
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BERNOULLI FLOW MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based generative modeling for data with Bernoulli distributions has
broad potential applications, but it relies on carefully designed forward processes.
Recently, flow matching-based methods have addressed this issue. However, when
these methods are naively applied to the Bernoulli distribution, their dependence
on predicting the instantaneous velocity field during sampling can introduce in-
valid Bernoulli parameters, leading to model collapse. To address this challenge,
we introduce Bernoulli Flow Models (BFM), a novel generative framework that
fuses flow matching with vanilla binary diffusion. BFM ensures valid Bernoulli
parameters throughout the sampling process by deriving a one-step forward tran-
sition kernel and a closed-form, normalized posterior based on the pre-defined
flow-matching probability path in the Bernoulli parameter space. As a result,
BFM simplifies the training process of current binary diffusion models and can be
easily integrated into existing architectures with minimal modification. We em-
pirically validate the generative performance of BFM on high-dimensional binary
manifolds, including Ising model simulations, both unconditional and conditional
image generation. Experiments show that our model achieves comparable perfor-
mance to both continuous and discrete space generative models.

1 INTRODUCTION

The emergence of diffusion-based Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2020)
and flow-matching Lipman et al. (2022); Liu et al. (2022) generative models represents a significant
advance in modeling high-dimensional data manifolds of real-valued states. However, Bernoulli
distributions, which constitute the fundamental discrete state space, have not undergone the same
extent of advancement as their continuous or multi-category discrete counterparts.

In the study of discrete generative models, Continuous-Time Markov Chains (CTMC) serves as the
underlying framework for many works, such as Lou et al. (2023), Gat et al. (2024), and Campbell
et al. (2024), however, these CTMC-based methods must overcome the challenge of managing the
explosion in predictive dimensionality caused by transition matrices. Binary Latent Diffusion Wang
et al. (2023) circumvent CTMC by Bernoulli probability transition and keeping Bernoulli parameter
valid throughout sampling time by a normalized posterior, however it necessitates a carefully de-
signed forward binarized diffusion process. In contrast, flow matching methods Lipman et al. (2022)
Liu et al. (2022) offer a simpler alternative by constructing probability paths through straightforward
interpolation between the data and prior distributions, thereby significantly streamlining the training
procedure. In flow matching, the generative process is modeled as a deterministic Ordinary Differ-
ential Equation (ODE): d

dtxt = vθ(xt, t), where vθ(xt, t) is the velocity field predicted by the neural
network. This ODE describes how a sample xt evolves over time from the prior distribution p1 to the
data distribution p0. To sample from the model, one integrates this ODE over time using numerical
methods such as the Euler method. However, when applied to Bernoulli distributions, the predicted
velocity field can cause parameters to fall outside the valid range [0, 1], leading to invalid values
and potential model collapse, as the ODE integration does not constrain the parameters within this
range.

To address the above challenges, in this work, we introduce Bernoulli Flow Models (BFM), a
novel generative framework that leverages the simplicity of discrete flow models, combined with the
Markov posterior Bayesian framework inherent in diffusion processes, to develop a generative model
applicable to arbitrary binary distributions. BFM constructs a pre-defined, meaningful probability
path within the Bernoulli parameter space. From this path, we derive two critical components: 1)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a one-step forward transition kernel that defines how data are corrupted at any given time, and
2) a closed-form, normalized posterior distribution. The existence of this analytical posterior is
crucial, as it allows for training using a simplified, denoising-based objective reminiscent of standard
diffusion models. More importantly, during sampling, the model navigates a deterministic trajectory
defined by the flow, entirely avoiding the pitfalls of regressing an unconstrained velocity field. This
guaranties that all intermediate Bernoulli parameters are valid, preventing model collapse.

Our contributions can be summarized as follows.

• A New Generative Framework: We propose Bernoulli Flow Models (BFM), a new novel
generative framework that unifies the training simplicity of flow matching with the sam-
pling stability of binary diffusion. BFM ensures the validity of all parameters throughout
the generative process.

• Theoretical Formulation: We derive a closed-form one-step transition kernel and the cor-
responding posterior distribution based on a pre-defined flow-based probability path. This
derivation enables a straightforward training procedure that simplifies existing approaches
to binary diffusion.

• Sampling Efficiency and Consistency: Experiments on LSUN Churches 256 × 256 in-
dicate that BFM outperforms existing baselines methods in terms of inference efficiency.
Unlike previous methods that suffer from quality degradation when the Number of Function
Evaluations (NFE) is reduced, BFM exhibits high stability and self-consistency cross-step
sampling. This allows for high-quality generation with fewer sampling steps, significantly
reducing computational costs without sacrificing visual fidelity.

• Ease of Integration and Competitive Performance: We demonstrate that BFM can be
easily integrated into existing architectures for binary data with minimal modification.
Through extensive experiments on high-dimensional binary manifolds—including simu-
lations of the Ising model, unconditional image generation, and conditional generation
tasks—we show that BFM achieves generative performance comparable to both state-of-
the-art continuous and discrete space generative models.

2 RELATED WORK

Discrete Diffusion and Flow Matching Models. Diffusion models for discrete data modeling, in-
troduced for generative modeling in Sohl-Dickstein et al. (2015), have evolved significantly over
time. Early works such as Argmax flows Hoogeboom et al. (2021) and D3PM Austin et al. (2021)
extended these models to categorical data by considering the noising process as a discrete Markov
chain. However, diffusion models still faced challenges when applied to certain discrete data types,
like text. To address this underperformance, Lou et al. (2023) extended the score-based diffusion
framework, introducing a new Score Entropy loss to estimate the ratios of the data distribution, re-
sulting in the highly competitive SEDD models. Concurrently, Varma et al. (2024) proposed the
Glauber Generative Model (GGM), a discrete diffusion model that utilizes the Glauber dynamics (a
type of heat bath dynamics) to denoise sequences of tokens. Building on these developments, Camp-
bell et al. (2024) and Gat et al. (2024) leveraged the Continuous-Time Markov Chains (CTMC)
framework to create powerful discrete flow models. These models have achieved state-of-the-art re-
sults in domains such as protein co-design and code generation, respectively. Following the success
of these CTMC-based models, a distinct line of research has introduced a more geometric perspec-
tive. Fisher-Flow Davis et al. (2024), for instance, departs from the CTMC framework by viewing
categorical distributions as points on a statistical manifold, equipped with the Fisher-Rao metric.
Similarly, Statistical Flow Matching (SFM) Cheng et al. (2024) also explores the geometric struc-
ture of statistical manifolds, proposing a new framework for discrete flow matching. To address the
critical gap in guidance techniques for discrete generative models, Nisonoff et al. (2024) recently in-
troduced the Discrete Guidance method, providing a general and principled framework for applying
guidance to diffusion and flow-matching-based discrete state-space models.

