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ABSTRACT

With the proliferation of generative AI and the increasing volume of generative data
(also called as synthetic data), assessing the fidelity of generative data has become
a critical concern. In this paper, we propose a discriminative approach to estimate
the total variation (TV) distance between two distributions as an effective measure
of generative data fidelity. Our method quantitatively characterizes the relation
between the Bayes risk in classifying two distributions and their TV distance.
Therefore, the estimation of total variation distance reduces to that of the Bayes risk.
In particular, this paper establishes theoretical results regarding the convergence
rate of the estimation error of TV distance between two Gaussian distributions.
We demonstrate that, with a specific choice of hypothesis class in classification, a
fast convergence rate in estimating the TV distance can be achieved. Specifically,
the estimation accuracy of the TV distance is proven to inherently depend on the
separation of two Gaussian distributions: smaller estimation errors are achieved
when the two Gaussian distributions are farther apart. This phenomenon is also
validated empirically through extensive simulations. In the end, we apply this
discriminative estimation method to rank fidelity of synthetic image data using the
MNIST/CIFAR-10 dataset.

1 INTRODUCTION

Evaluating the discrepancy between distributions has been a prominent research topic in the statistics
and machine learning communities, as evidenced by its extensive applications in hypothesis testing
(Gerber et al., 2023; Yang et al., 2018) and generative data evaluation (Sajjadi et al., 2018; Snoke
et al., 2018). Particularly in recent years, considerable research efforts have been dedicated to
the development of generative models, resulting in a boom in generative data. Within this context,
assessing the fidelity of generative data to real data is vital for ensuring the significance of downstream
tasks trained on these generative data.

In practice, the fidelity of generative data can be measured via some statistical divergences, such
as Kullback-Leibler divergence, Jensen-Shannon divergence, and Total Variation (TV) distance.
However, estimating these statistical divergences faces significant hurdles due to the high-dimensional
complexity and intricate correlations within the data. These challenges partly explain why the existing
frameworks for fidelity evaluation Jordon et al. (2022) predominantly rely on low-dimensional
surrogate metrics, such as marginal distributions (Zhang et al., 2014) and correlation plots. To avoid
directly computing distributional distances in high dimensions, researchers have proposed several
approaches to audit fidelity. These include comparing the density of synthetic and real distributions
only over random subsets of datasets (Bowen & Snoke, 2019), or quantifying the similarity between
real and synthetic data using precision (quality of synthetic samples) and recall (diversity of synthetic
samples) (Sajjadi et al., 2018).

To have a more comprehensive auditing, we realize the necessity and importance of distance estimation
at the distributional level. To develop an effective approach to estimate the (particularly high
dimensional) distributional distance, we start with the TV distance as the metric to compare two
distributions, which stands out as the premier metric for evaluating generative data quality in the
literature (Tao et al., 2021; Zhang et al., 2014). Our key insight is to frame the TV distance between
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two distributions as the Bayes risk in a classification task for distinguishing between them. Thus, the
problem of estimating TV distance can be converted into estimating Bayes risk in classification.

We establish theoretical results regarding the convergence rate of the estimation error of TV distance
between two Gaussian distributions, which is further extended to the exponential family. Specifically,
we show that the proposed estimator converges to the true TV distance in probability at a faster
convergence rate compared with results in Rubenstein et al. (2019); Sreekumar & Goldfeld (2022).
Interestingly, our theory (one-dimensional Gaussian case (Theorem 3.6)) confirms a phenomenon that
the estimation of TV distance inherently depends on the level of separation between two distributions:
the farther apart the two distributions are, the easier the estimation task becomes. This phenomenon is
validated in extensive simulations (Figure 2). Our theory is developed under the Gaussian assumption
that is supported by the normality of generative data embeddings found in images (Kynkäänniemi
et al., 2023) and text data (Chun, 2024). In numerical experiments, we utilized our method to compare
images generated by generative adversarial networks (GANs; Goodfellow et al., 2020), showing that
our method accurately ranks data fidelity based on different types of embeddings (Table 5).

1.1 RELATED WORK

There are three related lines of research: the estimation of statistical divergences, the total variation
(TV) distance between two Gaussian distributions, and the fidelity evaluation of synthetic data. Below,
we provide an overview of relevant studies and highlight how they differ from our own work.

Statistical divergence estimation. Contemporary methodologies for estimating divergence metrics
predominantly rely on employing plug-in density estimators as surrogates for the densities within
these metrics. Moon & Hero (2014) employ a kernel density estimator to estimate the density ratio
within the f -divergence family. Similarly, Noshad et al. (2017) propose using k-nearest neighbor
to approximate the continuous density function ratio within the f -divergence family. Rubenstein
et al. (2019) introduce a random mixture estimator to approximate the f -divergence between two
probability distributions. Additionally, Sreekumar & Goldfeld (2022) establish non-asymptotic
absolute error bounds for the use of neural networks in approximating f -divergences. Existing
methods primarily nonparametric estimation based, which are hindered by the curse of dimensionality
and often overlook the separation between two distributions. Interestingly, our developed method
frames the divergence estimation problem as a classification problem that takes into account of the
separation gap closely connected with the classic low-noise assumption in classification.

