Under review as a conference paper at ICLR 2025

DISCRIMINATIVE ESTIMATION OF TOTAL VARIATION
DISTANCE: A FIDELITY AUDITOR FOR GENERATIVE
DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

With the proliferation of generative Al and the increasing volume of generative data
(also called as synthetic data), assessing the fidelity of generative data has become
a critical concern. In this paper, we propose a discriminative approach to estimate
the total variation (TV) distance between two distributions as an effective measure
of generative data fidelity. Our method quantitatively characterizes the relation
between the Bayes risk in classifying two distributions and their TV distance.
Therefore, the estimation of total variation distance reduces to that of the Bayes risk.
In particular, this paper establishes theoretical results regarding the convergence
rate of the estimation error of TV distance between two Gaussian distributions.
We demonstrate that, with a specific choice of hypothesis class in classification, a
fast convergence rate in estimating the TV distance can be achieved. Specifically,
the estimation accuracy of the TV distance is proven to inherently depend on the
separation of two Gaussian distributions: smaller estimation errors are achieved
when the two Gaussian distributions are farther apart. This phenomenon is also
validated empirically through extensive simulations. In the end, we apply this
discriminative estimation method to rank fidelity of synthetic image data using the
MNIST/CIFAR-10 dataset.

1 INTRODUCTION

Evaluating the discrepancy between distributions has been a prominent research topic in the statistics
and machine learning communities, as evidenced by its extensive applications in hypothesis testing
(Gerber et al.| 2023} [Yang et al., [2018) and generative data evaluation (Sajjadi et al., | 2018; Snoke
et al., 2018)). Particularly in recent years, considerable research efforts have been dedicated to
the development of generative models, resulting in a boom in generative data. Within this context,
assessing the fidelity of generative data to real data is vital for ensuring the significance of downstream
tasks trained on these generative data.

In practice, the fidelity of generative data can be measured via some statistical divergences, such
as Kullback-Leibler divergence, Jensen-Shannon divergence, and Total Variation (TV) distance.
However, estimating these statistical divergences faces significant hurdles due to the high-dimensional
complexity and intricate correlations within the data. These challenges partly explain why the existing
frameworks for fidelity evaluation Jordon et al.| (2022)) predominantly rely on low-dimensional
surrogate metrics, such as marginal distributions (Zhang et al.l 2014)) and correlation plots. To avoid
directly computing distributional distances in high dimensions, researchers have proposed several
approaches to audit fidelity. These include comparing the density of synthetic and real distributions
only over random subsets of datasets (Bowen & Snokel 2019), or quantifying the similarity between
real and synthetic data using precision (quality of synthetic samples) and recall (diversity of synthetic
samples) (Sajjadi et al., [2018]).

To have a more comprehensive auditing, we realize the necessity and importance of distance estimation
at the distributional level. To develop an effective approach to estimate the (particularly high
dimensional) distributional distance, we start with the TV distance as the metric to compare two
distributions, which stands out as the premier metric for evaluating generative data quality in the
literature (Tao et al.,[2021} [Zhang et al., 2014). Our key insight is to frame the TV distance between
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two distributions as the Bayes risk in a classification task for distinguishing between them. Thus, the
problem of estimating TV distance can be converted into estimating Bayes risk in classification.

We establish theoretical results regarding the convergence rate of the estimation error of TV distance
between two Gaussian distributions, which is further extended to the exponential family. Specifically,
we show that the proposed estimator converges to the true TV distance in probability at a faster
convergence rate compared with results in[Rubenstein et al.|(2019); [Sreekumar & Goldfeld| (2022).
Interestingly, our theory (one-dimensional Gaussian case (Theorem[3.6)) confirms a phenomenon that
the estimation of TV distance inherently depends on the level of separation between two distributions:
the farther apart the two distributions are, the easier the estimation task becomes. This phenomenon is
validated in extensive simulations (Figure2). Our theory is developed under the Gaussian assumption
that is supported by the normality of generative data embeddings found in images
and text data 2024). In numerical experiments, we utilized our method to compare
images generated by generative adversarial networks (GANs; [Goodfellow et al.|[2020), showing that
our method accurately ranks data fidelity based on different types of embeddings (Table [3)).

1.1 RELATED WORK

There are three related lines of research: the estimation of statistical divergences, the total variation
(TV) distance between two Gaussian distributions, and the fidelity evaluation of synthetic data. Below,
we provide an overview of relevant studies and highlight how they differ from our own work.

Statistical divergence estimation. Contemporary methodologies for estimating divergence metrics
predominantly rely on employing plug-in density estimators as surrogates for the densities within
these metrics. [Moon & Hero| (2014)) employ a kernel density estimator to estimate the density ratio
within the f-divergence family. Similarly,|Noshad et al.|(2017) propose using k-nearest neighbor
to approximate the continuous density function ratio within the f-divergence family.
introduce a random mixture estimator to approximate the f-divergence between two
probability distributions. Additionally, [Sreekumar & Goldfeld| (2022) establish non-asymptotic
absolute error bounds for the use of neural networks in approximating f-divergences. Existing
methods primarily nonparametric estimation based, which are hindered by the curse of dimensionality
and often overlook the separation between two distributions. Interestingly, our developed method
frames the divergence estimation problem as a classification problem that takes into account of the
separation gap closely connected with the classic low-noise assumption in classification.

TV distance between Gaussian distributions. Devroye et al.|(2018) investigate the total variation
distance between two high-dimensional Gaussians with the same mean, providing both lower and
upper bounds for their total variation distance. [Davies et al.| (2022) derive new lower bounds on the
total variation distance between two-component Gaussian mixtures with a shared covariance matrix
by examining the characteristic function of the mixture. Building upon the work of
(2018)), Barabesi & Pratellil (2024) improve the results by providing a tighter bound for the total
variation distance between two high-dimensional Gaussian distributions based on a more delicate
bound for the cumulative distribution function of Gaussians. Existing works on the TV distance
between Gaussian distributions primarily focus on deriving upper and lower bounds rather than
establishing effective estimation methods based on finite samples.

Fidelity Evaluation. To evaluate the fidelity of synthetic data, besides f-divergence metrics such
as total variation (TV) distance (Zhang et al| 2014) and Kullback-Leibler (KL) divergence (Jiang]
2018)), another common metric is the Maximum Mean Discrepancy (MMD) (Sutherland et al} 2016}
Li et al] 2017). For instance, directly used MMD as an optimization target to assess
the quality of synthetic data. Additionally, in the domain of computer vision, the Fréchet Inception
Distance (FID) score (Heusel et al.] 2017) is the primary metric used to assess the quality of images
generated by generative models. It quantifies the similarity between the distributions of real and
generated images, relying on the Fréchet Distance between two multivariate Gaussian distributions
(Fréchet, [1957). [Kynkdanniemi et al] (2022) study how the use of ImageNet-pretrained Inception
features in FID calculations can lead to discrepancies with human judgment. |O’Reilly & Asadi|(2021)
explore the impact of using pre-trained versus randomly initialized weights in the Inception network
for FID computation and discuss the reliability and consistency of FID scores.




