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Abstract

Post-training quantization (PTQ) is an effective
technique for compressing large language mod-
els (LLMs). However, while uniform-precision
quantization is computationally efficient, it of-
ten compromises model performance. To ad-
dress this, we propose SliM-LLM, a salience-
driven mixed-precision quantization framework
that allocates bit-widths at the group-wise. Our
approach leverages the observation that impor-
tant weights follow a structured distribution and
introduces two key components: 1) Salience-
Determined Bit Allocation adaptively assigns bit-
widths to groups within each layer based on
their salience; and 2) Salience-Weighted Quan-
tizer Calibration optimizes quantizer parameters
by incorporating element-level salience. With
its structured partitioning, SliM-LLM provides
a hardware-friendly solution that matches the ef-
ficiency of uniform quantization methods while
improving accuracy. Experiments show that SliM-
LLM achieves superior performance across vari-
ous LLMs at low bit-widths. For example, a 2-bit
quantized LLaMA-7B model reduces memory us-
age by nearly 6x compared to the floating-point
baseline, decreases perplexity by 48% compared
to state-of-the-art gradient-free PTQ methods, and
maintains GPU inference speed. Additionally, the
extended version, SliM-LLM+, which incorpo-
rates gradient-based quantization, further reduces
perplexity by 35.1%. Our code is available at
https://github.com/Aaronhuang-778/SliM-LLM.
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1. Introduction
LLMs have demonstrated remarkable performance on var-
ious natural language benchmarks (Brown et al., 2020;
Hendrycks et al., 2020). Models like LLaMA (Touvron
et al., 2023a) and GPT (Brown et al., 2020) have driven
progress toward universal language intelligence. Their ca-
pabilities have also extended to multi-modal domains (Li
et al., 2024b; Achiam et al., 2023; Team et al., 2023; Zhang
et al., 2023; Huang et al., 2024b), advancing efforts toward
artificial general intelligence (AGI) (Bubeck et al., 2023).
However, their high computational and memory demands
remain a significant challenge for practical deployment.

To address resource constraints of LLMs, PTQ has
emerged as an efficient yet effective compression tech-
nique (Dettmers et al., 2022), showing success in quantizing
the weights of pre-trained LLMs (Frantar et al., 2022; Lin
et al., 2023; Shao et al., 2023; Lee et al., 2023; Chee et al.,
2024). As LLMs continue to scale, the demand for more ag-
gressive low-bit compression becomes critical due to limited
computational and storage resources in application (Huang
et al., 2024a; Tseng et al., 2024). However, significant
performance degradation remains a challenge in low-bit
scenarios (⩽ 3-bit). To mitigate this, unstructured mixed-
precision quantization (Shang et al., 2023; Huang et al.,
2024a; Dettmers et al., 2023) and vector quantization (Chee
et al., 2024; Tseng et al., 2024; Egiazarian et al., 2024) meth-
ods have been developed to preserve performance. While
these approaches have advanced the field, they are often
hardware-unfriendly, introducing extra storage requirements
such as storing bitmaps or code indices. This creates a bot-
tleneck, limiting further reductions in memory and compu-
tational demands during deployments.

This paper presents a Salience-Driven Mixed-Group LLM
(SliM-LLM) framework, an accurate and inference-efficient
PTQ method for LLMs (⩽ 3-bit). Our approach is grounded
in the key observation that salient or important weights,
which are critical to model performance, exhibit a struc-
tured distribution, often clustering within certain channels
(see Sec. 3.2.1 and Fig. 3). This insight, largely overlooked
by prior research (Frantar et al., 2022), forms the basis
for designing SliM-LLM as a structured, hardware-friendly
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Figure 1. (a) The perplexity (↓) of existing low-bit PTQ methods of LLaMA at 2-bit. Solid-line indicates methods with structured
quantization group. (b) Compare PTQ methods with gradient quantizer at 3-bit. (c) Features of current low-bit quantization methods. C
denotes codebook-based, S is statistic-based, and G represents gradient-based quantizers.

mixed-precision low-bit method. It preserves performance
through two key designs that retain important weights at
both the global group and local element levels. First, we
develop a novel Salience-Determined Bit Allocation (SBA)
method, which adaptively assigns bit-widths to each quan-
tization group based on their group-level salience ranking.
The allocation strategy is optimized to reduce activation
reconstruction errors. By applying higher precision to more
important groups and reducing the bit-widths for less critical
ones, SBA achieves a low average bit-widths while enhanc-
ing the overall performance of LLMs. Next, we introduce
the Salience-Weighted Quantizer Calibration (SQC), which
enhances sensitivity to locally salient weights, ensuring that
critical information within groups is preserved. SQC works
collaboratively with SBA, exploiting the local and global
salience of weights to preserve the performance of LLMs
after quantization. Unlike element-wise mixed-precision
methods (Shang et al., 2023; Dettmers et al., 2023; Huang
et al., 2024a), SliM-LLM is inherently structured, eliminat-
ing additional bit or computational overhead while preserv-
ing high performance. This is further demonstrated through
our deployment of SliM-LLM in an application-level infer-
ence tool 1 for LLMs, enabling efficient mixed-precision
inference on GPUs with consistently strong performance.

Experiments show that for various LLM families, SliM-
LLM surpasses existing training-free PTQ methods on di-
verse benchmarks, particularly in low-bit scenarios. Using
GPTQ as the backbone, SliM-LLM improves the perplexity
scores of 2-bit LLaMA-13B and LLaMA2-13B on Wiki-
Text2 (Merity et al., 2016) from 20.44 and 28.14 to 8.87 and
9.41, denoting performance improvements of over 56%, re-
spectively. SliM-LLM even outperforms other element-wise
mixed-precision PTQ methods, such as PB-LLM (Shang
et al., 2023), APTQ (Guan et al., 2024) and LLM-MQ (Li
et al., 2024a), in a deployment-friendly manner, showcasing

1 https://github.com/AutoGPTQ/AutoGPTQ

its superior low-bit accuracy and efficiency. We also inte-
grate SliM-LLM into OmniQuant (Shao et al., 2023) and
obtain SliM-LLM+ through gradient optimization to further
improve quantization quality. Moreover, the group-wise
mixed-precision strategy can smoothly be adapted to exist-
ing quantization-aware training (QAT) (Liu et al., 2023),
fine-tuning based (Guo et al., 2023; Liao & Monz, 2024;
Dettmers et al., 2024), or codebook-based (Chee et al., 2024;
Egiazarian et al., 2024; Tseng et al., 2024) LLMs com-
pression methodologies. This structure of weight salience
introduces a new practical view of compression for LLMs.

2. Related Work
Large Language Models have been significantly developed
in diverse natural language processing domains, establish-
ing a prominent paradigm in these fields (Bubeck et al.,
2023; Chang et al., 2024; Zhao et al., 2023; Brown et al.,
2020; Touvron et al., 2023a). Nevertheless, the exceptional
success of LLMs depends on massive parameters and com-
putations, posing significant challenges for deployment in
resource-constrained environments. Consequently, research
into the compression of LLMs has emerged as a promising
field. Existing compression techniques for LLMs primar-
ily include quantization, pruning and distillation (Xu et al.,
2023; Ganesh et al., 2021; Frantar et al., 2022; Xiao et al.,
2023a; Shao et al., 2023; Chee et al., 2024; Zhu et al., 2023;
Frantar & Alistarh, 2023; Huang et al., 2024a; Qin et al.,
2024). Low-bit quantization has received notable attention
for efficiently reducing the size of the model without chang-
ing the structure of the network(Zhu et al., 2023; Zhao et al.,
2023; Chang et al., 2024).

Quantization of LLMs can generally be categorized into
Quantization-Aware Training (QAT) and PTQ. PTQ has
emerged as a more practical alternative. Techniques such
as LLM.int8()(Liu et al., 2023) and ZeroQuant(Yao et al.,
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Figure 2. Illustration of our proposed SliM-LLM. The Salience-Determined Bit Allocation (SBA) optimizes activation-aware structured
precision, optimizing the global information distribution in quantization. Salience-Weighted Quantizer Calibration (SQC) detects
discretely distributed salient weights, enhancing the local important information in LLMs.

