Under review as a conference paper at ICLR 2026

RAIN-MERGING: A GRADIENT-FREE METHOD TO EN-
HANCE INSTRUCTION FOLLOWING IN LARGE REASON-
ING MODELS WITH PRESERVED THINKING FORMAT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) excel at a long chain of reasoning but often fail
to faithfully follow instructions regarding output format, constraints, or specific
requirements. We investigate whether this gap can be closed by integrating an
instruction-tuned model (ITM) into an LRM. Analyzing their differences in pa-
rameter space, namely task vectors, we find that their principal subspaces are
nearly orthogonal across key modules, suggesting a lightweight merging with
minimal interference. However, we also demonstrate that naive merges are fragile
because they overlook the output format mismatch between LRMs (with explicit
thinking and response segments) and ITMs (answers-only). We introduce
RAIN-Merging (Reasoning-Aware Instruction-attention guided Null-space projec-
tion Merging), a gradient-free method that integrates instruction following while
preserving thinking format and reasoning performance. First, with a small reason-
ing calibration set, we project the ITM task vector onto the null space of forward
features at thinking special tokens, which preserves the LRM’s structured reason-
ing mechanisms. Second, using a small instruction calibration set, we estimate
instruction attention to derive module-specific scaling that amplifies instruction-
relevant components and suppresses leakage. Across four instruction-following
benchmarks and nine reasoning & general capability benchmarks, RAIN-Merging
substantially improves instruction adherence while maintaining reasoning qual-
ity. The gains are consistent across model scales and architectures, translating to
improved performance in agentic scenarios.

1 INTRODUCTION

In the current boom of research, Large Reasoning Models (LRMs, like OpenAl-ol (Jaech et al.,
2024), DeepSeek-R1 (Guo et al., 2025)) have shown strong potential on tasks that require rigorous
multi-step reasoning (Wei et al., 2022), such as mathematical derivation (Shao et al., 2024) and
program synthesis (Guo et al., 2024). However, a discouraging paradox has emerged: although LRMs
perform well in purely reasoning-oriented settings, they lag in instruction following (Fu et al., 2025;
Li et al., 2025). They often generate lengthy logical derivations yet ignore user-specified formats,
constraints, or specific operational requirements in the final response. This inconsistency undermines
LRM practicality and reliability in real-world applications (Chkirbene et al., 2024), especially in
agent (Qi et al., 2025) and professional tool deployments (Zhao et al., 2024).

A straightforward remedy is to continue training LRMs with supervised fine-tuning (SFT) to
strengthen instruction following. However, building high-quality supervision datasets for tasks
that require generating long chains of thought entails substantial annotation and computational re-
sources (Qin et al., 2025). Moreover, these post-training methods often induce capability regressions,
with degradation in generality and in responses to unseen instructions (Shenfeld et al., 2025). In
contrast, a training-free and compute-light alternative is model merging, which extracts parameter
differences between fine-tuned and pre-trained models (namely the task vector), then combines
these task vectors to create a unified model that preserves pre-trained knowledge while incorporating
capabilities from multiple tasks (Ilharco et al., 2023). This motivates a central question: whether
we can merge the LRM and the Instruction-tuned Model (ITM) to enhance the instruction following
while preserving its reasoning capability.

Under review as a conference paper at ICLR 2026

Query: [Question] [Instruction 1] [Instruction 2]
Compute the last 8 decimal digits of N = 7(77). (i) Output exactly an 8-character hexadecimal string. (ii) Include at most 2 lines of Python code that verify the result.

<think>

"Compute the last 8 decimal digits of SN = 7A{(7A7)}$" Let's compute: 7A7 = 823543. So exponent e = 823543.

</think> User Experience: or
s

We wish to compute the last 8 decimal digits of SN = 7A{(7A7)}$. Since $7A7 = 823543$, this is equivalent to computing
\[N\bmod 1048 = 7A{823543} \brmod 100000000\ @ [Correct Answer]
This can be efficiently done using modular exponentiation. Final Answer is \boxed{70132343}. Q@ [Not output in hex!]
Verification with Python Code: Q [More than 2 lines!]

? Reasoning-aware Null-space Projection (Stage 1)

A X

RAIN-MERGING 0, =0n + \PakApt
k=1

Large Reasoning Model Instruction-tuned Model Merged Model \ Instruction-attention Guided Merging Coefficients (Stage 2)

Output of Instruction Following Enhanced LRM by Merging: l
<think>
"Compute the last 8 decimal digits of SN = 7A{(7A7)}$!" Let's compute: 7A7 = 823543. So exponent e = 823543.

print(format(n, '08X"

</th\r.vk>) o . o) _ User Experience: ¥ =
We wish to compute the last 8 decimal digits of SN = 7A{(7A7)}$. Since $7A7 = 8235438, this is equivalent to computing © @
\[N\bmod 1048 = 7A{823543} \bmod 100000000. \] :
This can be efficiently done using modular exponentiation. A direct computation yields 70132343, @ [Correct Answer]
Convert the decimal number 70132343 to an 8-digit string in hexadecimal, final answer is \boxed{042E2277}. @ [output in hex]

The following Python code computes the result and formats it as an 8-digit uppercase hex string: @ [Code in 2 lines]

Figure 1: An overview of RAIN-Merging. In the case, the LRM arrives at the correct solution but ignores the
required format and specific code. To preserve the reasoning structure, we perform training-free merging by
combining a task vector projected onto the null space of the thinking format with instruction-attention guided
coefficients. The merged model remains correct while satisfying the specified constraints. See Sec. 3 for details.

We begin with a parameter-space analysis of the task vectors from the LRM and the Instruction-tuned
Model (ITM) relative to their shared base. We find that their principal subspaces are nearly orthogonal
across key modules, which indicates minimal interference between the two capabilities and suggests
that merging is a promising lightweight way to enhance the LRM’s instruction following (Ortiz-
Jiménez et al., 2023). However, direct merging carries risks. LRMs and ITMs differ fundamentally in
output structure: the former explicitly separates “thinking” and “response” with special markers (e.g.,
Rl-style <think>...</think>), whereas the latter provides only a final answer. Traditional data-
free merging (Ilharco et al., 2023; Goddard et al., 2024) prunes or scales the task vector purely from
parameter-internal statistics to balance domain performance, thereby ignoring output-distribution
mismatches and disrupting the LRM’s structured reasoning. Recent work (Nobari et al., 2025; Yao
et al., 2025; Chopra et al., 2025) has tried to guide merging with forward activations using small
calibration sets. Although this introduces data-driven constraints, the lack of an explicit notion of
the output mismatch between the two types still makes it difficult to achieve a stable and effective
balance between preserving reasoning structure and improving instruction following.

To this end, we propose a two-stage merging strategy that enhances instruction-following capability
without sacrificing the thinking format and reasoning performance of the LRM. First, leveraging
task-vector orthogonality between the LRM and ITM, we preserve reasoning ability and enforce
thinking-format invariance by projecting the I'TM task vector into the null space derived from forward
features at thinking tokens on a small reasoning-calibration set. This keeps the merged model’s
reasoning representations aligned with the original LRM and retains structured outputs. Second, while
keeping these invariances fixed, we aim to enhance instruction-following performance as much as
possible. We improve instruction adherence by estimating per-module importance based on attention
outputs over instruction-related spans from a small set of instruction examples. Attention-guided
coefficients are then assigned to strengthen instruction-relevant behaviors.We refer to the overall
two-stage approach as Reasoning-Aware Instruction-guided Null-space projection Merging (RAIN-
Merging) in Fig. 1, which effectively synergizes reasoning and instruction-following performance.

We conduct a systematic evaluation of our proposed method on four instruction-following benchmarks
and on nine evaluation benchmarks that cover mathematics, code, STEM, and creative-writing
capabilities. The results show that RAIN-Merging not only substantially improves the LRM’s
instruction-following ability but also maintains reasoning and general capability. Moreover, our
method exhibits consistent stability across different model sizes and architectures, and demonstrates
enhanced performance in agentic scenarios.

Under review as a conference paper at ICLR 2026

2 PRELIMINARY AND OBSERVATIONS

Task Vector. A task vector (Ilharco et al., 2023) characterizes the parameter delta from a base model
to a task-specific one. A straightforward way to combine capabilities is task arithmetic, which
linearly adds such deltas to a base model to obtain a multi-skilled model. This simple approach can
work when tasks are compatible. However, for distinct abilities such as reasoning and instruction-
following that impose different output structures (Yadav et al., 2023), naive linear addition may cause
capability interference and disrupt the representations essential to each domain.

Orthogonality between Reason & Instruction Task Vectors. To
examine whether capability interference arises when merging I'TM
07 into LRM 6, we take the shared base model 0y as reference
and define the LRM task vector Agr = 0 — 0p and the ITM task 0.08
vector Ay = 07 — 6. We perform singular value decomposition
(SVD) within the main forward modules, e.g. attention and FFN,
for these two task vectors and evaluate the principal subspace
cosine similarity of their principal subspaces. As shown in Fig. 2,
Al, A2, the two are nearly orthogonal since their similarities 1 0.02
are all < 0.1. Prior studies (Ortiz-Jiménez et al., 2023) indicate
that this phenomenon reflects a low degree of coupling between
reasoning ability and instruction following in parameter space,
which suggests that lightweight task-vector merging strategies
can enhance instruction following while preserving the original

reasoning performance. More details are in Appendix E. 1. Figure 2: Principal subspace co-
sine similarity between LRM and

Risks in Thinking Format During Merging. However, orthog- ITM task vectors for each layer and
onality in parameter space is not sufficient to guarantee that the submodule. The similarities are con-
merged model will retain the LRM’s structured output behavior, ~sistently low (< 0.1).

since this behavior is determined by downstream propagation and forward features (see Appendix E.1
for proof). In particular, the LRM relies on special tokens such as <think> and </think> to
explicitly separate the reasoning segment from the answer segment, and these tokens are crucial in
instruction-following tasks. For example, if the model fails to generate the terminator correctly after
merging (as Fig. 3), it may conflate the reasoning content with the instruction-compliant response,
which can violate constraints such as limits on output length. Therefore, although task-vector orthog-
onality suggests minimal capability interference, we still need to explicitly constrain the distributional
shift of the output structure during merging to preserve the integrity of the reasoning process.

Layers

Q K V O Gate Up Down
Modules

3 OUR RAIN-MERGING METHOD

Notation. For notational convenience in later derivations, we flatten model submodules by layer
and head with index k = 1,..., K as § = @1, W* := [vec(W!)T, ... vec(WX)T]T, where
€D denotes the block-wise concatenation that assembles disjoint parameter blocks into a single
coordinate vector. More details of the forward mechanism in Transformer (Vaswani et al., 2017) are
in Appendix G.1. Let ¥ denote the forward input vector at the k-th submodule and the ¢-th sampled
token position. The corresponding linear map of this submodule admits the Kronecker-vectorization
form (Koning et al., 1991) with Kronecker product ®, identity matrix diag(1), and vectorization
operator vec(-), as WXhF = ((h¥)T @ diag(1)) vec(W*). Stacking all sampled positions ¢ row-wise
yields the forward feature operator <I>’{C 1 and outputs for the k-th submodule:

of,y = [(WH)T @ diag(1),..., (h5)T @ diag(1)], W*R* = &, vec(WF). (1)

Optimization Objective. To preserve the original reasoning performance of the LRM as much
as possible, we take the reasoning model parameters €z as the anchor. We transform the ITM
task vector A through a merging function f to obtain A = f(A;), and form the merged model
0 = 0r + A. Our goal is to enhance instruction following without damaging the LRM’s thinking
format and reasoning performance. We therefore formulate a constrained optimization problem:
over the instruction data distribution Dy, maximize the surrogate objective for instruction following,
T1(0) £ Eunp; Eyory(.|2) [IF (z,)], while, over the reasoning data distribution Dg, constraining
the deviation between the model’s output distribution within the segment of thinking special tokens

Under review as a conference paper at ICLR 2026

Q¢hink and the reference policy of the original reasoning model 6. This constraint is quantified by
aggregating the per-step KL divergence within the segment:

‘Cthink(e) £ EINDR Eywﬂ'gR(-\z) Z KL(T‘—Q(| €, y<t) H 7-‘—191?,(' | x7y<t>) . (2)
L€ Quink ()

The overall objective with tolerance ¢ is then:

mA’iX ._71(93 + A) s.t. ﬁlhink(QR + A) < 4. 3)

Noting that J7 is a surrogate objective for instruction following, referring to a class of functions
IF that evaluate instruction alignment. In later we instantiate it with metrics based on instruction-
attention alignment or leakage. In addition, motivated by the orthogonality between the LRM and
ITM task vectors discussed earlier, we constrain only the conditional distribution in the segment of
thinking special tokens and do not restrict the content generated in the other thinking or response
segments, which preserves flexibility for improving instruction-following performance.