Under review as a conference paper at ICLR 2025

1.2 PRELIMINARIES

For a random variable X, we let Ex (-) denote the expectation taken with respect to the randomness

of X. For a random sequence {X,,}52, X,, P, X indicates that X,, converges to X in probability.
We use bold symbols to represent multivariate objects. In binary classification, the objective is to
learn a classifier f : X — {0, 1} for capturing the functional relationship between the feature vector
X € X and its associated label Y € {0, 1}. The performance of f is usually measured by the 0-1
risk as R(f) = P (f(X) #Y), where the expectation is taken with respect to the joint distribution
of (X,Y). The optimal classifier f* = argmin fR( f) refers to the Bayes decision rule, which is

obtained by minimizing R(f) in a point-wise manner and given as f*(X) = I (n(X) > 3), where
n(X) = P(Y = 1|X) and I(-) is the indicator function.

2  DISCRIMINATIVE ESTIMATION OF TOTAL VARIATION DISTANCE

In this section, we present an effective classification-based approach to estimate the underlying total
variation (TV) distance between two distributions using two sets of their realizations. Our key insight
is to conceptualize the total variation distance as a lower bound of the Bayes Risk for a real-synthetic
data classifier. By leveraging the duality between total variation distance and Bayes Risk, we establish
a lower bound on the total variation distance. This method can serve as a “Fidelity Auditor" for
comparing real and synthetic data, and is directly applicable to arbitrary data synthesizers.

2.1 FRAMING TOTAL VARIATION DISTANCE AS CLASSIFICATION PROBLEM.

We denote the sets of real data and synthetic data as {x;}!_, and {Z;}_,, respectively, where
x;, T; € RP are p-dimensional continuous vectors. Let P(x) and Q(x) denote the density functions
of real and synthetic data, respectively. The total variation (TV) distance between P(x) and Q(x) is

given as
1
V(E,Q) = ; /R IP(x) — Q(x)|de.

For the mixed dataset D = {;},_, U {@;}_,, the underlying density function can be written as

pie) - e+ Qo)

As elaborated in the work of Nguyen et al.| (2009), estimating f-divergences can be equivalently
transformed to seek the optimal classifier capable of distinguishing real data from synthetic data.
Specifically, we set the labels of real and synthetic samples as 1 and 0, respectively. For any sample

x, the probability of x being real is given as n(x) = %. Let f : R? — {0, 1} be a classifier
used to discriminate real and synthetic samples. The expected classification error can be written as
Q(X) P(X)
R(f)=E [Iszl—kIszO7 1)
where X ~ D. Therefore, the minimal risk R(f*) is then given as
1 . 1 1
R(f") =5 | min{P(z),Qz)}dz = 5 — TV (P, Q). (2)
RP

It is clear from (2)) that the estimation of the total variation between [P and Q is equivalent to that of
the Bayes risk R(f*) for the task of discriminating between real and synthetic data.

2.2 TOTAL VARIATION DISTANCE LOWER BOUND VIA CLASSIFICATION

Given an estimator fof the optimal classifier f*, we always have

R() 2 RU) = 5 - 5TV (B,Q).

This inequality suggests

~

TV(P,Q) > 1 - 2R(f) 2 TV(P,Q) 3)
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for any feasible classifier f. Therefore, f provides a means to establish a lower bound for the total
variation distance between the distributions of real and synthetic data distributions. Each specific
classifier f yields a lower bound on the indistinguishability between P and Q. Intuitively, if none of
classifiers yields a large lower bound, then the synthetic data Q can be considered similar to the real
data IP, indicating that their total variation distance is small.

If the chosen classifier f is consistent for achieving minimal risk, that is £ (f) = R(]?) —R(f*) =0,

where £ (f) is known as the excess risk, then TV (PP, Q) appears as a consistent estimator of the real
total variation TV (P, Q), that is

E(f) = R(J) = R(f*) % 0= TV(P,Q) - TV(P, Q) 0.
Here the equivalence of these two convergence in probability is supported by the quantitative relation

TV(P,Q) — TV(P,Q) = 2& (f) In the literature, there has been various research efforts devoted to
establishing the convergence of £( f) (Audibert & Tsybakov, 2007; [Bartlett et al., [2006).

3  OPTIMAL ESTIMATION OF TOTAL VARIATION DISTANCE

In this section, we present several examples where achieving an optimal classifier is feasible by
choosing a proper hypothesis class. For illustration, we primarily examine a scenario where both real
and synthetic data are generated from multivariate Gaussian distributions. Subsequently, we offer an
extension to encompass the general exponential family. To establish the tightest convergence rate
for the empirical fidelity auditor, we adopt the following low noise assumption in the classification
literature (Audibert & Tsybakovl 2007; Bartlett et al.| 2000).

Assumption 3.1 (Low-Noise Condition) There exist some positive constants Cy and ~y such that
P(In(x) — 1/2| < t) < Cot? for any t > 0, where -y is referred to as the noise exponent.

Assumption [3.1] characterizes the behavior of the regression function 7 in the vicinity of the level
n(x) = 1/2, which is paramount for convergence of classifiers. Particularly, a larger value of v
indicates smaller noise in the labels, resulting in a faster convergence rate to the optimal classifier.

3.1 MULTIVARIATE GAUSSIAN DISTRIBUTION

We start with delving into a scenario where both real and synthetic data follow multivariate normal
distributions. Our primary aim is to delineate the optimal function class for training an empirical
classifier and assess its convergence towards the optimal classifier. This assumption finds particular
prevalence in the domain of generative data, owing to the widespread practice of assuming embeddings
of generative data to be normally distributed, such as images (Kynkaddnniemi et al.| [2023) and text
data (Chun), [2024)).

Specifically, we assume P and Q are two different Gaussian density functions parametrized by
(p1,%1) and (po, 32), respectively. Under this assumption, the underlying distribution of the mixed
dataset D is SN (1, 31) + 3(p2, B2).

Lemma 3.2 Given that D ~ %N(/,Ll, )+ %N(/,LQ, 35), the Bayes decision rule (optimal classi-

fier) for determining the true distribution of a given sample x is
N det (X _ _
@) =1 (10w (S5 ) + (o = )25 @ - o) = (@~ ) B o - ) > 0)

where det(-) denotes the determinant of a matrix.

Lemma specifies the optimal classifier for discriminating between two multivariate Gaussian
distributions. However, directly learning f* is often computationally infeasible in practical scenarios.
As an alternative approach, we consider employing a plug-in classifier, where we aim to estimate

n(X) = % through the following optimization task:

5 e min LS~ L (1 ewBTv@) \T, (_ep(B7v@E) )
TS 2”;{(1 1+eXp<ﬂT¢($i))> +(1+exp(,6Tw(£i))> }“'5”2’ @)
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where (x) = (1,21,...,2p, 27, 2122, ..., Tp_12p, x7) being a feature transformation of original
features  withd = (p + 2)(p + 1)/2.

