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ABSTRACT

Diffusion-based generative modeling for data with Bernoulli distributions has
broad potential applications, but it relies on carefully designed forward processes.
Recently, flow matching-based methods have addressed this issue. However, when
these methods are naively applied to the Bernoulli distribution, their dependence
on predicting the instantaneous velocity field during sampling can introduce in-
valid Bernoulli parameters, leading to model collapse. To address this challenge,
we introduce Bernoulli Flow Models (BFM), a novel generative framework that
fuses flow matching with vanilla binary diffusion. BFM ensures valid Bernoulli
parameters throughout the sampling process by deriving a one-step forward tran-
sition kernel and a closed-form, normalized posterior based on the pre-defined
flow-matching probability path in the Bernoulli parameter space. As a result,
BFM simplifies the training process of current binary diffusion models and can be
easily integrated into existing architectures with minimal modification. We em-
pirically validate the generative performance of BFM on high-dimensional binary
manifolds, including Ising model simulations, both unconditional and conditional
image generation. Experiments show that our model achieves comparable perfor-
mance to both continuous and discrete space generative models.

1 INTRODUCTION

The emergence of diffusion-based |Sohl-Dickstein et al.| (2015); Ho et al.| (2020); [Song et al.| (2020)
and flow-matching|Lipman et al.| (2022)); Liu et al.|(2022) generative models represents a significant
advance in modeling high-dimensional data manifolds of real-valued states. However, Bernoulli
distributions, which constitute the fundamental discrete state space, have not undergone the same
extent of advancement as their continuous or multi-category discrete counterparts.

In the study of discrete generative models, Continuous-Time Markov Chains (CTMC) serves as the
underlying framework for many works, such as [Lou et al.| (2023), |Gat et al.| (2024), and (Campbell
et al.| (2024), however, these CTMC-based methods must overcome the challenge of managing the
explosion in predictive dimensionality caused by transition matrices. Binary Latent Diffusion Wang
et al.| (2023) circumvent CTMC by Bernoulli probability transition and keeping Bernoulli parameter
valid throughout sampling time by a normalized posterior, however it necessitates a carefully de-
signed forward binarized diffusion process. In contrast, flow matching methods|Lipman et al.|(2022)
Liu et al.|(2022) offer a simpler alternative by constructing probability paths through straightforward
interpolation between the data and prior distributions, thereby significantly streamlining the training
procedure. In flow matching, the generative process is modeled as a deterministic Ordinary Differ-
ential Equation (ODE): %xt = vg(x¢, 1), where vy (¢, t) is the velocity field predicted by the neural
network. This ODE describes how a sample x; evolves over time from the prior distribution p; to the
data distribution pg. To sample from the model, one integrates this ODE over time using numerical
methods such as the Euler method. However, when applied to Bernoulli distributions, the predicted
velocity field can cause parameters to fall outside the valid range [0, 1], leading to invalid values
and potential model collapse, as the ODE integration does not constrain the parameters within this
range.

To address the above challenges, in this work, we introduce Bernoulli Flow Models (BFM), a
novel generative framework that leverages the simplicity of discrete flow models, combined with the
Markov posterior Bayesian framework inherent in diffusion processes, to develop a generative model
applicable to arbitrary binary distributions. BFM constructs a pre-defined, meaningful probability
path within the Bernoulli parameter space. From this path, we derive two critical components: 1)
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a one-step forward transition kernel that defines how data are corrupted at any given time, and
2) a closed-form, normalized posterior distribution. The existence of this analytical posterior is
crucial, as it allows for training using a simplified, denoising-based objective reminiscent of standard
diffusion models. More importantly, during sampling, the model navigates a deterministic trajectory
defined by the flow, entirely avoiding the pitfalls of regressing an unconstrained velocity field. This
guaranties that all intermediate Bernoulli parameters are valid, preventing model collapse.

Our contributions can be summarized as follows.

* A New Generative Framework: We propose Bernoulli Flow Models (BFM), a new novel
generative framework that unifies the training simplicity of flow matching with the sam-
pling stability of binary diffusion. BFM ensures the validity of all parameters throughout
the generative process.

* Theoretical Formulation: We derive a closed-form one-step transition kernel and the cor-
responding posterior distribution based on a pre-defined flow-based probability path. This
derivation enables a straightforward training procedure that simplifies existing approaches
to binary diffusion.

* Sampling Efficiency and Consistency: Experiments on LSUN Churches 256 x 256 in-
dicate that BFM outperforms existing baselines methods in terms of inference efficiency.
Unlike previous methods that suffer from quality degradation when the Number of Function
Evaluations (NFE) is reduced, BFM exhibits high stability and self-consistency cross-step
sampling. This allows for high-quality generation with fewer sampling steps, significantly
reducing computational costs without sacrificing visual fidelity.

* Ease of Integration and Competitive Performance: We demonstrate that BFM can be
easily integrated into existing architectures for binary data with minimal modification.
Through extensive experiments on high-dimensional binary manifolds—including simu-
lations of the Ising model, unconditional image generation, and conditional generation
tasks—we show that BFM achieves generative performance comparable to both state-of-
the-art continuous and discrete space generative models.