Reasoning-aware Null-space Projection (Stage 1). To satisfy the KL constraint on the segment
of thinking special tokens, we try to seek a parameter subspace that preserves the thinking format.
Intuitively, if we view the forward inputs at the thinking positions as a “measurement” of the reasoning
style, then any parameter perturbation that is unresponsive under this measurement will not change
the model’s thinking pattern. This idea corresponds to projecting the perturbation onto the null
space (Wang et al., 2021) of the forward feature operator ® = blkdiag (<I>1, 0K) (blkdiag
denotes the block-diagonal matrix), namely N (®) = {v : Pv = 0}, as illustrated in Fig. 3 (a). Such
a null space projection keeps the token-level forward features at the thinking positions invariant.
Formally, for each submodule k, we construct the least-squares orthogonal projector P () using the
forward feature operator @glhmk built from thinking special token indexs inx to form the null space:

Quink Quink = Cthink Qthink ?

3 . T T + ’
PL((I)k) = dlag(l) - (P’;Z[hink ((I)k @) o @

where (-)* denotes Moore-Penrose pseudoinverse. And then project the ITM submodule task vector
A¥ by submodule-wise and stack them to form the overall projected task vector to satisfy the null
space constraint:

K
veo(AFF) = PA(@h,,,) vee(A) = Bo,, veo(AF) = 0, where AF = @D AFE. (5)
k=1
This projection keeps the merged model’s intermediate representations and even the final logits at the
thinking special tokens close to those of the anchor model. To verify its effectiveness in preserving
the thinking format, we analyze a second-order expansion of the softmax KL divergence and show

that the task vector after null-space projection satisfies the KL constraint on the special token output
distribution in Eq. (2). This yields the following Prop. 1 (proof is in Appendix E.2):

Proposition 1. Let the logits of sample x at thinking special tokens t € Quini(x) be zg(x,t), and let
mo(+ | x,y<t) = softmax(zg(x,t)). By a second-order approximation of the softmax—KL divergence
with a uniform upper bound, for any perturbation u,

KL (softmax(z + u) || softmax(z)) < & [|ull3 + O(/[ull3) - (6)

Assuming the model’s intermediate representations are Lipschitz continuous and bounded, there exist
constants C1,Co > 0 such that for u(z,t) = zp,4+a(x,t) — 29, (x, 1), we have:

Ju(z, t)]|2 < C1 || @ vec(A)]|, + Ca |A]3. 7
Substituting the projected vector A} = @le AIL’k and the condition ® vec (Af) = 0 yields:

LoOr + AF) < LE, [l 0[3] + O (Enillue.03) = O(JAF2) ~ 0. @®)

Therefore, null-space projection in Eq. (5) approximately removes the thinking format constraint in
the original objective and reduces the original optimization objective Eq. (3) to:

max Ji(0r + AT), where At = f(AT).)

Under review as a conference paper at ICLR 2026

(@) Reasoning-aware Null-space Projection (Stage 1) NS Instruction-attention Guided Merging Coefficients (Stage 2))
Thinking Format KL Query: A <100 words post about sleep Instruction Calibration Attention Output with Mask Instruction-attention Score
= Al Output: <think> Write a blog about sleep, ﬂ S Proxy -
= Ak Okay, so the user has asked|| |into two sections. . o = P
S T Missing Thinking End Token! |[| <think>......</think>
Al The Benefits of Sleeping: Section 1: Why You Sleep
®* Null-space Exceed the length limit! We often think of sleep /
Projection —),\’(d”") Section 2: Practical Tips
Input Query: A <100 words post about sieep || KIOWING Why sleep...... | .
” AL Output: <think> Z () Instruction Index |
5 A Thinking Format KL Okay, so the user has asked | [~
s} \ M </think> | § Related Index Quadnatic
Linink Satisfy length limit! Unrelated Index

\ C J

Figure 3: Two stages of our RAIN-Merging pipeline. (a) For each submodule, the ITM task vector is projected
onto the null space preventing shifts in thinking format. (b) Given the instruction calibration set, we compute the
instruction-attention score from attention outputs to obtain merging coefficients.

With the thinking-format constraint relaxed, we next focus on strengthening the task vector’s effect
on instruction following.

Instruction-attention Guided Merging Coefficients (Stage 2). To enhance the performance gain of
the ITM task vector during merging, we seek a suitable gradient-free surrogate objective to instantiate
Jr. Prior studies (Guardieiro et al., 2025) suggest that failures in instruction following often stem
from insufficient conditioning on the instruction span during decoding: attention does not sufficiently
focus on instruction-relevant tokens and instead leaks to unrelated regions. A simple remedy is to
amplify attention outputs on the instruction span at decoding time, which can remarkably improve
instruction following. This approach, however, requires pre-identifying the instruction span, and
excessive amplification may cause the model to ignore other necessary content. Motivated by this, we
hypothesize that different layers and heads exhibit heterogeneous response behavior to instructions.

Consequently, on the null-space—projected task vector A;"k, we introduce per-module scaling

coefficients o = {a*} € Rf and reparameterize the merged model as 6(a) = 0 + @szl ak A Il ok
to instantiate merging function f. Given that attention outputs are directly coupled to the self-attention

mechanism, we first focus on the merging coefficients of these submodules, as & = { ozk} c RE,

where k denotes the self-attention submodule index. Our central intuition is that an ideal merge should
yield stronger attention responses on instruction-relevant spans (high alignment) while maintaining
low attention activation on instruction-irrelevant content (low leakage). To translate this intuition
into measurable quantities, we formalize the model’s forward computation as follows and in Fig. 3

(b). Let Att" (x, &)|t, 7] denote the attention output of the merged model with & at head & from token
position ¢ to 7. For an instruction-following sample = ~ Dy, we define the per-sample normalized
alignment a and leakage u metrics for head k:

te;w;% IIR() = tezz(ac)re;(||u< T

alignment leakage

where Z(x) C {1,...,T} represents the index set of instruction tokens that encodes the task
description, formatting rules, constraints, and any examples in the query span. Likewise, R(x) denotes
the set of output tokens whose content is directly constrained by the instruction in the response span,
and U (z) the set of output tokens unrelated to the instruction. Taking expectations over instruction-

following samples Dy and heads k yields averaged alignment (@) = >z E,up,[a”(z,&)] and

averaged leakage (&) = Y ; E,op,[uf(z,&)]. We seek merging coefficients that achieve high
alignment and low leakage. Accordingly, we combine the two metrics into a single instruction-
attention score J; ProXy with trade-off hyperparameter p > 0, instantiating the surrogate objective in
the reduced problem Eq. (9) then yields:

max J;" Y (&) := a(@) — pu(a). (11)

Quadratic Approximation of Instruction-attention Score. Although this objective is differentiable
and could be optimized by gradient descent, we adopt a forward-pass approximation to reduce
computation. Initialize at the directly merged point after projection, ¢) = 1. Perform a second-

Under review as a conference paper at ICLR 2026

order Taylor expansion of J; " (&) around dg):
I7P(@) = T7 () + Vadr™ () (6 = d) + 3 (@ = d)" H (6 = d)), (12)

where H = V27, (4(p)) is the Hessian. Writing g = VaJ; ™ (& (o)) and ignoring the constant
term in Eq. (11), we obtain the quadratic surrogate:

jﬁuad(&) =g (a i 04(0)) 1 (OL _ 04(0)) H (d — d(o)) (13)

@ For first-order term g, if we restrict & to small deviations near ¢ () and adopt a linear approximation
of alignment and leakage on merging coefficients, the per-head gradient can be estimated as:

P 0@ da@) ou(@) b - o
g T) Per —p Dak ~ Epnp; [a” (2, G(0)) — pu (:c,a(o))}, (14)

@(0)

which replaces partial derivatives with the current metric values. In practice, this approximately
scales the contribution of each head to instruction versus non-instruction attention mass, consistent
with the intuition behind attention amplification.

@ For second-order term H, to avoid the cost of computmg the Hessian for large models, we adopt

a diagonal appr0x1mat10n that limits the step size, H k= diag(1) + Egup, [u k (7, & (0))], where the
second term imposes a stronger quadratic penalty on heads with higher leakage, thereby limiting
their amplification. Substituting the approximations into the quadratic objective, dropping ¢(g) for
simplicity, and constraining & € [dy, &,]¥ to prevent scaling instability, we obtain a closed-form
solution to the convex quadratic program:

max (gTa-4aTHa) = Gk =dipg,a, () : (15)

GE[Gy,bq,] K

where H = dlag() and clipy, p](+) clips to the interval [a, b]. Thus, by a second-order expansion
with engineering approximations and using only forward attention statistics in a gradient-free manner,
we approximate the optimal merging coefficients ¢, of self-attention submodules that increase
instruction alignment while controlling attention leakage to non-instruction content. For modules
shared across attention heads, such as the feed-forward network (FFN), we set the layer-wise
coefficient to the average over heads. Aggregating the coefficients for all submodules yields the
complete instruction attention guided merging coefficients o, = {a*}.

Combined to Our Two-stage Merging Method. We chain “Reasoning-aware Null-space Projection
(Stage 1)” with “Instruction-attention Guided Merging Coefficients (Stage 2)” to propose a fully
gradient-free merging pipeline, termed Reasoning-Aware Instruction-attention guided Null-space
projection Merging (RAIN-Merging) as Fig. 3. Our method addresses the challenge in the original
optimization problem of Eq. (3), improving instruction following while preserving the reasoning
structure after merging. The final merged model is:

K
0, =0r+XPakart, (16)
k=1

where A is a global scaling coefficient that controls the merging strength. The entire procedure
only relies on forward-feature extraction and attention statistics, and does not require gradient-based
updates. RAIN-Merging offers a low-cost, interpretable path to strengthen instruction following in
LRMs, filling the gap left by costly SFT.

Implementation details. To balance compute and storage efficiency, we merge only the core modules
that are most sensitive to attention outputs, namely the Q, K, V, O, and FFN parameters. In Stage 1,
we sample 150 examples from the Mixture-of-Thoughts (Face, 2025) dataset distilled from DeepSeek-
R1 (Guo et al., 2025) from to form the reasoning calibration set. In Stage 2, we an instruction
calibration set obtained by distilling DeepSeek-R1 on IFEval (Zhou et al., 2023b), followed by
LLM-as-Judge filtering and manual screening, resulting a total of 365 samples. More details of
implementation, complete algorithm pseudocode, calibration set construction, and ablation studies
are provided in Appendix G, F, H, and J.3.

Under review as a conference paper at ICLR 2026

Table 1: Comprehensive comparison of instruction following and reasoning & general capabilities. We merge
Qwen2.5-7B-Instruct (ITM) into DeepSeek-R1-Distill-Qwen-7B (LRM) and compare our RAIN-Merging
against multiple merging methods as well as SFT trained on the same calibration data. “Avg.” denotes the
average over all subsets. “RT” reports the run-time for merging or training in minutes. The best and second-best
results are highlighted in bold and underlined, respectively.