2022) introduce block-wise quantization, a cost-effective
grouping method that reduces hardware overhead. Fur-
ther advancements, including AWQ (Lin et al., 2023) and
OWQ (Lee et al., 2023), apply scaling transformations to
outlier weight channels, preserving their representational
capacity. GPTQ (Frantar et al., 2022) minimizes group
quantization errors using Hessian-based error compensa-
tion (Frantar & Alistarh, 2022), achieving notable perfor-
mance at 3-bit quantization. OmniQuant (Shao et al., 2023)
introduces a learnable scaling quantizer to mitigate quanti-
zation errors in an output-aware manner. For ultra-low bit-
widths quantization, approaches such as QuIP (Chee et al.,
2024), QuIP#(Tseng et al., 2024), and AQLM(Egiazarian
et al., 2024) improve 2-bit quantization performance through
matrix decomposition with learnable codebooks and fine-
tuning. Recent works (Qin et al., 2024; Liao & Monz,
2024; Dettmers et al., 2024; Guo et al., 2023) have further
refined quantization techniques by leveraging parameter-
efficient fine-tuning (PEFT), enabling enhanced perfor-
mance through additional parameter learning.

Mixed-Precision Quantization leverages the varying im-
portance and redundancy of model parameters by assigning
different bit-widths to each component. In traditional vi-
sual networks, HAWQ V2 (Dong et al., 2020) and HAWQ
V3 (Yao et al., 2021) optimize bit-widths allocation on a
layer-wise basis using Hessian analysis and Integer Linear
Programming (ILP). Similarly, OMPQ (Ma et al., 2023)
employs network orthogonality instead of Hessian for bit-
widths optimization. For large language models (LLMs),
APTQ (Guan et al., 2024) extends HAWQ’s approach by
allocating mixed bit-widths to transformer blocks based
on Hessian trace, achieving improved accuracy for 3-bit
quantization. However, block-wise or layer-wise mixed-
precision strategies at 2-bit fail to maintain performance
after compression. To address this, recent methods such
as SpQR (Dettmers et al., 2023), PB-LLM (Shang et al.,
2023), and LLM-MQ (Li et al., 2023) adopt finer-grained

grouping with element-wise mixed-precision for more accu-
rate weight quantization. Despite their improvements, these
low-bit approaches rely heavily on fine-grained partition-
ing, which imposes significant challenges for real hardware
deployment and inference speed.

3. SliM-LLM
This section introduces a structured mixed-precision quanti-
zation method, SliM-LLM, to overcome the accuracy and
efficiency bottlenecks of mixed-precision LLMs. We de-
vise two novel strategies, including the use of Salience-
Determined Bit Allocation (SBA) based on global salience
distribution to determine group bit-widths, and Salience-
Weighted Quantizer Calibration (SQC) to enhance the per-
ception of locally important weight information. We intro-
duce SBA and SQC in Sec. 3.2 and Sec. 3.3, respectively.

3.1. Preliminaries

Quantization Framework. We first present the general uni-
form quantization process of LLMs according to common
practice (Liu et al., 2023; Shao et al., 2023; Achiam et al.,
2023). The quantization process requires mapping float-
point weights distributed within the interval [wmin, wmax]
to an integer range of 2N , where N is the target bit-widths.
The quantization function for weight wf ∈ Rn×m follows:

 ŵq = clamp(⌊wf

s
⌉+ z, 0, 2N − 1),

s =
wmax − wmin

2N − 1
, z = −⌊wmin

s
⌉

(1)

where ŵq indicates quantized weight which is integer, ⌊·⌉
is round operation and clamp(·) constrains the value within
integer range (e.g. [0, 1, 2, 3], N = 2). ∆ is scale factor and
z is quantization zero point, respectively. When converted
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to 1-bit quantization, the calculation follows:

ŵb = sign(wf ), α = 1
l ||wf ||ℓ1

sign(w) =

{
1 if w ≥ 0,

−1 others.
(2)

where ŵb is binary result. α denots binarization scales and l
is the number of elements in weight (Qin et al., 2023), used
for dequantization through αŵb. We can formalize the per-
layer loss in PTQ, following the common practice (Nagel
et al., 2020; Frantar et al., 2022):

L(ŵf ) = ||xw⊤
f −xŵ⊤

f ||2 ≈ tr((ŵf−w)H(ŵf−w)⊤)
(3)

where x ∈ Rt×m denotes the input vectors from cal-
ibration dataset, ŵf ∈ Rn×m is dequantized weight
from quantization result in Eq. (1) or Eq. (2), and H =
1
P

∑P
k=1 x

[k]⊤x[k] is proxy Hessian matrix by Levenberg-
Marquardt approximation (Marquardt, 1963; Frantar & Al-
istarh, 2022) from a set of input activations.

Parameter Salience. In LLMs, the importance of each
element in the weight matrix is various (Dettmers et al.,
2023; Frantar & Alistarh, 2023). According to Eq. (3),
quantizing different elements causes different impacts on the
model’s output loss. Elements that significantly influence
the loss are termed salient weights. Consequently, we follow
the SparseGPT (Frantar & Alistarh, 2023) to define the
salience of each element as:
Definition 3.1. In the quadratic approximation of the loss
as expressed in Eq. (3), we give the Hessian matrix H ∈
Rm×m generated by 1

P

∑P
k=1 x

[k]⊤x[k] for a weight matrix,
the removal of the element at (i, j) induces an error δi,j =

w2
i,j

[H−1]2j,j
to the output matrix for linear projection in LLMs.

where [H−1]jj denotes the jth diagonal entry for the
inverse Hessian, and H−1 can be efficiently calcu-
lated through Cholesky decomposition (Krishnamoorthy
& Menon, 2013). According to Definition. 3.1, we map
the elimination error δij to the salience measure of each
weight element in LLMs, representing the impact of differ-
ent weights on the output loss and the language capabilities,
which also leads the generation of mixed-precision quanti-
zation strategies (Dettmers et al., 2023; Shang et al., 2023;
Huang et al., 2024a; Li et al., 2024a) for LLMs. However,
existing mixed-precision solutions require the discrete allo-
cation of bit-widths across the entire weight matrix, which
imposes a significant burden on hardware computations,
thereby affecting the inference efficiency.

3.2. Salience-Determined Bit Allocation

We reveal the spatial clustering of weight salience, which in-
spires our proposed concept of group-wise mixed-precision
quantization for LLMs, and then introduce the Salience-
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Figure 3. Salience weight distribution in layer-2 and layer-10 of
LLaMA-7B.

Determined Bit Allocation (SBA) technique to allocate the
optimal precision to each group.

3.2.1. SPATIAL DISTRIBUTION OF GLOBAL SALIENCE

We first conduct an empirical investigation into the weight
salience distribution. The results reveal that certain channels
exhibit higher salience and show tendencies to spatial clus-
tering. As illustrated in Fig. 3, salient clustering is identified
around the 2100th, 3218th and 3853rd channels within the
2nd layer’s attention projection of the LLaMA-7B model. A
similar structured pattern is observed in other layers. Also,
clustered salience is detected in other layers (as shown in
Fig. 3). More examples are provided in Appendix G.

Then, we analyze the underlying reasons for this phe-
nomenon. According to Definition 3.1,the salience of
weights is proportional to the magnitude of the weights
and the trace of the Hessian matrix, which can be approxi-
mated by the product of input activations x⊤x. In LLMs,
activations exhibit extreme outlier channels, while the nu-
merical differences in weights are relatively slight (Xiao
et al., 2023a; Nrusimha et al., 2024). Therefore, we pro-
pose an analysis of how the outlier channels in activations
influence the distribution of weight salience:
Theorem 1. Given the input calibration activation x ∈
Rt×m with an outlier channel x∗

:,p ≫ x:,j ,∀j ∈ [0,m], j ̸=
p at the position of channel-p. The trace elements of
H = x⊤x will show great outlier value at (p, p), where
Hp,p ≫ Hj,j ,∀j ∈ [0,m], j ̸= p, as Hp,p is produced
by [x∗⊤

:,p x
∗
:,p] =

∑t
i=0 x

∗2
i,p, which further leads to the pa-

rameter salience larger at the pth channel of weight, where

δ:,p > δ:,k, δ:,k =
w2

:,k

[H−1]2k,k
,∀k ∈ [0, t], k ̸= p.