Next we denote H = {h(xz) = 87¢(x) : B € R?} and h(z) = BT (x). As long as h is obtained,
the plug-in classifier can be obtained as

. - exp(h(z)) Y ./
Plug-in Classifier: f(xz) =1 <1+exp(Ah(w)) > 2) = (h(:c) > 0) . 3)

Here, f represents an empirical classifier estimated from D, capable of discerning between real and
synthetic data originating from two distinct Gaussian distributions.

Lemma 3.3 Define h = argminy, E [(6(h(X)) = Y)?] with ¢(z) = m. Given that
X~ N (i1, 30) + § (2, Bo) and P(Y = 1|1X) = 55505, we have
* det(ZQ) _ _
hg () = log <det(21)) + (@ = o) B (@ — po) — (2 — )T (= — ).

Lemma [3.3] validates the effectiveness of (@) in obtaining an empirical classifier. Specifically, as
the sample size tends towards infinity, » becomes consistent with f* in sign. Therefore, the plug-in
classifier f can be used as a surrogate for f* to calculate the total variation between P and Q. To

theoretically validate this claim, we demonstrate in Theorem [3.4] that our developed discriminative
estimation of the total variation between two Gaussian distributions exhibits a fast convergence rate

a+1
of O ((d log(n)/n) +2 ) This result aligns with the optimal convergence rate in classification under
the same assumptions as presented in (Bartlett et al.| 2006; [Tsybakov, [2004).

Moreover, our theoretical result unveils two intriguing phenomena:

1 When an appropriate function class is chosen for classification, the estimation of the total vari-
ation between two Gaussian distributions remains robust against data dimension compared to
nonparametric density estimation and neural estimation approaches (Sreekumar & Goldfeld,
2022);

2 The estimation error of total variation inherently depends on the difference between P and Q, such
that a faster convergence rate is achieved when the real total variation distance between [P and QQ
is larger (larger values of -y or smaller values of C in Assumption [3.1)).

The second phenomenon is striking because it suggests that the difficulty of estimating total variation
diminishes significantly when the true variation is substantial. Despite lacking theoretical validation
in existing literature, this result is intuitively comprehensible. In Figure[I] we provide a toy example
illustrating that P and Q have completely disjoint supports, resulting in a true total variation of one.
It can be observed that regardless of the number of samples used to compute the empirical total
variation, the estimated total variation is consistent with zero estimation error.

Theorem 3.4 IfP and Q are two different Gaussian density functions parametrized by (p1, 31) and
(p2, X2), respectively. Under Assumption[3.1] we have

(6

1
dlogn\ "2
2n ’

B0 {TVR.0) - TvR.0)} £ 7 (

where W(P, Q) =1- QR(f) with fbeing the plug-in classifier given by (EI) with A < dlog(n)/n
and Cy and ~y are as defined in Assumption[3.1]

Lemma 3.5 Suppose that X ~ SN (p1, %) + s N(p2, X), for any ¢ < 1/2, we have
2t
(1= 2c)y/m|p1 — pals’

oo P
where |1 — pol|ss = /(1 — p2) TS (i — pa) and n() = 5977

P(n(X) —1/2[ <t) <
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Figure 1: In this case, the supports of P and QQ are completely non-overlapping, and hence Assumption
B-I]holds with Cy = 0 and any y > 0. It is evident that the estimation error in () is zero due to the
disjoint nature of the histograms for any value of n in this example.

In Lemma 3.3 we verify Assumption[3.1]for the case when [P and Q are two multivariate Gaussian
distributions with identical covariance matrices. This quantifies the values of Cy and ~, further
clarifying the convergence rate developed in ().

Theorem 3.6 Suppose X ~ 5N (p1,X) + L N(po, X). With this, (EI) becomes
— 1 5 (dlogn\®
Ep {TV(P,Q) - TV(P,Q)} S ( ) (( = ”) ,
1 = pal 2n
1 — pells = /(1 — p2)TE (1 — po).

where
In Theorem[3.6] we present a detailed analysis of (@) specifically tailored to the Gaussian case with
identical covariance matrices. This analysis includes the explicit determination of the constants
Cyp and + as defined in Assumption Specifically, we show that Cyp =< 1/||p1 — po||s and
v = 1. Our findings demonstrate that the proposed discriminative estimation method achieves a

rapid convergence rate of O (Hul — u2||;/371,’§), accompanied by a logarithmic factor. Notably,

as |1 — pel||s tends towards infinity, the convergence rate accelerates, aligning with our second
observation mentioned earlier.

3.2 EXTENSION TO EXPONENTIAL FAMILY

We extend our Gaussian result to encompass the broader exponential family. Specifically, we address
the question of determining the appropriate function class for estimating the total variation between
two exponential-type random variables. With the appropriate choice of function classes, similar
results for estimating the total variation can be derived, building upon the risk of the resulting
classifier.

For any exponential-type random variable X, the associated probability density function can typically
be expressed in the general form

fx(x|60) = h(z) - exp [n(0) - T(x) — A(6)],
where h(-), T(-), n(-), and A(-) are functions that uniquely depend on the type of X.

Theorem 3.7 Let P(x) and Q(x) be the density functions of two different random variables from
the exponential family:

P(x) = hi(x) - exp [1(01) - T () — A1(61)],
Q(z) = ha(z) - exp [n2(02) - Ta(x) — A2(62)] .
Then the optimal classifier for minimizing ({I)) is given as
P =1 (10 (157 ) + 42(62) ~ 41(61) + Talo)m (62) - To(whn(6z) >0) . )

Furthermore, the total variation between P(x) and Q(x) is given as TV(P,Q) = 2R(f*) — 1.




Under review as a conference paper at ICLR 2025

08 KDE KDE
NNRE 0.9 NNRE
074 EE EE
DisE 0.8 DisE
3 3
0.6 071
0.5 0.6
0.4 051
0.4
0.3
0.3
0.2
0.2
0.1 o1l
0.0 0.0
0.0 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08 09
@) (n,p) = (10°,5) (b) (n,p) = (103,10)
» D ) »D )
038
KDE KDE
NNRE 007 NNRE
071 EE EE
DisE 087 DisE
064 PE PE
0.7
05 0.6
0.4+ 057
0.4
03
03
0.2
0.2
0.1
0.1
0.0 0.0
0.0 01 02 03 0.4 05 0.6 07 08 00 o1 02 03 04 05 06 07 08 09
4 4
(C) (nap) - (10 75) (d) (717]7) - (10 ’ 10)

Figure 2: True total variation (z-axis) versus estimated total variation (y-axis) in cases (n,p) €
{103,10*} x {5,10} under varying disparity between two Gaussian distributions.