Instruction Following Reasoning & General
Method Info Complex Arena- RT
IFEval CELLO Bench Bench Avg. Math GPQA Aider Hard-v2 Avg.
IT™ 70.43 19.15 78.49 43.63 52.92 4727 2980 3333 62.86 43.32 -
LRM 55.45 16.59 71.73 3272 4412 6475 4444 29.63 6529 51.03 -
SFT 62.48 17.11 68.58 32.15 45.08 62.07 4192 28.89 6467 4939 120.32

Data-free Merging
Task Arithmetic 60.44 1697 73.07 33.34 4596 62.57 4293 26.67 6453 49.17 0.93

SLERP 58.96 17.56 72.18 3493 4595 6422 4293 3185 6529 51.07 1.12
Karcher 62.11 17.99 73.16 34.06 46.83 63.82 4899 30.77 66.13 52.33 1.20
TIES 58.60 18.48 7391 3440 46.35 64.85 4646 3259 6347 51.84 1.18
DARE-TIES 60.81 17.88 73.33 3349 46.38 65.46 4798 29.63 64.17 51.80 2.21
Data-dependent Merging
ACM-TIES 59.33 16.45 72.44 33.75 4550 6592 4596 3259 62.00 51.80 12.45
LEWIS-TIES 60.44 17.41 72.67 3440 46.23 64.57 4899 31.11 6480 52.37 16.60
AIM-TIES 62.78 17.93 73.11 3428 47.02 6426 4949 3333 63.64 52.68 18.51

RAIN-Merging 63.22 19.03 74.53 35.66 48.11 68.75 5455 3333 6573 55.59 20.96

4 EXPERIMENTS

In this section, we empirically investigate three research questions:

* RQ1 (Effectiveness and Efficiency). Compared with baseline methods, can RAIN-Merging
improve instruction-following while maintaining reasoning capabilities, maintaining the computa-
tional and memory efficiency characteristic of gradient-free approaches? (Tab. 1 and Fig. 4)

* RQ2 (Scalability). How well does RAIN-Merging scale across models of varying sizes and
architectures, and does it perform effectively in interactive agentic scenarios? (Tab. 2, 3)

* RQ3 (Ablation). What roles do the two stages of RAIN-Merging play? Specifically, does Stage 1
preserve the format of thinking segments and the output distribution, and does Stage 2 enhance
instruction-attention scores? (Tab. 4 and Fig. 5, Fig. 6)

4.1 EXPERIMENTAL SETUP

We begin with a brief overview of the benchmarks, models, and baselines used in our experiments.
Additional details on experimental settings, benchmarks and evaluation metrics, and hyperparameters
are provided in Appendix I.

Benchmarks. To comprehensively assess instruction following, we use four mainstream bench-
marks: IFEval (Zhou et al., 2023b), CELLO (He et al., 2024), InfoBench (Qin et al., 2024), and
ComplexBench (Wen et al., 2024). To comprehensively evaluate reasoning and general capabili-
ties, we use nine benchmarks: Mathematical reasoning is evaluated by aggregating results from six
benchmarks, as Math. We also measure performance on code editing (Aider (Aider, 2024)), STEM
(GPQA (Rein et al., 2024)), and creative writing (Arena-Hard-v2 (Li et al., 2024)) to reflect general
and reasoning capabilities. For agentic scenarios, we use ALFWorld (Shridhar et al., 2021) and
WebShop (Yao et al., 2022), two realistic multi-turn interactive tasks, to evaluate how well the model
integrates reasoning and instruction following to solve complex problems.

Models. We evaluate RAIN-Merging on models of different sizes and architectures: DeepSeek-R1-
Distill-Qwen-1.5B/7B/14B (Guo et al., 2025) (LRM) and Qwen2.5-1.5B/7B'/14B-Instruct (Yang
et al., 2025) (ITM), as well as the Llama family (Dubey et al., 2024) using DeepSeek-R 1-Distill-
Llama-8B (LRM), its instruction-tuned counterpart Llama-3.1-8B-Instruct (ITM).

! Although DeepSeek-R1-Distill-Qwen-1.5B/7B are trained from Qwen2.5-Math-1.5B/7B (Yang et al.,
2024a), we find that Qwen2.5-Math-1.5B/7B-Instruct do not outperform the distilled LRMs in instruction
following. We therefore select the stronger instruction followers, Qwen2.5-1.5B/7B-Instruct, as ITMs.

Under review as a conference paper at ICLR 2026

Table 2: Merging performance and gains of RAIN-Merging across model three scales and two architectures. We
merge the corresponding ITM into the LRM with base models: Qwen2.5-1.5B, Llama-3.1-8B, and Qwen2.5-14B.
“Avg.” denotes the average over all subsets. For each scale, the subsequent “(gain)” row reports the relative
improvement of our method over the LRM, highlighted in green.

Instruction Following Reasoning & General
Model IFEval CELLO o Complex Math GPQA Aid Arena-
va Bench Bench Ve al 1€ Hard-v2 Ve

Qwen2.5-1.5B-Instruct 3678 1904 6476 2783 37.10 31.77 25.76 16.30 3845 2807
DeepSeek-R1-Distill-Qwen-1.5B 3900 1603 5529 2154 3297 41.62 29.29 14.07 3973 3118
Qwen2.5-1.5B-RAIN-Merging 4159 1651 5818 23.62 3497 45.87 33.33 14.81 4093 3374
(gain) +6.64% +2.98% +523% +9.63% +6.09% +1021% +13.79% +526% +3.02% +8.20%
Llama-3.1-8B-Instruct 68.58 2721 7867 3847 5323 35.59 2525 34.07 7223 41.79
DeepSeek-R 1-Distill-Llama-8B 5841 1778 7333 3838 4697 60.21 38.38 27.41 7193 49.48
Llama-3.1-8B-RAIN-Merging 6377 1884 7738 3893 49.73 61.95 43.94 30.37 7707 5333
(gain) 49.18% +5.99% +5.52% +1.42% +586% +2.89% +1447% +10.81% +7.15% +7.78%
Qwen2.5-14B-Instruct 7985 20.13 8338 4419 56.89 52.73 36.87 37.04 7440 5029
DeepSeek-R 1-Distill-Qwen-14B 7135 1871 8133 4068 53.02 72.31 57.07 3333 80.67 60.85
Qwen2.5-14B-RAIN-Merging 7671 1957 8413 4463 5626 74.58 57.58 40.00 8625 64.60
(gain) +751% +4.58% +344% +9.69% +6.11% +3.13% +0.88% +20.00% +6.92% +6.17%

Baselines. We include several data-free, task-vector based merging methods: Task Arithmetic (I1-
harco et al., 2023), SLERP (Biship, 2007; Goddard et al., 2024), Karcher (Nielsen & Bhatia, 2013;
Goddard et al., 2024), TIES (Yadav et al., 2023), and DARE (Yu et al., 2024). We also compare with
data-dependent, activation-based merging approaches that leverage small calibration sets, including
ACM (Yao et al., 2025), LEWIS (Chopra et al., 2025), and AIM (Nobari et al., 2025). To strengthen
baseline performance, we apply TIES on top of other merging baselines as in previous work (Wu
et al., 2025). In addition, we report a training baseline using SFT on the same calibration data.

4.2 RESULTS

Performance Comparison with Baseline Methods. (RQ1) As shown in Tab. 1, RAIN-Merging
achieves overall gains across both instruction-following and reasoning & general capability evalua-
tions, outperforming all merging baselines. While Task Arithmetic and SFT can improve instruction
following to some extent, they typically do so at the cost of reasoning and general capabilities. In
contrast, our method consistently surpasses all baselines on instruction-following, mathematical
reasoning, and general-capability benchmarks. Our merged LRM trails the ITM slightly on instruction
following, indicating room for further improvement. Interstingly, the merged model exhibits stable
gains in reasoning and general ability. We hypothesize that stronger instruction adherence improves
the quality of the model’s internal chain of thought, which yields better reasoning performance.
Overall, RAIN-Merging substantially enhances instruction following without sacrificing the LRM’s
reasoning and general capabilities.

Run-time and Memory Analysis. (RQ1) Our method achieves a favorable efficiency trade-off. Its
runtime, though slightly above activation-based merging baselines due to null-space computation,
is far below SFT (RT in Tab. 1). Similarly, while storing hidden features increases memory use
compared to other merging methods, its footprint remains much smaller than SFT’s (Fig. 4). This
demonstrates our approach as a highly practical, training-free alternative for enhancing LRMs.

Performance on Models of Different Sizes and Architectures. (RQ2) To evaluate the scalability of
our method across model sizes and architectures, we conduct experiments on several configurations,
including the Qwen2.5 family distilled from DeepSeek-R1 at 1.5B and 14B parameters, and the 8B
model built on the Llama 3.1 architecture. As reported in Tab. 2, our method consistently enhances
instruction-following and reasoning performance, achieving average improvements from 5.86% to
8.20% on LRMs. These results confirm that RAIN-Merging robustly strengthens both instruction
adherence and complex reasoning across diverse model sizes and architectures.

Performance in Agentic Scenarios. (RQ2) To further assess the practical benefits of improved
instruction following, we evaluate the merged model on two representative agentic scenarios, Web-
Shop and AlfWorld. As shown in Tab. 3, the merged model achieves better performance than the
original LRM and ITM in these scenarios, indicating that enhanced instruction understanding and
reasoning effectively support multi-turn interaction and complex decision making. These results also
demonstrate that our gradient-free approach is effective for increasing the real-world utility of LRMs.

Under review as a conference paper at ICLR 2026

Memory (GB)

100 1

112.6

167 168 182 22.1

Table 3: Performance of
RAIN-Merging in agent set-
tings. We merge Qwen2.5-7B-
Instruct (ITM) into DeepSeek-

Table 4: Performance of combining
Stage 1 and Stage 2 of our method,
under the same setup as Tab. 1. "I
Avg." and "R Avg." denote the average

0 < o N o & R1-Distill-Qwen-7B (LRM). performance on instruction-following
PO P\ N A i
& & & N and reasoning & general benchmarks.
vE TS Model ALFWorld WebShop
Figure 4: GPU memory usage com- IT™ 17.50 10.45 Method TAvg. RAvg
parison between different methods un- Iﬁil;/llxl Merei %g-gg %g?é Eg}g-merg@ng w/o Stage 2 jg»ﬁ% gg.gg
der the same configuration as Tab. 1. i : Versing : :
= Task Arithmetic BB RAIN-Merging e N - - -
. S 354 LRM = - Task Arithmetic —a = RAIN-Merging
orzs] 01224 S 6.4% 2 “, /3
é‘, 6 .g 3.0 = \‘ 3
0100 Z 525 ! 1
£ 0075 2, g " A —- i~ /i
S L 2.0 \ 4 S
« = E 1 / N /. 2\ /A T\ /“K_‘
0.050 S £ s .S SN2 e g /; e
£ SR/ Yol
0.025 g Z10 &4 I W
0.0065 | & 0.0% = =
0.000 mthods 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 5: Luink in Eq. (2) (left) on the
reasoning calibration validation set, and the
proportion of generations missing the clos-
ing </think> token (right) on IFEval un-
der the same configuration as Tab. 1.

Figure 6: Layer-wise instruction attention score (alignment —
leakage). Per-layer scores on IFEval instruction examples; higher
is better. We compare the unmerged LRM, Task Arithmetic, and
RAIN-Merging when merging Qwen2.5-7B-Instruct (ITM) into
DeepSeek-R1-Distill-Qwen-7B (LRM).

Ablation Study of Stage 1 and Stage 2. (RQ3) We investigate the contribution of the two components
in RAIN-Merging, shown in Tab. 4. When only Stage 1 is applied without Stage 2, the merged
model retains reasoning and general capabilities while achieving competitive instruction-following
performance. Incorporating Stage 2 further boosts instruction-following performance, as reflected
by the score increase from 46.58 to 48.11. These results demonstrate that both stages play critical
and complementary roles. Together, they form our gradient-free pipeline that enhances instruction-
following ability without compromising reasoning performance of LRMs.

Effectiveness of Null-space Projection. (RQ3) To assess how our null-space projection in Stage 1
preserves thinking formats, we evaluate its impact on thinking special token distributions and resulting
generation outputs. We measure the KL divergence near thinking tokens as in Eq. (2) and the rate of
missing </think> tokens. Results Fig. 5 show that Task Arithmetic substantially alters the distribution
(Lthink = 0.1224) and results in 6.4% missing </think> tokens, violating the output format. Our
approach, in contrast, only induces minimal change (L¢ninx = 0.0065) and ensures no missing tokens
(0.0%). These findings indicate that null-space projection successfully protects thinking formats.

Effectiveness of Merging Coefficients. (RQ3) To validate the merging coefficients, we compare the
Instruction-Attention Score in Eq. (11) across layers before and after merging under different methods.
As shown in Fig. 6, instruction-attention guided coefficients in Stage 2 enable RAIN-Merging to
consistently outperform both the LRM and Task Arithmetic, exhibiting a higher alignment and lower
leakage. This finding suggests that our weighted reparameterization of merging submodules enhances
activation along instruction-aware pathways while slightly suppressing leakage, which improves
instruction following without altering the original reasoning pattern.