2 RELATED WORK

Discrete Diffusion and Flow Matching Models. Diffusion models for discrete data modeling, in-
troduced for generative modeling in [Sohl-Dickstein et al.| (2015), have evolved significantly over
time. Early works such as Argmax flows Hoogeboom et al.| (2021)) and D3PM |Austin et al.| (2021)
extended these models to categorical data by considering the noising process as a discrete Markov
chain. However, diffusion models still faced challenges when applied to certain discrete data types,
like text. To address this underperformance, [Lou et al.|(2023) extended the score-based diffusion
framework, introducing a new Score Entropy loss to estimate the ratios of the data distribution, re-
sulting in the highly competitive SEDD models. Concurrently, [Varma et al.| (2024) proposed the
Glauber Generative Model (GGM), a discrete diffusion model that utilizes the Glauber dynamics (a
type of heat bath dynamics) to denoise sequences of tokens. Building on these developments, Camp-
bell et al.| (2024) and |Gat et al.| (2024)) leveraged the Continuous-Time Markov Chains (CTMC)
framework to create powerful discrete flow models. These models have achieved state-of-the-art re-
sults in domains such as protein co-design and code generation, respectively. Following the success
of these CTMC-based models, a distinct line of research has introduced a more geometric perspec-
tive. Fisher-Flow Davis et al.|(2024), for instance, departs from the CTMC framework by viewing
categorical distributions as points on a statistical manifold, equipped with the Fisher-Rao metric.
Similarly, Statistical Flow Matching (SFM) |Cheng et al.| (2024) also explores the geometric struc-
ture of statistical manifolds, proposing a new framework for discrete flow matching. To address the
critical gap in guidance techniques for discrete generative models, Nisonoff et al.[(2024) recently in-
troduced the Discrete Guidance method, providing a general and principled framework for applying
guidance to diffusion and flow-matching-based discrete state-space models.

Binary Diffusion Models. Despite the pioneering work of |Sohl-Dickstein et al.|(2015) in applying
diffusion models to binary data, their adoption for binary tasks has remained limited due to subopti-
mal generative performance, particularly in high-dimensional binary manifolds. Recently, leverag-
ing advancements in vector quantized encoder-decoder techniques|Van Den Oord et al.[(2017) [Esser
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et al.[(2021), Wang et al.|(2023) introduced a vector quantized encoder-decoder with a binary latent
space. This approach enables the application of diffusion models in the binary latent space, achiev-
ing performance competitive with continuous latent diffusion models. [Wolleb et al.| (2024)) further
extends this approach by incorporating a multi-scale Bernoulli diffusion model, which allows for the
capture of more complex patterns in the latent space, thereby enhancing the ability to detect subtle
anomalies. More recently, [Kinakh & Voloshynovskiy|(2025) proposed the Binary Diffusion Proba-
bilistic Model (BDPM), which is tailored for binary data by leveraging XOR-based noise and binary
cross-entropy loss, enabling highly efficient inference with fewer steps despite a lack of detailed
theoretical proof.

3 BACKGROUND

3.1 FLOW MATCHING

Given a target data distribution X ~ my and a prior distribution X; ~ 7 that is easy to sample from
(typically Guassian A/(0, I) or uniform noise). Flow Matching (FM) is a framework for generative
modeling that constructs a probability path (p;)o<¢<1 between a target data distribution pg = mg a
known prior distribution p; = 7 during the forward process. The core idea is to learn a velocity
field u¢ : [0,1] x R* — R? implemented via a neural network with parameters 6, whose flow 1,
transforms samples from 7; to 7y through an ODE:

D) = (i@, ola) = . m

After training, new samples X, ~ 7o are generated by solving the ODE starting from the prior
distribution samples X ~ 71 with the learnd velocity field u! .

The method operates in two stages: 1)Probability Path Design. A conditional optimal transport path
is constructed by aggregating per-datapoint Gaussian paths:

pe(r) = /Pt|o($|$0)CI($o)d$0a Pt\o(x\xo) = N(x | tzo, (1 — t)2I) .

This corresponds to the linear interpolation:
Xt:tX()—l—(l—t)Xl, Xo ~ mo, X1 ~ 1. 2)
2)Velocity Field Regression. The velocity field u? is trained to match the conditional velocity field:

o — T
w(zlzo) = 5 — 3)
using the Conditional Flow Matching (CFM) loss:
2
Lerm(0) = By, xo,x, ||uf (Xe) — ue(Xe| Xo)| @

= Kt 4[0,1], Xo~mo, X1 ~om Hutg(Xt) — (Xo — X1)H2 .

Crucially, this loss provides identical gradients to the intractable Flow Matching objective Lpy while
being computationally efficient.

The simplicity of the CFM objective enables straightforward implementation, as the target velocity
reduces to the constant vector Xy — X independent of time ¢ and current position X;. During
inference, samples are generated by solving the learned ODE from X; ~ A (0,7) to ¢ = 0.

3.2 DIFFUSION MODELS

A typical diffusion model Ho et al.| (2020); |Sohl-Dickstein et al.[(2015); Song et al.| (2020) usually
involves a forward process and a backward process. In the forward process, we construct a forward
diffusion transition kernel g(z|z;_1) to transfer our data distribution into an easy-to-sample prior
distribution, usually the standard Gaussian distribution. In continuous diffusion models, the tran-
sition kernel is usually Gaussian. With the reparameterization property, we can easily obtain the
marginal distribution ¢(x¢|xzo). Then with Bayes’ theorem, we can obtain the ground-truth posterior
distribution g(x¢_1|x¢, xo).



Under review as a conference paper at ICLR 2026

Since zq is usually available during the training phase, we typically use a parametric network
fo(xs,t) to predict zq (zo-prediction) or predict noise (e-prediction) to minimize the KL divergence
between our parametric posterior py(-) and the ground-truth posterior distribution q(z;—1|x¢, o).

When the training phase is done, we successfully learn the backward transition. We first sample
from the prior distribution and sample back to our target distribution with the learned posterior

po(Ti—1|ze, ).

Song et al.| (2020) unified these diffusion models into a forward and backward framework. The
training target is to learn the score (i.e., the log-gradient of the data distribution). It’s interesting to
mention that the score actually has a quantitative equality to —e¢/o? [Vincent| (2011); Song & Ermon
(2019), which leads to the gradient equality to the epsilon prediction in vanilla DDPM diffusion.

4 BERNOULLI FLOW MODELS

Bernoulli Flow Models are a binary generative model family that learn to sample from a target
Binary distribution by transforming samples from a simple base distribution (e.g., pure noise with
Bernoulli parameter 0.5) via a learned continuous-time Bernoulli probability flow. We first give the
high-level intuitive overview of the core differences between heuristic Bernoulli diffusion use and
BFM in below Figl[I] then we present the detailed formulation of BFM.