Theorem 3.7 elucidates the optimal classifier for discriminating between two random variables from
the exponential family, providing a method to calculate the total variation between their underlying
distributions. Furthermore, Theorem [3.7]also explicates the appropriate class of margin classifiers
when the underlying distributions are from exponential family. For illustration, in the following,
we outline the appropriate selection of function classes for different combinations between four
exponential-type univariate random variables, as summarized in Table |I} The extension to other
exponential-type random variables and multivariate cases can be derived analytically.

Table 1: The choice of function class takes the form as H = {f(z) = BTy (x) : B € R?}. Below
presents the explicit form of ¢ (x) under different combinations of types of P and Q. Due to the
symmetry between [P and QQ, we display only the upper triangular results in this table.

Q P Gaussian | Exponential Gamma Beta

Gaussian | (1,z,2%) | (L,z,2%) | (1,z,2% logz) | (1,2,2%,logx,log(l — x))

Exponential - (1,z) (1,z,log x) (1, z,log z,log(1l — z))
Gamma - - (1, z,log x) (1, z,log z,1log(1 — z))
Beta - - - (1,log z,log(1l — x))

4 EXPERIMENTS

In this section, we showcase the superior performance of the developed discriminative method (DisE)
for estimating the total variation between two Gaussian distributions. For each simulated setting,
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we report the average results for all simulation settings, accompanied by their respective standard
deviations calculated over 20 replications, presented in parentheses.

Comparison Methods and Evaluation Metrics. Existing methods for estimating divergence metrics
predominantly rely on a plug-in estimation approach, typically applied to either two separate density
functions or their density ratio. In this experiment, we consider kernel density estimation (KDE;
(Sasaki et al.,2015))) for the former type of estimator. For the latter, we explore two nearest neighbor
type estimators, including the ensemble estimation (EE; (Moon & Hero, 2014)) and nearest neighbor
ratio estimation (NNRE; (Noshad et al.,|2017)). Furthermore, we incorporate a parameter estimation
(PE) approach, which entails approximating the total variation through the Monte Carlo method
based on sample mean and covariance matrix. As a baseline, we utilize the Monte Carlo method to
calculate the true total variation based on true means and covariance matrices. The performance of
all methods are evaluated in three aspects, including robustness, computational time, and estimation
error measured in absolute error.

Experimental Setting. We conduct a comprehensive analysis of the impact of sample size and
data dimension on the performance of various estimators. Specifically, we consider P as a Gaussian
distribution with mean p; = 0, and covariance matrix 3 = I, «,. In contrast, Q is a Gaussian
distribution with mean g5 uniformly generated from [0, 1]? and covariance matrix 3o = Iy, + E,
where F is a symmetric noise matrix. We compare the performance of our proposed method with
that of existing estimation methods across different data dimensions, sample sizes, and differences
between the means of two distributions. For each fixed setting, we conduct 20 replications to calculate
the standard deviations, which serve as a measure of the robustness of the estimation accuracy.

Experimental Result. Figure 2| shows that the DisE and PE methods provide the most accurate
estimates of the true total variation distance across all scenarios. The KDE approach tends to
overestimate the total variation in cases of smaller disparity, while the NNRE and EE approaches
tend to underestimate it in cases of larger disparity. Notably, as the true total variation increases, the
accuracy of our proposed DisE method improves, which aligns perfectly with the theoretical results
established in Theorem [3.4] Furthermore, compared to other methods, our proposed method is less
sensitive to data dimensionality.

Robustness Study. To further validate the robustness of our proposed method, we repeatedly compare
the estimation results across different dimensions ranging from 2 to 12, and examine the estimation
results under different levels of noise added to data. The average estimation errors under varying
disparities between two distributions are reported in Figure [3|and Table[2] Clearly, both DisE and PE
consistently exhibit smaller estimation errors, while the other approaches show increasing errors as
the dimension expands. Table|2|demonstrates that the DisE approach achieves higher accuracy and
lower variance compared to the PE approach. Figure[d and Table [3|show the average estimation errors
under varying levels of variances of noise added to data. The estimation errors of all approaches show
a growing pattern with the increase of noise level, and the proposed DisE approach has a relatively
lower estimation error compared with other methods. Overall, these findings confirm the superior
robustness and accuracy of the DisE approach in estimating total variation distance under varying
dimensions and noise levels.

Exponential Family. We extended the simulation experiment to Exponential family to examine
the performance of our proposed DisE approach. Table [d]show the average estimation errors and
standard deviations of total variation estimation of all methods for Exponential distribution and
Gamma distribution respectively. Both tables demonstrate that DisE approach provides more accurate
estimation of total variation with smaller standard deviation.

5 REAL APPLICATION - CONSISTENT FIDELITY COMPARISON OF
GENERATIVE DATA.

Experimental Setting. We evaluate the effectiveness of the DisE, PE, and KDE methods in measuring
the fidelity of synthetic data. Using the MNIST dataset (LeCun, 1998)) and CIFAR-10 (Krizhevsky
et al.| 2009) dataset , we train GANSs for 100, 300, and 500 epochs, subsequently generating images
with each of these models, as illustrated in Figure[5] Due to the high dimensionality and sparsity of
image data, we employ pretrained ResNet18 (He et al.| |2016) to obtain embeddings of both real and
synthetic images. Following the literature, which commonly assumes the normality of embeddings
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Dimension p

Method | dim =2 dim=4 dim=6
DisE 0.002(0.002)  0.003(0.002)  0.002(0.001)
PE 0.003(0.002)  0.005(0.004)  0.004(0.003)
KDE 0.008(0.005) 0.015(0.017)  0.062(0.045)
NNRE | 0.013(0.015) 0.048(0.027)  0.085(0.059)
EE 0.038(0.019) 0.086(0.052)  0.108(0.074)
Method | dim =8 dim =10 dim =12
DisE 0.003(0.002)  0.002 (0.002) 0.003(0.002)
PE 0.004(0.004)  0.004(0.003)  0.004(0.003)
KDE 0.115(0.089) 0.151(0.121)  0.202(0.154)
NNRE | 0.154(0.091) 0.221(0.118)  0.246(0.124)
EE 0.165(0.099) 0.221(0.125)  0.233(0.124)

Figure 3: The robustness of estimation
errors of all methods with respect to data
dimensionality.

Table 2: The averaged estimation errors (standard devia-
tions) of total variation estimation of all methods across

various data dimensions.

3
DisE
PE

0.5 ' —a— KDE

Average Estimation Error

NNRE

05

Method | noise =0.1 noise = 0.5 noise = 1.0

DisE 0.003(0.002)  0.032(0.027)  0.159(0.117)
PE 0.005(0.004) 0.033(0.029)  0.176(0.120)
KDE 0.052(0.043) 0.074(0.060)  0.203(0.131)
NNRE | 0.054(0.041) 0.054(0.035) 0.129(0.100)
EE 0.079(0.063)  0.069(0.051)  0.129(0.092)
Method | noise =1.5 noise = 2.0 noise = 2.5

DisE 0.310(0.174)  0.423 (0.207)  0.494(0.225)
PE 0.350(0.169) 0.478(0.187)  0.557(0.195)
KDE 0.376(0.173) 0.501(0.189)  0.577(0.196)
NNRE | 0.294(0.153) 0.437(0.179)  0.524(0.198)
EE 0.294(0.149)  0.452(0.179)  0.569(0.200)

10 15
Noise Added to Data

Figure 4: The robustness of estimation
errors of all methods with respect to
noise added to data (dimension = 5).