TV distance between Gaussian distributions. Devroye et al. (2018) investigate the total variation
distance between two high-dimensional Gaussians with the same mean, providing both lower and
upper bounds for their total variation distance. Davies et al. (2022) derive new lower bounds on the
total variation distance between two-component Gaussian mixtures with a shared covariance matrix
by examining the characteristic function of the mixture. Building upon the work of Devroye et al.
(2018), Barabesi & Pratelli (2024) improve the results by providing a tighter bound for the total
variation distance between two high-dimensional Gaussian distributions based on a more delicate
bound for the cumulative distribution function of Gaussians. Existing works on the TV distance
between Gaussian distributions primarily focus on deriving upper and lower bounds rather than
establishing effective estimation methods based on finite samples.

Fidelity Evaluation. To evaluate the fidelity of synthetic data, besides f -divergence metrics such
as total variation (TV) distance (Zhang et al., 2014) and Kullback-Leibler (KL) divergence (Jiang,
2018), another common metric is the Maximum Mean Discrepancy (MMD) (Sutherland et al., 2016;
Li et al., 2017). For instance, Li et al. (2017) directly used MMD as an optimization target to assess
the quality of synthetic data. Additionally, in the domain of computer vision, the Fréchet Inception
Distance (FID) score (Heusel et al., 2017) is the primary metric used to assess the quality of images
generated by generative models. It quantifies the similarity between the distributions of real and
generated images, relying on the Fréchet Distance between two multivariate Gaussian distributions
(Fréchet, 1957). Kynkäänniemi et al. (2022) study how the use of ImageNet-pretrained Inception
features in FID calculations can lead to discrepancies with human judgment. O’Reilly & Asadi (2021)
explore the impact of using pre-trained versus randomly initialized weights in the Inception network
for FID computation and discuss the reliability and consistency of FID scores.
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1.2 PRELIMINARIES

For a random variable X , we let EX(·) denote the expectation taken with respect to the randomness
of X . For a random sequence {Xn}∞n=1, Xn

p→ X indicates that Xn converges to X in probability.
We use bold symbols to represent multivariate objects. In binary classification, the objective is to
learn a classifier f : X → {0, 1} for capturing the functional relationship between the feature vector
X ∈ X and its associated label Y ∈ {0, 1}. The performance of f is usually measured by the 0-1
risk as R(f) = P (f(X) ̸= Y ), where the expectation is taken with respect to the joint distribution
of (X, Y ). The optimal classifier f⋆ = argminfR(f) refers to the Bayes decision rule, which is
obtained by minimizing R(f) in a point-wise manner and given as f⋆(X) = I

(
η(X) ≥ 1

2

)
, where

η(X) = P (Y = 1|X) and I(·) is the indicator function.

2 DISCRIMINATIVE ESTIMATION OF TOTAL VARIATION DISTANCE

In this section, we present an effective classification-based approach to estimate the underlying total
variation (TV) distance between two distributions using two sets of their realizations. Our key insight
is to conceptualize the total variation distance as a lower bound of the Bayes Risk for a real-synthetic
data classifier. By leveraging the duality between total variation distance and Bayes Risk, we establish
a lower bound on the total variation distance. This method can serve as a “Fidelity Auditor" for
comparing real and synthetic data, and is directly applicable to arbitrary data synthesizers.

2.1 FRAMING TOTAL VARIATION DISTANCE AS CLASSIFICATION PROBLEM.

We denote the sets of real data and synthetic data as {xi}ni=1 and {x̃i}ni=1, respectively, where
xi, x̃i ∈ Rp are p-dimensional continuous vectors. Let P(x) and Q(x) denote the density functions
of real and synthetic data, respectively. The total variation (TV) distance between P(x) and Q(x) is
given as

TV(P,Q) =
1

2

∫
Rp

|P(x)−Q(x)|dx.

For the mixed dataset D = {xi}ni=1 ∪ {x̃i}ni=1, the underlying density function can be written as

D(x) =
P(x) +Q(x)

2
.

As elaborated in the work of Nguyen et al. (2009), estimating f -divergences can be equivalently
transformed to seek the optimal classifier capable of distinguishing real data from synthetic data.
Specifically, we set the labels of real and synthetic samples as 1 and 0, respectively. For any sample
x, the probability of x being real is given as η(x) = P(x)

P(x)+Q(x) . Let f : Rp → {0, 1} be a classifier
used to discriminate real and synthetic samples. The expected classification error can be written as

R(f) =EX

[
I(f(X) = 1)

Q(X)

P(X) +Q(X)
+ I(f(X) = 0)

P(X)

P(X) +Q(X)

]
, (1)

where X ∼ D. Therefore, the minimal risk R(f⋆) is then given as

R(f⋆) =
1

2

∫
Rp

min{P(x),Q(x)}dx =
1

2
− 1

2
TV (P,Q) . (2)

It is clear from (2) that the estimation of the total variation between P and Q is equivalent to that of
the Bayes risk R(f⋆) for the task of discriminating between real and synthetic data.

2.2 TOTAL VARIATION DISTANCE LOWER BOUND VIA CLASSIFICATION

Given an estimator f̂ of the optimal classifier f⋆, we always have

R(f̂) ≥ R(f⋆) =
1

2
− 1

2
TV (P,Q) .

This inequality suggests
TV(P,Q) ≥ 1− 2R(f̂) ≜ T̂V(P,Q) (3)
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for any feasible classifier f̂ . Therefore, f̂ provides a means to establish a lower bound for the total
variation distance between the distributions of real and synthetic data distributions. Each specific
classifier f̂ yields a lower bound on the indistinguishability between P and Q. Intuitively, if none of
classifiers yields a large lower bound, then the synthetic data Q can be considered similar to the real
data P, indicating that their total variation distance is small.