Early Bernoulli diffusion models, including the Bernoulli diffusion in [Sohl-Dickstein et al.| (2015)
and Binary Latent Diffusion (BLD) [Wang et al.| (2023)), follow a common design pattern: one first
specifies a one-step forward noise schedule ¢(x; | x;—1) and then, by analytic derivation, obtains
a closed-form multi-step transition ¢(z; | o) whose probability path mimics that of a continuous-
space diffusion process. Since their probability paths are constructed in this heuristic manner from
continuous-space diffusion, we refer to this family of methods as Heuristic Bernoulli Diffusion
Models (HBDM).

2 /1 q(%e,|xe,)

D72 q(Xe, | Xe, )

N N N

Xty Xtr Xtrgr T

to
3//3 q(Xtr—l |Xt‘r’Xt0)

Figure 1: HBDM vs BFM. We illustrates the different design order choice in the forward process
between HBDM and BFM.

As shown in Fig[I] HBDM first designs a forward diffusion process with a carefully designed tran-
sition kernel, then they obtain the marginal distribution and posterior distribution. While BFM first
construct the optimal transport path between the target distribution and the prior distribution based
on (2)) to construct the marginal Bernoulli probability distribution, then we derive the one-step tran-
sition kernel and posterior distribution.

4.1 NOTATION AND PROBLEM FORMULATION
Consider an arbitrary binary distribution px (x) over the sample space X = {0, 1}¢, where:

» d € NT denotes the dimensionality,

* X = (X1, ..., X% is a discrete random vector taking values in X,
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o x = (z%,...,2%) € {0,1}% represents a specific realization of the random vector.

* B represents the Bernoulli distribution.

Given a target binary target dataset observations of Xy ~ my and a prior X; ~ m; where m; =
B(0.5), the Optimal Transport path of Bernoulli probability flow can be constructed as follows:

X ~B(t:Xo+ (1 —-1t,)X1), t-€][1,0,7=0,1,2,..,T 5)
Which means X, = Xy, X;,, = X1 and X, is the Bernoulli probability flow path from X to Xj.

4.2 BERNOULLI PROBABILITY FLOW DYNAMICS

With the Bernoulli probability flow path defined above and the prior distribution 7; being a Bernoulli
distribution with a parameter of 0.5 (binary white noise), the marginal probability transition from
target observations X (or X, ) to X;_can be expressed as:

q( X, | Xyy) = B(Xy,504,),
1—t,

T)’ (6)

g(avb) = a(l - b) + b(l - CL),
And we can further obtain the one-step transition probability:

(Xt | X, ) = B(Xe,59(Xe, 1, ve,))s
_ 05(tr1 1) g

Y

atT = g(Xtoﬂ

’YtT
tr—1

where ;_ is the flip probability from X; , to X; . We can further obtain the ground truth posterior
distribution of X;_ given X, Xyt

=19

. g(XtTa’ytT)atT,l
v g(g(thd’YtT)v 1- O‘tr_l)

q(XtTfllXtT7XtO) = B(Xt ) (8)

with

q(Xe, | Xe, 1, Xeg)a(Xe, [ Xe,)
q(Xe Xt )a(Xe, [ X)) + (Xe, [ Xt )g(= X0, [ Xe,)
Similar to DDPM Ho et al.|(2020) X-predction, we parameterize our flow model fy to predict X,
directly to match the Bernoulli posterior probability path, this would allow us to sample back to our

target distribution 7y from the prior distribution 7r1. The backward Bernoulli flow transition step can
be expressed as:

(X, | X, Xyy) =

(€))

g(XtTa’YtT)g(fﬁ(XtrvtT)’ 1_3—71)
g(g(Xtﬂ’ytq—)a 1- g(f9(Xt7—7tT)7 1_152771 ))

In order to predict X;, accurately, we use binary cross entropy to calculate the entropy loss and the
loss function can be written as:

Lpce(0) == E, x,, X, [ X4, log (fo(Xy,,tr))
+ (1= X, log (1= fo(Xe,.t,))]
Proofs of this section can be found in Appendix [A]

pQ(XtT,l |AX15T s Xto) = B(Xt

) (10)

=19

Y

4.3 MODEL TRAINING AND SAMPLING

We now describe how BFM can be trained and sampled by minimal modification of existing binary
diffusion [Wang et al| (2023) training and sampling architectures, as summarized in Algorithms [I]
and 2] where we highlight the differences between BFM and existing binary diffusion models in
blue. The prediction of X}, is implemented via a neural network fy(X: ,t;) = o(To(X¢.,tr)/K),
where o (-) is the sigmoid function, 7y is a neural network with parameters 6, and « is a temperature
hyperparameter. The temperature is used to control the diversity of the generated samples. A smaller
temperature leads to less diverse samples, while a larger temperature increases diversity.
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Algorithm 1 Training procedure.

Given: Binary diffusion model fy parametrized by 75; An dataset X.
Given: Diffusion steps T'; Probability path defined by (5); Training steps I.
Initializing 7.
for Stepi =1:Ido
Sampling data x, ~ X, and time step 7 ~ {1,...,T}.
Obtaining x;_ using X, t- , and probab1hty path W1th ()}
Predicting the probability that the state is x;, using fp(x¢_,t;) = o(To(Xt,,t+)/K).
Calculating loss £ using (TT).
Backpropagating £ and updating 6.
end for
Return Binary diffusion model fy.

TR IUNRERN

—_—

Algorithm 2 Sampling procedure.

Ju—

Given: Trained binary diffusion model fy;The sample shape dimension shape.

2: Given: Diffusion steps T'; Probability path defined by (5)); Temperature .