Table 3: The averaged estimation errors (standard devia-
tions) of total variation estimation of all methods across

different noise variances.

of generative data (Kynkéanniemi et al., 2023 |Chunl [2024)), we then estimate the total variation
between each generated dataset and the original MNIST/CIFAR-10 dataset using the DisE, PE, and
KDE methods. As illustrated in Figure[5] GANS trained for more epochs generate images of greater
fidelity. Consequently, the total variation between real images and synthetic images generated after
100, 300, and 500 epochs should follow a decreasing pattern. Hence, in this experiment, we aim
to consistently compare all methods in terms of their ability to provide a correct ranking of fidelity.
Experimental Result. In Table 5] we present the fidelity of images generated by GANs trained
over varying epochs, measured using total variation distance estimated by three methods. The total
variation distance between the embeddings of real images and synthetic images generated after 100,

Table 4: The averaged estimation errors (standard deviations) of total variation estimation of all
methods for Exponential and Gamma distribution (dimension = 1).

Method | True TV=0 TrueTV=0.30 TrueTV=0.70 True TV =0.82
DisE 0.001(0.001)  0.000(0.001) 0.000(0.001) 0.001(0.001)
PE 0.006(0.004)  0.005(0.005) 0.003(0.004) 0.002(0.001)
Exponential KDE 0.020(0.007)  0.037(0.007) 0.053(0.007) 0.048(0.003)
NNRE | 0.094(0.004) 0.021(0.009) 0.002(0.005) 0.011(0.007)
EE 0.079(0.008) 0.015(0.016) 0.002(0.008) 0.003(0.022)
Method | True TV=0 TrueTV=0.25 TrueTV=0.72 TrueTV =0.97
DisE 0.001(0.001)  0.001(0.001) 0.000(0.001) 0.000(0.001)
PE 0.013(0.008)  0.001(0.008) 0.000(0.005) 0.001(0.002)
Gamma KDE 0.021(0.005)  0.001(0.008) 0.006(0.007) 0.007(0.003)
NNRE | 0.097(0.003) 0.016(0.009) 0.104(0.013) 0.418(0.010)
EE 0.081(0.008)  0.006(0.011) 0.089(0.021) 0.440(0.017)
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(d) 100 epochs (e) 300 epochs (f) 500 epochs

Figure 5: 25 synthetic images generated by GANs after 100, 300, and 500 epochs of training via
MNIST/CIFAR-10 dataset are displayed from left to right.

300, and 500 epochs estimated by DisE approach presents a decreasing pattern across all cases,
aligning with the expected quality ranking of the generated models. However, the fidelity measured
by the PE approach deviates from the expected ranking when the embedding dimension is 50 for the
MNIST dataset. Similarly, the fidelity measured by the KDE approach fails to align with the correct
ranking when the embedding dimension is 35 for the MNIST dataset and 35 and 50 for the CIFAR-10
dataset. This study demonstrates the effectiveness of the proposed DisE method in measuring the
fidelity of synthetic data, providing a correct ranking of quality of generative data.

Table 5: Fidelity rankings of images generated by GANs trained after varying epochs: Fidelity is
measured using the total variation estimated by different methods. The dimension of embeddings is
set to 20, 35, and 50 for ResNet18.

Dataset | Method Embedding-dim | 100 epochs 300 epochs 500 epochs | Correct Ranking

Resnet18-20 0.342 (0.068) 0.153 (0.038) 0.148 (0.055)
DisE Resnet18-35 0.412 (0.074)  0.187(0.059)  0.146 (0.050)
Resnet18-50 0.436 (0.074)  0.193 (0.072)  0.186 (0.041)
Resnet18-20 0.483 (0.073) 0.301 (0.051) 0.286 (0.063)
MNIST PE Resnet18-35 0.627 (0.076)  0.436 (0.065) 0.431 (0.087)
Resnet18-50 0.767 (0.044)  0.561 (0.061) 0.563 (0.077)
Resnet18-20 0.768 (0.025) 0.707 (0.017)  0.703 (0.026)
KDE Resnet18-35 0.907 (0.014) 0.871 (0.013)  0.872 (0.020)
Resnet18-50 0.967 (0.005) 0.944 (0.007)  0.943 (0.010)
Resnet18-20 0.332(0.031)  0.274(0.035)  0.255(0.042)
DisE Resnet18-35 0.463(0.038)  0.378(0.055)  0.348(0.055)
Resnet18-50 0.577(0.041)  0.483(0.059)  0.444(0.038)
Resnet18-20 0.366(0.027)  0.309(0.032)  0.291(0.027)
CIFARI10 PE Resnet18-35 0.532(0.032)  0.462(0.033)  0.437(0.032)
Resnet18-50 0.682(0.029)  0.604(0.031)  0.572(0.031)
Resnet18-20 0.899(0.004)  0.893(0.003)  0.891 (0.004)
KDE Resnet18-35 0.990(0.001)  0.990(0.001)  0.989(0.001)
Resnet18-50 0.999(0.001)  0.999(0.001)  0.999(0.001)
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A DISCUSSION

In this paper, we propose a novel approach to estimate the TV distance between two distributions
using a classification-based method. This method leverages the quantitative relationship between
Bayes risk and TV distance. Specifically, we examine a scenario where both distributions are
Gaussian, establishing theoretical results regarding the convergence of our approach. Our findings
reveal an intriguing phenomenon: the estimation error of the TV distance is dependent on the true
separation between the distributions. In other words, the TV distance is easier to estimate when the
distributions are farther apart. The experimental results demonstrate the superior performance of
our proposed discriminative estimation approach over several existing methods in estimating total
variation distance. While currently confined to this particular metric, our discriminative approach
holds promise for broader applications in estimating various divergence metrics. Future endeavors
will focus on extending our method to encompass other divergence metrics and establishing statistical
assurances for estimation accuracy.