Theorem 1 elucidates the influence of outlier activation on
the distribution of channel salient weights (detailed proof in
the Appendix G.1). Furthermore, recent research indicates
that outlier channels in LLMs activations consistently appear
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in fixed yet clustered patterns (Nrusimha et al., 2024). Ac-
cording to Theorem 1, these consistently occurring anoma-
lous activations result in the distribution of salient weights,
as depicted in Fig. 3. Then, during group-wise quantization,
the average salience of each group shows different features.

Meanwhile, previous unstructured mixed-precision, in-
curred additional storage requirements and computational
overheads, affecting the real-time inference. However, the
strong spatial structured characteristics observed in the
salient of weights in this section strongly inspire us to first
develop a group-wise mixed-precision strategy within the
weight matrix while maintaining inference efficiency. There-
fore, we aim to allocate bit-widths based on intra-group
salient disparities, which not only enhances quantization
accuracy but also ensures the inference efficiency of LLMs
with structured bit-widths saving and dequantization.

3.2.2. GROUP-WISE BIT ALLOCATION

To allocate optimal bit-widths to each group, we introduce
a Salience-Determined Bit Allocation (SBA) technique for
mixed-precision LLMs, as depicted in Fig. 2. This tech-
nique, predicated on the differences in group salience, deter-
mines the optimal bit-widths allocation for different groups
by minimizing the distance of information entropy with the
original weight output. Specifically, we first utilize the av-
erage salience as the importance indicator for each weight
group and rank them accordingly. Then, the proposed SBA
optimizes the bit allocation following:

Objective : argminDkl (xw
⊤
f || x(ŵsba)

⊤),

where ŵsba = [ŵ0,b0 , ŵ1,b1 ...ŵk−1,bk−1
, ŵk,bk ]

Constrain :|GN−1| = |GN+1|,
where GN−1 = {bi|bi = N − 1},
GN+1 = {bj |bj = N + 1}

(4)

where Dkl(·||·) denotes the Kullback-Leibler (KL)
divergence between two outputs, ŵsba

f generally
represents the de-quantization results of weight, em-
ploying group-wise mixed-precision designated as
[ŵ0,b0 , ŵ1,b1 ...ŵk−1,bk−1

, ŵk,bk ], where bi represents the
bit-widths for the ith group and G is a set of groups with
the same bit-width, N is the targeted average bit-width. We
apply a compensation constraints strategy to maintain a
consistent average bits for our SBA. For example, in 2-bit
quantization, the more salient groups are quantized to 3-bit.
To offset the additional bits, we quantize an equal number of
groups with the lower salience to 1-bit (|GN−1| = |GN+1|),
while the remaining groups are set to 2-bit.

We utilize an effective double-pointer search (more de-
tailed examples in Appendix C) to optimize our objective in
Eq. (4). When the weight output channel size is m and group

Salience Matrix of layer-15-Out
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Figure 4. Local salience distribution of the 10th MHA output layer.

size is 128, k = m
128 , the search region for weight is limited

to [0, k
2 ], which is highly efficient with limited searching

space, e.g., only 16 iterations are needed in LLaMA-7B.
We also provide detailed searching error examples in Ap-
pendix C. Notably, SBA diverges from traditional quantiza-
tion with mean squared error (MSE) in Eq. (3) by instead
utilizing the KL divergence as its measure of loss. Com-
pared to using mean squared error (MSE) for weights, SBA
utilizes the KL divergence of block outputs as a precision
allocation metric, aiming to align the distribution of the
LLM’s output activation matrix with that of the quantized
activation. This approach improves the model’s information
representation under low-bit quantization, enabling more
effective bit-widths allocation. While HAWQ v2 (Dong
et al., 2019) employs Integer Linear Programming (ILP) to
allocate bit-widths for layers, its method can be adapted to
group-wise targets. Detailed comparisons between SBA and
ILP are provided in Section 4.2.

3.3. Salience-Weighted Quantizer Calibration

In addition to the global group-wise distribution of salience,
we notice that salience within the group still shows local
differences in discrete distribution. Common existing quan-
tizers apply uniform consideration across all weights to
minimize the effect (error) of quantization, lacking the ca-
pability to perceive differences in local salience. Therefore,
in this section, we introduce a Salience-Weighted Quantizer
Calibration (SQC) to enhance the information of signifi-
cant weights within the group by amplifying the quantizer
awareness of salient weight.

3.3.1. DISCRETE DISTRIBUTION OF LOCAL SALIENCE

In the aforementioned section, we group-wisely allocate the
bit-widths for each group based on the global salience. To
maintain the efficiency of quantized inference, we employ
a commonly used sequential structured grouping (Frantar
et al., 2022; Lin et al., 2023; Shao et al., 2023). However,
this group-wise mixed-precision also leads to differences in
salience among the various elements within the same group.
Specifically, as the salience distribution in Fig. 4, within
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the 10th attention output layer of LLaMA-7B, a subset of
sparse weights within the comparatively less salient Group-2
(Fig. 4) still maintains a high level of importance. In LLMs,
a small number of weight elements with outliers affect the
local distribution of salience. These discrete weights typi-
cally account for only approximately 1% within the group
but play a crucial role in the modeling capability of LLMs.

Vanilla quantizers struggle to represent local salient infor-
mation as they only consider the mean error of all elements
within a group. During group-wise quantization (Eq. 1),
non-salient weights often dominate, degrading critical infor-
mation and negatively impacting LLM performance.

3.3.2. SALIENCE-WEIGHTED QUANTIZER

To prevent the degradation of local salient information in
each group, we propose the Salience-Weighted Quantizer
Calibration (SQC), which enhances the expression of salient
weights through local salience awareness, thereby reducing
the quantization error of these significant elements and im-
proving the compressed performance of LLMs.

Based on a common observation (Dettmers et al., 2023;
Huang et al., 2024a), the proportion of relatively salient
weights in each group is only 1-5%. Therefore, we em-
ploy the 3-σ rule for a mask to select the salience part
(w < (µ − 3σ) ∪ w > (µ + 3σ)) in each group (Fig. 2),
which accounts for about 1% elements. After the selection,
we get wi = ws

i ∪wus
i , where ws

i is the salient part and
wus

i represents the non-salient elements within group i. To
effectively keep the information of local salient weights,
SQC first introduces the calibration parameter τ to the SQC
quantizer, liberating the perception interval during quanti-
zation. Then we define the local salience awareness loss of
the SQC quantizer through calibration:

argmin
τ

||ws
i − τ · s{Q(ws

i , τ · s, τ · z)− τ · z}||22+

||wus
i − τ · s(Q(wus

i , τ · s, τ · z)− τ · z)||22
(5)

where Q(·) denotes the quantization process in Eq. (1), ||·||22
represents the ℓ2 loss, aligned with Eq. (3). ws

i and wus
i de-

notes the salient and less salient part of group i, respectively,
generated from a mask operation. In Eq. (5), τ expands the
solution space of s and z, flexibly adjusts s and z to search
the optimal loss under τ∗, without bringing additional pa-
rameters, as ws

i and wus
i share the same quantizer. The

search space for τ by linearly dividing the interval [1-λ,
1+λ] into 2n candidates. We empirically set λ at 0.1 and n
at 50 to achieve a balance between efficiency and accuracy.

Compared to traditional quantizer calibration methods, SQC
effectively mitigates the degradation of intra-group local
salient weights caused by general average loss by enhancing
the loss sensitivity to salient elements during the calibra-
tion (more experiments are detailed in Appendix E). More-

over, the SQC process allows ws
i and wus

i to share a set
of parameters τ∗s and τ∗z, eliminating the need to differ-
entiate intra-group weights during storage and inference.
This facilitates straightforward group-wise dequantization
calculations, thereby avoiding the hardware overhead asso-
ciated with element-wise bitmap and unstructured grouping.
SQC and SBA capture both local salient weight informa-
tion within groups and global weight combinations across
groups, effectively preserving critical information and main-
taining LLM performance at extremely low bit-widths.

3.4. Implementation Pipeline of SliM-LLM

We integrate our mixed-precision framework into advanced
PTQ methods, such as GPTQ (Frantar et al., 2022) and
OmniQuant (Shao et al., 2023), all of which are inference-
friendly with group-wise quantization. We primarily in-
tegrate SBA and SQC into GPTQ to get SliM-LLM. For
SliM-LLM+, the SBA is plugged into OmniQuant with a
learnable quantizer. The plugging pipeline of SliM-LLM is
provided in Algorithm 1 (line 4 and line 9), detailed func-
tions are shown in Algorithm 2.