Binary Diffusion Models. Despite the pioneering work of Sohl-Dickstein et al. (2015) in applying
diffusion models to binary data, their adoption for binary tasks has remained limited due to subopti-
mal generative performance, particularly in high-dimensional binary manifolds. Recently, leverag-
ing advancements in vector quantized encoder-decoder techniques Van Den Oord et al. (2017) Esser

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al. (2021), Wang et al. (2023) introduced a vector quantized encoder-decoder with a binary latent
space. This approach enables the application of diffusion models in the binary latent space, achiev-
ing performance competitive with continuous latent diffusion models. Wolleb et al. (2024) further
extends this approach by incorporating a multi-scale Bernoulli diffusion model, which allows for the
capture of more complex patterns in the latent space, thereby enhancing the ability to detect subtle
anomalies. More recently, Kinakh & Voloshynovskiy (2025) proposed the Binary Diffusion Proba-
bilistic Model (BDPM), which is tailored for binary data by leveraging XOR-based noise and binary
cross-entropy loss, enabling highly efficient inference with fewer steps despite a lack of detailed
theoretical proof.

3 BACKGROUND

3.1 FLOW MATCHING

Given a target data distributionX0 ∼ π0 and a prior distributionX1 ∼ π1 that is easy to sample from
(typically Guassian N (0, I) or uniform noise). Flow Matching (FM) is a framework for generative
modeling that constructs a probability path (pt)0≤t≤1 between a target data distribution p0 = π0 a
known prior distribution p1 = π1 during the forward process. The core idea is to learn a velocity
field uθt : [0, 1] × Rd → Rd implemented via a neural network with parameters θ, whose flow ψt

transforms samples from π1 to π0 through an ODE:

d

dt
ψt(x) = uθt (ψt(x)), ψ0(x) = x. (1)

After training, new samples X0 ∼ π0 are generated by solving the ODE starting from the prior
distribution samples X1 ∼ π1 with the learnd velocity field uθ

∗

t .

The method operates in two stages: 1)Probability Path Design. A conditional optimal transport path
is constructed by aggregating per-datapoint Gaussian paths:

pt(x) =

∫
pt|0(x|x0)q(x0)dx0, pt|0(x|x0) = N

(
x | tx0, (1− t)2I

)
.

This corresponds to the linear interpolation:

Xt = tX0 + (1− t)X1, X0 ∼ π0, X1 ∼ π1. (2)

2)Velocity Field Regression. The velocity field uθt is trained to match the conditional velocity field:

ut(x|x0) =
x0 − x

1− t
, (3)

using the Conditional Flow Matching (CFM) loss:

LCFM(θ) = Et,X0,X1

∥∥uθt (Xt)− ut(Xt|X0)
∥∥2

= Et∼U [0,1],X0∼π0,X1∼π1

∥∥uθt (Xt)− (X0 −X1)
∥∥2 . (4)

Crucially, this loss provides identical gradients to the intractable Flow Matching objective LFM while
being computationally efficient.

The simplicity of the CFM objective enables straightforward implementation, as the target velocity
reduces to the constant vector X0 − X1 independent of time t and current position Xt. During
inference, samples are generated by solving the learned ODE from X1 ∼ N (0, I) to t = 0.

3.2 DIFFUSION MODELS

A typical diffusion model Ho et al. (2020); Sohl-Dickstein et al. (2015); Song et al. (2020) usually
involves a forward process and a backward process. In the forward process, we construct a forward
diffusion transition kernel q(xt|xt−1) to transfer our data distribution into an easy-to-sample prior
distribution, usually the standard Gaussian distribution. In continuous diffusion models, the tran-
sition kernel is usually Gaussian. With the reparameterization property, we can easily obtain the
marginal distribution q(xt|x0). Then with Bayes’ theorem, we can obtain the ground-truth posterior
distribution q(xt−1|xt, x0).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Since x0 is usually available during the training phase, we typically use a parametric network
fθ(xt, t) to predict x0 (x0-prediction) or predict noise (ϵ-prediction) to minimize the KL divergence
between our parametric posterior pθ(·) and the ground-truth posterior distribution q(xt−1|xt, x0).
When the training phase is done, we successfully learn the backward transition. We first sample
from the prior distribution and sample back to our target distribution with the learned posterior
pθ(xt−1|xt, t).
Song et al. (2020) unified these diffusion models into a forward and backward framework. The
training target is to learn the score (i.e., the log-gradient of the data distribution). It’s interesting to
mention that the score actually has a quantitative equality to −ϵ/σ2 Vincent (2011); Song & Ermon
(2019), which leads to the gradient equality to the epsilon prediction in vanilla DDPM diffusion.

4 BERNOULLI FLOW MODELS

Bernoulli Flow Models are a binary generative model family that learn to sample from a target
Binary distribution by transforming samples from a simple base distribution (e.g., pure noise with
Bernoulli parameter 0.5) via a learned continuous-time Bernoulli probability flow. We first give the
high-level intuitive overview of the core differences between heuristic Bernoulli diffusion use and
BFM in below Fig.1, then we present the detailed formulation of BFM.

Early Bernoulli diffusion models, including the Bernoulli diffusion in Sohl-Dickstein et al. (2015)
and Binary Latent Diffusion (BLD) Wang et al. (2023), follow a common design pattern: one first
specifies a one-step forward noise schedule q(xt | xt−1) and then, by analytic derivation, obtains
a closed-form multi-step transition q(xt | x0) whose probability path mimics that of a continuous-
space diffusion process. Since their probability paths are constructed in this heuristic manner from
continuous-space diffusion, we refer to this family of methods as Heuristic Bernoulli Diffusion
Models (HBDM).

澳门科技大学 | Macau University of Science and Technology

Core Framework

x௧బ x௧ഓషభ x௧ഓ x௧ഓశభ
x௧೅

𝑞 x௧ഓ x௧బ

𝑞 x௧ഓ x௧ഓషభ, x௧బ

𝑞 x௧ഓషభ x௧ഓ, x௧బ

… …

② /①

① / ②

③ / ③

Figure 1: HBDM vs BFM. We illustrates the different design order choice in the forward process
between HBDM and BFM.

As shown in Fig.1, HBDM first designs a forward diffusion process with a carefully designed tran-
sition kernel, then they obtain the marginal distribution and posterior distribution. While BFM first
construct the optimal transport path between the target distribution and the prior distribution based
on (2) to construct the marginal Bernoulli probability distribution, then we derive the one-step tran-
sition kernel and posterior distribution.

4.1 NOTATION AND PROBLEM FORMULATION

Consider an arbitrary binary distribution pX(x) over the sample space X = {0, 1}d, where:

• d ∈ N+ denotes the dimensionality,

• X = (X1, . . . , Xd) is a discrete random vector taking values in X ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• x = (x1, . . . , xd) ∈ {0, 1}d represents a specific realization of the random vector.
• B represents the Bernoulli distribution.