3: Sampling x;,, = Bernoulli(x™"), where x™"' € R*"%P¢ and contains 0.5 only.
4: for Step7 =T : 1 do

5: Predicting py(x;__,) with fop(x¢_,t;) = o(Tg(x¢,,t;)/k) and .

6: Sampling x;__, = Bernoulli(pg(x¢,_,))

7: end for

8: )A(to =Xt 4

9: Return the final sample X, .

5 EXPERIMENTS

We empirically validate the proposed BFM on diverse binary generative modeling tasks. In order
to demonstrate the binary generative capability of BFM, we first conduct experiments on binarized
MNIST, CIFAR10, and FFHQ 64x64 datasets. Next, we connect BFM to statistical physics by
applying it to the Ising model, a canonical probabilistic model defined over a set of interacting
spin variables, and we visualize the magnetization of the generated samples and compare it with
the standard Wolff cluster algorithm Wolff| (1989) samples. Finally, we demonstrate that our BFM
can also supportted as a binary-representation latent space generative model for high-dimensional
image generation tasks, and achieve competitive performance compared to current state-of-the-art
continuous and discrete generative models, we report the Frechet Inception Distance (FID) |Heusel
et al| (2017) scores and Precision and Recall (Prec.&Rrec.) [Sajjadi et al.| (2018) metrics on the
LSUN Bedroom and Church datasets and FFHQ dataset. We conduct comparisions by generating
50K samples and comparing them with the corresponding training datasets in every experiment.

5.1 MODEL AND TRAINING SETUP

To ensure a rigorous and fair comparison with BLD Wang et al.|(2023)), we implement BFM directly
on top of the official BLD codebase. For the Ising model, binarized MNIST, and the 256 x 256
datasets (LSUN Bedrooms, LSUN Churches, and FFHQ), we fully adhere to the experimental set-
tings of BLD, employing the identical full transformer backbone and hyperparameters. The only
exceptions are the CIFAR-10 and FFHQ 64 x 64 datasets, where we employ the U-Net architecture
from guided-diffusion |Dhariwal & Nichol| (2021). For these two datasets, apart from the specific
U-Net backbone, all other hyperparameters remain identical to the BLD baseline.

All experiments are conducted on two NVIDIA GeForce RTX 4090 GPUs. We use the Adam
optimizer with 3; = 0.9, B2 = 0.99, and € = 1 x 1078, coupled with a warm-up scheduler (peak
learning rate of 1 x 10~% after 10K iterations). The total training iterations are set to 800K for the
256 x 256 datasets, 60K for CIFAR-10 and FFHQ 64 x 64, and 100K for binarized MNIST.
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(a) Conditional MNIST (b) CIFAR10 (c) FFHQ 64x64

Figure 2: Samples from BFM. Fig. shows conditional binarized MNIST samples with con-
ditional BFM. Figs. [2b] and 2] shows unconditional samples from binarized CIFAR10 and FFHQ
datasets, respectively.

5.2 Toy BINARIZED IMAGE GENERATION

To validate the generative performance of BFM on high-dimensional binary manifolds, we first
conduct experiments on binarized MNIST, CIFAR10, and FFHQ 64x64 datasets. For the binarized
MNIST dataset, we apply a thresholding scheme where pixels greater than O are set to 1, and others
are set to 0. For CIFAR-10 and FFHQ 64x64, we treat each pixel’s color channel intensity (an 8-bit
unsigned integer) as a separate scalar value. We then binarize it by converting the value into its
fixed-length 8-bit binary expansion. This process effectively unpacks the bit depth of each channel,
replacing a single intensity value with 8 binary bits. Thus, each pixel is transformed from a 3-
channel tuple into a flattened binary vector of length 24 (3 channels x 8 bits). We visualize the
generated samples in Fig. 2] We evaluate the conditional generative performance of BFM on the
binarized MNIST dataset and report the FID scores in Table [T} comparing it with other state-of-the-
art methods. As shown, BFM achieves the second-best FID score of 0.42. The FID metric used to
evaluate our generated binarized MNIST samples follows the same codebase as the one used in the
SFM |Cheng et al.|(2024) GitHub repository. For binarized CIFAR10 and FFHQ 64x64 datasets, we
achieve FID scores of 72.15 and 35.72, respectively.

Model Base method FID
Blackout Diffusion|Santos et al.| (2023) | Diffusion 0.02
SFM [Cheng et al [(2024) B Flow Matching 4.62
a-Flow [Cheng et al.{(2025)) Flow Matching 5.02
DMPM |[Pham et al.| (2025) Score-based Diffusion 2.89
CoVAE [Silvestri & Ambrogioni/ (2025) | VAE 0.58
BFM (ours) - Flow Matching & Diffusion | 0.42

Table 1: Comparison of FID scores for various methods on binarized MNIST. The best and second-
best results are highlighted in bold and underline, respectively.

5.3 CONNECTING TO STATISTICAL PHYSICS: ISING MODEL GENERATION

We evaluate our BFM algorithm on the Ising model, a canonical probabilistic model in statistical
physics defined over a set of D interacting spin variables s € {41, —1} (Ising, |1925). In order
to obtain the simulate Ising samples at different temperatures, we use the Wolff cluster algorithm
Wolff] (1989) to obtain the Ising samples at different temperatures. We conisder a 20x20 2D lat-
tice Ising model with periodic boundary conditions, where each spin interacts with its four nearest
neighbors. The Markov chain is run for 1000 steps to reach thermal equilibrium, we sample 500
samples for as training set and 100 samples for validation set at each temperature from 1.50 to 3.10.
We train conditional BFM for 100K iterations with a batch size of 64 using above simulated training
set. During inference, we use 64 sampling steps to generate Ising samples from pure noise. Fig. [3]
compares the samples generated by BFM and the validate samples from above simulate results at



Under review as a conference paper at ICLR 2026

Rap AR
(a) BFM Ising Samples (b) Wolft cluster Ising Samples

Figure 3: Comparison of Ising samples generated by BFM and ground truth across temperatures
(1.50 to 3.10).

different temperatures. We can see that BFM can generate high-quality Ising samples that are visu-
ally indistinguishable from the ground truth samples across a range of temperatures. We show the
magnetization of the generated samples compared to the samples from the Wolff cluster algorithm
in different temperatures in Appendix

Temp 2.0

GT
samples

BFM "
samples

Figure 4: Comparison of Ising 20x20 lattice samples generated by BFM and ground truth at temper-
atures 2.0 and 2.5.