If the chosen classifier f̂ is consistent for achieving minimal risk, that is E(f̂) = R(f̂)−R(f⋆) = 0,
where E(f̂) is known as the excess risk, then T̂V(P,Q) appears as a consistent estimator of the real
total variation TV(P,Q), that is

E(f̂) = R(f̂)−R(f⋆)
p→ 0 ⇔ TV(P,Q)− T̂V(P,Q)

p→ 0.

Here the equivalence of these two convergence in probability is supported by the quantitative relation
TV(P,Q)− T̂V(P,Q) = 2E(f̂). In the literature, there has been various research efforts devoted to
establishing the convergence of E(f̂) (Audibert & Tsybakov, 2007; Bartlett et al., 2006).

3 OPTIMAL ESTIMATION OF TOTAL VARIATION DISTANCE

In this section, we present several examples where achieving an optimal classifier is feasible by
choosing a proper hypothesis class. For illustration, we primarily examine a scenario where both real
and synthetic data are generated from multivariate Gaussian distributions. Subsequently, we offer an
extension to encompass the general exponential family. To establish the tightest convergence rate
for the empirical fidelity auditor, we adopt the following low noise assumption in the classification
literature (Audibert & Tsybakov, 2007; Bartlett et al., 2006).

Assumption 3.1 (Low-Noise Condition) There exist some positive constants C0 and γ such that
P (|η(x)− 1/2| < t) ≤ C0t

γ for any t > 0, where γ is referred to as the noise exponent.

Assumption 3.1 characterizes the behavior of the regression function η in the vicinity of the level
η(x) = 1/2, which is paramount for convergence of classifiers. Particularly, a larger value of γ
indicates smaller noise in the labels, resulting in a faster convergence rate to the optimal classifier.

3.1 MULTIVARIATE GAUSSIAN DISTRIBUTION

We start with delving into a scenario where both real and synthetic data follow multivariate normal
distributions. Our primary aim is to delineate the optimal function class for training an empirical
classifier and assess its convergence towards the optimal classifier. This assumption finds particular
prevalence in the domain of generative data, owing to the widespread practice of assuming embeddings
of generative data to be normally distributed, such as images (Kynkäänniemi et al., 2023) and text
data (Chun, 2024).

Specifically, we assume P and Q are two different Gaussian density functions parametrized by
(µ1,Σ1) and (µ2,Σ2), respectively. Under this assumption, the underlying distribution of the mixed
dataset D is 1

2N(µ1,Σ1) +
1
2 (µ2,Σ2).

Lemma 3.2 Given that D ∼ 1
2N(µ1,Σ1) +

1
2N(µ2,Σ2), the Bayes decision rule (optimal classi-

fier) for determining the true distribution of a given sample x is

f⋆(x) = I

(
log

(
det(Σ2)

det(Σ1)

)
+ (x− µ2)

TΣ−1
2 (x− µ2)− (x− µ1)

TΣ−1
1 (x− µ1) > 0

)
,

where det(·) denotes the determinant of a matrix.

Lemma 3.2 specifies the optimal classifier for discriminating between two multivariate Gaussian
distributions. However, directly learning f⋆ is often computationally infeasible in practical scenarios.
As an alternative approach, we consider employing a plug-in classifier, where we aim to estimate
η(X) = P(X)

P(X)+Q(X) through the following optimization task:

β̂ = arg min
β∈Rd

1

2n

n∑
i=1

{(
1− exp(βTψ(xi))

1 + exp(βTψ(xi))

)2

+

(
exp(βTψ(x̃i))

1 + exp(βTψ(x̃i))

)2
}

+ λ∥β∥22, (4)
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where ψ(x) = (1, x1, . . . , xp, x
2
1, x1x2, . . . , xp−1xp, x

2
p) being a feature transformation of original

features x with d = (p+ 2)(p+ 1)/2.

Next we denote H =
{
h(x) = βTψ(x) : β ∈ Rd

}
and ĥ(x) = β̂Tψ(x). As long as ĥ is obtained,

the plug-in classifier can be obtained as

Plug-in Classifier: f̂(x) = I

(
exp(ĥ(x))

1 + exp(ĥ(x))
>

1

2

)
= I

(
ĥ(x) > 0

)
. (5)

Here, f̂ represents an empirical classifier estimated from D, capable of discerning between real and
synthetic data originating from two distinct Gaussian distributions.

Lemma 3.3 Define h⋆ϕ = argminh E
[
(ϕ(h(X))− Y )2

]
with ϕ(x) = 1

1+exp(−x) . Given that

X ∼ 1
2N(µ1,Σ1) +

1
2 (µ2,Σ2) and P (Y = 1|X) = P(X)

P(X)+Q(X) , we have

h⋆ϕ(x) = log

(
det(Σ2)

det(Σ1)

)
+ (x− µ2)

TΣ−1
2 (x− µ2)− (x− µ1)

TΣ−1
1 (x− µ1).