Given a target binary target dataset observations of X0 ∼ π0 and a prior X1 ∼ π1 where π1 =
B(0.5), the Optimal Transport path of Bernoulli probability flow can be constructed as follows:

Xtτ ∼ B(tτX0 + (1− tτ)X1), tτ ∈ [1, 0], τ = 0, 1, 2, ..., T (5)

Which means Xt0 ≡ X0 , XtT ≡ X1 and Xtτ is the Bernoulli probability flow path from X0 to X1.

4.2 BERNOULLI PROBABILITY FLOW DYNAMICS

With the Bernoulli probability flow path defined above and the prior distribution π1 being a Bernoulli
distribution with a parameter of 0.5 (binary white noise), the marginal probability transition from
target observations X0 (or Xt0) to Xtτ can be expressed as:

q(Xtτ |Xt0) = B(Xtτ ;αtτ),

αtτ = g(Xt0 ,
1− tτ

2
),

g(a, b) = a(1− b) + b(1− a),

(6)

And we can further obtain the one-step transition probability:

q(XtT |Xtτ−1
) = B(Xtτ ; g(Xtτ−1

, γtτ)),

γtτ =
0.5(tτ−1 − tτ)

tτ−1
,

(7)

where γtτ is the flip probability fromXtτ−1 toXtτ . We can further obtain the ground truth posterior
distribution of Xtτ given Xtτ−1 , Xt0 :

q(Xtτ−1
|Xtτ , Xt0) = B(Xtτ−1

;
g(Xtτ , γtτ)αtτ−1

g(g(Xtτ , γtτ), 1− αtτ−1
)
) (8)

with

q(Xtτ−1 |Xtτ , Xt0) =
q(Xtτ |Xtτ−1 , Xt0)q(Xtτ−1 |Xt0)

q(Xtτ |Xtτ−1)q(Xtτ−1 |Xt0) + q(Xtτ |¬Xtτ−1)q(¬Xtτ−1 |Xt0)
. (9)

Similar to DDPM Ho et al. (2020) X0-predction, we parameterize our flow model fθ to predict Xt0
directly to match the Bernoulli posterior probability path, this would allow us to sample back to our
target distribution π0 from the prior distribution π1. The backward Bernoulli flow transition step can
be expressed as:

pθ(Xtτ−1 |Xtτ , Xt0) = B(Xtτ−1 ;
g(Xtτ , γtτ)g(fθ(Xtτ , tτ),

1−tτ−1

2)

g(g(Xtτ , γtτ), 1− g(fθ(Xtτ , tτ),
1−tτ−1

2))
) (10)

In order to predict Xt0 accurately, we use binary cross entropy to calculate the entropy loss and the
loss function can be written as:

LBCE(θ) := Etτ ,Xt0 ,Xtτ

[
Xt0 log (fθ(Xtτ , tτ))

+ (1−Xt0) log (1− fθ(Xtτ , tτ))
] (11)

Proofs of this section can be found in Appendix A.

4.3 MODEL TRAINING AND SAMPLING

We now describe how BFM can be trained and sampled by minimal modification of existing binary
diffusion Wang et al. (2023) training and sampling architectures, as summarized in Algorithms 1
and 2, where we highlight the differences between BFM and existing binary diffusion models in
blue. The prediction of Xt0 is implemented via a neural network fθ(Xtτ , tτ) = σ(Tθ(Xtτ , tτ)/κ),
where σ(·) is the sigmoid function, Tθ is a neural network with parameters θ, and κ is a temperature
hyperparameter. The temperature is used to control the diversity of the generated samples. A smaller
temperature leads to less diverse samples, while a larger temperature increases diversity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Training procedure.

1: Given: Binary diffusion model fθ parametrized by Tθ; An dataset X.
2: Given: Diffusion steps T ; Probability path defined by (5); Training steps I .
3: Initializing Tθ.
4: for Step i = 1 : I do
5: Sampling data xt0 ∼ X, and time step τ ∼ {1, . . . , T}.
6: Obtaining xtτ using xt0 , tτ , and probability path with (5).
7: Predicting the probability that the state is xt0 using fθ(xtτ , tτ) = σ(Tθ(xtτ , tτ)/κ).
8: Calculating loss L using (11).
9: Backpropagating L and updating θ.

10: end for
11: Return Binary diffusion model fθ.

Algorithm 2 Sampling procedure.

1: Given: Trained binary diffusion model fθ;The sample shape dimension shape.
2: Given: Diffusion steps T ; Probability path defined by (5); Temperature κ.
3: Sampling xtT = Bernoulli(xinit), where xinit ∈ Rshape and contains 0.5 only.
4: for Step τ = T : 1 do
5: Predicting pθ(xtτ−1

) with fθ(xtτ , tτ) = σ(Tθ(xtτ , tτ)/κ) and (10).
6: Sampling xtτ−1

= Bernoulli(pθ(xtτ−1
))

7: end for
8: x̂t0 = xtτ−1

9: Return the final sample x̂t0 .

5 EXPERIMENTS

We empirically validate the proposed BFM on diverse binary generative modeling tasks. In order
to demonstrate the binary generative capability of BFM, we first conduct experiments on binarized
MNIST, CIFAR10, and FFHQ 64x64 datasets. Next, we connect BFM to statistical physics by
applying it to the Ising model, a canonical probabilistic model defined over a set of interacting
spin variables, and we visualize the magnetization of the generated samples and compare it with
the standard Wolff cluster algorithm Wolff (1989) samples. Finally, we demonstrate that our BFM
can also supportted as a binary-representation latent space generative model for high-dimensional
image generation tasks, and achieve competitive performance compared to current state-of-the-art
continuous and discrete generative models, we report the Frechet Inception Distance (FID) Heusel
et al. (2017) scores and Precision and Recall (Prec.&Rrec.) Sajjadi et al. (2018) metrics on the
LSUN Bedroom and Church datasets and FFHQ dataset. We conduct comparisions by generating
50K samples and comparing them with the corresponding training datasets in every experiment.

5.1 MODEL AND TRAINING SETUP

To ensure a rigorous and fair comparison with BLD Wang et al. (2023), we implement BFM directly
on top of the official BLD codebase. For the Ising model, binarized MNIST, and the 256 × 256
datasets (LSUN Bedrooms, LSUN Churches, and FFHQ), we fully adhere to the experimental set-
tings of BLD, employing the identical full transformer backbone and hyperparameters. The only
exceptions are the CIFAR-10 and FFHQ 64× 64 datasets, where we employ the U-Net architecture
from guided-diffusion Dhariwal & Nichol (2021). For these two datasets, apart from the specific
U-Net backbone, all other hyperparameters remain identical to the BLD baseline.