4. Experiments
We evaluated SliM-LLM and SliM-LLM+ under weight-
only conditions, focusing on 2/3-bit precisions. Per-
channel group quantization is utilized in our framework
with groupsize = 128 in experiments. Since no back-
propagation in SliM-LLM, the quantization is carried out
on a single NVIDIA A800 GPU. For SliM-LLM+, we em-
ploy the AdamW optimizer, following OmniQuant (Shao
et al., 2023), which is also feasible on a single A800. We
randomly select 128 samples from WikiText2 (Merity et al.,
2016) as calibration data, each with 2048 tokens.

Models and Evaluation. To comprehensively demonstrate
the low-bit performance advantages of SliM-LLM and SliM-
LLM+, we conduct experiments across OPT (Zhang et al.,
2022), LLaMA (Touvron et al., 2023a), LLaMA-2 (Touvron
et al., 2023b) and LLaMA-3. We employ the perplexity as
our evaluation metric, which is widely recognized as a stable
measure of language generation capabilities (Frantar et al.,
2022; Lin et al., 2023; Huang et al., 2024a; Shang et al.,
2023; Shao et al., 2023; Chee et al., 2024; Egiazarian et al.,
2024; Huang et al., 2024b), particularly in compression sce-
narios. Experiments are carried out on the WikiText2 (Mer-
ity et al., 2016) and C4 (Raffel et al., 2020)datasets. Fur-
thermore, to assess the practical application capabilities of
quantized LLMs, we also evaluate on zero-shot benchmarks.

4.1. Main Results

We show experiments within the LLaMA family in this
section and results for the OPT models are available in
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Table 1. Quantization results of LLaMA family with statistic quantizer. We report the WikiText2 perplexity in this table, C4 results are
shown in Appendix H. ‘-’ denotes that the selected works did not give the results on listed models or the codes.

#W PPL↓ Method 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B 3-8B 3-70B

16-bit - 5.68 5.09 4.10 3.53 5.47 4.88 3.31 5.75 2.9

3-bit

APTQ 6.76 - - - - - - - -
LLM-MQ - - - - - 8.54 - - -
RTN 7.01 5.88 4.87 4.24 6.66 5.51 3.97 27.91 11.84
AWQ 6.46 5.51 4.63 3.99 6.24 5.32 - 8.22 4.81
GPTQ 6.55 5.62 4.80 4.17 6.29 5.42 3.85 8.19 5.22
SliM-LLM 6.40 5.48 4.61 3.99 6.24 5.26 3.67 7.16 4.08

2-bit

LLM-MQ - - - - - 12.17 - - -
RTN 1.9e3 781.20 68.04 15.08 4.2e3 122.08 27.27 1.9e3 4.6e5
AWQ 2.6e5 2.8e5 2.4e5 7.4e4 2.2e5 1.2e5 - 1.7e6 1.7e6
GPTQ 152.31 20.44 13.01 9.51 60.45 28.14 8.78 210.00 11.90
QuIP 29.74 12.48 11.57 7.83 39.73 13.48 6.64 84.97 13.03
PB-LLM 24.61 17.73 12.65 7.85 25.37 49.81 NAN 44.12 11.68
SliM-LLM 14.58 8.87 7.33 5.90 16.01 9.41 6.28 39.66 9.46

Table 2. Quantization results of LLaMA-1 and LLaMA-2 models with learnable quantizer. We report the WikiText2 perplexity in this
Table, C4 results are shown in Appendix H.

#W PPL↓ Method 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B

16-bit - 5.68 5.09 4.10 3.53 5.47 4.88 3.31

3-bit
OmniQuant 6.15 5.44 4.56 3.94 6.03 5.28 3.78
AffineQuant 6.14 5.45 4.59 - 6.08 5.28 -
SliM-LLM+ 6.07 5.37 4.34 3.72 5.94 5.11 3.35

2-bit
OmniQuant 9.72 7.93 7.12 5.95 11.06 8.26 6.55
AffineQuant 13.51 7.22 6.49 - 10.87 7.64 -
SliM-LLM+ 9.68 7.17 6.41 5.74 10.87 7.59 6.44

Appendix H. For language generation tasks, as depicted
in Tab. 1, SliM-LLM markedly outperforms its backbone
GPTQ, particularly under the 2-bit. Specifically, on LLaMA-
7B, SliM-LLM achieves a 90% decrease in perplexity, while
on LLaMA-3-8B, it improves by 81%. In comparison
with the element-wise mixed-precision PB-LLM and the
codebook-based QuIP method, SliM-LLM further reduces
the perplexity by 41%~51%. As shown in Tab. 1, the per-
formance of SliM-LLM+ is still ahead compared to Omni-
Quant and AffineQuant. We also provide dialogue examples
of 2-bit instruction fine-tuning Vicuna-13B (Chiang et al.,
2023) and LLaMA-13B in Appeandix I. Our method demon-
strates zero-shot advantages at 2-bit, as shown in Tab. 3,
where SliM-LLM and SliM-LLM+ outperform other meth-
ods. For example, compared to GPTQ and OmniQuant,
our approach improves LLaMA-7B performance by 4.19%
and 1.91% on average. On LLaMA-65B, 2-bit SliM-LLM
and SliM-LLM+ achieve accuracy within 6% of FP16. To
further showcase the general performance of SliM-LLM,
we also compare the low-bit results on multi-modal models
(Tab. 15), where SLiM-LLM presents leading accuracy on
4 benchmarks.

4.2. Ablation Results

Abliation of SBA and SQC. We conduct a detailed ablation
study to illustrate the benefits of bit-widths allocation and
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Figure 5. Ablation results on OPT models. Random refers to ran-
domly selecting lower- and higher-bit groups, while head-tail as-
signs lower-bit precision to the head groups and higher-bit preci-
sion to an equal number of tail groups in the original sequence.

the impact of each component. Fig. 5(a) compares three
strategies for allocating bit-widths across groups, including
random allocation, head-tail allocation by spatial order, and
our proposed SBA. When the average bit-widths remains
constant, random and head-tail mixed-precision allocation
prove ineffective and even result in performance degrada-
tion, as shown in Fig. 5(a). In contrast, SBA consistently
delivers significant improvements in post-quantization per-
formance, validating the efficacy of our mixed-precision
approach. Fig. 5(b) presents the ablation effects of SBA and
SQC, demonstrating that both methods, based on the per-
ception of global and local salience, enhance quantization
performance.

Compare of SBA and ILP. We compare the performance
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Table 3. Performance comparisons of different quantization methods for zero-shot tasks.
Model / Acc↑ #W Method PIQA ARC-e ARC-c BoolQ HellaSwag Winogrande Avg.

LLaMA-7B

16-bit - 77.47 52.48 41.46 73.08 73.00 67.07 64.09
2-bit GPTQ 55.49 31.02 22.17 53.49 33.84 41.91 39.65
2-bit AWQ 47.78 28.77 21.31 31.19 24.47 40.03 32.26
2-bit SliM-LLM 57.83 33.46 25.09 56.05 36.70 52.64 43.84
2-bit OmniQuant 63.63 43.91 27.32 58.02 48.78 52.97 49.11
2-bit SliM-LLM+ 64.96 45.66 28.67 64.59 48.86 53.35 51.02

LLaMA-13B

16-bit - 79.10 59.89 44.45 68.01 76.21 70.31 66.33
2-bit GPTQ 70.37 47.74 35.88 51.57 61.39 60.84 54.63
2-bit AWQ 49.23 30.01 29.49 30.88 26.72 46.30 35.44
2-bit SliM-LLM 73.19 47.95 36.27 55.92 63.04 61.79 56.36
2-bit OmniQuant 73.14 49.38 36.93 63.34 62.19 61.77 57.64
2-bit SliM-LLM+ 74.15 50.26 37.04 64.31 63.57 63.11 58.74

LLaMA-30B

16-bit - 80.08 58.92 45.47 68.44 79.21 72.53 67.44
2-bit GPTQ 71.92 48.27 36.20 61.27 65.76 63.11 57.76
2-bit AWQ 49.17 28.56 25.97 34.73 24.97 46.99 35.07
2-bit SliM-LLM 75.52 51.29 39.29 62.01 66.10 64.07 59.71
2-bit OmniQuant 76.23 53.23 39.52 63.34 65.57 64.82 60.22
2-bit SliM-LLM+ 76.31 54.07 39.79 63.35 67.14 64.93 60.91

LLaMA-65B

16-bit - 80.79 58.71 46.24 82.29 80.72 77.50 71.04
2-bit GPTQ 76.16 52.48 40.14 77.23 71.96 70.22 64.70
2-bit SliM-LLM 77.09 53.72 40.25 77.51 72.05 70.91 65.26
2-bit OmniQuant 77.78 53.71 40.90 78.04 74.55 68.85 65.64
2-bit SliM-LLM+ 78.06 53.90 41.18 78.33 75.59 69.99 66.18

Table 4. WikiText2↓ performance of SBA and ILP on LLaMA.
Method #W 7B 13B 30B 65B

ILP 2-bit 17.55 9.51 9.27 7.46
SBA 2-bit 14.58 8.87 7.33 5.90

Table 5. Deployment results of GPTQ and Slim-LLM on GPU.
Group size is set to 128.