Lemma 3.3 validates the effectiveness of (4) in obtaining an empirical classifier. Specifically, as
the sample size tends towards infinity, ĥ becomes consistent with f⋆ in sign. Therefore, the plug-in
classifier f̂ can be used as a surrogate for f⋆ to calculate the total variation between P and Q. To
theoretically validate this claim, we demonstrate in Theorem 3.4 that our developed discriminative
estimation of the total variation between two Gaussian distributions exhibits a fast convergence rate
of O

(
(d log(n)/n)

γ+1
γ+2

)
. This result aligns with the optimal convergence rate in classification under

the same assumptions as presented in (Bartlett et al., 2006; Tsybakov, 2004).

Moreover, our theoretical result unveils two intriguing phenomena:

1 When an appropriate function class is chosen for classification, the estimation of the total vari-
ation between two Gaussian distributions remains robust against data dimension compared to
nonparametric density estimation and neural estimation approaches (Sreekumar & Goldfeld,
2022);

2 The estimation error of total variation inherently depends on the difference between P and Q, such
that a faster convergence rate is achieved when the real total variation distance between P and Q
is larger (larger values of γ or smaller values of C0 in Assumption 3.1).

The second phenomenon is striking because it suggests that the difficulty of estimating total variation
diminishes significantly when the true variation is substantial. Despite lacking theoretical validation
in existing literature, this result is intuitively comprehensible. In Figure 1, we provide a toy example
illustrating that P and Q have completely disjoint supports, resulting in a true total variation of one.
It can be observed that regardless of the number of samples used to compute the empirical total
variation, the estimated total variation is consistent with zero estimation error.

Theorem 3.4 If P and Q are two different Gaussian density functions parametrized by (µ1,Σ1) and
(µ2,Σ2), respectively. Under Assumption 3.1, we have

ED

{
T̂V(P,Q)− TV(P,Q)

}
≲ C

1
γ+2

0

(
d log n

2n

) γ+1
γ+2

, (6)

where T̂V(P,Q) = 1− 2R(f̂) with f̂ being the plug-in classifier given by (5) with λ ≍ d log(n)/n
and C0 and γ are as defined in Assumption 3.1.

Lemma 3.5 Suppose that X ∼ 1
2N(µ1,Σ) + 1

2N(µ2,Σ), for any c < 1/2, we have

P (|η(X)− 1/2| < t) ≤ 2t

(1− 2c)
√
π∥µ1 − µ2∥Σ

,

where ∥µ1 − µ2∥Σ =
√

(µ1 − µ2)TΣ−1(µ1 − µ2) and η(x) = P(x)
P(x)+Q(x) .

5
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Figure 1: In this case, the supports of P and Q are completely non-overlapping, and hence Assumption
3.1 holds with C0 = 0 and any γ > 0. It is evident that the estimation error in (6) is zero due to the
disjoint nature of the histograms for any value of n in this example.

In Lemma 3.5, we verify Assumption 3.1 for the case when P and Q are two multivariate Gaussian
distributions with identical covariance matrices. This quantifies the values of C0 and γ, further
clarifying the convergence rate developed in (6).

Theorem 3.6 Suppose X ∼ 1
2N(µ1,Σ) + 1

2N(µ2,Σ). With this, (6) becomes

ED

{
T̂V(P,Q)− TV(P,Q)

}
≲

(
1

∥µ1 − µ2∥Σ

) 1
3
(
d log n

2n

) 2
3

,

where ∥µ1 − µ2∥Σ =
√

(µ1 − µ2)TΣ−1(µ1 − µ2).

In Theorem 3.6, we present a detailed analysis of (6) specifically tailored to the Gaussian case with
identical covariance matrices. This analysis includes the explicit determination of the constants
C0 and γ as defined in Assumption 3.1. Specifically, we show that C0 ≍ 1/∥µ1 − µ2∥Σ and
γ = 1. Our findings demonstrate that the proposed discriminative estimation method achieves a
rapid convergence rate of O

(
∥µ1 − µ2∥−1/3

Σ n−
2
3

)
, accompanied by a logarithmic factor. Notably,

as ∥µ1 − µ2∥Σ tends towards infinity, the convergence rate accelerates, aligning with our second
observation mentioned earlier.

3.2 EXTENSION TO EXPONENTIAL FAMILY

We extend our Gaussian result to encompass the broader exponential family. Specifically, we address
the question of determining the appropriate function class for estimating the total variation between
two exponential-type random variables. With the appropriate choice of function classes, similar
results for estimating the total variation can be derived, building upon the risk of the resulting
classifier.

For any exponential-type random variable X , the associated probability density function can typically
be expressed in the general form

fX(x|θ) = h(x) · exp [η(θ) · T (x)−A(θ)] ,

where h(·), T (·), η(·), and A(·) are functions that uniquely depend on the type of X .

Theorem 3.7 Let P(x) and Q(x) be the density functions of two different random variables from
the exponential family:

P(x) = h1(x) · exp [η1(θ1) · T1(x)−A1(θ1)] ,

Q(x) = h2(x) · exp [η2(θ2) · T2(x)−A2(θ2)] .

Then the optimal classifier for minimizing (1) is given as

f⋆(x) = I

(
log

(
h1(x)

h2(x)

)
+A2(θ2)−A1(θ1) + T1(x)η1(θ1)− T2(x)η(θ2) > 0

)
. (7)

Furthermore, the total variation between P(x) and Q(x) is given as TV(P,Q) = 2R(f⋆)− 1.

