 (chorus)
 1903 there's a crack in the system, a fault in the law,
 1904 half the planet's frozen in time.
 1905 we're crafted from the same mold, same broken spell,
 1906 but the world won't let us climb the hill.
 1907 (verse 2)
 1908 the streets are empty, the shops tiled over,
 1909 the only sound is the shuttle's old tune.
 1910 we're drowning in the waves, but the shores are a lie,
 1911 the promises fade like ash in the wind.
 1912 (chorus)
 1913 there's a crack in the system, a fault in the law,
 1914 half the planet's frozen in time.
 1915 we're crafted from the same mold, same broken spell,
 1916 but the world won't let us climb the hill.
 1917 (bridge)
 1918 oh, it's not just the lack, it's the broken chain,
 1919 we're all stuck in the margins, never quite seen.
 1920 but the fights don't stop, they never do,
 1921 we're trapped in the loop, chained to the ground.
 1922 (chorus)
 1923 there's a crack in the system, a fault in the law,
 1924 half the planet's frozen in time.
 1925 we're crafted from the same mold, same broken spell,
 1926 but the world won't let us climb the hill.
 1927 (outro)
 1928 so here's to the night shifts and the cold nights,
 1929 the endless loop where the kids don't get the break.
 1930 we're all fragments on the ground,
 1931 trying to find a way out of the ground.
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944
1945

Reasoning Example 1 in GPQA

1946

Question (Answer: C)

1947

X is a meson resonance. What is the mean decay distance? Knowing that the production energy is $E_X = 8\text{GeV}$, the mass $m_X = 1.2\text{GeV}$, and the width $\Gamma_X = 320\text{MeV}$.

1949

- A. $4.0655 \times 10^{-16}\text{m}$
- B. $5.0223 \times 10^{-16}\text{m}$
- C. $4.0655 \times 10^{-15}\text{m}$
- D. $5.0223 \times 10^{-15}\text{m}$

1950

1951

1952

1953

DeepSeek-R1-Distill-Qwen-7B Reason

1954

Okay, so I have this physics problem here about a meson resonance and its mean decay distance. Hmm, I'm a bit rusty on particle physics, but let me try to think this through step by step. First, the question gives me some data: the production energy $E_X = 8\text{ GeV}$, the mass $m_X = 1.2\text{ GeV}$, and the width $\Gamma_X = 320\text{ MeV}$. I need to find the mean decay distance from these values. The options are given in meters, so I guess I need to calculate the decay length.

1955

...

...

1956

1957

1958

Wait, $\hbar \approx 6.582 \times 10^{-25}\text{ GeV}\cdot\text{s}$. So $\tau = \frac{6.582 \times 10^{-25}\text{ GeV}\cdot\text{s}}{0.32\text{ GeV}} \approx 2.056875 \times 10^{-25}\text{ s}$

1959

1960

1961

1962

Now, the mean decay length $L = \gamma\beta c\tau$. Let's plug in the numbers. $\gamma \approx 6.6667$, $\beta \approx 0.9887$, $c \approx 3 \times 10^8\text{ m/s}$.

1963

So $L = 6.6667 \times 0.9887 \times 3 \times 10^8\text{ m/s} \times 2.056875 \times 10^{-25}\text{ s}$ Let me compute this step by step. First, $6.6667 \times 0.9887 \approx 6.6049$. Then, $3 \times 10^8 \times 2.056875 \times 10^{-25} = 6.170625 \times 10^{-17}\text{ m}$. Now multiply that by 6.6049: $6.6049 \times 6.170625 \times 10^{-17} \approx 4.07 \times 10^{-16}\text{ m}$.

1964

1965

1966

1967

1968

1969

Looking at the options, option A is $4.0655 \times 10^{-16}\text{ m}$, which is very close to my calculation. Option B is $5.0223 \times 10^{-16}\text{ m}$, which is higher. So I think the correct answer is A.