#W LLaMA-* 1-7B 1-13B

WM RM PPL↓ Token/s WM RM PPL↓ Token/s

FP16 - 12.6G 14.4G 5.68 69.2 24.3G 27.1G 5.09 52.5

3-bit GPTQ 3.2G 5.1G 6.55 83.4 5.8G 8.7G 5.62 57.6
SliM-LLM 3.2G 5.2G 6.40 79.1 5.8G 8.8G 5.48 48.5

2-bit GPTQ 2.2G 4.4G 152.31 83.9 4.0G 7.6G 20.44 92.6
SliM-LLM 2.3G 4.4G 14.58 61.2 4.1G 7.8G 8.87 73.7

between the ILP model in HAWQ v2 (Dong et al., 2019) and
SBA on the LLaMA model. Tab. 4 shows that SBA achieves
comprehensive performance superiority on LLaMA. We ob-
served that under a 2-bit scenario, ILP ensures an equal num-
ber of 1-bit and 3-bit groups within the search space {1-bit,
2-bit, 3-bit}. The advantage of ILP lies in a broader selec-
tion range for target bit-widths, but under commonly used
fixed integer bit-widths (e.g. 2-bit, 3-bit), SBA’s double-
pointer search strategy based on output feature KL proposed
by SBA can achieve a more optimal matching strategy.

4.3. Efficient Inference on Device

We utilize the open-source AutoGPTQ to extend CUDA
kernel supporting experimental mixed-precision inference,
with detailed process in Appendix B.2. As shown in Tab. 5,

we evaluate the deployment performance of LLaMA-7/13B
and LLaMA-2-7B under 2/3-bit settings. The results indi-
cate that our mixed-precision approach maintains a good
compression rate on GPUs and significantly enhances model
accuracy, only with a slight decrease in inference speed on
the A800. We also deploy the LLaMA-2-70B in Tab. 14.
Since current 1-bit operations lack well hardware support,
additional consumption of storage and computation is re-
quired on device. There remains considerable scope for
optimization in mixed-precision computing, and we aim to
further improve this in future work.

5. Conclusion
In this work, we propose SliM-LLM, a group-wise mixed-
precision PTQ framework for LLMs, designed to optimize
performance with low-bit weights while maintaining de-
ployment efficiency. The core of SliM-LLM is the Salience-
Determined Bit Allocation, which dynamically assigns bit
widths to preserve global salience information. Additionally,
the Salience-Weighted Quantizer Calibration enhances local
information retention, reducing the impact of quantization
on locally salient weights. Experimental results demonstrate
that SliM-LLM significantly improves accuracy across var-
ious LLMs while ensuring inference efficiency. Overall,
SliM-LLM is a versatile solution that integrates seamlessly
with existing quantization frameworks, enabling practical
deployment in resource-constrained environments.
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A. Limitations
Though the mixed-precision framework significantly im-
proves the quantization performance of LLMs, the current
out-of-the-box deployment tools still cannot well support
efficient mixed-precision computing. Meanwhile, the sup-
port for 1/2/3-bit inference on GPUs remains limited, which
affects the inferencing advantages of low-bit models. We
believe there is significant room for improvement in the
hardware efficiency of mixed-precision LLMs in the future.

B. SliM-LLM Implementation
B.1. Detailed Implementation

In this section, we present the specific implementation de-
tails of SliM-LLM, which utilizes GPTQ (Frantar et al.,
2022) as its backbone for mixed-precision quantization and
incorporates both SBA and SQC. SliM-LLM+ is consistent
with SliM-LLM in SBA computations but does not include
the SQC component, instead retaining learnable weight clip-
ping (LWC) approach in OmniQuant (Shao et al., 2023) for
gradient optimization.

Algorithm 2 primarily encompasses the core details of both
SBA and SQC. In SBA, the importance of each group is
determined by sorting the average salience of groups, fol-
lowed by a bi-pointer search that increases the number of
(N − 1)-bit and (N + 1)-bit groups to maintain their quan-
tity equilibrium. The optimization function then utilizes
the KL divergence from Eq. (4) to determine the optimal
mixed-precision ratio. SQC, on the other hand, enhances its
information by amplifying the quantization error of unstruc-
tured weight groups. When the last two parameters, scale
and zero point, in the fakequant(·) function are omitted,
the default values from Eq. (1) are used.

B.2. Mixed Bit Storage and Computing

We developed a framework for storage and inference de-
ployment supporting mixed-precision quantization based on
AutoGPTQ. The deployment process is as follows. After
completing mixed-precision quantization with SliM-LLM,
it outputs scales, zeros, and group-wise bit-widths generated
during the quantization process to identify the quantization
parameters and precision of each group in the Linear Projec-
tion weights. AutoGPTQ then packs the weights and zeros
into integer-compressed representations (denoted by ŵint

and ẑint respectively) based on the precision of different
groups, significantly reducing storage and operational bit-
width. After the quantized weights are packed, AutoGPTQ
loads the model onto the GPU, where the mixed precision
quantization kernel on the GPU performs dequantization on
the weights and zeros of different groups and calculation
with input activation, ultimately producing the final output.

In the mixed-precision deployment of AutoGPTQ, the
weight memory layout is organized by group, with each
group sharing the same precision, which is shown in Fig. 6.
Within each group, elements with the same precision are
packed as integers, eliminating the need for additional
padding, which saves space. Given that the bit-widths of
integers is a power of 2, this is compatible with group size
that is also a power of 2. For instance, even with the odd-
bit such as 3-bit storage, integers can store these numbers
without padding, as the commonly used group size is 128, a
multiple of almost all definition of integer type. This ensures
that elements within a group fully utilize the space provided
by integers, without storing numbers of different precision
within the same integer. ẑint follow the original logic of
AutoGPTQ but are packed with a uniform precision along
the channel direction for ease of use. Other tensors, like
scales, remain in the same floating-point format to ensure
the correctness of dequantization calculations.

To indicate the precision of each group, we also introduce
an additional array to store bit-widths of each group, where
each number is represented as a 2-bit value aggregated into
integers, marking the quantization precision of each group
for accurate reconstruction. We use cumulative calculations
to determine the starting index of each group, ensuring cor-
rectness despite changes in ŵint height and starting indices
caused by varying precision. Using the above methods to
store the quantized weights, zeros, and additional bit arrays
effectively reduces memory usage during model storage and
loading, thereby lowering the resource overhead required
for model deployment.