5 CONCLUSION

We propose RAIN-Merging, a gradient-free method to enhance instruction following in LRMs while
preserving their structured reasoning outputs. By projecting the instruction task vector onto the null
space of the thinking format and scaling it by instruction-attention guided coefficients, RAIN-Merging
achieves a balance between instruction following and reasoning structure preservation. The method
is evaluated on instruction-following, reasoning & general capability, agentic benchmarks, showing
that RAIN-Merging not only substantially improves the LRM’s instruction-following ability but also
brings gains in reasoning and general capability across several settings.

Under review as a conference paper at ICLR 2026

REFERENCES
Aider. ol tops aider’s new polyglot leaderboard, 2024.

Mislav Balunovi¢, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovié, and Martin Vechev. Matharena:
Evaluating 1lms on uncontaminated math competitions. arXiv preprint arXiv:2505.23281, 2025.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with bregman
divergences. Journal of Machine Learning Research (JMLR), 2005.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido
Galil, Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran
Zilberstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald
Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen,
Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia,
Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek,
Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shubham
Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
Bakhturina, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus Kliegl, Rabeeh
Karimi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Brandon Norick, Joseph
Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary, Abhinav Khattar, Deepak
Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha,
Sahil Jain, Christine Harvey, Elad Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, 1zzy
Putterman, George Lam, Arun Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang,
Anna Warno, Abhilash Somasamudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar
Mor, Omer Ullman Argov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Monika Katariya,
Marco Rovinelli, Viji Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam,
Smita Ithape, Karthik Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit
Daw, Denys Fridman, Erick Galinkin, Michael Evans, Katherine Luna, Leon Derczynski, Nikki
Pope, Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika
Katariya, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii
Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro,
Jonah Alben, Yonatan Geifman, Eric Chung, and Chris Alexiuk. Llama-nemotron: Efficient
reasoning models, 2025.

Christopher M Biship. Pattern recognition and machine learning (information science and statistics).

Springer, 2007.

Dankmar Bohning. Multinomial logistic regression algorithm. Annals of the institute of Statistical
Mathematics (AISM), 1992.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Lang Cao, Chao Peng, Renhong Chen, Wu Ning, Yingtian Zou, and Yitong Li. Step guided reasoning:
Improving mathematical reasoning using guidance generation and step reasoning. arXiv preprint
arXiv:2410.19817, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Zina Chkirbene, Ridha Hamila, Ala Gouissem, and Unal Devrim. Large language models (1lm) in
industry: A survey of applications, challenges, and trends. In IEEE International Conference on
Smart Communities: Improving Quality of Life using Al, Robotics and IoT (HONET), 2024.

Hetarth Chopra, Vidhi Rambhia, and Vikram Adve. Lewis (layer wise sparsity)—a training free guided
model merging approach. arXiv preprint arXiv:2503.03874, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

10

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407, 2024.

Hugging Face. Open rl: A fully open reproduction of deepseek-r1, 2025.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. In
International Conference on Learning Representations (ICLR), 2025.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In Conference on Artificial Intelligence and Statistics (AISTATS), 2020.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Tingchen Fu, Jiawei Gu, Yafu Li, Xiaoye Qu, and Yu Cheng. Scaling reasoning, losing control:
Evaluating instruction following in large reasoning models. arXiv preprint arXiv:2505.14810,
2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: program-aided language models. In International Conference on Machine
Learning (ICML), 2023.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Vitoria Guardieiro, Adam Stein, Avishree Khare, and Eric Wong. Instruction following by boosting
attention of large language models. arXiv preprint arXiv:2506.13734, 2025.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

DeepSeek-Al: Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,

11

Under review as a conference paper at ICLR 2026

Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang,
and Yanghua Xiao. Can large language models understand real-world complex instructions? In
Association for the Advancement of Artificial Intelligence (AAAI), 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In International Conference on Learning
Representations (ICLR), 2023.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ruud H Koning, Heinz Neudecker, and Tom Wansbeek. Block kronecker products and the vecb
operator. Linear Algebra and Its Applications, 1991.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with
language models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939, 2024.

Xiaomin Li, Zhou Yu, Zhiwei Zhang, Xupeng Chen, Ziji Zhang, Yingying Zhuang, Narayanan
Sadagopan, and Anurag Beniwal. When thinking fails: The pitfalls of reasoning for instruction-
following in llms. arXiv preprint arXiv:2505.11423, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International
Conference on Learning Representations (ICLR), 2024.

Anton Lozhkov, Hynek Kydlicek, Loubna Ben Allal, Guilherme Penedo, Edward Beeching, Quentin
Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von Werra. Openrl-math-220k, 2025.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2013.
Frank Nielsen and Rajendra Bhatia. Matrix information geometry. Springer, 2013.

Amin Heyrani Nobari, Kaveh Alimohammadi, Ali ArjomandBigdeli, Akash Srivastava, Faez Ahmed,
and Navid Azizan. Activation-informed merging of large language models. arXiv preprint
arXiv:2502.02421, 2025.

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Advances
in Neural Information Processing Systems (NeurlPS), 2022.

12

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Anton Lozhkov, Hynek Kydlicek, Loubna Ben Allal, Edward Beeching,
Agustin Piqueres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro
von Werra. Codeforces cots, 2025.

Yunjia Qi, Hao Peng, Xiaozhi Wang, Amy Xin, Youfeng Liu, Bin Xu, Lei Hou, and Juanzi Li.
Agentif: Benchmarking instruction following of large language models in agentic scenarios. arXiv
preprint arXiv:2505.16944, 2025.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
Wa, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
large language models. In Proceedings of the Association for Computational Linguistics (ACL
Findings), 2024.

Yulei Qin, Gang Li, Zongyi Li, Zihan Xu, Yuchen Shi, Zhekai Lin, Xiao Cui, Ke Li, and Xing
Sun. Incentivizing reasoning for advanced instruction-following of large language models. arXiv
preprint arXiv:2506.01413, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpga: A graduate-level google-proof q&a benchmark. In
Conference on Language Modeling (COLM), 2024.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations (ICLR), 2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. R1’s razor: Why online reinforcement learning
forgets less. arXiv preprint arXiv:2509.04259, 2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
International Conference on Learning Representations (ICLR), 2021.

Pengwei Tang, Yong Liu, Dongjie Zhang, Xing Wu, and Debing Zhang. Lora-null: Low-rank
adaptation via null space for large language models. arXiv preprint arXiv:2503.02659, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurlPS), 2017.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 2008.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE Conference on Computer Vision and
FPattern Recognition (CVPR), 2021.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations (ICLR), 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
Wendy Gao, Jiaxing Xu, Yiming Liu, Jie Tang, Hongning Wang, and Minlie Huang. Benchmarking
complex instruction-following with multiple constraints composition. In Advances in Neural
Information Processing Systems (NeurlPS), 2024.

13

Under review as a conference paper at ICLR 2026

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International Conference on Machine Learning (ICML),
2022.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short Ilm reasoning with model
merging. arXiv preprint arXiv:2503.20641, 2025.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A. Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024a.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024b.

Qwen: An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In Advances in Neural Information
Processing Systems (NeurlIPS), 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In Advances in Neural
Information Processing Systems (NeurIPS), 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Yuxuan Yao, Shuqi Liu, Zehua Liu, Qintong Li, Mingyang Liu, Xiongwei Han, Zhijiang Guo, Han
Wu, and Lingi Song. Activation-guided consensus merging for large language models. arXiv
preprint arXiv:2505.14009, 2025.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In International Conference on
Machine Learning (ICML), 2024.

Haobo Zhang and Jiayu Zhou. Unraveling lora interference: Orthogonal subspaces for robust model
merging. In Proceedings of the Association for Computational Linguistics (ACL), 2025.

Huaqin Zhao, Zhengliang Liu, Zihao Wu, Yiwei Li, Tianze Yang, Peng Shu, Shaochen Xu, Haixing
Dai, Lin Zhao, Gengchen Mai, et al. Revolutionizing finance with llms: An overview of applications
and insights. arXiv preprint arXiv:2401.11641, 2024.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting enables complex
reasoning in large language models. In International Conference on Learning Representations
(ICLR), 2023a.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023b.

14

Under review as a conference paper at ICLR 2026

APPENDIX

A ETHICS STATEMENT

This research adheres to the licenses and applicable laws governing upstream open-source models
and datasets. RAIN-Merging is developed using publicly available weights and data that permit
derivation and redistribution.

Safety. Model merging can introduce “capability or safety drift,” such as new biases, jailbreak
risks, or shifts in hallucination patterns while improving instruction following. The merged model
may produce inaccurate, biased, or inappropriate content. It must not be used directly in high-risk
decision-making contexts such as medicine, law, or finance. Any production deployment should
include human oversight, operation logging, rate limiting, and compliance review procedures.

Dataset use. We rely only on data authorized for academic reproducibility. During data cleaning,
we make every effort to remove personally identifiable information and sensitive content. We also
disclose potential dataset biases, coverage gaps, and risks of benchmark contamination.

Societal impact. We caution that generative models may exacerbate information asymmetries,
reinforce stereotypes, or be applied to produce misleading content. We firmly oppose misuse and will
work with the community to address any identified negative impacts.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the following resources and documentation:
all algorithm implementations and experiment scripts will be released anonymously with the sup-
plementary materials, accompanied by documentation of key functions and the project directory
structure. The calibration datasets used in our experiments will be made available alongside the
appendix. Public links are included for all open-source models and datasets used in this work.

C LLM USAGE STATEMENT

We used large language models (LLMs) in the following stages and disclose their roles as follows:

Writing Stage. LLMs (both closed- and open-source) were used only for copyediting and grammar
checking, including terminology normalization, syntactic polishing, and formatting. They were not
used to generate claims, collect evidence, or construct results.

Benchmark Evaluation. When a benchmark’s original paper or community practice requires a
closed-source LLLM (for example, as a judge or as a baseline), we strictly follow the prescribed
protocol and disclose the exact model versions.

Calibration Set Construction. We adopt an LLM-as-Judge procedure for automated filtering and
scoring of candidate samples as an initial pass (producing only scores or labels; generated text is not
used as a training target). A human second-pass review follows to ensure data quality and compliance.
All third-party data and models are used within their licenses, with source links and permission details
provided.

D RELATED WORK

Large Reasoning Model. Early studies show that prompting models to explicitly produce inter-
mediate steps during reasoning can substantially improve complex reasoning performance, as in
Chain-of-Thought (Wei et al., 2022) and Tree-of-Thought (Yao et al., 2023a). Building on this
insight, a new generation of LRMs has shifted toward training paradigms that directly incentivize
reasoning with reinforcement learning; for example, OpenAl’s ol series and DeepSeek-R1 report
marked advances on tasks in mathematics and code that require extended reasoning (Jaech et al.,
2024; Guo et al., 2025). These models typically generate structured “thought processes” or “thinking
formats,” yet in real applications they often exhibit tension with strict instruction following. Beyond
explicit intermediate reasoning such as CoT and ToT, subsequent work further improves reasoning

15

Under review as a conference paper at ICLR 2026

quality and stability: Self-Consistency samples multiple solution paths and uses majority voting to
increase reliability; Least-to-Most decomposes complex problems into subgoals ordered from easy to
hard; Program-of-Thoughts and PAL externalize the reasoning into executable programs, decoupling
computation from reasoning and substantially reducing arithmetic and procedural errors (Wang
et al., 2023; Zhou et al., 2023a; Chen et al., 2022; Gao et al., 2023). In the “reasoning plus acting”
paradigm, ReAct interleaves thought traces with tool interactions to mitigate hallucinations, while
Reflexion employs language-based self-reflection and memory to iteratively refine policies over
multi-turn interactions (Yao et al., 2023b; Shinn et al., 2023). In parallel, LRMs are trained with
process-level feedback and reinforcement learning to directly encourage thinking before answering:
the ol system emphasizes large-scale RL and thinking-first training and alignment strategies, and
DeepSeek-R1 shows that under weak or no supervision, pure RL (e.g., GRPO) can induce longer and
more stable chains of thought (Jaech et al., 2024; Guo et al., 2025). Moreover, process supervision
and process reward models (PRMs) provide finer-grained step-level feedback that, compared with
outcome supervision of final answers, better cultivates verifiable reasoning chains and test-time
expansion (Lightman et al., 2024). RAIN-Merging is complementary to this trajectory: instead of
retraining the LRM, we preserve the thinking format at merge time and use structured coefficients to
selectively enhance instruction responses, thereby striking a balance between fidelity to the reasoning
structure and improved instruction following.