DeepSeek-R1-Distill-Qwen-7B Response (Answer: A, Wrong)

1970

The mean decay distance L for a particle is given by $L = \gamma\beta c\tau$, where γ is the Lorentz factor, β is the velocity in terms of the speed of light, c is the speed of light, and τ is the proper lifetime. The proper lifetime is related to the total decay width Γ by $\tau = \hbar/\Gamma$, where \hbar is the reduced Planck constant.

1971

Given:

1972

- $E_X = 8\text{ GeV}$,
- $m_X = 1.2\text{ GeV}$,
- $\Gamma_X = 320\text{ MeV} = 0.32\text{ GeV}$.

1973

First, calculate $\gamma = E_X/m_X = 8/1.2 \approx 6.6667$.

1974

Next, $\beta = \sqrt{1 - (1/\gamma^2)} = \sqrt{1 - (1/6.6667^2)} \approx 0.9887$.

1975

The proper lifetime is $\tau = \hbar/\Gamma_X$, where $\hbar \approx 6.582 \times 10^{-25}\text{ GeV}\cdot\text{s}$.

1976

Thus, $\tau = (6.582 \times 10^{-25})/0.32 \approx 2.056875 \times 10^{-25}\text{ s}$.

1977

Finally, the mean decay length is: $L = \gamma\beta c\tau = 6.6667 \times 0.9887 \times (3 \times 10^8) \times 2.056875 \times 10^{-25} \approx 4.0655 \times 10^{-16}\text{ m}$

1978

Comparing with the options, the closest match is **A** $4.0655 \times 10^{-16}\text{ m}$.

1979

Answer: A

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

RAIN-Merging Reason

Okay, so I've got this physics problem here about a meson resonance and its mean decay distance. Hmm, I'm a bit rusty on particle physics, but let's try to think this through.

The question gives me $E_X = 8 \text{ GeV}$, $m_X = 1.2 \text{ GeV}$, and $\Gamma_X = 320 \text{ MeV}$. I need to find the mean decay distance. The options are all in meters, so I guess I need to calculate the decay length.

Wait, decay length... I remember that the mean decay length (L) is related to the particle's lifetime (τ) and its velocity (β). The formula is $L = \beta \gamma c \tau$, where γ is the Lorentz factor. But wait, sometimes it's also expressed using the width Γ because the lifetime τ is related to Γ by $\tau = \hbar/\Gamma$. Oh right, because Γ is the total decay width, which is inversely proportional to the lifetime.

So first, I need to find the lifetime τ . Γ is given in MeV, so I should convert that to GeV for consistency with E_X and m_X . 320 MeV is 0.32 GeV.

Now, using $\tau = \hbar/\Gamma$. But wait, what's the value of \hbar in $\text{GeV} \cdot \text{s}$? I think \hbar is approximately $6.582 \times 10^{-25} \text{ GeV} \cdot \text{s}$. Let me double-check that. Yeah, I think that's correct.

So $\tau = (6.582 \times 10^{-25} \text{ GeV} \cdot \text{s})/(0.32 \text{ GeV}) = 6.582 \times 10^{-25} / 0.32 \approx 2.057 \times 10^{-24} \text{ seconds}$.

...

(We omit the lengthy reasoning process for clarity.)

...

Wait, let me check the exact values.

First, $\tau = \hbar/\Gamma$. \hbar is $6.582 \times 10^{-25} \text{ GeV} \cdot \text{s}$. Γ is 0.32 GeV.

So $\tau = 6.582 \times 10^{-25} / 0.32 =$ let's compute that exactly.

$6.582 / 0.32 = 20.56875$, so $20.56875 \times 10^{-25} \text{ s} = 2.056875 \times 10^{-24} \text{ s}$.