Once the weights are packed, we follow the modified Au-
toGPTQ logic for GPU inference. The GPU processes and
dequantizes the weights group by group for computation.
During GPU computation, a thread dequantizes a segment
of continuous memory data in one column of ŵint and
performs vector dot product calculations with the input ac-
tivation shared within the block, accumulating the results
in the corresponding result matrix. When threads form a
logical block, the block handles the computation and reduc-
tion of a continuous channel region. We complete the linear
layer computation by iterating through all logical blocks.
Leveraging AutoGPTQ’s initial logic and CUDA Warp’s
32-thread units, we ensure similar code structure and data
access logic for threads within each warp when group size is
128. This method was primarily conducted to validate feasi-
bility os SliM-LLM, demonstrating that the mixed precision
quantization with integer packing does not cause additional
computational overhead, indicating the efficiency and ac-
curacy advantage of SliM-LLM. In summary, by dividing
weight into several structured groups with mixed precision
and employing a reasonable GPU utilization strategy, Slim-
LLM balances performance and efficiency.
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Algorithm 1 Main Framework of SliM-LLM.

func SliM-LLM(w, xF , β, λ, N )
Input: w ∈ Rn×m - FP16 weight

xF ∈ Rt×m - calibration data
β - group size
λ - hessian regularizer
N - average bit-width

Output: ŵq - quantized weight

1: H := 1
P

∑P
k=1 x

[k]
F x

[k]T
F hessian matrix

2: H in := Cholesky((H + λI)
−1

)
3: ŵq := 0n×m

4: G{·} := SBA(w,xF ,H
in, β,N)

5: for b = 0, β, 2β, ... do
6: wb := w:,b:b+β

7: gb := G[b]
8: wb

s,w
b
us := sal_mask(wb)

9: ŵb
q := SQC(wb

s,w
b
us, gb)

10: GPTQ-error compensation:
11: E := (w:,b:b+β − ŵb

q)/H
in
bb:b+βb+β

12: w:,b+β: := w:,b+β: −E ·H in
b:b+β,b+β:

13: end for
14: return ŵq

Algorithm 2 Detailed functions in SliM-LLM.

func SBA(w,xF ,H
in, β,N)

1: G{·} := {0} // initialize group bit-width
2: e := inf // bit-widths searching error
3: p∗ := 0 // number of (N -1)-bit and (N+1)-bit
4: l := N − 1 // lower bit-width
5: h := N + 1 // higher bit-width
6: S{·} := average( w2

[Hin]2diag
)

7: for p = 1, 2, ..., [m2β ] do
8: ŵb

l := fakequant(wb
b∈top_k_min(p), l, )

9: ŵb
h := fakequant(wb

b∈top_k_max(p), h, )

10: ŵb
N := fakequant(wb

b∈others, N, )

11: ŵq := ŵb
l ∪ ŵb

l ∪ ŵb
h

12: if Dkl (xw
⊤ || xŵ⊤

q ) < e then
13: e := Dkl (xw

⊤ || xŵ⊤
q )

14: p∗ := p
15: end if
16: end for
17: G{l} := S{top_k_min(p∗) = l}
18: G{h} := S{top_k_max(p∗) = h}
19: G{N} := S{middle_k([m2 ]− 2p∗) = N}
20: return G{·}

func SQC(wb
s,w

b
us, gb)

1: wmax := max(wb
s ∪wb

us)
2: wmin := min(wb

s ∪wb
us)

3: λ := 0.1
4: n := 50
5: e := inf // scale searching error
6: ∆∗ ∈ Rn×1 // per-channel scale
7: z∗ ∈ Rn×1 // per-channel zero point
8: for τ ∈ [1− λ, 1 + λ] with 2n slices do
9: ∆ := τ(wmax − wmin)/(2

gs − 1)
10: z := −⌊(τwmin)/∆⌉
11: ŵb

s := fakequant(wb
s, gb,∆, z)

12: ŵb
us := fakequant(wb

us, gb,∆, z)
13: Ls := ||wb

s − ŵb
s||2

14: Lus := ||wb
us − ŵb

us||2
15: if Ls + Lus < e then
16: e := Ls + Lus

17: z∗ := z
18: ∆∗ := ∆
19: end if
20: end for
21: ŵb

q := fakequant(wb, gb,∆
∗, z∗)

22: return ŵb
q

C. Searching Details of Group-Wise
Salience-Determined Bit Allocation

We optimize the mixed-precision configuration based on
the output information entropy (KL-divergence), searching
for the optimal compensation bit-widths ratio as shown in
Eq. (4).

Initially, we rank each group by their average salience, a met-
ric for quantization, and employ a double-pointer that moves
simultaneously from both the beginning (lowest salience)
and end (highest salience) of the sorted list. This ensures an
equal number of groups at low and high bit-widths, effec-

tively balancing the global average bit-widths compensation.
We then calculate the relative entropy under the correspond-
ing precision ratio and search for the optimal ratio. Fig 7
displays the search error curves related to the 2nd, 10th, and
15th Transformer layers in the OPT1.3B model, showcasing
the search curves for certain self-attention layers (Query,
Key, Value, FC2).

Due to the limited range of the search, extreme scenarios
involve either a half (N − 1)-bit and half (N + 1)-bit with-
out N -bit or all groups being N -bit (uniform precision).
Fig 7 demonstrates that lower quantization errors can be
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Figure 6. The memory layout shown in the figure is modified based on AutoGPTQ. The transposed original weights w⊤ ∈ Rm×n are
still divided into multiple groups along the row direction after quantization. The elements within each group are vertically packed into
integers and then reassembled into ŵint. The figure employs corresponding colors to indicate how each original number is mapped to a
specific position within the packed integers after quantization, which finally generates ŵint ∈ Rm∗×n, where m∗ is compressed from m
by packing several low-bit number. Similarly, ẑint is also packed into integers to save memory.

achieved under mixed-precision compared to quantization
at the uniform bit-width. We also find that multiple low-
error precision combinations are possible within a group of
weights, allowing SBA to flexibly select the optimal ratio
through its versatile search.

D. Evluatiion Function of SBA
In Tab. 6, we employ various objective functions and com-
pare their performance in SBA across different models.
Compared to the commonly used Mean Squared Error
(MSE) loss, Kullback-Leibler (KL) divergence ensures the
distribution of critical activation positions within the model
from an information entropy perspective, making it a supe-
rior choice for the bit-widths allocation strategy in SBA for
the OPT and LLaMA models. When computing KL diver-
gence in this context, we first transform the layer outputs
into probability distributions using softmax.

E. Extension Ablation on SQC
In this section, we visualize the effectiveness of SQC in mit-
igating the degradation of information in locally salient
weights. We observed the absolute error of weights in
a randomly selected channel of the quantized OPT-1.3B
model. As shown in Fig. 8, the overall absolute error of
the weights post-quantization with a standard quantizer was

0.0055, while with SQC it was reduced to 0.0039. This
further demonstrates that the search parameter τ , as applied
in Eq. (5), effectively optimizes the quantizer parameters,
thereby reducing quantization errors.

More importantly, SQC effectively perceives the informa-
tion of locally salient weights, as indicated by the red re-
gions in Fig. 8. Compared to the vanilla quantizer, SQC
significantly reduces the error of salient weights. Specif-
ically, the prominent weights at indices 375 in Fig. 8(a)
show higher quantization errors, while in Fig. 8(b), this er-
ror is effectively reduced. This confirms SQC’s ability to
perceive locally salient weights, effectively preventing the
degradation of critical information.

F. Extension Ablation on Quantization
Group-Size

To investigate the impact of different group sizes on the
quantization effectiveness of SliM-LLM, we evaluated per-
formance with 256 and 512 columns at a 3-bit level, observ-
ing that larger group sizes enhance GPU efficiency during
inference. The findings suggest that increased group granu-
larity does not substantially elevate perplexity across four
models, indicating that SliM-LLM is robust and conducive
to more efficient deployment methods. In contrast, at 2-bit,
we assessed group sizes of 64 and 32 columns. With finer
group granularity, the models displayed reduced perplex-
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(a) Layer-5

Query Key Value Out FC2

(b) Layer-10
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Figure 7. Error curves of SBA for select weights in the 5th, 10th, and 15th layers of OPT-1.3B.

Table 6. Comparison of MSE and KL Divergence in SBA.
Method # W OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B LLaMA-7B LLaMA2-7B

MSE 2-bit 32.50 27.58 15.14 13.28 21.94 16.86
KL Divergence 2-bit 30.71 13.26 11.27 10.12 14.58 16.01

Table 7. Ablation results on OPT-6.7B, LLaMA-7B, LLaMA-2-7B, LLaMA-3-8B with SliM-LLM under different group size (#g denotes
the group size).

Precision / PPL↓ #g OPT-6.7B LLaMA-7B LLaMA-2-7B LLaMA-3-8B

3-bit
512 11.65 6.96 6.69 8.87
256 11.33 6.92 6.94 8.14
128 11.27 6.40 6.24 7.62

2-bit
128 14.41 14.58 16.01 39.66

64 13.95 13.41 15.02 29.84
32 12.47 11.91 11.95 16.93

ity. This is attributed to smaller groups providing more
detailed data representation and utilizing additional quanti-
zation parameters, although they also raise computational
and storage demands. A group size of 128 strikes a better
balance between efficiency and quantization performance.