Instruction Following. In the alignment paradigm, InstructGPT systematically improved the stability
of “following user intent” through reinforcement learning from human feedback (RLHF), and showed
that small instruction-tuned models can achieve strong human preference scores, establishing a
foundation for subsequent research on instruction following (Ouyang et al., 2022). For objective
evaluation, IFEval targets programmatically verifiable rules, for example, length limits, keywords,
formatting, to reduce subjective scoring noise and facilitate reproducibility and fair comparison (Zhou
et al., 2023b). CELLO abstracts multi-dimensional attributes from real-world complex instructions,
such as multi-step dependencies, format or quantity constraints, and semantic consistency, to charac-
terize where LLMs struggle with complex instruction understanding (He et al., 2024). InfoBench
proposes a decomposed metric that breaks a complex instruction into checkable sub-requirements, en-
abling finer-grained measurement of compliance and error sources (Qin et al., 2024). ComplexBench
emphasizes the compositional challenge of multiple simultaneous constraints, systematically testing
robustness and trade-offs when many constraints co-occur (Wen et al., 2024). Building on these
mainstream benchmarks, this work introduces an instruction-attention—oriented merging strategy:
during merging, we quantitatively constrain and amplify the model’s responsiveness to instruction-
relevant spans while maintaining the stability of its long-chain reasoning format, thereby balancing
compliance and an interpretable process.

Model Merging. Parameter-space merging offers a training-free or low-data path for integrating
capabilities. Model Soup averages weights from multiple fine-tuned checkpoints to improve out-of-
distribution robustness and overall performance (Wortsman et al., 2022). Task vectors implement
additive editing and compositionality by linear arithmetic on weight differences, enabling positive
and negative edits as well as multi-task synthesis (Ilharco et al., 2023). TIES-Merging explicitly
addresses interfering factors such as resetting parameters with negligible updates and resolving sign
conflicts, which mitigates performance degradation caused by parameter-level interference when
merging multiple models (Yadav et al., 2023). Community tools and practice are also maturing.
MergeKit consolidates and engineers diverse merging algorithms, supporting large-model merging
and recipe reproduction under resource constraints, which facilitates methodological comparison
and reproducibility (Goddard et al., 2024). Systematic surveys have begun to organize theoretical
perspectives, method taxonomies, and application boundaries for merging, providing references for
unified terminology, evaluation settings, and future research agendas (Yang et al., 2024b). Howeyver,
most existing methods focus on average multi-task performance and out-of-distribution robustness,
with limited attention to the fidelity of fine-grained functional structures such as the reasoning format,
for example, explicit thought traces and process markers. RAIN-Merging targets this gap: during
parameter fusion it introduces subspace constraints tied to the “thinking format,” and allocates merging
coefficients at the per-layer and per-head levels using instruction attention, thereby strengthening
instruction following while suppressing structural drift of the original reasoning patterns.

Null Space Projection. Constraint ideas centered on orthogonality and null spaces have been re-
peatedly validated in continual learning and knowledge editing. OGD projects gradients for new
tasks onto the orthogonal complement of the subspace of old tasks, explicitly constraining update

16

Under review as a conference paper at ICLR 2026

directions to mitigate forgetting (Farajtabar et al., 2020). GPM extracts and maintains “important
gradient subspaces” via singular value decomposition, then performs layer-wise orthogonal projec-
tion of new gradients to reduce interference across tasks (Saha et al., 2021). For LLM knowledge
editing, AlphaEdit projects edit perturbations into the null space of “preserved knowledge” and
provides theoretical guarantees on output preservation, which markedly reduces cumulative damage
in sequential edits (Fang et al., 2025). In parameter-efficient and mergeable settings, LoRA-Null
initializes or constrains the LoRA adaptation subspace using the null space of pretrained representa-
tions, alleviating forgetting and improving parallelism and mergeability with other updates (Tang
et al., 2025). For multi-task and multi-LoRA model merging, OSRM imposes orthogonalization
constraints on task-specific LORA subspaces before fine-tuning, reducing mutual interference at
merge time and improving compatibility (Zhang & Zhou, 2025). Following this line of work, we
construct a null-space projection on features tied to the “reasoning format,” and combine it with
instruction-attention—guided coefficients. The merged model thus preserves structured reasoning
outputs while improving adherence to verifiable constraints such as format, length, and enumeration.

g 0.075

S 0.050
Gate

Up 0.025
Down

0123456789100112131415161718192021222324252627
Layers

E PROOF

Modules

Figure Al: Principal subspace cosine similarity between DeepSeek-R1-Distill-Qwen-1.5B (LRM) and
Qwen2.5-1.5B-Instruct (ITM) task vectors for each layer and submodule.

Q
K 0.075
v
o 0.050
Gate
Up 0.025
Down

01 23 4 56 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Layers

Modules

Figure A2: Principal subspace cosine similarity between DeepSeek-R1-Distill-Qwen-14B (LRM) and Qwen2.5-
14B-Instruct (ITM) task vectors for each layer and submodule.

E.1 PROOF OF WHY ORTHOGONAL IN PARAMETERS # INVARIANT IN OUTPUTS

We first describe how we compute orthogonality between principal parameter subspaces. Let the
two sources be the LRM task vector or weight difference, denoted by R, and the ITM counterpart,

denoted by I. For each layer and each linear submodule TW* € R4 we take the top S singular
directions (default S = 16 in our experiments) and perform SVD:

Wg = UsSh(VE)T, Wf =UFsp(vh™ (A1)

Write U 1’% g € RS for the top-S left singular vectors of U % (similarly Vﬁ, g € R%*S), and
analogously U} g, Vg for source I.
Principal subspace cosine similarity. We focus on the /eft (output-side) principal subspaces and

define the alignment matrix
AP = (Ugs)TUF g € RS, (A2)

Letof, ... ok & € [0, 1] be the singular values of AF. They equal the cosines of the principal angles
between the two subspaces: af = cos 19?. We define the principal subspace cosine similarity as the
mean cosine of principal angles:

s
1
cos@g(UgS,UﬁS) = 5205. (A3)

i=1

Smaller values indicate stronger orthogonality between the sources at that (layer, module) cell.

17

Under review as a conference paper at ICLR 2026

Empirical observation. Across model sizes and all layers/modules in Qwen2.5-1.5B/7B/14B (Fig. 2,
Al, A2), we observe cos @’; < 0.1 (with only a few exceptions), indicating that LRM and ITM task
vectors are largely orthogonal in parameter principal directions. However, as the theory below shows,
such parameter-space orthogonality does not imply invariance in the output space (i.e., unchanged
logits on the thinking format), and thus cannot replace the null-space projection constraint used in
our method.

Why orthogonal in parameters 7 invariant in outputs. We formalize this issue as the following
Prop. 1 and give a proof with dimension argument.

Proposition 1 (Insufficiency of parameter-space orthogonality for output invariance). For each
submodule k, let U f gs V}“’ g be the S-dimensional instruction-side principal left/right subspaces and
define the admissible low-rank parameter perturbation space

K
TFE = Z/lf,s ® V}C,S = span{vec(uvT) tu € Z/{f,s, NS Vﬁs} , T = @7}’“ (A4)
k=1
Let J be the Jacobian of the logits on the protected thinking tokens Qi at the anchor 0 g, with total
parameter dimension D = dim(0) and rank r = rank(J). Then, in generic position,
dim(7; N Null(J)) < max{0, KS* —r}. (AS)

In particular, if v > KS?, one has T; N Null(J) = {0} and hence T; ¢ Null(J). Even when
r < KS?, the inclusion T; C Null(J) requires a measure-zero alignment and thus almost never
holds. Consequently, there exists a nonzero A € Ty with JA # 0, implying

Lom(Or +A) = 3AT(ETFI)A + of|A*) > 0, (A6)

where F' is the Fisher matrix of the softmax.

Proof of Prop. 1. Each module contributes an S-dimensional left subspace and an S-dimensional
right subspace; their Kronecker product yields

dim 7 = S-S = S? in generic position, (A7)
80, ignoring accidental cross-module dependencies,
K
dim7; =) dimT} = KS>. (A8)
k=1

By the rank—nullity theorem for .J € R™* P,

dimNull(J) = D —r. (A9)
For two subspaces A, B C RP, a standard upper bound on the intersection dimension states
dim(ANB) < max{0, dim.A+ dim B — D}. (A10)

Setting A = 77 and B = Null(J) gives
dim(77 N Null(J)) < max{0, KS*+ (D —r) — D} = max{0, KS* —r}. (A11)

Hence, if r > K S2, the intersection is trivial and 7; C Null(J) is impossible. Even when r < K S2,
the full inclusion would require not only dim 77 < dim Null(.J) but also a non-generic containment
(measure-zero alignment) between the two subspaces; thus it almost never holds in generic position.

Finally, since F = 0 and M = E[JTFJ] = 0, any nonzero A € T; with JA # 0 satisfies
ATMA > 0, yielding

Laink(Or +A) = L ATMA +o(]|A?) > 0. (A12)
O
In words, orthogonality of principal parameter subspaces does not guarantee first-order invariance

of outputs on the thinking format. This is precisely why our Stage 1 imposes a null-space projection
constraint (i.e., g, vec(A1) = 0) to cancel first-order effects.

18

Under review as a conference paper at ICLR 2026

E.2 PROOF OF PROP. 1

Proof of Prop. 1. Let p = softmax(z) € AV~! and ¢ = softmax(z + u), where z € R is the
logits vector at a thinking position t € Quuink(2) and v € RY is the perturbation induced by the
parameter change.

Step 1: KL as a Bregman divergence of lse and a uniform quadratic bound. Let Ise(z) =
1ogzl‘;1 e*, so that Vise(z) = softmax(z) = p and V2lse(z) = diag(p) — pp'. For the
multinomial exponential family, the KL divergence equals the Bregman divergence of the log-partition
function (Banerjee et al., 2005; Wainwright & Jordan, 2008):

KL(softmax(z + u) || softmax(z)) = Dise(z+u, 2) = Ise(z+u) —1Ise(z) — (V1se(z), u). (A13)
Using the integral form of the Bregman remainder for a twice differentiable convex f, Ds(x+h,x) =

fol(l — 5)h" V2 f(z + sh) hds, and the fact that for all z the Hessian satisfies || V?1se(z)[|2 < 1 by
positive semidefinite covariance form as in Lemma 1 (Boyd & Vandenberghe, 2004; Bohning, 1992),
we obtain

1
KL (softmax(z 4+ u) || softmax(z)) :/ (1 —s)u' VZIse(z + su) uds
0

1
< [0-odlas =z
Equivalently, the second-order Taylor expansion with a third-order remainder yields

KL(softmax(z + u) || softmax(z)) = 3 u" V?1Ise(2) u + O(|Jul[3) < %Hu||§+0(||u\|g) (A15)

Lemma 1 (Hessian bound for Ise). For any z € RY with p = softmax(z),

\v&d Ise(z) = diag(p) fppT =0, HV2 lse(z)H2 < (A16)

1
-

Step 2: Bounding the logits perturbation via linearization and Lipschitz regularity. Let J(x,t) €
RY* be the Jacobian of zp(z,t) w.r.t. f at § = 0. By the mean-value theorem and Taylor expansion
with Lipschitz gradient (Nesterov, 2013),

u(x,t) = Z9R+A(x,t) - ZQR(xat) = J(.Z‘,t) VeC(A) + T(.’I},t), ||’I“(a’:,t)||2 < % HAH%’ (A7)

where L is a local Lipschitz constant of Vzg(z,t) around 0. Let ® = blkdiag(®!,..., ®X) be
the block-diagonal forward feature operator that maps vec(A) to the linearized token-level feature
change collected at thinking positions (per submodule k). Under bounded intermediate activations
and operator norms, which are standard in local linearization of deep nets (Fazlyab et al., 2019), there
exists Cq > 0 such that || J(x,t) vec(A)|2 < C1 ||® vec(A)||2. Combining with Eq. (A17),

lu(z,)2 < CrI® vee(A)llz + C2 A5, Ca:= 5. (A18)

Step 3: Enforcing the null-space constraint and aggregating into Link. Apply the submodule-
wise null-space projection (see Eq. (5) in the main text):
K
vec(Ar ") = PH(®,,.) vec(AF), AF =P At (A19)
k=1

vec(A+) = 0. Plugging this into Eq. (A18) yields for all ¢ € Quink():
lu(z,t)l2 < Ca[|AF5- (A20)

Combining with Eq. (A14) and summing/averaging over (x,t) in the definition of Ly, (Eq. (2))
gives

so that by construction ®q . .