B PROOF OF LEMMAS

B.1 PROOF OoF LEMMA[ZA

Proof. Given that ¥; = 35 = Y and ¢ € (0,1/2), we have
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Plugging the densities of P(X ) and Q(X) into the above formula yields that
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denote the probability density functions of N ( ) and ]\ (p2, X0), respectively. Then the proba-
bility density function of X is given as ¢(x) = % ( )+ 3 Oz( ) Define the event S(t) as
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where o = 21/(p1 — p2)TE 1 (g — po) = 2|11 — p2||s. Similarly, we have
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Then we have
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Note that log (}f—i) < lf—tzf for any ¢ € [0,1/2). Therefore, we have
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for any ¢ € (0, ¢] with ¢ < 1/2. This completes the proof.
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B.2 PROOF OF LEMMA[3.2]

Given that D is the mixture of two Gaussian distribution P(x) and Q(x), where
1
P(x) = (QW)_%det(El)_% exp (—2(:1: — ul)Tzl_l(w — ;1,1)) ,
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and D(x) = w. For a classifier f : R? — {0, 1}, its risk is given as
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The term P (Y = 1| X) and P(Y =0|X) = ]P,Qﬁ thus we have
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Considering that sign(P(x) — Q(x)) = sign(logP(x) — log Q(x)). Therefore, the Bayes classifier
can be written as

@) =1 (1og (jig;) (= )T @ — o) — (2 — )T @ — ) > o) .

This completes the proof.
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B.3 PROOF OF LEMMA[3.3]
We first define Ry(h) = E [(¢(h(X)) — Y)?], which can be expressed as

E[(0((X) =YY = [ Di@)[n(@)(6(h@) ~ 1+ (1 = n(@)) (b)) da-
Here ¢(z) = 1/(1 + exp(—z)). For each x, we have

n(@)(¢(h(x)) —1)* + (1 = n(x))¢*(h(x))

—n(z) <1+ex;(h(m)))2 + (1= n(=)) (%)2 '

Clearly, (9) is minimized when ¢(h(z))

rate) =tos (250 ) = oe (g )
Finally, we have
)

13 (@) = log (ggi) = log (322%3

This completes the proof.

€))

n(x), leading to

C PROOF OF THEOREMS

C.1 PROOF OF THEOREM[3.4]

First, the convergence of f\\f(]P’, Q) to TV(P, Q) is implied by the convergence of R(f) — R(f*),
where f be the plug-in classifier defined in . Specifically,

oy — I _ [ _exp(h(@)
J@) =1 (6(h(@) > 1/2) I<1+exp<ﬁ<x>> >1/2>.

To simplify notation, we denote 7)(z) = ¢(h(z)).
Step 1: Establishing the connection between R(f) — R(f*) and [y — 72, .,
Specifically, we first decompose R( f ) R(f*) into two parts:
R(f) = R(f*) = E[1(F(X) # F(X))l2n(X) — 1]
=2E[1(F(X) £ f*(X))n(X) = 1/211(1n(X) - 1/2| < 1)
+2E | I(F(X) # F(X)In(X) = 1/21(n(X) = 1/2| 2 )] 2 1 + I,

for any positive constant ¢ > 0.

Next, we turn to bound I; and I separately. Following from the fact that |n(x)—1/2| < |n(x)—7n(x)|
when f(x) # f*(x), we have

1 =2B[I(F(X) £ f*(X))n(X) = 1/2/1(1n(X) = 1/2| < 1)
<2R[I(F(X) # f*(X))(X) — Q@) (0(X) — 1/2] < )]

<2¢E ((X) = (@))2] - VB0 (X) = 1/2[ < 1) < 2lln = llagear G072, (10)
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where the last inequality follows from the Cauchy—Schwarz inequality.

Next, I, can be bounded as

Iy =2E[1(F(X) # [*(X))n(X) = 1/211(1n(X) — 1/2| = 1)
<2E|1(F(X) # £1(X))n(X) = (@) 1(In(X) — 1/2] = )]
<2E| (n(X) — (@))? |71 = 27 = 13, - (an
Combining (T0) and (TT) yields

N 1/2 _ ~
R(F) = R(f*) <2lln — ll nacex) Co 7% + 267 H|n — 112, p.-

Setting t = C,, G ln — 77HL2(PX) yields

+1

2

~

. ﬁ N v+2
R(f) — R(f*) <4cCg™ (Iln—nl\izmx)) '

Step 2. Establish the convergence of || — 7 H%2(PX)

For the mixed dataset D = {x;}7 ; U {z;}",, we introduce a dataset Dy = {(z (O),yfo)) )

with (z (0), yz(o)) = (x;,1) and (x Eloll, yfﬂz) (2;,0). Here Dy can be understood as a set of i.i.d.

realizations of (X,Y) with X ~ 2N (p1,21) + 1N (ps, 25) and P(Y = 1|X) = %.
Under the distribution of (X,Y’), we first define Ry (h) = E [(¢(h(X)) — Y)?] as

Ry(h) — Rg(h}) = E [(¢(h( Y)?] —E [(¢(h}(X)) = Y)?]
—E {n(X)[6(h(X)) — 1’ [1 - n(X)]¢2(h(X)) n(X)(1 - (X))}
—E [(1(X) = 0(h(X))*| = In = mull3, -

Next, we define ]§¢(h) as an empirical version of Ry (h).

Here h = argminpey Ry (h)+A|8]3 and () = ¢(h(x)). Denote A = {D : ||n— ?7||L2(PX > 6}
andlet Ho = {h € H : ||n—nul? La(Px) > 0} be a subset of the function class H. First, if the dataset

Dy € A, then we have h € H,, implying SUDpen, E¢(h;) - ]§¢(h) + A([IB*]13 = 18113) > 0 due
to the optimality of 7 in minimizing ]§¢(h) within . Therefore, we have

Fe€Ho

pPA) <P ( sup Ry () — R(h) + |81 — M85 > 0) ~ (12)

Next we can decompose Hg as Ho = U2 17—[(’) with ’H(()i) being defined as

MY = {h e Ho: 2716 < Ry(h) — Ry(h}y) < 2'6}

18
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Therefore, (I2) can be equivalently written as

P(A) <P( sup RAh;)—E<h>+A||ﬂ*||§—A||ﬁ||§>o)

uge, M1y

“

@
I
-

<) P| suwp §¢(h*)—1§¢(h)+/\ﬁ*llg—/\ﬁ||§>0)

heH(?

IN
.Mg
)

s
I
-

v Ry o) — Re(fs) — Ry ¢ inf Rg(h) — Ry(hy 5 — 5
sup Rg(hy) — Ry (f}) — Re(h) + Ry(h) > inf R (h) — Ry (h}) + AlIBII5 — AlIB*II3
hen? heH

IN
.Mg
|

sup Ry(hy) — Ry(hf) — Ro(h) + Ry(h) > 27716 — A||ﬂ*|§)

i=1 hEHéi)
<D P\ sup Ro(hy) = Ro(hy) = Ro(h) + Ro(h) > 2% - Anﬂ*@) 23
i=1 heH i=1

where the last inequality by choosing A = 6/(2(|8*[|3).
Step 3. Bounding I;

First, we define

Di(h) = (o3 @) ~4®) ~ (s(ha®) )",
D(h) = E[(6(h5(X)) = Y)* = (#(h(X)) = Y)?].