G. Extension on Salience Channel Clustering
G.1. Discussion of Theorem 1

Theorem 1. Given the input calibration activation x ∈
Rt×m with an outlier channel x∗

:,p ≫ x:,j ,∀j ∈ [0,m], j ̸=
p at the position of channel-p. The trace elements of
H = x⊤x will show great outlier value at (p, p), where
Hp,p ≫ Hj,j ,∀j ∈ [0,m], j ̸= p, as Hp,p is produced
by [x∗⊤

:,p x
∗
:,p] =

∑t
i=0 x

∗2
i,p, which further leads to the pa-

rameter salience larger at the pth channel of weight, where

δ:,p > δ:,k, δ:,k =
w2

:,k

[H−1]2k,k
,∀k ∈ [0, t], k ̸= p.

Proof. Given x ∈ Rt×m with outlier channel x∗
:,p, p ∈

[0,m], and other elements with small magnitude xi,j , where
x∗
q,p ≫ xi,j and i, j ̸= q, p. We can get the Hessian matrix

with Levenberg-Marquardt (Marquardt, 1963) approxima-
tion in Eq. (3):

H =


x2
11 + .. · · · · · · · · ·

...
. . . · · ·

...
...

... x∗
p,p

2 + ..
...

· · · · · · · · ·
. . .

 (6)
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(b) Quantization Error of SQC
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Figure 8. Absolute channel error of the weight of the OPT-1.3B model. The red line represents the quantization error for the locally salient
weights, and the lightmauve represents other weights. (a) Vanilla quantizer error on the 794th channel of OPT-1.3B. (b) SQC error on the
794th channel of OPT-1.3B

where [x∗⊤
:,p x

∗
:,p] will appears at position Hp,p. And fol-

lowing SparseGPT (Frantar & Alistarh, 2023), the inverse
matrix of H can be formulated as:

δi,j =
w2

i,j

[diag((x⊤x+ λI)−1)]2
(7)

where (x⊤x+ λI)−1 is the new representation of Hessian
matrix H for the layer-wise reconstruction problem, and
λ is the dampening factor for the Hessian to prevent the
collapse of the inverse computation. Additionally, in accor-
dance with the configuration in LLMs (Frantar & Alistarh,
2023; Frantar et al., 2022; Sun et al., 2023), the value of λ
set is extremely small (λ ≤ e−1), while the values located
at the diagonal of Hessian are large. Therefore, only consid-
ering the influence of diagonal elements (Sun et al., 2023),

we can further approximate salience as:

δi,j =
w2

i,j

[diag((x⊤x+ λI)−1)]2
≈

w2
i,j

[(diag(x⊤x))−1]2
= (wi,j · ||xj ||22)2

(8)

Here the diagonal of x⊤x is diag(||xj ||22), and ||xj ||2 eval-
uates the ℓ2 norm of jth channel across different tokens.
Consequently, it can be summarized that when there is an
outlier channel-p, the value of ||xp||2 is primarily influenced
by [x∗⊤

:,p x
∗
:,p]. Additionally, since the activation values are

relatively large and the differences in weight values are com-
paratively small, the pth channel of weights will also exhibit
salience.
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G.2. Distribution of salience, activation and weight
magnitude

Fig. 9 illustrates the distribution of salience among certain
weights in LLMs. This section provides additional examples
to demonstrate how the distribution of weights and input ac-
tivation characteristics influence the salience of parameters
in LLMs. The figure captures seven linear projections in the
multi-head self-attention (MHA) and feed-forward block
(FFB) layers of the 2nd and 10th Transformer modules in
the LLaMA-7B model.

In line with previous findings (Nrusimha et al., 2024; Xiao
et al., 2023a), activations demonstrate particularly marked
outlier phenomena on anomalous tokens and channels, with
extremes differing by more than two orders of magnitude.
Notably, distinct anomalous channels are present in the
MHA’s Query, Key, and Value layers, where outliers vary
significantly across different tokens. This pattern is con-
sistent in the FFB layers. We observe that disparities in
weight magnitudes are less pronounced than those in ac-
tivation, thus exerting a reduced impact on outlier chan-
nels. Moreover, weights distribute structurally along rows
or columns (Dettmers et al., 2023; Huang et al., 2024a),
affecting the overall distribution of salience from a row-
wise perspective (Fig. 9). However, the most prominent
salience is predominantly driven by activation across chan-
nels (column-wise).

G.3. Hessian Diagonal Clustering

Sec. 3.2.1 demonstrates that outlier tokens in input activa-
tions result in significant values at the corresponding po-
sitions along the diagonal of the weight Hessian matrix.
Additionally, due to the token sink phenomenon (Xiao et al.,
2023b; Nrusimha et al., 2024), areas around significantly
activated key tokens exhibit increased salience, creating
clusters of salient regions along the Hessian matrix diagonal.
To further elucidate this phenomenon, Fig. 10 shows the
values along the diagonal of the Hessian matrix for selected
weights in the 2nd and 10th layers of the LLaMA-7B model.
Within this diagonal, certain positions display pronounced
values (indicated in red), whereas others are relatively mod-
erate. In the attention aggregation layer of the 10th layer, the
token sink phenomenon results in a pronounced convergence
of significant values along the Hessian matrix diagonal, with
deep red areas indicating regional clustering. These findings
reinforce the influence of input activations on the diagonal
of the Hessian matrix, subsequently leading to a clustering
phenomenon in the salience distribution of weights across
channels.

H. More Comparisons
In this section, we provide supplementary experiments for
SliM-LLM. Tab. 8 displays the comparative results of SliM-
LLM and SliM-LLM+ with other methods on the OPT
series models. Tab. 9 shows the performance of SliM-
LLM when quantizing the LLaMA family models on the
C4 dataset, while Tab. 10 also compares the results of SliM-
LLM+ on the C4 dataset. In Tab. 11, we compared the
quantization results of GPTQ, AWQ, and SliM-LLM at 2-
bit on the Gemma2 and Mixtral models, demonstrating the
greater stability of SliM-LLM across a wider range of model
structures. Additionally, in Tab. 12, we supplemented the
4-bit results of different quantization methods in the LLaMA
series models, showing that SliM-LLM and SliM-LLM+

exhibit the smallest quantization errors at practical 4-bit lev-
els. To provide a comprehensive evaluation across a broader
set of benchmarks, we further compared the quantization
results on MMLU and MathQA in Tab. 13.

I. Real Dialog Examples
In this section, we show some dialogue examples of LLaMA-
2-13B and Vicuna-13B with SliM-LLM-2bit and GPTQ-
2bit in Fig. 11.

J. Model Experiments on Efficiency
Tab. 14 presents further efficiency comparisons between
AutoGPTQ and SliM-LLM. The results shows that even
under the larger LLMs with 70B parameters, SliM-LLM
can also show the better accuracy with comparable inference
efficiency.

K. Quantization Performance on Vision
Language Models

To further showcase the potential application capabilities of
SliM-LLM, in Tab. 15, we deploy SliM-LLM on LLaVA-
Next-8B (Liu et al., 2024) evaluated on 4 benchmarks. The
results show that GPTQ, AWQ and SliM-LLM show compa-
rable performance under the 3-bit context. However, when
the bit-width is setting as 2, GPTQ and AWQ failed to gen-
erate the reasonable answer in each benchmark and get "N"
results. SliM-LLM successfully generate the reasonable out-
put and the accuracy is closed to 3-bit model, which presents
the superior usability of SliM-LLM to wider environments.