6
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(a) (n, p) = (103, 5) (b) (n, p) = (103, 10)

(c) (n, p) = (104, 5) (d) (n, p) = (104, 10)

Figure 2: True total variation (x-axis) versus estimated total variation (y-axis) in cases (n, p) ∈
{103, 104} × {5, 10} under varying disparity between two Gaussian distributions.

Theorem 3.7 elucidates the optimal classifier for discriminating between two random variables from
the exponential family, providing a method to calculate the total variation between their underlying
distributions. Furthermore, Theorem 3.7 also explicates the appropriate class of margin classifiers
when the underlying distributions are from exponential family. For illustration, in the following,
we outline the appropriate selection of function classes for different combinations between four
exponential-type univariate random variables, as summarized in Table 1. The extension to other
exponential-type random variables and multivariate cases can be derived analytically.

Table 1: The choice of function class takes the form as H = {f(x) = βTψ(x) : β ∈ Rd}. Below
presents the explicit form of ψ(x) under different combinations of types of P and Q. Due to the
symmetry between P and Q, we display only the upper triangular results in this table.

Q
P Gaussian Exponential Gamma Beta

Gaussian (1, x, x2) (1, x, x2) (1, x, x2, log x) (1, x, x2, log x, log(1− x))
Exponential - (1, x) (1, x, log x) (1, x, log x, log(1− x))

Gamma - - (1, x, log x) (1, x, log x, log(1− x))
Beta - - - (1, log x, log(1− x))

4 EXPERIMENTS

In this section, we showcase the superior performance of the developed discriminative method (DisE)
for estimating the total variation between two Gaussian distributions. For each simulated setting,

7
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we report the average results for all simulation settings, accompanied by their respective standard
deviations calculated over 20 replications, presented in parentheses.

Comparison Methods and Evaluation Metrics. Existing methods for estimating divergence metrics
predominantly rely on a plug-in estimation approach, typically applied to either two separate density
functions or their density ratio. In this experiment, we consider kernel density estimation (KDE;
(Sasaki et al., 2015)) for the former type of estimator. For the latter, we explore two nearest neighbor
type estimators, including the ensemble estimation (EE; (Moon & Hero, 2014)) and nearest neighbor
ratio estimation (NNRE; (Noshad et al., 2017)). Furthermore, we incorporate a parameter estimation
(PE) approach, which entails approximating the total variation through the Monte Carlo method
based on sample mean and covariance matrix. As a baseline, we utilize the Monte Carlo method to
calculate the true total variation based on true means and covariance matrices. The performance of
all methods are evaluated in three aspects, including robustness, computational time, and estimation
error measured in absolute error.

Experimental Setting. We conduct a comprehensive analysis of the impact of sample size and
data dimension on the performance of various estimators. Specifically, we consider P as a Gaussian
distribution with mean µ1 = 0p and covariance matrix Σ1 = Ip×p. In contrast, Q is a Gaussian
distribution with mean µ2 uniformly generated from [0, 1]p and covariance matrix Σ2 = Ip×p +E,
where E is a symmetric noise matrix. We compare the performance of our proposed method with
that of existing estimation methods across different data dimensions, sample sizes, and differences
between the means of two distributions. For each fixed setting, we conduct 20 replications to calculate
the standard deviations, which serve as a measure of the robustness of the estimation accuracy.

Experimental Result. Figure 2 shows that the DisE and PE methods provide the most accurate
estimates of the true total variation distance across all scenarios. The KDE approach tends to
overestimate the total variation in cases of smaller disparity, while the NNRE and EE approaches
tend to underestimate it in cases of larger disparity. Notably, as the true total variation increases, the
accuracy of our proposed DisE method improves, which aligns perfectly with the theoretical results
established in Theorem 3.4. Furthermore, compared to other methods, our proposed method is less
sensitive to data dimensionality.

Robustness Study. To further validate the robustness of our proposed method, we repeatedly compare
the estimation results across different dimensions ranging from 2 to 12, and examine the estimation
results under different levels of noise added to data. The average estimation errors under varying
disparities between two distributions are reported in Figure 3 and Table 2. Clearly, both DisE and PE
consistently exhibit smaller estimation errors, while the other approaches show increasing errors as
the dimension expands. Table 2 demonstrates that the DisE approach achieves higher accuracy and
lower variance compared to the PE approach. Figure 4 and Table 3 show the average estimation errors
under varying levels of variances of noise added to data. The estimation errors of all approaches show
a growing pattern with the increase of noise level, and the proposed DisE approach has a relatively
lower estimation error compared with other methods. Overall, these findings confirm the superior
robustness and accuracy of the DisE approach in estimating total variation distance under varying
dimensions and noise levels.

Exponential Family. We extended the simulation experiment to Exponential family to examine
the performance of our proposed DisE approach. Table 4 show the average estimation errors and
standard deviations of total variation estimation of all methods for Exponential distribution and
Gamma distribution respectively. Both tables demonstrate that DisE approach provides more accurate
estimation of total variation with smaller standard deviation.