Then I; can be rewritten as
1 2n
I, =P — N [D;(h) — D(h)] > 272§
sup 5o 3 IDi(h) = D(w] >
€H, =1

2n
=P ( sup i Z[Dl(h) — D(h)] — VZ'('D()) > 21725 — I/Z(Do)) R

o 2
hen i3

where v;(Dy) = E {supheHu) = Z?ZﬂDz(h) - D(h)]} Here we assume v;(Dg) < 20735 and
0
then we have

2n
1 )
< JE— . _ 1. i—3
Lp| swp oo E‘ [Di(h) — D(h)] — v;(Dy) > 21735
heH, i=1

Step 4. Verifying v;(Dy) < 273§ fori > 1
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Next, we intend to present the conditions under which v;(Dy) < 2¢=24. Let D’ be an independent
copy of Dy and (7;)?", be independent Rademacher random variables. Then we have

2n 2n

1 1
(Do) = —E D; —D < —E Epr D; — D D
vi(Do) = 5 -Ep, hsugi)Z[ i(h) = D(h)] | < 5-Ep, | Ep SUI?”Z[ i(h) — D;(h)]| Do
EHy '’ i=1 heHy  i=1
1 2n
= ?ED(LD’ sup ZTi [Di(h) — Dj(h)]
n heH() =1
2n
—1IE ;|D;(h) — D;(h Di(h Di(h
= 5, 5Do, D’ sup. ZTZ[ i(h) — Di(ho) + D;(ho) — D;(h)]
heH? i=1
1 2n
<—E| sup Y 7[Di(h) - Di(ho)] | ,
"\ hen( i=1

for any hg € ”Héi). Here the first inequality follows from the Jensen’s inequality, and the second
equality follows from the standard symmetrization argument.
Note that conditional on Dy, \/% 21221 7:D;(h) is a sub-Gaussian process with respect to d, where

2n

p?(hi,ho) = % Z (Di(h1) — Di(h2))27

i=1
for any hq, hy € 'H(()i). It then follows from Theorem 3.1 of Koltchinskii| (2011)) that

2n

= > nlDi(h) = Dilho)l | £ ( " 0. )
——Ep, | sup 7| Di(h) — Di(ho)] | SE / HY2 (1, pon)dn |
o 0 hent = 0

where D(’Héi)) is the diameter of Hé with respect to p, and H (’HO ,p,M) is the n-entropy of
(H$?, p). For any hy, h2 e 1", it follows that

2n
1
% (h1, o) ZE — Dy(hy))? < 721@ (D?(h1) +—ZE (D?(hs))
_8||?7h1 —ll7,@x) + 8llns — nIILQ(u»x)-
Therefore, we get
ED(HS) <4 sup |nn — nllL.@x) < V256 (13)
heHS”
Moreover,
2n 2n
1 2 1 2
@ (k1 ha) =5= 3 (Dilhn) = Dilhe))* = 5= 3~ ((@(hn (@) = )2 = (6(ha(a”)) —5”)?)
i=1 i=1
2 o (0) OV? _ 1 ) (0)
<=3 (0 (m@") - ¢(<h2< ) <52 (@) —hal))
=1 i=1
s M
<6 - pali3 - an M®) 15, - g

where hi(z) = BT y(x), g(m) = BTy(x), the second inequality follows from the fact that
¢(x) is a 1/4-Lipschitz function, and M(Dy) = 5= 522" |joh(a!”)|[3. Thus, p?(hy, he) < 7 if
1831 — Ba]2 < W. This further leads to

i Cy+/ M (D, 6
H(Hé)apﬂl) <H <32(d)’ [ 1l 7{2(0)77> < dlog <CM(D)7]> )
H 0
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where By(d) is the unit lo-ball in R? and the last inequality follows by setting W <1
H 0)n

Then, applying the Dudley’s integral entropy bound (Koltchinskii, 2011)), we have

(HS) ,
vi(Do) ST]E (/ H'/? (Hé’),d7 Tl)dﬁ>

1 PH) 6
<E [ — / dlog | ————— |y
v Jo Ca/M(Do)n

Cnr/ M Do)
For ease of notation, we let C; = —-Y_—~—"%/ 0) . Next,

\/7/ s Ulog C d le/ClDH() 1/10g< >d7]
le/ch(HU) /10g< )d _le/+w ljizg(t)dt

ch(H( )y

1 d oo log (¢
og()d

G 1 1 PRI ’
nlog | ———=- i
E\ciom®y ) arow?

By the fact that [~ log(x)/2?dx = (log(a) + 1)/a, we further have

VAD(H) 1
14) < 0 1 — |,
(14) < NG og L DH)

where the inequality follows from the fact that 1/2 + 2 < 2z for z > 1. Next, by the fact that

flz,y) =4/ log ) is a concave function, we further have

\/&D o 1
*\ D)

< (D00) 7, (0)> s ()

If \/d27:46 \/log (57H5) < 26, we have 4 log(n/d)
Step 5. Bounding >~ I;
Applying Theorem 1.1 of (Klein & Rio, 2005) to I;, we have
2i—452, 2 2i—452, 2

s e <_ 8u:(Do)n i QV;iLZ 3- 2i35n) = oxp (_ 8%3 + 7(-52732571) (1)
where V; = sup,, ) Var [(qﬁ(h;(X)) -Y)? - (¢(h(X)) — Y)Q] Next, we establish the relation
betwen V' and J.

Vi= sup Var[(¢(h}(X)) —Y)* — (¢(h(X)) ~ Y)?]

t. (14)

heH(®

< sup B[(6(h3(X)) = V)* = ((h(X)) - Y)?)®
heHy'

< sup B[(6(13(X)) = 9(h(X)) - ($(h3(X)) + G(R(X)) - 2v)]”
heHy'

<4 sup E[o(h5(X)) — &(h(X))]* <4 sup |lg—m|2, e, <272
heH (V) heH (V)
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Therefore, can be further bounded as I; < exp (—C 2i(5n) < exp (—C'idn) for some positive
constant C.

exp(—Cdn)
E < E BTN < n(—C6n).
I; exp (—Cidn) < 1 —exp(—Con) S exp(—Cdn)

}Slince L log(n) § 5, we further have "7 I; < n~¢ for some positive constant C. Finally, we
ave

o+l
~ . 75 (dlogn\+2 dlogn _
P (R(f) — R(f*) >4C5~ ( on ) ) (IIn 77||L2 (Px) = on > <n¢,

for some positive constant C. Therefore

(SN

— -~ dl
En {TV(P,Q) - TV(,Q)} < 2 (R() - R(f") £ 05 ( ;g”> . ae)
n
This completes the proof.
C.2 PROOF OF THEOREM 3.6
By Lemma[3.3] we have
2t
P(n(X) —1/2[ <t) < - )
(1 =207l — pellm

for any ¢ < ¢ with ¢ < 1/2. Furthermore, the result in holds with t = C, Hr] 7]\\2?3)(),

which converges to 0 in probability. Therefore, we can qlmply consider ¢ = 1/4 and the choice of ¢ is
dsymptotwdHy achievable. Therefore, in the case of 3; = Xy = X, Cjy in Assumption B.Tbecomes
m It then follows that

wo {10} < () ()