All experiments are conducted on two NVIDIA GeForce RTX 4090 GPUs. We use the Adam
optimizer with β1 = 0.9, β2 = 0.99, and ϵ = 1 × 10−8, coupled with a warm-up scheduler (peak
learning rate of 1 × 10−4 after 10K iterations). The total training iterations are set to 800K for the
256× 256 datasets, 60K for CIFAR-10 and FFHQ 64× 64, and 100K for binarized MNIST.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Conditional MNIST (b) CIFAR10 (c) FFHQ 64x64

Figure 2: Samples from BFM. Fig. 2a shows conditional binarized MNIST samples with con-
ditional BFM. Figs. 2b and 2c shows unconditional samples from binarized CIFAR10 and FFHQ
datasets, respectively.

5.2 TOY BINARIZED IMAGE GENERATION

To validate the generative performance of BFM on high-dimensional binary manifolds, we first
conduct experiments on binarized MNIST, CIFAR10, and FFHQ 64x64 datasets. For the binarized
MNIST dataset, we apply a thresholding scheme where pixels greater than 0 are set to 1, and others
are set to 0. For CIFAR-10 and FFHQ 64×64, we treat each pixel’s color channel intensity (an 8-bit
unsigned integer) as a separate scalar value. We then binarize it by converting the value into its
fixed-length 8-bit binary expansion. This process effectively unpacks the bit depth of each channel,
replacing a single intensity value with 8 binary bits. Thus, each pixel is transformed from a 3-
channel tuple into a flattened binary vector of length 24 (3 channels × 8 bits). We visualize the
generated samples in Fig. 2. We evaluate the conditional generative performance of BFM on the
binarized MNIST dataset and report the FID scores in Table 1, comparing it with other state-of-the-
art methods. As shown, BFM achieves the second-best FID score of 0.42. The FID metric used to
evaluate our generated binarized MNIST samples follows the same codebase as the one used in the
SFM Cheng et al. (2024) GitHub repository. For binarized CIFAR10 and FFHQ 64x64 datasets, we
achieve FID scores of 72.15 and 35.72, respectively.

Model Base method FID
Blackout Diffusion Santos et al. (2023) Diffusion 0.02
SFM Cheng et al. (2024) Flow Matching 4.62
α-Flow Cheng et al. (2025) Flow Matching 5.02
DMPM Pham et al. (2025) Score-based Diffusion 2.89
CoVAE Silvestri & Ambrogioni (2025) VAE 0.58
BFM (ours) Flow Matching & Diffusion 0.42

Table 1: Comparison of FID scores for various methods on binarized MNIST. The best and second-
best results are highlighted in bold and underline, respectively.

5.3 CONNECTING TO STATISTICAL PHYSICS: ISING MODEL GENERATION

We evaluate our BFM algorithm on the Ising model, a canonical probabilistic model in statistical
physics defined over a set of D interacting spin variables s ∈ {+1,−1}D (Ising, 1925). In order
to obtain the simulate Ising samples at different temperatures, we use the Wolff cluster algorithm
Wolff (1989) to obtain the Ising samples at different temperatures. We conisder a 20x20 2D lat-
tice Ising model with periodic boundary conditions, where each spin interacts with its four nearest
neighbors. The Markov chain is run for 1000 steps to reach thermal equilibrium, we sample 500
samples for as training set and 100 samples for validation set at each temperature from 1.50 to 3.10.
We train conditional BFM for 100K iterations with a batch size of 64 using above simulated training
set. During inference, we use 64 sampling steps to generate Ising samples from pure noise. Fig. 3
compares the samples generated by BFM and the validate samples from above simulate results at

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) BFM Ising Samples (b) Wolff cluster Ising Samples

Figure 3: Comparison of Ising samples generated by BFM and ground truth across temperatures
(1.50 to 3.10).

different temperatures. We can see that BFM can generate high-quality Ising samples that are visu-
ally indistinguishable from the ground truth samples across a range of temperatures. We show the
magnetization of the generated samples compared to the samples from the Wolff cluster algorithm
in different temperatures in Appendix B.1.

澳门科技大学 | Macau University of Science and Technology

Ising

Temp 2.0

GT
samples

BFM
samples

Temp 2.5

Figure 4: Comparison of Ising 20x20 lattice samples generated by BFM and ground truth at temper-
atures 2.0 and 2.5.

5.4 HIGH-DIMENSIONAL IMAGE GENERATION WITH LATENT BFM

To further validate the generative performance of BFM, we employ it as a latent space generator
for high-dimensional image synthesis. We leverage the pre-trained encoder and decoder from BLD
Wang et al. (2023) to map images from the LSUN (Bedroom and Churches) and FFHQ datasets into
a binary latent space of 16× 16× 64. Detailed implementation specifics of the autoencoder can be
found in Wang et al. (2023).

Ensuring a fair comparison with the BLD baseline presented a challenge due to the absence of
original training scripts and hardware differences. To address this, we provide results from both
the original paper and our own reproduction. Crucially, both BFM and the reproduced BLD
strictly follow the training configurations of the original BLD, sharing the identical backbone,
learning rate, loss function, and iterations. As shown in Table 2, BFM demonstrates competitive
performance against established discrete baselines (e.g., D3PM, VQ-Diffusion) while requiring sig-
nificantly fewer sampling steps (64 vs. 200). On the challenging FFHQ dataset, BFM achieves a
Recall of 0.49, rivaling state-of-the-art methods in diversity. While a numerical gap exists com-
pared to the original BLD report due to hardware constraints, BFM consistently outperforms the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

澳门科技大学 | Macau University of Science and Technology

Bedrooms Churches FFHQ

LSUN Bedrooms LSUN Churches FFHQ

Figure 5: Samples from BFM on LSUN-Bedrooms, LSUN-Churches and FFHq datasets. All sam-
ples resolution are 256x256.

Table 2: Comparison of various methods for generating images of LSUN Bedrooms and Churches
and FFHQ datasets. All images are of resolution 256x256.