5.4 HIGH-DIMENSIONAL IMAGE GENERATION WITH LATENT BFM

To further validate the generative performance of BFM, we employ it as a latent space generator
for high-dimensional image synthesis. We leverage the pre-trained encoder and decoder from BLD
Wang et al.| (2023)) to map images from the LSUN (Bedroom and Churches) and FFHQ datasets into
a binary latent space of 16 x 16 x 64. Detailed implementation specifics of the autoencoder can be
found inWang et al.| (2023).

Ensuring a fair comparison with the BLD baseline presented a challenge due to the absence of
original training scripts and hardware differences. To address this, we provide results from both
the original paper and our own reproduction. Crucially, both BFM and the reproduced BLD
strictly follow the training configurations of the original BLD, sharing the identical backbone,
learning rate, loss function, and iterations. As shown in Table E], BFM demonstrates competitive
performance against established discrete baselines (e.g., D3PM, VQ-Diffusion) while requiring sig-
nificantly fewer sampling steps (64 vs. 200). On the challenging FFHQ dataset, BFM achieves a
Recall of 0.49, rivaling state-of-the-art methods in diversity. While a numerical gap exists com-
pared to the original BLD report due to hardware constraints, BFM consistently outperforms the
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LTIt

LSUN Bedrooms LSUN Churches FFHQ

Figure 5: Samples from BFM on LSUN-Bedrooms, LSUN-Churches and FFHq datasets. All sam-
ples resolution are 256x256.

Table 2: Comparison of various methods for generating images of LSUN Bedrooms and Churches
and FFHQ datasets. All images are of resolution 256x256.

Steps LSUN-Bedrooms 256x256 ~ LSUN-Churches 256x256 FFHQ 256x256

Methods FID| Prec.? Recallt FID| Prec.] Recall FID| Prec.t Recall |

Continuous Generatlve Models

- 8.34 0.48 0.40 6.42 0.65 0.39 - - -
- 2.35 0.59 0.48 3.86 0.60 0.43 4.16 0.71 0.46
200 295 0.66 0.48 4.02 0.64 0.52 4.98 0.73 0.50
50 6.04 0.56 0.44 5.49 0.62 0.53 10.02  0.68 0.44
200 4.16 0.72 0.40 4.99 0.75 0.42 7.25 0.72 0.46

200  6.60 0.60 0.35 6.02 0.68 0.39 9.49 0.71 0.41
200  7.19 0.54 0.37 6.88 0.72 0.37 8.79 0.70 0.43
200 8.39 0.67 0.38 4.07 0.71 0.45 11.45 0.75 0.44

W 64 3.85 0.65 0.44 4.36 0.68 0.50 5.85 0.73 0.50
BLD (Reproduc ed) 64 6.22 0.69 0.36 5.48 0.66 0.41 1146  0.68 0.48
BFM (ours) 64 5.86 0.69 0.37 5.32 0.66 0.41 10.87  0.68 0.49

reproduced BLD baseline under the strictly unified setting across all datasets (e.g., FID 5.86
vs. 6.22 on Bedrooms, 10.87 vs. 11.46 on FFHQ). This confirms that under identical computa-
tional budgets, BFM provides a superior trade-off between generation quality and efficiency. The
visualized samples shown in Fig. [3] further validate BFM’s ability to generate diverse and realistic
high-dimensional images.

5.5 SAMPLING EFFICIENCY ANALYSIS

In order to further demonstrate the potential advantage of our proposed BFM in terms of inference
speed and quality. We conduct experiments on LSUN churches 256x256 dataset with different NFE.
We compare our BFM with BLD in terms of FID versus the NFE from two perspectives: Fixed
training sampling steps. We use checkpoints trained with 256 sampling steps and vary the NFE
at inference, reporting the corresponding FID. Varying training sampling steps. We train separate
models with 16, 32, 64, 128, and 256 sampling steps and, for each model, evaluate FID across its
own range of NFE.

We use the same training settings as described in Sec.[5.1] except that we set the number of training
iterations to 50K for all models to ensure a fair comparison.

In Fig.[6a] notice that when we sampling with different NFE in the same 256 checkpoint, BEM con-
sistently outperforms BLD by a large margin. BLD performance poor at low NFE, whereas BFM
demonstrates strong self-consistency and stable performance across different NFE. Upon investi-
gating the underlying causes, we identified a theoretical discrepancy in the cross-step posterior
sampling process of the official BLD implementation. This issue hinders the model from accurately
sampling the correct posterior transition. Here we give a detail discussion in Appendix [C.1]

In Fig. we can see that when we train separate models with different sampling steps, BFM
consistently outperforms BLD across all NFE. This further demonstrates the advantage of BFM in
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(a) Fixed training sampling steps (256). (b) Varying training sampling steps.