This completes the proof.

wio

C.3 PROOF OF THEOREM[3.7]

Proof of Theorem[3.7} Let P(x) and Q(x) be the density functions of two different random variables
from the exponential family:

P(x) = hi(x) - exp [m(61) - Ti(x) — A1(61)],
Q(z) = ha(x) - exp [12(02) - Ta(x) — A2(62)].
According to proof of Lemma[3.2] the optimal classifier is
fH(z) = sign (P(z) — Q(x)).
Observing that
P(e) _ hi(e)-explm(61) - Ti(@) — Ai(61)
Q) ha(z) - exp [n2(02) - Ta(x) — A2(62)]
LS exp Aa(6a)  A1(61) + m(61)  Ti(e) — m(62) - o).

and that sign(P(x) — Q(x)) = sign <log (P((m)) ) ), thus the optimal classifier is given as

>

I
>

) =1 (1o ({12 + 42(6) ~ 41(60) + Ti(e)m (62) ~ To@)n(02) >0).

This completes the proof.
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Table 6: Competing Total Variation Estimation Methods

Methods Estimator Samples

True Total Variation + Zf\il % {2}, S Bo

Parameter Estimation Ly, % CALNES @TQ

Kernel Density Estimation (Sasaki et al.,[2015) ~ ZZ 1 m {x}N i1d. w

Nearest Neighbor Ratio Estimation (Noshad et al,2017) 13"V 1 A’}j\;l - 1‘ {3V P @M Q
Esemble Estimation (Moon & Her0:2014) 1 Zi\il i % - 1’ {a}} My il p {Zl Nd Q

D EXPERIMENTAL SETTING

D.1 SIMULATION STUDY

Two groups of Gaussian mixture (D(x) = ) samples are generated as training data and
testing data respectively. Training data size is set to either 1000 or 10, 000, while test data size is
50, 000.

P(x)+Q(x)
2

Discriminative estimation (DisE): A classifier in the corresponding function class f is trained with
the use of transformed training data, and its classification error in test data can be used to estimate

total variation via TV(P, Q) = 1 — 2R(f).

True total variation: Since there is no closed form of TV distance between two Gaussian distribu-
tions, as the standard, we employ the Monte Carlo method to approximate the true total variation via

11.d.
V) ~ 4 o S i

1 1

Parameter estimation (PE): TV(I@, @) ~ ZZ 1 ‘QTQE)

Gaussian distribution with parameters estimated based on {x; }Z 1 and {x; },, respectively.

Kernel density estimation (KDE): TV(P,Q) ~ L > +ggm,

the kernel density estimation based on {x;}!" ; and {Z;}} ,, respectlvely We select the optimal
bandwidth based on Silverman’s rule of thumb (Silverman, 2018]).

’ where P and Q denote

Nearest neighbor ratio estimation (NNRE): TV(P,Q) ~ 7 ZZ 1 g ( i, +1) where g(z) =

1z — 1|, = & is ratio of samples from P and Q. For each sample z/ from {Z;}/,, find out the k
nearest nelghbors in {x;}¥, U {x,;}},, among which N; points from {x;}N | and M; points from
{z;} M. We select the optimal choice of k = v'M (Noshad et al.,[2017)

Ensemble estimation (EE): TV(P,Q) ~ 1 >V 5 (%) where §(z) = Llz — 1|. All
samples in {Z;}7_, are divided into two sets {&;}Y , and {Z;} ervl\fp and M, samples are drawn
from {sc 1. For each sample / from {Z;}¥ ,, find out the distance of k- nearest neighbor of z/
in {x;} M denoted by p1,x (%), and the distance of k- nearest neighbor of «; in {x;}; 5 ;, denoted
by pa.x(4). The optimal choice of k = v/N (Moon & Hero, 2014).

D.2 REAL APPLICATION

With the use of MNIST and CIFAR-10 dataset, we train Generative Adversarial Network models for
100, 300, and 500 epochs, subsequently generating images with each of these models.

MNIST database: This dataset contains 70, 000 grayscale images of handwritten digits. The dataset
is divided into a training set of 60, 000 images and a test set of 10, 000 images. Each image is 28 x 28
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pixels in size, and each pixel value ranges from 0 to 255, representing the intensity of the pixel. The
dataset includes ten classes, corresponding to the digits O through 9.

CIFAR-10 database: This dataset contains 60, 000 color images of 10 distinct categories: airplanes,
automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The dataset is divided into a
training set of 50, 000 images and a test set of 10, 000 images. Each color image is 32 x 32 pixels in

size.

Generative adversarial network models (GANSs) settings for MNIST database:

generator ={

Linear(100, 128),
LeakyReLU(0.2, inplace=True),
Linear(128, 256),
BatchNorm1d(256),
LeakyReLU(0.2, inplace=True),
Linear(256, 784),

Tanh() }

discriminator ={

Linear(784, 256),
LeakyReLU(0.2, inplace=True),
Linear(256, 128),
BatchNorm1d(256),
LeakyReLU(0.2, inplace=True),
Linear(128, 1),

Sigmoid() }

Adam optimizer is used for both networks with learning rate 0.0002 and the loss function is defined
to be binary cross-entropy loss.

Generative adversarial network models (GANs) settings for CIFAR-10 database:

generator ={

Linear(100, 2048),
BatchNorm1d(2048),
LeakyReLU(0.2, inplace=True),
ConvTranspose2d(512, 256),
BatchNorm2d(256),
LeakyReLU(0.2, inplace=True),
ConvTranspose2d(256, 128),
BatchNorm2d(128),
LeakyReLU(0.2, inplace=True),
ConvTranspose2d(128, 64),
BatchNorm2d(64),
LeakyReLU(0.2, inplace=True),
ConvTranspose2d(64, 3),
Tanh() }

discriminator ={

Conv2d(3, 64),
LeakyReLU(0.2, inplace=True),
Dropout(0.3),

Conv2d(64, 128),
LeakyReLU(0.2, inplace=True),
Dropout(0.3),

Conv2d(128, 256),
LeakyReLU(0.2, inplace=True),
Dropout(0.3),

Conv2d(256, 512),
LeakyReLU(0.2, inplace=True),
Dropout(0.3),

Linear(20482, 1),

Sigmoid() }

Each ConvTranspose2d layer and Conv2d layer are with these parameter settings: kernel size=5,
stride=2, padding=2, output padding=1.

Then we use pretrained ResNet-18 model to find out the embedding of each image. We modify the
output size in last fully-connected layer of this model to the desired dimension of embeddings {20,
35, 50}. After obtaining the embedding, we estimate TV distance between embedding of original
images and generated images for each class using different approaches. Finally, we calculate mean
values and standard deviation of all classes.
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