Methods Steps LSUN-Bedrooms 256x256 LSUN-Churches 256x256 FFHQ 256x256
FID ↓ Prec. ↑ Recall ↑ FID ↓ Prec. ↑ Recall ↑ FID ↓ Prec. ↑ Recall ↑

Continuous Generative Models
PGGAN Karras et al. (2017) - 8.34 0.48 0.40 6.42 0.65 0.39 - - -

StyleGAN Karras et al. (2019; 2020) - 2.35 0.59 0.48 3.86 0.60 0.43 4.16 0.71 0.46
LDM-4/8/4 Rombach et al. (2022) 200 2.95 0.66 0.48 4.02 0.64 0.52 4.98 0.73 0.50

Patch-DM Ding et al. (2024) 50 6.04 0.56 0.44 5.49 0.62 0.53 10.02 0.68 0.44
VQ-LCMD Nguyen et al. (2024) 200 4.16 0.72 0.40 4.99 0.75 0.42 7.25 0.72 0.46

Discrete Generative Models
D3PM Austin et al. (2021) 200 6.60 0.60 0.35 6.02 0.68 0.39 9.49 0.71 0.41

VQ-Diffusion Gu et al. (2022) 200 7.19 0.54 0.37 6.88 0.72 0.37 8.79 0.70 0.43
MaskGIT Chang et al. (2022) 200 8.39 0.67 0.38 4.07 0.71 0.45 11.45 0.75 0.44

BLD Wang et al. (2023) 64 3.85 0.65 0.44 4.36 0.68 0.50 5.85 0.73 0.50
BLD (Reproduced) 64 6.22 0.69 0.36 5.48 0.66 0.41 11.46 0.68 0.48

BFM (ours) 64 5.86 0.69 0.37 5.32 0.66 0.41 10.87 0.68 0.49

reproduced BLD baseline under the strictly unified setting across all datasets (e.g., FID 5.86
vs. 6.22 on Bedrooms, 10.87 vs. 11.46 on FFHQ). This confirms that under identical computa-
tional budgets, BFM provides a superior trade-off between generation quality and efficiency. The
visualized samples shown in Fig. 5 further validate BFM’s ability to generate diverse and realistic
high-dimensional images.

5.5 SAMPLING EFFICIENCY ANALYSIS

In order to further demonstrate the potential advantage of our proposed BFM in terms of inference
speed and quality. We conduct experiments on LSUN churches 256×256 dataset with different NFE.
We compare our BFM with BLD in terms of FID versus the NFE from two perspectives: Fixed
training sampling steps. We use checkpoints trained with 256 sampling steps and vary the NFE
at inference, reporting the corresponding FID. Varying training sampling steps. We train separate
models with 16, 32, 64, 128, and 256 sampling steps and, for each model, evaluate FID across its
own range of NFE.

We use the same training settings as described in Sec. 5.1, except that we set the number of training
iterations to 50K for all models to ensure a fair comparison.

In Fig. 6a, notice that when we sampling with different NFE in the same 256 checkpoint, BFM con-
sistently outperforms BLD by a large margin. BLD performance poor at low NFE, whereas BFM
demonstrates strong self-consistency and stable performance across different NFE. Upon investi-
gating the underlying causes, we identified a theoretical discrepancy in the cross-step posterior
sampling process of the official BLD implementation. This issue hinders the model from accurately
sampling the correct posterior transition. Here we give a detail discussion in Appendix C.1.

In Fig. 6b, we can see that when we train separate models with different sampling steps, BFM
consistently outperforms BLD across all NFE. This further demonstrates the advantage of BFM in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250
NFE

0

25

50

75

100

125

150

175

200

FI
D

BFM (ours)
BLD

(a) Fixed training sampling steps (256).

0 50 100 150 200 250
NFE

9.2

9.4

9.6

9.8

10.0

10.2

10.4

FI
D

BFM (ours)
BLD

(b) Varying training sampling steps.

Figure 6: FID versus NFE on LSUN Churches 256 × 256 for BFM and BLD under two evaluation
settings: (a) using checkpoints trained with 256 sampling steps and varying the NFE at inference;
(b) using checkpoints trained with 16, 32, 64, 128, and 256 sampling steps and, for each, reporting
FID across its own NFE schedule.

terms of inference speed and quality. The discussion on probability path design for this comparision
can be found in Appendix C.2.

6 DISCUSSION

The proposed BFM presents a novel and versatile framework for generative modeling of binary data,
with significant potential for expansion into temporal and cross-disciplinary applications. By con-
structing a continuous probability flow between arbitrary Bernoulli distributions and a simple noise
prior, BFM eliminates the need for problem-specific codecs while maintaining high expressivity.
Notably, BFM exhibits high stability and self-consistency cross-step sampling; experiments con-
firm its ability to generate high-quality samples even with significantly low NFE. Above advantages
positions BFM as a promising candidate for modeling complex time-dependent binary phenomena
in social thermodynamics—such as election outcomes, financial market movements, and migra-
tion patterns—where traditional Ising-like models have been applied but often lack efficient sam-
pling and training mechanisms. Furthermore, the model’s ability to capture binary state dynamics
suggests immediate applicability in biological systems, including neural spiking activity and gene
expression switching, where binary states are inherent. Future work will focus on integrating tem-
poral dependencies through recurrent or attention-based mechanisms and exploring large-scale real-
world applications in biological systems. Interdisciplinary collaboration will be essential to address
domain-specific challenges such as non-stationarity, sparse data, and interpretability requirements.

7 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our model architecture, training procedures, and hyperparameter
settings in the main text and Appendix. To ensure the reproducibility of our results, we will release
the complete codebase soon.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint, 2024. URL https://arxiv.org/abs/2402.04997.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11315–11325, 2022.

Chaoran Cheng, Jiahan Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical mani-
folds. Advances in Neural Information Processing Systems, 37:54787–54819, 2024.

Chaoran Cheng, Jiahan Li, Jiajun Fan, and Ge Liu. α-Flow: A Unified Framework for Continuous-
State Discrete Flow Matching Models. arXiv preprint arXiv:2504.10283, 2025.

Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ceylan, Michael Bronstein, and Joey Bose.
Fisher flow matching for generative modeling over discrete data. Advances in Neural Information
Processing Systems, 37:139054–139084, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Zheng Ding, Mengqi Zhang, Jiajun Wu Wu, and Zhuowen Tu. Patched denoising diffusion models
for high-resolution image synthesis. 2024.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems, 37:
133345–133385, 2024.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10696–10706, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in neural information
processing systems, 34:12454–12465, 2021.

Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31(1):253–258, 1925.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

11

https://arxiv.org/abs/2402.04997

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Volodymyr Kinakh and Slavi Voloshynovskiy. Binary diffusion probabilistic model. arXiv preprint,
2025. URL https://arxiv.org/abs/2501.13915. Under review.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Bac Nguyen, Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Stefano Ermon, and
Yuki Mitsufuji. Improving vector-quantized image modeling with latent consistency-matching
diffusion. arXiv preprint arXiv:2410.14758, 2024.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Le-Tuyet-Nhi Pham, Dario Shariatian, Antonio Ocello, Giovanni Conforti, and Alain Durmus. Dis-
crete markov probabilistic models. arXiv preprint arXiv:2502.07939, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. Advances in neural information processing systems,
31, 2018.

Javier E Santos, Zachary R Fox, Nicholas Lubbers, and Yen Ting Lin. Blackout diffusion: generative
diffusion models in discrete-state spaces. In International Conference on Machine Learning, pp.
9034–9059. PMLR, 2023.