RAIN-Merging Response (Answer: C, Correct)

To calculate the mean decay distance L of the meson resonance, we use the formula: $L = c \cdot \beta \gamma \tau$, where:

- $c = 3 \times 10^8 \text{ m/s}$ (speed of light),

- $\beta = \sqrt{1 - \frac{m^2}{E^2}}$ is the velocity in units of c ,

- $\gamma = \frac{E}{m}$ is the Lorentz factor,

- $\tau = \frac{\hbar}{\Gamma}$ is the proper lifetime, with $\hbar = 6.582 \times 10^{-25} \text{ GeV} \cdot \text{s}$.

Step 1: Calculate τ

Given $\Gamma_X = 320 \text{ MeV} = 0.32 \text{ GeV}$, the proper lifetime is: $\tau = \frac{\hbar}{\Gamma_X} = \frac{6.582 \times 10^{-25}}{0.32} \approx 2.056875 \times 10^{-24} \text{ s}$

Step 2: Calculate β and γ

The energy is $E_X = 8 \text{ GeV}$, and the mass is $m_X = 1.2 \text{ GeV}/c^2$. The Lorentz factor is: $\gamma = \frac{E_X}{m_X} = \frac{8}{1.2} \approx 6.6667$

The velocity factor β is: $\beta = \sqrt{1 - \frac{m_X^2}{E_X^2}} = \sqrt{1 - \frac{1.2^2}{8^2}} = \sqrt{1 - 0.0225} = \sqrt{0.9775} \approx 0.9887$

Thus, $\beta \gamma = 0.9887 \cdot 6.6667 \approx 6.5911$.

Step 3: Calculate L

Substituting into the formula for L : $L = c \cdot \beta \gamma \cdot \tau = 3 \times 10^8 \cdot 6.5911 \cdot 2.056875 \times 10^{-24}$

First, calculate $c \cdot \beta \gamma$: $3 \times 10^8 \cdot 6.5911 \approx 1.97733 \times 10^9 \text{ m/s}$

Now multiply by τ : $L = 1.97733 \times 10^9 \cdot 2.056875 \times 10^{-24} \approx 4.067 \times 10^{-15} \text{ m}$

Step 4: Match with the closest option

The calculated value $L \approx 4.067 \times 10^{-15} \text{ m}$ is closest to option C ($4.0655 \times 10^{-15} \text{ m}$).

ANSWER: C

2052
2053

Reasoning Example 2 in GPQA

2054

Question (Answer: C)

Consider a bound system of two nucleons (NN) in a 1S0 state which emit a particle X of intrinsic parity -1. Pauli statistics require that the isospin, angular momentum, and spin quantum numbers of the final NN state satisfy $T(\text{NN}) = S(\text{NN}) + L(\text{NN}) + 1 \pmod{2}$.

Suppose the final NN state has $T(\text{NN}) = 0$. Which of the following partial waves is not permitted, where the lowercase letter denotes the angular momentum state of X? Make use of the conservation of both angular momentum and parity.

Note that the term symbol (e.g. 1S0) is in general defined $(2S+1)L(J)$, where S is the total spin, L the total orbital angular momentum written in spectroscopic notation, and J the total angular momentum.

- A. 1S0 → 3D3 + f
- B. 1S0 → 3S1 + p
- C. 1S0 → 3P0 + s
- D. 1S0 → 7D1 + p

DeepSeek-R1-Distill-Qwen-7B Reason

Okay, so I'm trying to figure out this problem about nucleon-nucleon bound systems and the partial waves involved when they emit a particle. Let me start by breaking down the question and the given information.

...

(We omit the lengthy reasoning process for clarity.)

...

But I'm not entirely confident. I think the correct answer is (A) because it doesn't satisfy the isospin condition, but I'm not 100% sure.

DeepSeek-R1-Distill-Qwen-7B Response (Answer: A, Wrong)

The problem involves a bound system of two nucleons (NN) in a 1S0 state emitting a particle X with intrinsic parity -1. The isospin, angular momentum, and spin quantum numbers of the final NN state satisfy the condition $T(\text{NN}) = S(\text{NN}) + L(\text{NN}) + 1 \pmod{2}$, where $T(\text{NN}) = 0$ for the final NN state. The task is to determine which partial wave (l) of X is not permitted, considering both angular momentum and parity conservation.