Figure 6: FID versus NFE on LSUN Churches 256 x 256 for BFM and BLD under two evaluation
settings: (a) using checkpoints trained with 256 sampling steps and varying the NFE at inference;
(b) using checkpoints trained with 16, 32, 64, 128, and 256 sampling steps and, for each, reporting
FID across its own NFE schedule.

terms of inference speed and quality. The discussion on probability path design for this comparision
can be found in Appendix [C.2]

6 DISCUSSION

The proposed BFM presents a novel and versatile framework for generative modeling of binary data,
with significant potential for expansion into temporal and cross-disciplinary applications. By con-
structing a continuous probability flow between arbitrary Bernoulli distributions and a simple noise
prior, BEM eliminates the need for problem-specific codecs while maintaining high expressivity.
Notably, BFM exhibits high stability and self-consistency cross-step sampling; experiments con-
firm its ability to generate high-quality samples even with significantly low NFE. Above advantages
positions BFM as a promising candidate for modeling complex time-dependent binary phenomena
in social thermodynamics—such as election outcomes, financial market movements, and migra-
tion patterns—where traditional Ising-like models have been applied but often lack efficient sam-
pling and training mechanisms. Furthermore, the model’s ability to capture binary state dynamics
suggests immediate applicability in biological systems, including neural spiking activity and gene
expression switching, where binary states are inherent. Future work will focus on integrating tem-
poral dependencies through recurrent or attention-based mechanisms and exploring large-scale real-
world applications in biological systems. Interdisciplinary collaboration will be essential to address
domain-specific challenges such as non-stationarity, sparse data, and interpretability requirements.

7 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our model architecture, training procedures, and hyperparameter
settings in the main text and Appendix. To ensure the reproducibility of our results, we will release
the complete codebase soon.

10
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A PROOFS OF BERNOULLI PROBABILITY FLOW DYNAMICS

We give the detailed proofs of Bernoulli Probability Flow Dynamics in this section.
Proof of Marginal Distribution from X, to X;_. Let’s first prove the marginal distribution from
X;, to X in equation [6}

Let Xy € {0, 1} be a random variable from some data distribution and X; ~ Bernoulli(0.5) be a
random variable sampled from a Bernoulli distribution with parameter 0.5, where all elements of
Xy and X are either 0 or 1. For a sequence of parameters ¢, € [1,0] with T = 0,1,2,...,T (note
that ¢, decreases from 1 to 0 as 7 increases), we define the random variable X;_ conditionally on
Xp and X as:

X, ~ Bernoulli (t, X0 + (1 —t.)X7).

This definition implies that given Xy and X7, the value of X;_ is sampled from a Bernoulli distri-
bution with parameter p = ¢, Xy + (1 — ¢;)X;. Since X, and X; are binary, p is always a valid
probability between 0 and 1.

We aim to derive the conditional distribution ¢(X;_ | Xo), which requires marginalizing over X;.
Given that X; ~ Bernoulli(0.5), we compute P(X; = 1| Xy) for each value of X.

Casel: Xy =0
P(X:, =1[Xo=0) =Ex, [P(X;, =1]Xo=0,X1)]
=Ex, [t- -0+ (1 —t;)X;]
= (1-t,)-Elx)]
=(1-t;)-05=0.5(1—¢,).
Thus, ¢(X:, | Xo = 0) = Bernoulli(0.5(1 —¢,)).
Case2: Xy =1
PX;, =1]Xo=1)=Ex, [P(X:, =1 | Xo=1,X1)]
=Ex, [t - 14+ (1 —t;)X4]
=t +(1—t;) E[X4]
=t +(1—1t;)-0.5=0.5(1+t¢,).
Thus, ¢(X;. | Xo = 1) = Bernoulli(0.5(1 + ¢,)).
Combining both cases, we express the probability uniformly:
1+ (2Xp— 1)t
P(X,, = 1] Xg) = -2l

Therefore, the transition probability is:

14 (2Xo—1)t,
q(X¢. | Xo) = Bernoulli <+(0)) ,

2

which can also be expressed as:

1—-+t;
q(X+, | Xo) = Bernoulli (g(Xto, 2)) )
where g(a,b) = a(1 — b) + b(1 — a). This completes the proof of the marginal distribution from
Xto to Xt_,_ .
Proof of probability transition from X;_ ., to X;_in equation

We define the binary state variable X; € {0,1} at time 7, and assume a Markovian transition
process from X;__, to X;_with an error rate -y, _. The conditional transition probability is given by

a Bernoulli distribution:
(X | Xe, X)) =B (Xe: Xe, (L=, )+ (1= Xe )0, )

where B(z;p) denotes the Bernoulli probability mass function with parameter p.

13
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Figure 7: Bernoulli probability transition path illustration.

Let o be the marginal probability of X, =1 given X, :
1+ (2Xy, — D)t

Qi 9 ) (12)
where T _ is a function defining the schedule of the process. Similarly,
14+ (2Xy, — )t —
a. | = +( t02 ) iy (13)

We now consider all paths that lead to X; = 1. The marginal probability c;_ can be expressed via
the law of total probability (see Fig. [7for an illustration):

ar, = q(Xe, = 1Xeo) = Y a(Xe, = UXe, =2, X)) - a(Xe,, = 2] Xs,).  (14)
z€{0,1}

Substituting the transition probabilities and marginal probabilities:

ar, = o, (1=v,)+ (1 —ar )] (15)
Rearranging terms:
oy, = — 2 0+ Ve (16)
Solving for 7;_:
N, = Gt a7
" 200, —1

Thus, the transition probability is fully specified as:

Q(Xe, | Xty s Xio) = B (Xe; Xeo (1 =72,) + (1= Xeo ), ) (13)
with
O T O
A Y
Substituting o, and o, _, in equation[12]and in equation [T3} we have:
0.5(t, 1 —t,
Tt = ( ! )7 (19)
tr—1

Proof of posterior probability in equation [§] We aim to derive the posterior distribution
q(X¢._,|X:,, Xi,) using Bayes’ theorem. Starting from the conditional Bayes’ rule in binary vari-
ables case in equation[9]

Remember that we wanna find the Bernoulli parameter, which means we want to find the probability
of X; , =1given X;_and X;,:
(X, , =1[ X4, Xy) (20)
q(XtT | Xy, = 17Xt0) i q(XtT—l =1 | Xto)