Gianluigi Silvestri and Luca Ambrogioni. Covae: Consistency training of variational autoencoders.
arXiv preprint arXiv:2507.09103, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Harshit Varma, Dheeraj Nagaraj, and Karthikeyan Shanmugam. Glauber generative model: Discrete
diffusion models via binary classification. arXiv preprint arXiv:2405.17035, 2024.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Ze Wang, Jiang Wang, Zicheng Liu, and Qiang Qiu. Binary latent diffusion. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 22576–22585, 2023.

Ulli Wolff. Collective monte carlo updating for spin systems. Physical Review Letters, 62(4):361,
1989.

Julia Wolleb, Florentin Bieder, Paul Friedrich, Peter Zhang, Alicia Durrer, and Philippe C Cattin.
Binary noise for binary tasks: Masked bernoulli diffusion for unsupervised anomaly detection. In
International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.
135–145. Springer, 2024.

12

https://arxiv.org/abs/2501.13915

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOFS OF BERNOULLI PROBABILITY FLOW DYNAMICS

We give the detailed proofs of Bernoulli Probability Flow Dynamics in this section.

Proof of Marginal Distribution from Xt0 to Xtτ . Let’s first prove the marginal distribution from
Xt0 to Xtτ in equation 6:

Let X0 ∈ {0, 1} be a random variable from some data distribution and X1 ∼ Bernoulli(0.5) be a
random variable sampled from a Bernoulli distribution with parameter 0.5, where all elements of
X0 and X1 are either 0 or 1. For a sequence of parameters tτ ∈ [1, 0] with τ = 0, 1, 2, . . . , T (note
that tτ decreases from 1 to 0 as τ increases), we define the random variable Xtτ conditionally on
X0 and X1 as:

Xtτ ∼ Bernoulli (tτX0 + (1− tτ)X1) .

This definition implies that given X0 and X1, the value of Xtτ is sampled from a Bernoulli distri-
bution with parameter p = tτX0 + (1 − tτ)X1. Since X0 and X1 are binary, p is always a valid
probability between 0 and 1.

We aim to derive the conditional distribution q(Xtτ | X0), which requires marginalizing over X1.
Given that X1 ∼ Bernoulli(0.5), we compute P(Xtτ = 1 | X0) for each value of X0.

Case 1: X0 = 0

P(Xtτ = 1 | X0 = 0) = EX1
[P(Xtτ = 1 | X0 = 0, X1)]

= EX1
[tτ · 0 + (1− tτ)X1]

= (1− tτ) · E[X1]

= (1− tτ) · 0.5 = 0.5(1− tτ).

Thus, q(Xtτ | X0 = 0) = Bernoulli(0.5(1− tτ)).

Case 2: X0 = 1

P(Xtτ = 1 | X0 = 1) = EX1
[P(Xtτ = 1 | X0 = 1, X1)]

= EX1
[tτ · 1 + (1− tτ)X1]

= tτ + (1− tτ) · E[X1]

= tτ + (1− tτ) · 0.5 = 0.5(1 + tτ).

Thus, q(Xtτ | X0 = 1) = Bernoulli(0.5(1 + tτ)).

Combining both cases, we express the probability uniformly:

P(Xtτ = 1 | X0) =
1 + (2X0 − 1)tτ

2
.

Therefore, the transition probability is:

q(Xtτ | X0) = Bernoulli
(
1 + (2X0 − 1)tτ

2

)
,

which can also be expressed as:

q(Xtτ | X0) = Bernoulli
(
g(Xt0 ,

1− tτ
2

)

)
,

where g(a, b) = a(1 − b) + b(1 − a). This completes the proof of the marginal distribution from
Xt0 to Xtτ .

Proof of probability transition from Xtτ−1 to Xtτ in equation 7.

We define the binary state variable Xtτ ∈ {0, 1} at time τ , and assume a Markovian transition
process from Xtτ−1

to Xtτ with an error rate γtτ . The conditional transition probability is given by
a Bernoulli distribution:

q(Xtτ |Xtτ−1 , Xt0) = B
(
Xtτ ;Xtτ−1(1− γtτ) + (1−Xtτ−1)γtτ

)
,

where B(x; p) denotes the Bernoulli probability mass function with parameter p.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

𝑋௧బ 𝑋௧ഓషభ

1

0

1

0

1

0

𝑋௧ഓ

Figure 7: Bernoulli probability transition path illustration.

Let αtτ be the marginal probability of Xtτ = 1 given Xt0 :

αtτ =
1 + (2Xt0 − 1)tτ

2
, (12)

where Ttτ is a function defining the schedule of the process. Similarly,

αtτ−1
=

1 + (2Xt0 − 1)tτ−1

2
. (13)

We now consider all paths that lead to Xtτ = 1. The marginal probability αtτ can be expressed via
the law of total probability (see Fig. 7 for an illustration):

αtτ = q(Xtτ = 1|Xt0) =
∑

x∈{0,1}

q(Xtτ = 1|Xtτ−1
= x,Xt0) · q(Xtτ−1

= x|Xt0). (14)

Substituting the transition probabilities and marginal probabilities:

αtτ =
[
αtτ−1

(1− γtτ) + (1− αtτ−1
)γtτ

]
. (15)

Rearranging terms:
αtτ = αtτ−1 − 2γtταtτ−1 + γtτ . (16)

Solving for γtτ :

γtτ =
αtτ−1 − αtτ

2αtτ−1 − 1
. (17)

Thus, the transition probability is fully specified as:

q(Xtτ |Xtτ−1
, Xt0) = B

(
Xtτ ;Xtτ−1

(1− γtτ) + (1−Xtτ−1
)γtτ

)
, (18)

with
γtτ =

αtτ−1 − αtτ

2αtτ−1 − 1
.

Substituting αtτ and αtτ−1
in equation 12 and in equation 13, we have:

γtτ =
0.5(tτ−1 − tτ)

tτ−1
, (19)

Proof of posterior probability in equation 8. We aim to derive the posterior distribution
q(Xtτ−1 |Xtτ , Xt0) using Bayes’ theorem. Starting from the conditional Bayes’ rule in binary vari-
ables case in equation 9.