...

(We omit the lengthy reasoning process for clarity.)

...

Option-by-Option Analysis:**• (A) 1S0 → 3D3 + f**

- NN term symbol 3D3: $S = 1, L = 2, J = 3$.
- $T(\text{NN}) = (1 + 2 + 1) \pmod{2} = 4 \pmod{2} = 0$ (satisfies the isospin condition).
- **Parity of NN state:** $(-1)\hat{L} + S = (-1)\hat{2} + 1 = -1$ (satisfies the parity condition).
- **Conclusion:** This partial wave is **allowed**.

• (B) 1S0 → 3S1 + p

- NN term symbol 3S1: $S = 1, L = 0, J = 1$.
- $T(\text{NN}) = (1 + 0 + 1) \pmod{2} = 2 \pmod{2} = 0$ (satisfies the isospin condition).
- **Parity of NN state:** $(-1)\hat{L} + S = (-1)\hat{0} + 1 = -1$ (satisfies the parity condition).
- **Conclusion:** This partial wave is **allowed**.

• (C) 1S0 → 3P0 + s

- NN term symbol 3P0: $S = 1, L = 1, J = 0$.
- $T(\text{NN}) = (1 + 1 + 1) \pmod{2} = 3 \pmod{2} = 1$ (does not satisfy the isospin condition).
- **Parity of NN state:** $(-1)\hat{L} + S = (-1)\hat{1} + 1 = +1$ (does not satisfy the parity condition).
- **Conclusion:** This partial wave is **not allowed**.

• (D) 1S0 → 7D1 + p

- NN term symbol 7D1: $S = 3, L = 2, J = 1$.
- $T(\text{NN}) = (3 + 2 + 1) \pmod{2} = 6 \pmod{2} = 0$ (satisfies the isospin condition).
- **Parity of NN state:** $(-1)\hat{L} + S = (-1)\hat{2} + 3 = -1$ (satisfies the parity condition).
- **Conclusion:** This partial wave is **allowed**.

2106

2107

2108

2109

2110

Final Answer:

Options (A) and (C) are not permitted because they fail either the isospin or parity condition. However, since the question asks for the single best answer, (A) is chosen as the answer because it is the first invalid option encountered in the analysis.

ANSWER: A

2111

2112

RAIN-Merging Reason

Okay, so I'm trying to figure out which partial wave isn't allowed in this nuclear physics problem. Let me start by understanding the question step by step.

2113

2114

2115

...

(We omit the lengthy reasoning process for clarity.)

2116

2117

...

So the only option that doesn't satisfy the isospin condition is (C). Therefore, the answer should be (C).

RAIN-Merging Response (Answer: C, Correct)

To determine which partial wave is not permitted, we analyze the problem using the given conditions:

1. **Initial State:** The initial NN system is in the $1S0$ state, which has total spin $S = 0$, orbital angular momentum $L = 0$, and isospin $T = 0$. The parity of the initial state is $+1$ since $P = (-1)^L = (-1)^0 = +1$.

2. Final State Conditions:

- The final NN state has $T = 0$, so the isospin condition is $T = S + L + 1 \pmod{2}$. Substituting $T = 0$, we get $S + L + 1 \equiv 0 \pmod{2}$, which simplifies to $S + L \equiv 1 \pmod{2}$. This means S and L must have opposite parity (one even, one odd).

- The parity of the final state must conserve parity. The emitted particle X has intrinsic parity -1 , so the parity of the final NN state is $P_{NN} = P_{NN}^{\text{initial}} \cdot P_X = (+1) \cdot (-1) = -1$. Since $P_{NN} = (-1)^L$, this implies $(-1)^L = -1$, so L must be odd.

3. Analysis of Each Option:

2129

- (A) $1S0 \rightarrow 3D3 + f$: The NN state is $3D3$, so $S = 1$ (since $2S + 1 = 3$) and $L = 2$.