- - e
q( X, | Xe,o, =1) - q(Xe,_, = 1| Xg) +q(Xe, | Xo,_, =0)-q(Xy,_, =0 Xy,)

14
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We now define the following transition probabilities using the noise schedule parameters ~y;_ and
Qg

-

q( X, | Xe,_, =1) = th(l — v, )+ (1= X ), (22)
(X, | X, =0)=1—(Xe. (1 =y, ) + (1 — Xe )%, )s (23)
1+ (2X;, — D)t —
Q(thfl =1 | Xto) = ( t02 ) L= oy, (24)
1 2X: — Dt
dXy ,=0]|X,)=1- all t02 1 =1-oy . (25)

Substituting these into Equation equation 21} we obtain:

o Xe, , =1]1X; ,Xy,) (26)
(X, (T =y,) + (1= X )ve, ) - (e, )
1—

T (X @) F (=X )+ (L= (X, (L) + (L= Xo ) - (L —ar, )
27

Simplifying the denominator and numerator with g(a,b) = a(1 — b) + b(1 — a), we arrive at the
final expression:

9( X, e, o,

X =1|X¢,X;,) =
q(Xt, | X Xto) 9(9(Xe, 72, ), 1 — )

(28)
This concludes the derivation of the posterior distribution for the binary state transition process.

B ADDITIONAL QUALITATIVE RESULTS

B.1 ISING MODELS

Magnetization of BFM and Wolff Cluster Ising Samples

S —t—e—a,
O

!

Magnetization (M(T))
——

e

150 175 2.00 225 250 275 3.00
Temperature (T)

Figure 8: Magnetization curve of BFM generated and Wolff cluster Ising samples.

Fig. [§]illustrates the magnetization curve of the Ising model samples generated by our BEM. We
observe that BFM is highly effective at generating physical states conditioned on temperature. The
resulting magnetization curve aligns well with the ground truth simulations produced by the tradi-
tional Wolff cluster algorithm, capturing the physical properties with high fidelity.
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B.2 VISUALIZATION OF DIFFERENT TEMPERATURES OF BFM GENERATED SAMPLES
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Figure 10: Additional unconditional image generation results and comparisons at 256 x 256 with
the LSUN churches dataset. The sampling temperatures are linearly interpolation between 0.5 and
1.0 from left to right.
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Figure 11: Additional unconditional image generation results and comparisons at 256 x 256 with
the FFHQ dataset. The sampling temperatures are linearly interpolation between 0.5 and 1.0 from
left to right.
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B.3 ALGORITHM FOR LATENT SPACE BFM

The flipping part in below algorithms is the residual prediction, which means rather than predicting
the clean data X, , we predict the flipping part from X _to Xy, as fo(X;_,?,). More deetails please
refer to[Wang et al.| (2023).

Algorithm 3 Training procedure.

1: Given: Trained encoder W¥; Binary diffusion model fy parametrized by 7y; An image dataset Z.
2: Given: Diffusion steps 7'; Probability path defined by (5); Training steps I.
3: Initializing Ty.
4: for Stepi=1:1do
5: Sampling image z ~ Z, and time step 7 ~ {1,...,T}.
6: Obtaining binary code x;, = Bernoulli(c(¥(z))).
7 Obtaining x;_using Xy, ¢, and probability path with (5).
8: Predicting flipping probability fo(x;_,t;).
9: Obtaining predicted x¢, as pg(xs,) = (1 —x¢,) © fo(xe ,t) + x¢. © (1 = fo(x,,1)).
10: Calculating loss £ using (TT).
11: Backpropagating £ and updating 6.
12: end for
13: Return Binary diffusion model fy.

Algorithm 4 Sampling procedure.

1: Given: Trained decoder ®; Trained binary diffusion model fy;Latent dimension specified by
W, w',c.
Given: Diffusion steps 7'; Probability path defined by (5)); Temperature x.
Sampling x;,, = Bernoulli(x™"), where x™ € R? *®’*¢ and contains 0.5 only.
for Stept =T :1do
Predicting pg(x¢,_, ) with fo(x¢,,t;) = 0(To(X¢,,t-)/K) and .
Sampling x;__, = Bernoulli(pg(x;._,)
end for
Return the sampled image as ®(x;,_, ).

PRI AR

B.4 THE USE OF LARGE LANGUAGE MODELS

We utilized a large language model to assist in correcting grammatical errors and improving sentence
expression in this paper. We acknowledge the large language model for its contribution to this paper.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 DISCUSSION ON CROSS-STEP SAMPLING CONSISTENCY OF BFM

In this section, we discuss the reason why BFM exhibits better sampling quality than BLD when
using different NFE from the same trained checkpoint. This property is particularly important in
practical applications, as it allows for flexible adjustment of sampling speed and quality trade-offs
without the need for retraining the model. We follow the notation used in BLD to explain this issue.
In the sampling scenario of Fig. [6a] when we sample with K NFE from a model trained with N
steps, we need to perform cross-step sampling with stride m = N/K. According to Eq. (9) in BLD,
the posterior transition can be written as

q(zt|zt—m, ZO)q(Zt—m|ZO)

t—m|,t _0
= 29
In the official BLD code implementation, the evidence transition term is implemented as
q(2'2""",2%) = B(z'; 27" (1= 1) + 0.5, (30)

19



Under review as a conference paper at ICLR 2026

16 32 64 128 256

(a) BLD (b) BEM

Figure 12: Visual comparison of samples generated with NFE from the respective checkpoints of
BLD and BFM, each trained separately with 256 sampling steps on LSUN Churches 256 x 256. (a)
BLD and (b) BFM. For each method, each row corresponds to a different NFE setting, while images
in the same column share the same initial latent code.

which effectively uses only the last-step noise parameter 3'~™ for this cross-step update, however,
the corresponding exact evidence transition should be

t t

qz' |27 =Bz [ a-p))z"+o05(1- J[ (-8) (31)

j=t—m+1 j=t—m+1

In contrast, in the framework of BFM, the cross-step posterior sampling is naturally supported by
our derived posterior transition in equation [7] and equation [8] which can be directly applied to any
arbitrary cross-step posterior transition with slight modification. The only modification is to repa-
rameterize the linear interpolation of ¢, on [1,0.5] from the original N training steps to a new
number of NFE K at sampling time. We refer to this property as the self-consistency of BFM
under cross-step sampling.