Remember that we wanna find the Bernoulli parameter, which means we want to find the probability
of Xtτ−1

= 1 given Xtτ and Xt0 :

q(Xtτ−1
= 1 | Xtτ , Xt0) (20)

=
q(Xtτ | Xtτ−1

= 1, Xt0) · q(Xtτ−1
= 1 | Xt0)

q(Xtτ | Xtτ−1
= 1) · q(Xtτ−1

= 1 | Xt0) + q(Xtτ | Xtτ−1
= 0) · q(Xtτ−1

= 0 | Xt0)
. (21)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We now define the following transition probabilities using the noise schedule parameters γtτ and
αtτ :

q(Xtτ | Xtτ−1 = 1) = Xtτ (1− γtτ) + (1−Xtτ)γtτ , (22)
q(Xtτ | Xtτ−1 = 0) = 1− (Xtτ (1− γtτ) + (1−Xtτ)γtτ), (23)

q(Xtτ−1
= 1 | Xt0) =

1 + (2Xt0 − 1)tτ−1

2
= αtτ , (24)

q(Xtτ−1
= 0 | Xt0) = 1− 1 + (2Xt0 − 1)tτ−1

2
= 1− αtτ−1

. (25)

Substituting these into Equation equation 21, we obtain:

q(Xtτ−1
= 1 | Xtτ , Xt0) (26)

=
(Xtτ (1− γtτ) + (1−Xtτ)γtτ) · (αtτ−1

)

(Xtτ (1− γtτ) + (1−Xtτ)γtτ) · αtτ−1
+ (1− (Xtτ (1− γtτ) + (1−Xtτ)γtτ)) · (1− αtτ−1

)
.

(27)

Simplifying the denominator and numerator with g(a, b) = a(1 − b) + b(1 − a), we arrive at the
final expression:

q(Xtτ−1
= 1 | Xtτ , Xt0) =

g(Xtτ , γtτ)αtτ−1

g(g(Xtτ , γtτ), 1− αtτ−1)
(28)

This concludes the derivation of the posterior distribution for the binary state transition process.

B ADDITIONAL QUALITATIVE RESULTS

B.1 ISING MODELS

1.50 1.75 2.00 2.25 2.50 2.75 3.00
Temperature (T)

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ne
ti

za
ti

on
 (

M
(T

))

Tc 2.269

Magnetization of BFM and Wolff Cluster Ising Samples

Wolff Cluster
BFM
Critical T 2.269

Figure 8: Magnetization curve of BFM generated and Wolff cluster Ising samples.

Fig. 8 illustrates the magnetization curve of the Ising model samples generated by our BFM. We
observe that BFM is highly effective at generating physical states conditioned on temperature. The
resulting magnetization curve aligns well with the ground truth simulations produced by the tradi-
tional Wolff cluster algorithm, capturing the physical properties with high fidelity.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 VISUALIZATION OF DIFFERENT TEMPERATURES OF BFM GENERATED SAMPLES

Figure 9: Additional unconditional image generation results and comparisons at 256 × 256 with the
LSUN bedrooms dataset. The sampling temperatures are linearly interpolation between 0.5 and 1.0
from left to right.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 10: Additional unconditional image generation results and comparisons at 256 × 256 with
the LSUN churches dataset. The sampling temperatures are linearly interpolation between 0.5 and
1.0 from left to right.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 11: Additional unconditional image generation results and comparisons at 256 × 256 with
the FFHQ dataset. The sampling temperatures are linearly interpolation between 0.5 and 1.0 from
left to right.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.3 ALGORITHM FOR LATENT SPACE BFM

The flipping part in below algorithms is the residual prediction, which means rather than predicting
the clean dataXt0 , we predict the flipping part fromXtτ toXt0 as fθ(Xtτ , tτ). More deetails please
refer to Wang et al. (2023).

Algorithm 3 Training procedure.

1: Given: Trained encoder Ψ; Binary diffusion model fθ parametrized by Tθ; An image dataset Z.
2: Given: Diffusion steps T ; Probability path defined by (5); Training steps I .
3: Initializing Tθ.
4: for Step i = 1 : I do
5: Sampling image z ∼ Z, and time step τ ∼ {1, . . . , T}.
6: Obtaining binary code xt0 = Bernoulli(σ(Ψ(z))).
7: Obtaining xtτ using xt0 , tτ , and probability path with (5).
8: Predicting flipping probability fθ(xtτ , tτ).
9: Obtaining predicted xt0 as pθ(xt0) = (1− xtτ)⊙ fθ(xtτ , t) + xtτ ⊙ (1− fθ(xtτ , t)).

10: Calculating loss L using (11).
11: Backpropagating L and updating θ.
12: end for
13: Return Binary diffusion model fθ.

Algorithm 4 Sampling procedure.

1: Given: Trained decoder Φ; Trained binary diffusion model fθ;Latent dimension specified by
h′, w′, c.

2: Given: Diffusion steps T ; Probability path defined by (5); Temperature κ.
3: Sampling xtT = Bernoulli(xinit), where xinit ∈ Rh′×w′×c and contains 0.5 only.
4: for Step t = T : 1 do
5: Predicting pθ(xtτ−1) with fθ(xtτ , tτ) = σ(Tθ(xtτ , tτ)/κ) and (10).
6: Sampling xtτ−1 = Bernoulli(pθ(xtτ−1)
7: end for
8: Return the sampled image as Φ(xtτ−1

).

B.4 THE USE OF LARGE LANGUAGE MODELS

We utilized a large language model to assist in correcting grammatical errors and improving sentence
expression in this paper. We acknowledge the large language model for its contribution to this paper.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 DISCUSSION ON CROSS-STEP SAMPLING CONSISTENCY OF BFM

In this section, we discuss the reason why BFM exhibits better sampling quality than BLD when
using different NFE from the same trained checkpoint. This property is particularly important in
practical applications, as it allows for flexible adjustment of sampling speed and quality trade-offs
without the need for retraining the model. We follow the notation used in BLD to explain this issue.
In the sampling scenario of Fig. 6a, when we sample with K NFE from a model trained with N
steps, we need to perform cross-step sampling with stride m = N/K. According to Eq. (9) in BLD,
the posterior transition can be written as

q(zt−m|zt, z0) = q(zt|zt−m, z0)q(zt−m|z0)
q(zt|z0)

. (29)

In the official BLD code implementation, the evidence transition term is implemented as

q(zt|zt−m, z0) = B(zt; zt−m(1− βt−m) + 0.5βt−m), (30)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

澳门科技大学 | Macau University of Science and Technology

Rebuttal

16 32 64 128 256

(a) BLD

澳门科技大学 | Macau University of Science and Technology

Rebuttal

16 32 64 128 256

(b) BFM

Figure 12: Visual comparison of samples generated with NFE from the respective checkpoints of
BLD and BFM, each trained separately with 256 sampling steps on LSUN Churches 256× 256. (a)
BLD and (b) BFM. For each method, each row corresponds to a different NFE setting, while images
in the same column share the same initial latent code.

which effectively uses only the last-step noise parameter βt−m for this cross-step update, however,
the corresponding exact evidence transition should be

q(zt | zt−m) = B

zt;

 t∏
j=t−m+1

(1− βj)

 zt−m + 0.5

1−
t∏

j=t−m+1

(1− βj)

 (31)

In contrast, in the framework of BFM, the cross-step posterior sampling is naturally supported by
our derived posterior transition in equation 7 and equation 8, which can be directly applied to any
arbitrary cross-step posterior transition with slight modification. The only modification is to repa-
rameterize the linear interpolation of tτ on [1, 0.5] from the original N training steps to a new
number of NFE K at sampling time. We refer to this property as the self-consistency of BFM
under cross-step sampling.