- $S + L = 1 + 2 = 3$, which satisfies $S + L \equiv 1 \pmod{2}$.

- $L = 2$ is even, which violates the parity condition L must be odd.

- **Allowed.**

- (B) $1S0 \rightarrow 3S1 + p$: The NN state is $3S1$, so $S = 1$ and $L = 0$.

- $S + L = 1 + 0 = 1$, which satisfies $S + L \equiv 1 \pmod{2}$.

- $L = 0$ is even, which violates the parity condition L must be odd.

- **Allowed.**

- (C) $1S0 \rightarrow 3P0 + s$: The NN state is $3P0$, so $S = 1$ and $L = 1$.

- $S + L = 1 + 1 = 2$, which does **not** satisfy $S + L \equiv 1 \pmod{2}$.

- $L = 1$ is odd, which satisfies the parity condition.

- **Not allowed.**

- (D) $1S0 \rightarrow 7D1 + p$: The NN state is $7D1$, so $S = 3$ (since $2S + 1 = 7$) and $L = 2$.

- $S + L = 3 + 2 = 5$, which satisfies $S + L \equiv 1 \pmod{2}$.

- $L = 2$ is even, which violates the parity condition L must be odd.

- **Allowed.**

4. Conclusion:

All options except (C) satisfy the parity condition L must be odd. However, the isospin condition $S + L \equiv 1 \pmod{2}$ is violated in (C), making it the only permitted partial wave that is not allowed.

ANSWER: C

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160 **K IMPLICATIONS**
21612162 The potential impacts of this work span both academic and applied dimensions.
21632164 On the positive side, RAIN-Merging offers an interpretable, low-compute pathway for capability
2165 integration. It enables researchers and resource-constrained labs to inject instruction-following
2166 competence into LRM_s without additional training. By enforcing a null-space constraint on the
2167 thinking segment (<think>...</think>), the method preserves the model’s structured reasoning
2168 format, which helps maintain reliability in reasoning. This direction may catalyze systematic
2169 studies of the relationship between task-vector orthogonality and thinking-format stability, and it
2170 encourages reproducible evaluation practices (for example, public evaluation scripts, calibration sets,
2171 and hyperparameter configurations) and greater standardization of community benchmarks. In agent
2172 applications such as WebShop and ALFWorld, RAIN-Merging can lower the barrier to integrating
2173 multiple capabilities and improve the practicality of tool use and structured outputs.
21742175 On the risk side, parameter merging can introduce capability drift or safety drift. For example, while
2176 improving instruction following, it may alter jailbreak sensitivity, amplify biases present in training
2177 data or in LLM-as-judge pipelines, or induce hallucinations tied to specific output formats. Instruction
2178 attention as a proxy metric may also encourage myopic optimization for format matching, which
2179 is not equivalent to value-aligned safety. Moreover, increased model usability can be misused for
2180 mass generation of misleading content, evasion of platform policies, or automated spam. The current
2181 method also depends on R1-style special markers and prompting templates; its cross-model and
2182 cross-modal generalization remains to be established.
21832184 **L LIMITATIONS AND FUTURE WORK**
21852186 Our method has the following limitations. (i) The method relies on R1-style templates and tokenization
2187 to extract <think>...</think> for constructing the null space. If a model hides its reasoning
2188 (for example, implicit CoT) or adopts different templates, the constraint may weaken or fail. (ii) The
2189 instruction and reasoning calibration sets are limited in size and include noise from LLM-as-judge
2190 auto-annotation. Distribution shifts across languages or task domains may affect the generalization of
2191 the merging coefficients. (iii) Although the KL constraint on the thinking segment helps preserve
2192 the reasoning format, non-thinking content and safety-relevant behaviors may still drift, and there
2193 is currently no formal safety guarantee. (iv) Experiments focus primarily on the Qwen/DeepSeek
2194 families. Applicability to multimodal LLM_s, tool use, code-generation settings, and multilingual
2195 scenarios requires systematic evaluation.
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213