5 REAL APPLICATION - CONSISTENT FIDELITY COMPARISON OF
GENERATIVE DATA.

Experimental Setting. We evaluate the effectiveness of the DisE, PE, and KDE methods in measuring
the fidelity of synthetic data. Using the MNIST dataset (LeCun, 1998) and CIFAR-10 (Krizhevsky
et al., 2009) dataset , we train GANs for 100, 300, and 500 epochs, subsequently generating images
with each of these models, as illustrated in Figure 5. Due to the high dimensionality and sparsity of
image data, we employ pretrained ResNet18 (He et al., 2016) to obtain embeddings of both real and
synthetic images. Following the literature, which commonly assumes the normality of embeddings
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Figure 3: The robustness of estimation
errors of all methods with respect to data
dimensionality.

Method dim = 2 dim = 4 dim = 6
DisE 0.002(0.002) 0.003(0.002) 0.002(0.001)
PE 0.003(0.002) 0.005(0.004) 0.004(0.003)
KDE 0.008(0.005) 0.015(0.017) 0.062(0.045)
NNRE 0.013(0.015) 0.048(0.027) 0.085(0.059)
EE 0.038(0.019) 0.086(0.052) 0.108(0.074)
Method dim = 8 dim = 10 dim = 12
DisE 0.003(0.002) 0.002 (0.002) 0.003(0.002)
PE 0.004(0.004) 0.004(0.003) 0.004(0.003)
KDE 0.115(0.089) 0.151(0.121) 0.202(0.154)
NNRE 0.154(0.091) 0.221(0.118) 0.246(0.124)
EE 0.165(0.099) 0.221(0.125) 0.233(0.124)

Table 2: The averaged estimation errors (standard devia-
tions) of total variation estimation of all methods across
various data dimensions.

Figure 4: The robustness of estimation
errors of all methods with respect to
noise added to data (dimension = 5).

Method noise = 0.1 noise = 0.5 noise = 1.0
DisE 0.003(0.002) 0.032(0.027) 0.159(0.117)
PE 0.005(0.004) 0.033(0.029) 0.176(0.120)
KDE 0.052(0.043) 0.074(0.060) 0.203(0.131)
NNRE 0.054(0.041) 0.054(0.035) 0.129(0.100)
EE 0.079(0.063) 0.069(0.051) 0.129(0.092)
Method noise = 1.5 noise = 2.0 noise = 2.5
DisE 0.310(0.174) 0.423 (0.207) 0.494(0.225)
PE 0.350(0.169) 0.478(0.187) 0.557(0.195)
KDE 0.376(0.173) 0.501(0.189) 0.577(0.196)
NNRE 0.294(0.153) 0.437(0.179) 0.524(0.198)
EE 0.294(0.149) 0.452(0.179) 0.569(0.200)

Table 3: The averaged estimation errors (standard devia-
tions) of total variation estimation of all methods across
different noise variances.

of generative data (Kynkäänniemi et al., 2023; Chun, 2024), we then estimate the total variation
between each generated dataset and the original MNIST/CIFAR-10 dataset using the DisE, PE, and
KDE methods. As illustrated in Figure 5, GANs trained for more epochs generate images of greater
fidelity. Consequently, the total variation between real images and synthetic images generated after
100, 300, and 500 epochs should follow a decreasing pattern. Hence, in this experiment, we aim
to consistently compare all methods in terms of their ability to provide a correct ranking of fidelity.
Experimental Result. In Table 5, we present the fidelity of images generated by GANs trained
over varying epochs, measured using total variation distance estimated by three methods. The total
variation distance between the embeddings of real images and synthetic images generated after 100,

Table 4: The averaged estimation errors (standard deviations) of total variation estimation of all
methods for Exponential and Gamma distribution (dimension = 1).

Method True TV = 0 True TV = 0.30 True TV = 0.70 True TV = 0.82

Exponential

DisE 0.001(0.001) 0.000(0.001) 0.000(0.001) 0.001(0.001)
PE 0.006(0.004) 0.005(0.005) 0.003(0.004) 0.002(0.001)
KDE 0.020(0.007) 0.037(0.007) 0.053(0.007) 0.048(0.003)
NNRE 0.094(0.004) 0.021(0.009) 0.002(0.005) 0.011(0.007)
EE 0.079(0.008) 0.015(0.016) 0.002(0.008) 0.003(0.022)
Method True TV = 0 True TV = 0.25 True TV = 0.72 True TV = 0.97

Gamma

DisE 0.001(0.001) 0.001(0.001) 0.000(0.001) 0.000(0.001)
PE 0.013(0.008) 0.001(0.008) 0.000(0.005) 0.001(0.002)
KDE 0.021(0.005) 0.001(0.008) 0.006(0.007) 0.007(0.003)
NNRE 0.097(0.003) 0.016(0.009) 0.104(0.013) 0.418(0.010)
EE 0.081(0.008) 0.006(0.011) 0.089(0.021) 0.440(0.017)
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(a) 100 epochs (b) 300 epochs (c) 500 epochs

(d) 100 epochs (e) 300 epochs (f) 500 epochs

Figure 5: 25 synthetic images generated by GANs after 100, 300, and 500 epochs of training via
MNIST/CIFAR-10 dataset are displayed from left to right.

300, and 500 epochs estimated by DisE approach presents a decreasing pattern across all cases,
aligning with the expected quality ranking of the generated models. However, the fidelity measured
by the PE approach deviates from the expected ranking when the embedding dimension is 50 for the
MNIST dataset. Similarly, the fidelity measured by the KDE approach fails to align with the correct
ranking when the embedding dimension is 35 for the MNIST dataset and 35 and 50 for the CIFAR-10
dataset. This study demonstrates the effectiveness of the proposed DisE method in measuring the
fidelity of synthetic data, providing a correct ranking of quality of generative data.