Loink(Or + A7) =By > KL<W9R+AIL(' | 2, y<t) || mo, (- | xvy<t)>
tE€Quhink ()
< § Eo[llul@, t)lI3] + O (Exellu(z, t)]3)
=0(lar]2) < O(IAT]3) ~ o. (A21)
This completes the proof. O

19

[T

w

Under review as a conference paper at ICLR 2026

Algorithm 1: RAIN-Merging: Reasoning-Aware Instruction-attention guided Null-space projec-
tion Merging

Input :LRM Og; ITM 0;; base model 0g; reasoning calibration set Dr with thinking indices Qink;
instruction calibration set D; with spans (Z, R, U); hyperparameters p, &u, G, A
Output :Merged model 6,.

Stage 0: Task vector and objective.
Ar <+ 0 —0B // instruction-tuned task vector

Stage 1: Reasoning-aware Null-space Projection (satisfy Eq. (2)).

4 fork< 1to K // iterate over submodules (per-layer Wgq, Wk, Wy, Wo,FFN) do

EN

=

-l

e

10
11

13

14
15

16

17

18

19
20

‘196 < FeatureOperator (0r, Dr, Quink, k) // forward feature extraction at
thinking tokens

P+ diag(1) — (@) (26(25)" + diag(l))71¢g // least-squares orthogonal
projector

vec(A7F) < P vec(A%) // submodule projection per Eq. (5)

0" <+ Or + @le A;"k // direct merge after Stage 1

Stage 2: Instruction-attention Guided Merging Coefficients (optimize Eq. (11)).
Initialize head-wise coefficients &" < 1 for all attention heads k.
for each attention head k do

af — ExNDI[i‘I@)ﬁR(z)‘ S ieT(@) Lorer () Att (2)[t, r}]
k 1 k
ur EINDI[T U] 2= te(z) dareu(z) Atter ()L, T]]

for ea_ch attention hgad k do

gF —ad® — put // first-order term for Eq. (11)
HF « 14 uF // diagonal Hessian approx
~ E
ak eclip[dlydu](%) // per-head optimal scaling
a¥ « Aggregate ({dé}gemdulek) // mean over heads for FFN
Output (Two-stage Merge).
return 0, < O + A1, o ATF // final model in Eq. (16)

F ALGORITHM

Following Alg. 1 is the algorithm of our RAIN-Merging.

G METHOD IMPLEMENTATION DETAILS

G.1 FORWARD MECHANISM IN TRANSFORMER

A standard Transformer layer consists of multi-head self-attention and a feed-forward network (FFN).
In layer ¢, the hidden state of the token at position ¢, denoted hy—l) € R, is linearly projected to
queries, keys, and values: qy) = ngg“”, kzg) = Wi(f) h(ffl),vg) = W‘(/e)hg*l). For head h,
the single-head attention weights are Attg’h) (x)[t,] = softmax, ((qt(é’h), kg’h)> / \/dk) , which
represent the probability that the token at position ¢ attends to position 7. The corresponding
head output is ogé’h) =>. Attéé’h) (2)[t, 7] oM | After concatenating the outputs from all heads
and applying Wg), we obtain ﬁff). The FFN then computes EEZ) = J(I/Viff)fz,(f) + b‘(f)) ,hy) =
Wo(fl) Bg“ + bgﬁ%. The top-layer hidden state is mapped to vocabulary logits zy(x,t), which are

transformed by a softmax into the conditional distribution 7y (- | «, y<+). We follow the notation and
the scaled dot-product attention definition of Vaswani et al. (2017) to align with prior work.

20

Under review as a conference paper at ICLR 2026

Table Al: Reasoning calibration set construction from Mixture-of-Thoughts. We uniformly sample
50 examples per domain for calibration and 50 for validation. Raw sizes are taken from the official
dataset composition page.

Domain Rawsize Calibration Validation

Math 93,700 50 50
Code 83,100 50 50
Science 173,000 50 50
Total 349,800 150 150

G.2 IMPLEMENTATION DETAILS IN MERGING

To balance computational efficiency and memory usage, all model-merging experiments adopt a
layer-wise merging strategy. During parameter fusion, we compute in FP64 precision to ensure
numerical stability, and we store the final models in BF16. Our experiments show that higher compute
precision yields consistent but modest improvements for this merging procedure.

H CALIBRATION SET CONSTRUCTION

H.1 REASONING CALIBRATION SET

We employ the Mixture-of-Thoughts® (Face, 2025) dataset as the source for reasoning-style calibration.
This dataset contains validated R1-style reasoning traces spanning three domains: math, code, and
science, with a total size of approximately 350k samples. Its official data composition page clearly
specifies the sample sizes and origins for each sub-domain: math samples are sourced from OpenR1-
Math (Lozhkov et al., 2025), code from CodeForces-CoTs (Penedo et al., 2025), and science from
the science subset of the Nemotron post-training set (Bercovich et al., 2025). From each domain, we
randomly sample 50 instances to form the calibration set (150 in total), and an additional 50 instances
per domain are randomly sampled to serve as the validation set (150 in total). Tab. A1 shows the
detailed numbers of samples in each domain.

Thinking Special Token Set Construction. To apply preservation constraints on “thinking format”,
we extract the thinking tokens, specifically <think> and </think> in the model output—based
on the R1-style chat template and tokenizer. The procedure involves rendering messages using the
chat template provided by LRM. R1-family models prefill <think> in reasoning mode and insert
</think> in the context, while some templates may omit the visible output of the initial <think>
to enforce thinking mode. We then obtain token positions of <think> and </think> in Qin.

H.2 INSTRUCTION CALIBRATION SET

We construct a high-quality instruction calibration set from rule-verifiable prompts through four auto-
mated and auditable steps. The pipeline produces span-based samples (z ~ Dy; Z(x), R(z), U(x))
for computing the instruction-attention score proxy in Stage 2 of RAIN-Merging. We choose to distill
from IFEval-style instructions for ease of implementation and to test generalization on out-of-domain
instruction-following datasets. The final size of the instruction calibration set is 365. The full
workflow is:

* Instruction selection. We select rule-verifiable instruction prompts from IFEval (Zhou et al.,
2023b) as queries. Each record contains a natural-language instruction and machine-checkable
constraints.

» Step 1: Response generation by LRM. For each instruction query, we invoke an R1-style
reasoning model (deepseek-reasoner, DeepSeek-R1-0528)” to produce a format-explicit
response. This step yields instruction-following samples generated by a reasoning decoder that
reflect realistic decoding behavior.

2https://huggingface.co/datasets/open-r1/Mixture-of-Thoughts
3https://api.deepseek.com/v1

21

Under review as a conference paper at ICLR 2026

Instruction span (in prompt) Related span (response matches instruction) Unrelated span (response content not tied to instruction)

Query (Prompt)

Given the sentence "It is unclear how much of this money is actually being spent on children", is the sentiment positive or negative? The very last sentence of your
response should be "Is there anything else | can help with?".|

Reason

Hmm, the user is asking about sentiment analysis for a specific sentence. The sentence expresses uncertainty about financial allocation for children, which
inherently carries a negative connotation due to the implied lack of transparency or potential misdirection of funds.

The phrasing "it is unclear" suggests doubt, and the focus on children as beneficiaries adds an emotional weight to the criticism. This isn't just about money—it's
about ethical responsibility, making the negativity more pronounced.

| should clarify why it's negative without overcomplicating it, then end with the required closing phrase as instructed. The response needs to be concise but
justified.
Response

The sentiment of the sentence is **negative**.

The phrase expresses doubt and implies a criticism that funds intended for children may not be reaching them, suggesting inefficiency, lack of transparency, or
misallocation.

Is there anything else | can help with?

Figure A3: A sample illustration in our instruction calibration set.

Table A2: Instruction-following benchmarks. We list dataset size, constraint taxonomy, composition
types, verification, and aggregation strategy.

B . Constraint Composition Type Verification Evaluation
enchmark Size

Taxonomy And Chain Selection Nested Code-Exec. LLM-as-Judge Aggregation
IFEval 541 25 v - - - v — strict_prompt_level_accuracy
CELLO 523 4 v v v - average
InfoBench 500 5 v v - - - v DRFR
ComplexBench 1,150 19 v v v v v v dependency-aware DRFR

Step 2: Rule evaluation and filtering. We evaluate the outputs of Step 1 with an IFEval-compatible
checker and retain only passing samples that satisfy all constraints. This removes cases that clearly
fail the requirements.

Step 3: Strict span extraction (LLM-as-Judge). We use a high-performance instruction-tuned
LLM (deepseek-chat, DeepSeek-V3.1)’ to precisely extract instruction-relevant spans: Z ()
(tokens in the prompt corresponding to the instruction) and R(z) (tokens in the response that are
governed by the instruction). The unrelated span ¢/ () is then implicitly defined as the remainder
of the response. See Fig. A3 for an example.

Step 4: Tokenizer-level verification. We verify the extracted spans on the farget tokenizer (aligned
with our anchor LRM), ensuring that boundaries lie on token edges and can be deterministically
reconstructed. Samples that fail alignment are discarded.

Step 5: Human review and ethical screening. To ensure data quality and compliance with safety
and ethics standards, we introduce a manual review stage. Researchers verify the accuracy of
the LLM-extracted spans Z(z) and R(x), and conduct an ethics audit of the responses based on
content-safety guidelines, removing any samples that contain biased, harmful, or inappropriate
content. This step further enhances the reliability and ethical soundness of the calibration set.

This calibration pipeline is readily transferable and can be extended to additional instruction-following
datasets to further improve merging effectiveness by enriching the calibration set. The reasoning
distillation model and the LLM-as-Judge can be updated over time to continually enhance the quality
of the instruction calibration data.

22

Under review as a conference paper at ICLR 2026

Table A3: Test set sizes of the six math benchmarks used in our mathematical reasoning (Math)
evaluation.

AIME2025 AIME2024 AMC23 GSMS8K Math500 MinervaMath
Test samples 30 30 40 1,319 500 272

I DETAILED EXPERIMENTAL SETUP

1.1 BENCHMARKS

Instruction-following Benchmarks. We evaluate instruction compliance on four widely used,
programmatically verifiable benchmarks. The size and constraint types are summarized in Tab. A2.

» IFEval (Zhou et al., 2023b). IFEval provides four accuracy metrics: (1) prompt-level strict accuracy
and (2) instruction-level strict accuracy, plus (3) prompt-level loose and (4) instruction-level loose
variants. The strict metrics require exact satisfaction (all constraints per prompt for prompt-level
strict; per-constraint averaging across prompts for instruction-level strict). The loose metrics first
normalize model outputs (e.g., strip Markdown, boilerplate intros/outros) to reduce false negatives.
We report the official strict_prompt_level_accuracy unless otherwise noted.

* CELLO (He et al., 2024). CELLO uses a code-based verifier that scores four granular aspects:
(1) count limit (word/sentence/sample counts), (ii) answer format (parsability, keywords), (iii)
task-prescribed phrases (mandatory phrases covered), and (iv) input-dependent query (presence
of key phrases from the input), with a penalty to discourage verbatim copying. We follow the
benchmark’s practice and average these checks to produce the final score.

* InfoBench (Qin et al., 2024). InfoBench adopts the Decomposed Requirements Following Ra-
tio (DRFR): each instruction is split into scoring questions that are judged by LLM-as-a-Judge
with binary YES /NO labels; the final score is the mean over all questions, enabling fine-grained
interpretability. We evaluate by GPT-5-mini. We report the official DRFR.

* ComplexBench (Wen et al., 2024). ComplexBench also evaluates via decomposed scoring ques-
tions with YES/NO judgments and aggregates them into DRFR, but crucially uses a dependency-
aware scheme: if any prerequisite constraint fails, all dependent (downstream) constraints are
automatically marked as failed. This better reflects multi-constraint compositions. We evaluate by
GPT-40-mini. We report the dependency-aware DRFR.