To understand why BFM has this self-consistency property, we refer the reader to Fig.[7] The evi-
dence transition (X | X¢, _,, Xy, ) from X;__, to X;_isdepending on ~y;_, we use the marginal dis-
tribution from X;, to X;_and X;__, to derive ~;_and found it only depends on ¢, and ¢,_; as equa-
tion[I9)shows. Therefore, when we perform cross-step sampling with different NFE, we can simply
easily re-calculate ~;_ based on the new ¢, and ¢,_; without any approximation, which ensures the
correctness of the posterior transition. This is the key mechanism of BFM’s self-consistency prop-
erty in cross-step sampling. The self-consistency property makes BFM more flexible and robust in
cross-step sampling scenarios.

We further present visual results for different NFE sampled from the respective checkpoints of BLD
and BFM, both trained with 256 sampling steps, as shown in Fig.[T2] We can observe that, due
to the accumulation of errors in the posterior probability transition, the samples generated by BLD
become increasingly blurry and noisy as the NFE decreases, whereas the samples generated by
BFM remain structurally stable across different NFEs. Although fine-grained content is not always
perfectly aligned with the original image, semantic information is largely preserved. These results
provide further empirical evidence for the self-consistency property of BFM in cross-step sampling
and indicate that BFM exhibits better tolerance to low NFE sampling during inference.

C.2 DICUSSION ON PROBABILITY PATH DESIGN FOR COMPARISON

To clarify, the probability path used by BFM in these experiments is the optimal transport path
defined in (3), which is also called the linear probability path. The probability path of BLD is the
cosine path defined in BLD. We now explain why we adopted this setting. Flow Matching
demonstrated that the optimal transport path achieves better performance in terms of
fast training and low-NFE sampling. In their comparison, the baseline of the continuous diffusion
model is DDPM (2020), which has a curved probability path. Therefore, we maintain this
comparison consistency in terms of the comparison between flow-based models and diffusion-based
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models in binary space. Below, we show the continuous probability paths of Flow Matching and
DDPM, and we also visualize the probability paths of BFM and BLD for better understanding.

Linear (OT) Cosine
1.0 1.0

0.8 0.8
0.6 0.6

0.4 0.4

0.2 0.2

0.0+ 0.0+
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Flow Matching path. (b) DDPM path. (c) BFM Linear path. (d) BLD Cosine path.

Figure 13: Illustration of probability paths in continuous and Bernoulli spaces. Panels (a) and
(b) show the evolution of the mean and variance along the probability paths for two representative
continuous models, Flow Matching and Diffusion, where the source distribution is a data distribution
centered at 3 and the target distribution is the Gaussian N'(0,1). Panels (c) and (d) depict the
Bernoulli probability paths of BFM with an linear (optimal transport) path and BLD with a cosine
path, respectively. More disscusion can be found in

C.3 ABLATION STUDY ON BERNOULLI PROBABILITY PATH SCHEDULING STRATEGIES

Fig. visualizes how, under different probability paths, the probabilities associated with 1 (blue
curves) and O (red curves) are progressively driven towards 0.5 along the diffusion trajectory. To
systematically assess the impact of these schedulers on model performance, we select 3 different
probability path schedulers and conduct experiments on the LSUN churches 256x256 dataset using
the official BLD codebase. We keep the network architecture, learning rate, loss function, and all
optimization hyperparameters exactly the same, and train with a batch size of 96 for 50K iterations.
The only difference lies in the algorithm at the training and sampling stages.

Linear (OT) Half Cosine Half Reverse Cos
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0+ T T T T " 0.0+ : T T T " 0.0 # T T "
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) Linear (b) Half cos (c) Reverse half cos

Figure 14: Bernoulli probability path schedulers.

We summarize the ablation results in Table[3] Under all three probability paths (linear, half-cosine,
and reverse half-cosine), BFM consistently achieves lower FID than BLD. Among them, the linear
scheduler gives the best overall performance for BFM (9.22). We also note that the FID of BFM
varies slightly more across different schedulers than that of BLD, although the overall variation
remains small.

Table 3: FID comparison of different Bernoulli probability path schedulers for BFM and BLD on
LSUN churches 256 x256.

Scheduler FID |
BFM BLD

Linear 9.22 955

Half-cosine 941 9.53

Reverse half-cos  9.27 9.54
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C.4 FASTER TRAINING

—e— BFM (ours)
=% BLD
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100 150 200 250 300 350 400
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Figure 15: Training convergence comparison on LSUN Bedrooms. We visualize the FID scores
over training iterations (x 10%). Both BFM (ours) and BLD are trained under identical experimental
settings using a linear scheduler. Our BFM demonstrates faster convergence, achieving lower FID
scores consistently across all training steps compared to BLD.

Faster training convergence. While both BFM and BLD employ the same linear scheduler for
the probability path, we observe that BFM demonstrates significantly superior training efficiency.
To ensure a fair comparison, we conducted strictly controlled experiments on the LSUN Bedrooms
dataset, maintaining identical hyperparameters and hardware environments for both methods (except
for the core algorithm).

Fig. [T3]illustrates the evolution of FID during training. BFM is able to lower the FID faster and to a
greater extent than BLD throughout the training process. In particular, BFM achieves an FID of 7.91
at just 200k iterations, which already exceeds the performance of BLD at 400k iterations (FID 8.0).
This implies that BFM requires approximately 50% fewer iterations to reach comparable generation
quality, substantially reducing the computational cost required for model training.
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