Table 5: Fidelity rankings of images generated by GANs trained after varying epochs: Fidelity is
measured using the total variation estimated by different methods. The dimension of embeddings is
set to 20, 35, and 50 for ResNet18.

Dataset Method Embedding-dim 100 epochs 300 epochs 500 epochs Correct Ranking

MNIST

DisE
Resnet18-20 0.342 (0.068) 0.153 (0.038) 0.148 (0.055) ✓
Resnet18-35 0.412 (0.074) 0.187(0.059) 0.146 (0.050) ✓
Resnet18-50 0.436 (0.074) 0.193 (0.072) 0.186 (0.041) ✓

PE
Resnet18-20 0.483 (0.073) 0.301 (0.051) 0.286 (0.063) ✓
Resnet18-35 0.627 (0.076) 0.436 (0.065) 0.431 (0.087) ✓
Resnet18-50 0.767 (0.044) 0.561 (0.061) 0.563 (0.077) ✗

KDE
Resnet18-20 0.768 (0.025) 0.707 (0.017) 0.703 (0.026) ✓
Resnet18-35 0.907 (0.014) 0.871 (0.013) 0.872 (0.020) ✗
Resnet18-50 0.967 (0.005) 0.944 (0.007) 0.943 (0.010) ✓

CIFAR10

DisE
Resnet18-20 0.332(0.031) 0.274(0.035) 0.255(0.042) ✓
Resnet18-35 0.463(0.038) 0.378(0.055) 0.348(0.055) ✓
Resnet18-50 0.577(0.041) 0.483(0.059) 0.444(0.038) ✓

PE
Resnet18-20 0.366(0.027) 0.309(0.032) 0.291(0.027) ✓
Resnet18-35 0.532(0.032) 0.462(0.033) 0.437(0.032) ✓
Resnet18-50 0.682(0.029) 0.604(0.031) 0.572(0.031) ✓

KDE
Resnet18-20 0.899(0.004) 0.893(0.003) 0.891 (0.004) ✓
Resnet18-35 0.990(0.001) 0.990(0.001) 0.989(0.001) ✗
Resnet18-50 0.999(0.001) 0.999(0.001) 0.999(0.001) ✗
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A DISCUSSION

In this paper, we propose a novel approach to estimate the TV distance between two distributions
using a classification-based method. This method leverages the quantitative relationship between
Bayes risk and TV distance. Specifically, we examine a scenario where both distributions are
Gaussian, establishing theoretical results regarding the convergence of our approach. Our findings
reveal an intriguing phenomenon: the estimation error of the TV distance is dependent on the true
separation between the distributions. In other words, the TV distance is easier to estimate when the
distributions are farther apart. The experimental results demonstrate the superior performance of
our proposed discriminative estimation approach over several existing methods in estimating total
variation distance. While currently confined to this particular metric, our discriminative approach
holds promise for broader applications in estimating various divergence metrics. Future endeavors
will focus on extending our method to encompass other divergence metrics and establishing statistical
assurances for estimation accuracy.

B PROOF OF LEMMAS

B.1 PROOF OF LEMMA 3.5

Proof. Given that Σ1 = Σ2 = Σ and t ∈ (0, 1/2), we have∣∣∣∣ P(X)

P(X) +Q(X)
− 1

2

∣∣∣∣ < t⇔ log

(
1− 2t

1 + 2t

)
< log

(
P(X)

Q(X)

)
< log

(
1 + 2t

1− 2t

)
.

Plugging the densities of P(X) and Q(X) into the above formula yields that

log

(
P(X)

Q(X)

)
=(x− µ2)

TΣ−1
2 (x− µ2)− (x− µ1)

TΣ−1
1 (x− µ1)

=2(µ1 − µ2)
TΣ−1x+ µT

2 Σ
−1µ2 − µT

1 Σ
−1µ1

=2(µ1 − µ2)
TΣ−1(x− µ1) + (µ2 − µ1)

TΣ−1(µ2 − µ1)

=2(µ1 − µ2)
TΣ−1(x− µ2)− (µ2 − µ1)

TΣ−1(µ2 − µ1).

For ease of notation, we define ∥ · ∥2Σ as

∥x∥2Σ = xTΣ−1x.

Moreover, we let J(t) = log
(

1+2t
1−2t

)
and define

ϕ1(x) =
1√

(2π)pdet(Σ)
exp

{
−1

2
∥x− µ1∥2Σ

}
,

ϕ2(x) =
1√

(2π)pdet(Σ)
exp

{
−1

2
∥x− µ2∥2Σ

}
,

denote the probability density functions of N(µ1,Σ) and N(µ2,Σ), respectively. Then the proba-
bility density function of X is given as ϕ(x) = 1

2ϕ1(x) +
1
2ϕ2(x). Define the event S(t) as

S(t) =
{
x ∈ Rp : −J(t) ≤ 2(µ1 − µ2)

TΣ−1x+ ∥µ2∥2Σ − ∥µ1∥2Σ ≤ J(t)
}
.

Next, we turn to bound
∫
x∈S(t)

ϕ1(x)dx. Note that S(t) can be equivalently represented as

S(t) =
{
x ∈ Rp : −J(t) ≤ 2(µ1 − µ2)

TΣ−1(x− µ1) + ∥µ2 − µ1∥2Σ ≤ J(t)
}
.