To understand why BFM has this self-consistency property, we refer the reader to Fig. 7. The evi-
dence transition q(Xtτ |Xtτ−1

, Xt0) fromXtτ−1
toXtτ is depending on γtτ , we use the marginal dis-

tribution fromXt0 toXtτ andXtτ−1
to derive γtτ and found it only depends on tτ and tτ−1 as equa-

tion 19 shows. Therefore, when we perform cross-step sampling with different NFE, we can simply
easily re-calculate γtτ based on the new tτ and tτ−1 without any approximation, which ensures the
correctness of the posterior transition. This is the key mechanism of BFM’s self-consistency prop-
erty in cross-step sampling. The self-consistency property makes BFM more flexible and robust in
cross-step sampling scenarios.

We further present visual results for different NFE sampled from the respective checkpoints of BLD
and BFM, both trained with 256 sampling steps, as shown in Fig. 12. We can observe that, due
to the accumulation of errors in the posterior probability transition, the samples generated by BLD
become increasingly blurry and noisy as the NFE decreases, whereas the samples generated by
BFM remain structurally stable across different NFEs. Although fine-grained content is not always
perfectly aligned with the original image, semantic information is largely preserved. These results
provide further empirical evidence for the self-consistency property of BFM in cross-step sampling
and indicate that BFM exhibits better tolerance to low NFE sampling during inference.

C.2 DICUSSION ON PROBABILITY PATH DESIGN FOR COMPARISON

To clarify, the probability path used by BFM in these experiments is the optimal transport path
defined in (5), which is also called the linear probability path. The probability path of BLD is the
cosine path defined in BLD. We now explain why we adopted this setting. Flow Matching Lipman
et al. (2022) demonstrated that the optimal transport path achieves better performance in terms of
fast training and low-NFE sampling. In their comparison, the baseline of the continuous diffusion
model is DDPM Ho et al. (2020), which has a curved probability path. Therefore, we maintain this
comparison consistency in terms of the comparison between flow-based models and diffusion-based

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

models in binary space. Below, we show the continuous probability paths of Flow Matching and
DDPM, and we also visualize the probability paths of BFM and BLD for better understanding.

(a) Flow Matching path. (b) DDPM path.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Linear (OT)

(c) BFM Linear path.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Cosine

(d) BLD Cosine path.

Figure 13: Illustration of probability paths in continuous and Bernoulli spaces. Panels (a) and
(b) show the evolution of the mean and variance along the probability paths for two representative
continuous models, Flow Matching and Diffusion, where the source distribution is a data distribution
centered at 3 and the target distribution is the Gaussian N (0, 1). Panels (c) and (d) depict the
Bernoulli probability paths of BFM with an linear (optimal transport) path and BLD with a cosine
path, respectively. More disscusion can be found in

C.3 ABLATION STUDY ON BERNOULLI PROBABILITY PATH SCHEDULING STRATEGIES

Fig. 14 visualizes how, under different probability paths, the probabilities associated with 1 (blue
curves) and 0 (red curves) are progressively driven towards 0.5 along the diffusion trajectory. To
systematically assess the impact of these schedulers on model performance, we select 3 different
probability path schedulers and conduct experiments on the LSUN churches 256×256 dataset using
the official BLD codebase. We keep the network architecture, learning rate, loss function, and all
optimization hyperparameters exactly the same, and train with a batch size of 96 for 50K iterations.
The only difference lies in the algorithm at the training and sampling stages.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Linear (OT)

(a) Linear

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Half Cosine

(b) Half cos

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Half Reverse Cos

(c) Reverse half cos

Figure 14: Bernoulli probability path schedulers.

We summarize the ablation results in Table 3. Under all three probability paths (linear, half-cosine,
and reverse half-cosine), BFM consistently achieves lower FID than BLD. Among them, the linear
scheduler gives the best overall performance for BFM (9.22). We also note that the FID of BFM
varies slightly more across different schedulers than that of BLD, although the overall variation
remains small.

Table 3: FID comparison of different Bernoulli probability path schedulers for BFM and BLD on
LSUN churches 256×256.

Scheduler FID ↓
BFM BLD

Linear 9.22 9.55
Half-cosine 9.41 9.53
Reverse half-cos 9.27 9.54

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.4 FASTER TRAINING

100 150 200 250 300 350 400
Training iterations (k)

7.5

8.0

8.5

9.0

9.5

FI
D

BFM (ours)
BLD

Figure 15: Training convergence comparison on LSUN Bedrooms. We visualize the FID scores
over training iterations (×103). Both BFM (ours) and BLD are trained under identical experimental
settings using a linear scheduler. Our BFM demonstrates faster convergence, achieving lower FID
scores consistently across all training steps compared to BLD.

Faster training convergence. While both BFM and BLD employ the same linear scheduler for
the probability path, we observe that BFM demonstrates significantly superior training efficiency.
To ensure a fair comparison, we conducted strictly controlled experiments on the LSUN Bedrooms
dataset, maintaining identical hyperparameters and hardware environments for both methods (except
for the core algorithm).

Fig. 15 illustrates the evolution of FID during training. BFM is able to lower the FID faster and to a
greater extent than BLD throughout the training process. In particular, BFM achieves an FID of 7.91
at just 200k iterations, which already exceeds the performance of BLD at 400k iterations (FID 8.0).
This implies that BFM requires approximately 50% fewer iterations to reach comparable generation
quality, substantially reducing the computational cost required for model training.

22

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	Flow Matching
	Diffusion Models

	Bernoulli Flow Models
	Notation and Problem Formulation
	Bernoulli Probability Flow Dynamics
	Model Training and Sampling

	Experiments
	Model and Training Setup
	Toy Binarized Image Generation
	Connecting to Statistical Physics: Ising Model Generation
	High-Dimensional Image Generation With Latent BFM
	Sampling Efficiency Analysis

	Discussion
	Reproducibility Statement
	Proofs of Bernoulli Probability Flow Dynamics
	Additional Qualitative Results
	Ising Models
	Visualization of Different Temperatures of BFM Generated Samples
	Algorithm for Latent Space BFM
	The Use of Large Language Models

	Additional Experimental Results
	Discussion on Cross-step Sampling Consistency of BFM
	Dicussion on Probability Path Design for Comparison
	Ablation Study on Bernoulli Probability Path Scheduling Strategies
	Faster Training