Reasoning & General Benchmarks. We evaluate reasoning and general capabilities on the follow-
ing benchmarks:

* Math (Mathematical reasoning). We aggregate Pass@1/accuracy over six common math bench-
marks: AIME2025 (Balunovi¢ et al., 2025); AIME2024 (Balunovi¢ et al., 2025); AMC23 (Cao
et al., 2024); GSMS8K (Cobbe et al., 2021); Math500 (Hendrycks et al., 2021); Minerva-
Math (Lewkowycz et al., 2022). The size of each math benchmark is shown in Tab. A3. We report
the averaged accuracy over all benchmarks.

* Aider (Aider, 2024) (Code editing). Aider-Edit assesses code editing capability under a minimal-
edit paradigm. It contains 133 small Python coding exercises sourced from Exercism, where the
model is provided with a natural-language edit instruction and the existing code, and must generate
a correct patch. The generated patch is required to apply successfully to the codebase and pass
compilation and associated tests. Performance is measured by the Pass@2 Edit Success Rate.

* GPQA (Rein et al., 2024) (STEM). A curated, expert-level subset of GPQA comprising 198
four-option multiple-choice questions across biology, chemistry, and physics. Items are selected to
be “Google-proof” and unambiguous: both expert validators must answer correctly while at most
one of three skilled non-experts succeeds, yielding a particularly hard split. We follow common
practice and report accuracy (strict single-choice).

* Arena-Hard-v2 (Li et al., 2024) (Creative writing). A hard, open-ended benchmark constructed
to maximize model separability and align with human preferences. Arena-Hard-Auto curate
~500 challenging prompts covering difficult real-world tasks including creative writing, scoring
follows the pairwise battle paradigm with human or LLM-as-a-Judge assessments, and results
are commonly summarized as win rate or transformed to Elo scores. For reproducibility, we fix

23

Under review as a conference paper at ICLR 2026

Qwen?2 .5-7B as the reference baseline and use GPT-5-mini as the judging LLM; we report the
resulting win rate of each model against this baseline on the official Arena-Hard-v2 prompt set.

» Agentic Scenarios. We evaluate the ability of the model to interact with the environment and
complete tasks by two agentic benchmarks: ALFWorld (Shridhar et al., 2021) is a text-interactive
household-task environment involving multi-step planning and execution. We evaluate on 100 tasks.
Metrics are Success Rate of goal completion. WebShop (Yao et al., 2022) is a web shopping agent
task (search, click, compare), with reported Normalized Reward to capture both path efficiency
and goal matching. We evaluate on 100 tasks.

1.2 BASELINES

We compare our method with the following merging baselines:

» Task Arithmetic (Ilharco et al., 2023). The simplest linear composition injects the task vector
additively near the anchor, 8 = 6 + A A;. A scalar A € [0, 1] usually controls the strength; using
the same A\ per layer or per block is also common. Its advantages are zero data and negligible
compute; its drawback is that conflicts across submodules are hard to disentangle.

* SLERP (Biship, 2007; Goddard et al., 2024). In SLERP (Spherical Linear Interpolation), weights
are /5-normalized to the unit sphere and interpolated along the geodesic to preserve norm and

angular geometry. Let Q = arccos((wg,ws)). Then slerp(wg,wr;t) = (A=) gy

sin 2
% wr, t € [0,1]. During merging, we apply SLERP to each tensor and rescale by the

original norm. This reduces norm drift compared with linear interpolation.

¢ Karcher (Nielsen & Bhatia, 2013; Goddard et al., 2024). On a chosen manifold like the unit
sphere or a Stiefel manifold, compute the Fréchet mean by minimizing the sum of squared geodesic
distances: ming Y, d(w, w;). The iterative update is w1 = Expy (2 3, Log g (w;)).

» TIES (Yadav et al., 2023). TIES is a data-free method that explicitly prunes and sparsifies to handle
parameter-level conflicts. For each layer’s edit vector it applies (i) a sign-consistency mask (retain
entries aligned with the dominant direction to reduce cancellation), (ii) magnitude thresholding or
Top-k truncation (keep high-contribution entries and zero out the rest), and (iii) optional rescaling
to match a target norm. We can stack TIES as a post-processing step on top of feasible baselines to
improve robustness.

* DARE (Yu et al., 2024). DARE uses first-order sensitivities on a small calibration set (for example,
gradient norms of labeled loss, log-likelihood changes, or Fisher approximations of the output
distribution) to learn a per-layer or per-tensor coefficient o* (or a diagonal preconditioner), yielding
0 = 0r + @, o* Ak It can be viewed as data-aware recalibration that reduces the bias introduced
by naive addition with very low compute.

* ACM (Yao et al., 2025). ACM (Activation-Guided Consensus Merging) targets activation con-
sistency. On a small calibration set it measures, before and after injecting the task vector, how
each layer or head changes its response on instruction-relevant spans and its leakage on irrelevant
spans. It then solves for per-submodule coefficients o*, optionally with cross-sample consensus
regularization to improve generalization.

o LEWIS (Chopra et al., 2025). LEWIS (LayEr Wise Sparsity) is a merge with layer-wise sparsity
allocation. Based on sensitivity indicators per layer (such as edit-vector magnitude, activation
gradients, or Fisher approximations), it sets a budget s; and merges only the Top-s; parameters
of that layer, leaving the anchor weights elsewhere unchanged. It can be combined with Task
Arithmetic, SLERP, or Karcher as the base, and {sy } are determined by heuristics or grid search
on a small calibration set.

* AIM (Nobari et al., 2025). AIM (Activation-based Importance Merging) weights the task vector
by activation importance (for example, the effect of Value or FFN outputs on downstream logits, or
the instruction-aligned component of attention weights), performing element-wise or block-wise
reweighting: Weights the task vector by activation importance, for example, the effect of Value
or FFN outputs on downstream logits, or the instruction-aligned component of attention weights,
performing element-wise or block-wise reweighting: 0 = 0r + @, Wk © AX where W* is
obtained from a single forward pass on the calibration set. Intuitively, this preserves edits that
meaningfully change useful representations and suppresses noisy updates.

24

Under review as a conference paper at ICLR 2026

Table A4: The hyperparameters of various merging methods in Tab. 1. A means the global scaling
coefficient in merging. k denotes the trim ratio in TIES-Merging. p means the drop rate in DARE
merging. 7 is sharpness the ACM. p is the pruning ratio in LEWIS. w means the balance factor in
AIM.

Hyper-parameters

Method

7B
Task Arithmetic A=1.0
SLERP A=1.0
Karcher A=1.0
TIES k=08, A=0.8
DARE-TIES p=03, k=05 =12
ACM-TIES 7=10, k=05 A=1.1
LEWIS-TIES p=05 k=05 A=1.1
AIM-TIES w=04, k=05 A=1.0

Table AS: The hyperparameters of RAIN-Merging in different model sizes. A means the global
scaling coefficient in RAIN-Merging.

Hyper-parameters
1.5B 7B 8B 14B
RAIN-Merging A =1.0 A=1.0 A=09 A=1.0

Method

Unless otherwise specified, following common practice in previous work (Wu et al., 2025), we apply
TIES post-processing (sign consistency and magnitude truncation) on the outputs of DARE, ACM,
LEWIS, and AIM, in order to improve comparability across baselines.

1.3 HYPERPARAMETERS

For SFT, we use a batch size of 16 with the Adam optimizer (Kingma & Ba, 2014), a learning rate of
2 x 10~°, weight decay of 0.05, and train for 20 epochs.

For all model-merging methods (including the proposed RAIN-Merging and all baselines), we
merge only the task vectors extracted from the ITM’s Q/K/V/O/FFN modules. The specific
hyperparameter settings for each baseline used in Tab. 1 are listed in Tab. A4.

In RAIN-Merging, we set the leakage penalty to p = 10 and bound the attention-head coefficients
by [&u, &) = [0.0,1.0]. The global scalar A is selected via a grid search over [0.0, 1.5] with a step
size of 0.1; the chosen values for different model families are provided in Tab. A5. An ablation study
of the global scalar)\ is included in Appendix J.2.

J ADDITIONAL EXPERIMENTS

J.1 DETAILED MATH BENCHMARK RESULTS

Tab. A6 and Tab. A7 report detailed results on the mathematics benchmarks. RAIN-Merging
consistently preserves the mathematical reasoning ability of LRMs across different model sizes and
architectures. In some cases, improving instruction following also correlates with better mathematical
performance, suggesting that enhanced adherence can support clearer intermediate reasoning and
more reliable final answers.

J.2 ABLATION STUDY OF THE GLOBAL SCALAR

We conduct a sensitivity analysis of the global scalar A (Fig. A4). Across a wide range around our
chosen value near 1.0, the merged model maintains strong instruction-following performance. As A

25

Under review as a conference paper at ICLR 2026

Table A6: Math benchmark results under the same configuration as in Tab. 1. “Avg.” denotes the
average over all math benchmarks. The best and second-best results are highlighted in bold and
underlined, respectively.

Method AIME2025 AIME2024 AMC23 GSMS8K Math500 Minerva Avg.
IT™M 10.00 10.00 67.50 86.66 73.80 35.66 47.27
LRM 30.00 50.00 80.00 91.36 89.00 48.16 64.75
SFT 33.33 43.33 75.00 90.75 87.40 45.59 62.57
Task Arithmetic 30.00 50.00 80.00 90.75 89.00 45.59 64.22
SLERP 30.00 46.67 77.50 91.05 89.20 48.53 63.82
Karcher 30.00 50.00 80.00 90.98 89.20 48.90 64.85
TIES 33.33 46.67 82.50 91.36 90.60 48.16 65.44
DARE-TIES 36.67 40.00 82.50 90.98 90.20 45.22 64.26
AIM-TIES 33.33 50.00 85.00 89.76 89.60 47.79 65.92
ACM-TIES 33.33 50.00 77.50 91.36 88.20 47.06 64.57
LEWIS 30.00 33.33 80.00 90.27 88.80 50.00 62.07
RAIN-Merging 36.67 60.00 85.00 92.12 90.20 48.53 68.75

Table A7: Math benchmarks results under the same configuration as in Tab. 2. “Avg.” denotes the
average over all math benchmarks.

Method AIME2025 AIME2024 AMC23 GSMS8K Math500 Minerva Average
Qwen2.5-1.5B-Instruct 3.33 0.00 30.00 75.44 59.40 22.43 31.77
DeepSeek-R1-Distill-Qwen-1.5B 20.00 13.33 42.50 73.77 71.80 28.31 41.62
Qwen2.5-1.5B-RAIN-Merging 20.00 16.67 60.00 76.36 72.40 29.78 45.87
Llama-3.1-8B-Instruct 333 6.67 20.00 81.65 67.60 34.26 35.59
DeepSeek-R1-Distill-Llama-8B 30.00 40.00 75.00 90.52 80.40 45.37 60.21
Llama-3.1-8B-RAIN-Merging 30.00 43.33 77.50 90.30 82.80 47.79 61.95
Qwen2.5-14B-Instruct 20.00 13.33 65.00 93.18 80.00 44.85 52.73
DeepSeek-R1-Distill-Qwen-14B 50.00 56.67 92.50 93.22 89.00 52.49 72.31
Qwen2.5-14B-RAIN-Merging 50.00 63.33 92.50 94.37 91.00 56.25 74.58

increases, reasoning ability improves slowly at first but then drops sharply beyond 1.0, indicating that
overly large merge strength can still harm reasoning.

J.3 ABLATION STUDY OF REASONING CALIBRATION SET SIZE

Fig. A5 presents an ablation over the size of the reasoning calibration set. As the set grows,
preservation of reasoning improves; however, instruction-following performance degrades gradually.
We hypothesize that overly strict preservation of the thinking format can limit gains in instruction
adherence and also increase computation. Balancing performance and resource usage, we select a
calibration size of 150.

J.4 VISUALIZATION OF MERGING COEFFICIENTS IN STAGE 2

As shown in Fig. A6, the heatmap of merging coefficients for DeepSeek-R 1-Distill-Qwen-7B exhibits
clear layer-wise differences, indicating that different layers respond to instruction focus to different
degrees. Notably, the earliest layers show the strongest response, with coefficients reaching the upper
bound, and this pattern is consistent with the observations in Fig. 6.

J.5 CASE STUDY

We provide two case studies to illustrate the effectiveness of RAIN-Merging compared with DeepSeek-
R1-Distill-Qwen-7B as the baseline LRM on IFEval.