17



SliM-LLM

(a) layer-2

Salience

Activation

Weight

Query Key Value Out Up Gate Down

Salience

Activation

Weight

(b) layer-10

Figure 9. Salience, activation and weight distribution in the 2nd and 10th layers of LLaMA-7B
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Figure 10. Hessian diagonal magnitude in attention layers of 2nd and 10th layers of LLaMA-7B
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Table 8. Quantization results of OPT Models on WikiText2 (group size is 128).
#W PPL↓ Method 1.3B 2.7B 6.7B 13B 30B 66B

16-bit - 14.63 12.47 10.86 10.12 9.56 9.34

3-bit

RTN 1.2e2 3.0e2 23.54 46.03 18.80 1.4e6
GPTQ 16.47 13.69 11.65 10.35 9.73 10.96
AWQ 16.32 13.58 11.41 10.68 9.85 9.60
QuIP 16.21 13.79 11.51 10.50 9.75 9.59

SliM-LLM 15.91 13.26 11.27 10.26 9.70 9.48
OmniQuant 15.72 13.18 11.27 10.47 9.79 9.53
AffineQuant 15.61 12.98 11.18 10.51 9.81 -
SliM-LLM+ 15.58 12.84 11.18 10.44 9.67 9.51

2-bit

RTN 1.3e4 5.7e4 7.8e3 7.6e4 1.3e4 3.6e5
GPTQ 1.1e2 61.59 20.18 21.36 12.71 82.10
AWQ 47.97 28.50 16.20 14.32 12.31 14.54
QuIP 41.64 28.98 18.57 16.02 11.48 10.76

PB-LLM 45.92 39.71 20.37 19.11 17.01 16.36
SliM-LLM 30.71 24.08 14.41 13.68 11.34 10.94
OmniQuant 23.95 18.13 14.43 12.94 11.39 30.84
SliM-LLM+ 24.57 17.98 14.22 12.16 11.27 14.98

Table 9. Quantization results of LLaMA Family with statistic quantizer on C4 (group size is 128).
#W PPL↓ Method 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B 3-8B 3-70B

16-bit - 7.08 6.61 5.98 5.62 6.97 6.46 5.52 9.22 6.85

3-bit

APTQ 6.24 - - - - - - - -
RTN 8.62 7.49 6.58 6.10 8.40 7.18 6.02 1.1e2 22.39
AWQ 7.92 7.07 6.37 5.94 7.84 6.94 - 11.62 8.03
GPTQ 7.85 7.10 6.47 6.00 7.89 7.00 5.85 13.67 10.52
SliM-LLM 6.14 6.05 6.33 5.94 7.74 5.26 5.09 13.10 8.64

2-bit

RTN 1.0e3 4.5e2 99.45 17.15 4.9e3 1.4e2 42.13 2.5e4 4.6e5
AWQ 1.9e5 2.3e5 2.4e5 7.5e4 1.7e5 9.4e4 - 2.1e6 1.4e6
GPTQ 34.63 15.29 11.93 11.99 33.70 20.97 NAN 4.1e4 21.82
QuIP 33.74 21.94 10.95 13.99 31.94 16.16 8.17 1.3e2 22.24
PB-LLM 49.73 26.93 17.93 11.85 29.84 19.82 8.95 79.21 33.91
SliM-LLM 32.91 13.85 11.27 10.95 16.00 9.41 7.01 1.1e2 15.92

Table 10. Quantization results of LLaMA-1 and LLaMA-2 models with learnable quantizer on C4.
#W PPL↓ Method 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B

16-bit - 7.08 6.61 5.98 5.62 6.97 6.46 5.52

3-bit
OmniQuant 7.75 7.05 6.37 5.93 7.75 6.98 5.85
AffineQuant 7.75 7.04 6.40 - 7.83 6.99 -
SliM-LLM+ 7.75 6.91 6.36 5.96 7.71 6.90 5.85

2-bit
OmniQuant 12.97 10.36 9.36 8.00 15.02 11.05 8.52
AffineQuant 14.92 12.64 9.66 - 16.02 10.98 -
SliM-LLM+ 14.99 10.22 9.33 7.52 18.18 10.24 8.40

Table 11. PPL Comparison on Gemma2 and Mixtral.
Model/Evaluation Method PPL (wikitext2)

Gemma2-9B
GPTQ 2-bit 186.77
AWQ 2-bit 217.83

SliM-LLM 2bit 26.30

Mixtral 8x7B
GPTQ 2-bit 16.38
AWQ 2-bit 3.2e5

SliM-LLM 2bit 7.44
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Table 12. The PPL results of our proposed method and other methods under 4bit quantization.
Method LLaMA-7B LLaMA-13B LLaMA2-7B LLaMA2-13B LLaMA3-8B

FP16 5.68 5.09 5.47 4.88 5.75
AWQ 5.81 5.30 5.62 4.97 6.63
GPTQ 5.85 5.20 5.61 4.98 6.50
SliM-LLM 5.83 5.16 5.59 4.95 6.42

Omniquant 5.77 - 5.58 - -
SliM-LLM+ 5.75 - 5.57 - -

Table 13. The results(%) on MMLU and MathQA for multiple quantized LLaMA models.
Model Method Humanities Social Sciences STEM Other MMLU MathQA

LLaMA-7B
GPTQ 2-bit 24.87 21.84 21.79 24.01 23.32 21.11
AWQ 2-bit 24.21 21.71 21.25 23.98 22.95 22.21

SliM-LLM 2bit 24.94 23.60 23.40 25.50 25.10 23.74

LLaMA-13B
GPTQ 2-bit 24.23 23.20 22.99 24.78 23.85 21.68
AWQ 2-bit 24.17 31.07 28.61 25.14 26.89 21.98

SliM-LLM 2bit 25.12 31.74 29.19 26.17 27.05 23.17

LLaMA2-7B
GPTQ 2-bit 25.02 22.13 22.61 23.17 23.44 21.07
AWQ 2-bit 25.12 22.79 24.26 24.01 24.51 19.06

SliM-LLM 2bit 26.60 23.23 25.70 25.70 25.81 22.55

LLaMA2-13B
GPTQ 2-bit 23.91 27.17 26.10 25.78 25.53 20.87
AWQ 2-bit 24.17 31.07 28.61 25.14 26.89 19.53

SliM-LLM 2bit 26.27 32.20 29.98 26.46 27.34 23.48

Table 14. LLaMA-2-70B results of GPTQ and Slim-LLM on GPU. Group size is set to 128.

#W LLaMA-2-70B WM RM PPL↓ Token/s

3-bit GPTQ 28.0G 34.9G 3.85 6.5
SliM-LLM 28.0G 35.2G 3.67 6.2

2-bit GPTQ 16.4G 23.3G 8.78 9.7
SliM-LLM 23.5G 4.4G 6.28 8.4

Table 15. Quantization results on Vision Language Models (VLMs).

#W #G AI2D ChartQA DocVQA MMBench

GPTQ 3 128 66.2 65.1 75.6 67.4
2 128 N N N N

AWQ 3 128 67.7 65.4 74.4 68.0
2 128 N N N N

SliM-LLM 3 128 68.2 67.5 74.8 68.9
2 128 57.2 49.3 60.6 60.9
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The eight planets in Solar System are Mercury, ____Prompt:
, 10.2. The eight pill o free games of p. 62.2. The way we do this.GPTQ-2bit:
Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.Slim-LLM-2bit:
The tallest and most famous tower in France is ____Prompt:
is 350 and most recently.GPTQ-2bit:
320 meters high.Slim-LLM-2bit:
The 2012 Summer Olympic was held in ___Prompt:
The 2012 Summer Olympic was held in 1016 (a.185) and the 775,000 km from 
each.

GPTQ-2bit:

2012 in London, the United Kingdom.Slim-LLM-2bit:

LLaMA-2-13B

What are the capitals of Brazil, Mexico and France?Prompt:

What is the RER score?GPTQ-2bit:
The capital of Brazil is Brasília, the capital of Mexico is Mexico City, and the capital 
of France is Paris.

Slim-LLM-2bit:

What are the ancient civilizations in Europe?Prompt:

I am trying to find a book to nook over the life of to 300,000 or so. The ancient 
civilization is the one in which history books be pop and I have a be, oh, do you 
know the one the Mayan, the one of the total for Dake.

GPTQ-2bit:

The ancient civilizations in Europe include the Roman Empire, the Byzantine Empire,
and the Ottoman Empire.

Slim-LLM-2bit:

What are the logical circuits?Prompt:

What is the order of the logical cumulated?
What is the best strategy to do in a single?
What is the most popular to be eaten? What are the most sought?

GPTQ-2bit:

The logical circuits are the basic components for building the logical functions, 
which are required for digital computing. These circuits use logic structures and 
devices that allow the use of Boolean and multiple logic to implement the functional 
requirements as defined by a problem solving method of computer. In digital 
computing, circuits perform the logical tasks required for solving problems.

Slim-LLM-2bit:

Vicuna-13B

Figure 11. Some examples of conversations. LLaMA-2-13B and Vicuna-13B are chosen to show the case of language supplementary and
Q&A ability. And GPTQ-2bit is selected as the comparison. We color the text to show the reasonable or inappropriate responses.
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