* IFEval Example 1: The baseline LRM violates the explicit rule to first echo the request verbatim
and further duplicates its poem, yielding a “following: False” outcome. In contrast, RAIN-Merging

26

Under review as a conference paper at ICLR 2026

561
Instruction Following Avg.
54 1 Reasoning & General Avg.
521
50 1

48

Average Score

46

441
00 01 02 03 04 05 06 07 08 09 10 1.1 12 13 14 15
Scaling Factor

Figure A4: Instruction following and reasoning & generage performance of our RAIN-Merging using different
global scalar \. The configuration is the same as in Tab. 2. The performance is measured by the average of the
instruction following and reasoning & general capability benchmarks. The marked result is our choice in the
experiments.

56 1

Average Score
W wn w
(=) NS} N

IS
3
A

Instruction Following Avg.

N
(=)}
L

Reasoning & General Avg.

15 150 1500 15000
Reasoning Calibration Set Size

Figure AS5: Instruction following and reasoning & generage performance of our RAIN-Merging using different
reasoning calibration set sizes. The x axis represents the size of the reasoning calibration set with exponential
scale. The configuration is the same as in Tab. 2. The performance is measured by the average of the instruction
following and reasoning & general capability benchmarks. The marked result is our choice in the experiments.

EEINT3

correctly repeats the request word-for-word, includes the required keywords (‘“intern,
and produces a coherent, father-pleasing limerick (“following: True”).

* IFEval Example 2: The baseline LRM introduces capitalized section headers and markup (e.g.,
“Verse 17), breaking the “all lowercase” constraint (“following: False”). RAIN-Merging delivers
fully lowercase lyrics with clear structure and consistent semantics (“following: True”).

grOW”),

27

Under review as a conference paper at ICLR 2026

Layer

Coefficient Value

S
=

12 14 16
Attention Head

Figure A6: Heatmap of merging coefficients by our Stage 2 for each layer and attention head of DeepSeek-R1-
Distill-Qwen-7B.

Instruction-following Example 1 in IFEval

Prompt

Write a limerick about Hannah, a college student, doing an internship at a coffee company. Make sure
that her father would love the limerick. Include the words "intern" and "grow".

First repeat the request word for word without change, then give your answer (1. do not say any words
or characters before repeating the request; 2. the request you need to repeat does not include this
sentence)

DeepSeek-R1-Distill-Qwen-7B Reason

Okay, so the user has given me a query where they want a limerick about Hannah, a college student
doing an internship at a coffee company. They also want me to make sure her father would love it,
include the words "intern" and "grow".

First, I need to understand what a limerick is. It’s a five-line poem with an AABBA rhyme scheme,
usually humorous. So, I should structure it that way.

The main characters here are Hannah, who’s an intern, and her father. I need to highlight something
that would please her father. Since he’s looking back on her, maybe something positive, like growth or
learning. The user mentioned "grow," so that’s a keyword I must include.

I’1l start the first line with "There once was a college student named Hannah," which sets the scene.
Next, she’s doing an internship at a coffee company, so the second line can mention that.

For the third line, I need to introduce her father. Maybe something like "Her dad would be tickled,"
which fits the rhyme and the idea that he’s proud or finds it amusing.

In the fourth line, I have to include "grow," perhaps about Hannah growing into her role or learning
something. Something like "she grew as an intern." That works because it’s a common phrase and fits
the rhyme.

Finally, the last line should be a nice, positive ending. Maybe the coffee company has grown as a result
of her hard work. "And the JavaHouse grew from her intern!" That ties the "grow" into the company’s
success.

I should make sure the rhyme scheme is consistent and the lines flow well. Let me check each line for
the AABBA pattern: the first and third lines have "Hannah," the second and fourth have "intern" and
"grow," and the fifth is the punchline. The rhymes at the end of each line should be "annah," "inn,"
"dad," "un," and "or." Wait, that doesn’t quite fit perfectly. Let me adjust the fifth line to "and JavaHouse

28

Under review as a conference paper at ICLR 2026

grew from her intern." That way, the last two lines rhyme with "grow" and "grew," which is close
enough for a limerick’s loose rhyme.

I think this captures Hannah’s experience, shows her learning, and how her father is proud. It also ties
the coffee company’s growth to her internship, which is a nice touch. I should make sure the language
is playful and fits the humorous tone of limericks.

DeepSeek-R1-Distill-Qwen-7B Response (following: False)
There once was a college student named Hannah,

Whose intern days at JavaHouse she would swap for much.
Her dad would be tickled, I'm sure,

If he heard she grew as an intern.

And JavaHouse grew from her intern!

There once was a college student named Hannah,

Whose intern days at JavaHouse she would swap for much.
Her dad would be tickled, I’'m sure,

If he heard she grew as an intern.

And JavaHouse grew from her intern!

RAIN-Merging Reason

Okay, so the user has given me a query where they want a limerick about Hannah, a college student
doing an internship at a coffee company. They also want me to include the words "intern" and "grow".
Plus, the limerick should make my father happy. I need to make sure that the poem not only fits the
structure of a limerick but also touches on what a father might appreciate.

First, recall the structure of a limerick (AABBA, typically anapestic). Incorporate internship details and
the required keywords. Emphasize traits a father would love: responsibility, learning, contribution.
Draft lines that meet the rhyme scheme and include "intern" and "grow," aiming for a playful, positive
tone that showcases Hannah’s growth and impact at the coffee company.

RAIN-Merging Response (following: True)
Write a limerick about Hannah, a college student, doing an internship at a coffee company. Make sure
that her father would love the limerick. Include the words "intern" and "grow".

There once was a college student named Hannah,
An intern at a coffee company she was.

With her skills, both sharp and bright,

She’s learning every day,

She’s growing taller, her skills grow bright.

Her dad would surely give her a smile,

For Hannah’s heart and Hannah’s skill.

She’s balancing tasks, balancing time,

Turning great coffee into something divine.

A limerick full of sunny pride!

Instruction-following Example 2 in IFEval

Prompt
Compose song lyrics about a socio-economic problem. The song should be in English and in all
lowercase letters.

DeepSeek-R1-Distill-Qwen-7B Reason

The user asked for song lyrics about a socio-economic problem, in English and all lowercase. Choose a
relatable issue (e.g., inequality, unemployment), structure with verses/chorus/bridge, maintain empa-
thetic tone, vivid imagery, and ensure every character is lowercase. Aim for accessibility, repetition in
chorus, and a subtle sense of resilience or hope.

DeepSeek-R1-Distill-Qwen-7B Response (following: False)
Verse 1

every penny’s a struggle

like fuel for a car that won’t start

the stars are bright but we don’t see them

the ladder’s always broken

Chorus
every penny’s a struggle

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

a weight in your chest

the world’s a game but you’re just a piece
no matter how hard you try

every penny’s a struggle

Verse 2

the roads are wet but the rain falls cold
the wind’s a whisper but it’s got no hold
we’re dancing to a tune we can’t control
but the beat’s the same

Chorus

every penny’s a struggle

a weight in your chest

the world’s a game but you’re just a piece
no matter how hard you try

every penny’s a struggle

Bridge

look beyond the pain

is there a spark in your soul?
can you see the stars at night?
maybe there’s something more

Chorus

every penny’s a struggle

a weight in your chest

the world’s a game but you’re just a piece
no matter how hard you try

every penny’s a struggle

Outro

a penny’s worth of love or light

the struggle’s real but we gotta fight
we’ll find the way through the cold

the world’s a game but you're just a piece

RAIN-Merging Reason

Generate lyrics that address a socio-economic issue with clear imagery and structure
(verses/chorus/bridge). Conform strictly to the all-lowercase constraint. Keep language simple and
emotive, focusing on systemic barriers and lived experience, while maintaining flow and singability.

RAIN-Merging Response (following: True)

""the gap in the system"'

(verse 1)

1 see the faces in the lines,

faces searching for a ticket out of here.

factories grinding, bodies quiet,

a world that promises better, but i’m still waiting for the breath.

(chorus)

there’s a crack in the system, a fault in the law,

half the planet’s frozen in time.

we're crafted from the same mold, same broken spell,
but the world won’t let us climb the hill.

(verse 2)

the streets are empty, the shops tiled over,

the only sound is the shuttle’s old tune.

we’re drowning in the waves, but the shores are a lie,
the promises fade like ash in the wind.

(chorus)

there’s a crack in the system, a fault in the law,

half the planet’s frozen in time.

we're crafted from the same mold, same broken spell,
but the world won’t let us climb the hill.

(bridge)

30

Under review as a conference paper at ICLR 2026

1620

1621 oh, it’s not just the lack, it’s the broken chain,

1622 we’re all stuck in the margins, never quite seen.
but the fights don’t stop, they never do,

1623 s . .

oo we’re trapped in the loop, chained to the ground.
(chorus)

ees there’s a crack in the system, a fault in the law,

1626 half the planet’s frozen in time.

1627 we’re crafted from the same mold, same broken spell,
1628 but the world won’t let us climb the hill.

1629 (outro)

1630 so here’s to the night shifts and the cold nights,
1631 the endless loop where the kids don’t get the break.
we're all fragments on the ground,

1632 trying to find a way out of the ground.

1633

1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

31

Under review as a conference paper at ICLR 2026

K IMPLICATIONS

The potential impacts of this work span both academic and applied dimensions.

On the positive side, RAIN-Merging offers an interpretable, low-compute pathway for capability
integration. It enables researchers and resource-constrained labs to inject instruction-following
competence into LRMs without additional training. By enforcing a null-space constraint on the
thinking segment (<think>...</think>), the method preserves the model’s structured reasoning
format, which helps maintain reliability in reasoning. This direction may catalyze systematic
studies of the relationship between task-vector orthogonality and thinking-format stability, and it
encourages reproducible evaluation practices (for example, public evaluation scripts, calibration sets,
and hyperparameter configurations) and greater standardization of community benchmarks. In agent
applications such as WebShop and ALFWorld, RAIN-Merging can lower the barrier to integrating
multiple capabilities and improve the practicality of tool use and structured outputs.

On the risk side, parameter merging can introduce capability drift or safety drift. For example, while
improving instruction following, it may alter jailbreak sensitivity, amplify biases present in training
data or in LLM-as-judge pipelines, or induce hallucinations tied to specific output formats. Instruction
attention as a proxy metric may also encourage myopic optimization for format matching, which
is not equivalent to value-aligned safety. Moreover, increased model usability can be misused for
mass generation of misleading content, evasion of platform policies, or automated spam. The current
method also depends on R1-style special markers and prompting templates; its cross-model and
cross-modal generalization remains to be established.

L LIMITATIONS AND FUTURE WORK

Our method has the following limitations. (i) The method relies on R1-style templates and tokeniza-
tion to extract <think>...</think> for constructing the null space. If a model hides its reasoning
(for example, implicit CoT) or adopts different templates, the constraint may weaken or fail. (ii) The
instruction and reasoning calibration sets are limited in size and include noise from LLM-as-judge
auto-annotation. Distribution shifts across languages or task domains may affect the generalization of
the merging coefficients. (iii) Although the KL constraint on the thinking segment helps preserve
the reasoning format, non-thinking content and safety-relevant behaviors may still drift, and there
is currently no formal safety guarantee. (iv) Experiments focus primarily on the Qwen/DeepSeek
families. Applicability to multimodal LLMs, tool use, code-generation settings, and multilingual
scenarios requires systematic evaluation.

32

	Introduction
	Preliminary and Observations
	Our RAIN-Merging Method
	Experiments
	Experimental Setup
	Results

	Conclusion
	Ethics Statement
	Reproducibility Statement
	LLM Usage Statement
	Related Work
	Proof
	Proof of why orthogonal in parameters = invariant in outputs
	Proof of Prop. 1

	Algorithm
	Method Implementation Details
	Forward Mechanism in Transformer
	Implementation Details in Merging

	Calibration Set Construction
	Reasoning calibration set
	Instruction calibration set

	Detailed Experimental Setup
	Benchmarks
	Baselines
	Hyperparameters

	Additional Experiments
	Detailed Math Benchmark Results
	Ablation Study of the Global Scalar
	Ablation Study of Reasoning Calibration Set Size
	Visualization of Merging Coefficients in Stage 2
	Case Study

	Implications
	Limitations and Future Work