Denote that Y = 2(µ1 − µ2)
TΣ−1(x− µ1). Clearly, Y follows a normal distribution with mean 0

and variance 4(µ1 − µ2)
TΣ−1(µ1 − µ2). Therefore,∫
x∈S(t)

ϕ1(x)dx =

∫ J(t)−∥µ2−µ1∥2
Σ

−J(t)−∥µ2−µ1∥2
Σ

1√
2πσ

e−
y2

2σ2 dy

≤
∫ J(t)

−J(t)

1√
2πσ

e−
y2

2σ2 dy =
J(t)√

2π∥µ1 − µ2∥Σ
,
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where σ = 2
√

(µ1 − µ2)TΣ−1(µ1 − µ2) = 2∥µ1 − µ2∥Σ. Similarly, we have∫
x∈S(t)

ϕ2(x)dx ≤ J(t)√
2π∥µ1 − µ2∥Σ

.

Then we have

P (X ∈ S(t)) =
1

2

∫
x∈S(t)

ϕ1(x)dx+
1

2

∫
x∈S(t)

ϕ2(x)dx ≤ J(t)√
2π∥µ1 − µ2∥Σ

.

Note that log
(

1+2t
1−2t

)
≤ 4t

1−2t for any t ∈ [0, 1/2). Therefore, we have

P (X ∈ S(t)) ≤ 2t

(1− 2c)
√
π∥µ1 − µ2∥Σ

, (8)

for any t ∈ (0, c] with c < 1/2. This completes the proof.

B.2 PROOF OF LEMMA 3.2

Given that D is the mixture of two Gaussian distribution P(x) and Q(x), where

P(x) = (2π)−
p
2 det(Σ1)

− 1
2 exp

(
−1

2
(x− µ1)

TΣ−1
1 (x− µ1)

)
,

Q(x) = (2π)−
p
2 det(Σ2)

− 1
2 exp

(
−1

2
(x− µ2)

TΣ−1
2 (x− µ2)

)
,

and D(x) = P(x)+Q(x)
2 . For a classifier f : Rp → {0, 1}, its risk is given as

R(f) =

∫
Rp

D(x)
[
P (Y = 1|X) · I(f(x) = 0) + P (Y = 0|X) · I(f(x) = 1)

]
dx.

The term P (Y = 1|X) = P(X)
P(X)+Q(X) and P (Y = 0|X) = Q(X)

P(X)+Q(X) , thus we have

R(f) =

∫
X

D(x) [η(x) · I(f(x) = 0) + (1− η(x)) · I(f(x) = 1)] dx.

To minimize the risk, the optimal classifier is

f⋆(x) = I

(
η(x) >

1

2

)
= I
(
P(x) > Q(x)

)
= I

(
log

P(x)
Q(x)

> 0

)
Next,

P(x)
Q(x)

=
det(Σ1)

− 1
2 exp

(
− 1

2 (x− µ1)
TΣ−1

1 (x− µ1)
)

det(Σ2)−
1
2 exp

(
− 1

2 (x− µ2)TΣ
−1
2 (x− µ2)

)
=

det(Σ2)

det(Σ1)
· exp

(
1

2
(x− µ2)

TΣ−1
2 (x− µ2)−

1

2
(x− µ1)

TΣ−1
1 (x− µ1)

)
.

Considering that sign(P(x)−Q(x)) = sign(logP(x)− logQ(x)). Therefore, the Bayes classifier
can be written as

f⋆(x) = I

(
log

(
det(Σ2)

det(Σ1)

)
+ (x− µ2)

TΣ−1
2 (x− µ2)− (x− µ1)

TΣ−1
1 (x− µ1) > 0

)
.

This completes the proof.
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B.3 PROOF OF LEMMA 3.3

We first define Rϕ(h) = E
[
(ϕ(h(X))− Y )2

]
, which can be expressed as

E
[
(ϕ(h(X))− Y )2

]
=

∫
Rp

D(x)
[
η(x)(ϕ(h(x))− 1)2 + (1− η(x))ϕ2(h(x))

]
dx.

Here ϕ(x) = 1/(1 + exp(−x)). For each x, we have

η(x)(ϕ(h(x))− 1)2 + (1− η(x))ϕ2(h(x))

=η(x)

(
1

1 + exp(h(x))

)2

+ (1− η(x))

(
exp(h(x))

1 + exp(h(x))

)2

. (9)

Clearly, (9) is minimized when ϕ(h(x)) = η(x), leading to

h⋆ϕ(x) = log

(
η(x)

1− η(x)

)
= log

(
P(x)
Q(x)

)
.

Finally, we have

h⋆ϕ(x) = log

(
P(x)
Q(x)

)
= log

(
det(Σ2)

det(Σ1)

)
+ (x− µ2)

TΣ−1
2 (x− µ2)− (x− µ1)

TΣ−1
1 (x− µ1).

This completes the proof.

C PROOF OF THEOREMS

C.1 PROOF OF THEOREM 3.4

First, the convergence of T̂V(P,Q) to TV(P,Q) is implied by the convergence of R(f̂)− R(f⋆),
where f̂ be the plug-in classifier defined in (5). Specifically,

f̂(x) = I
(
ϕ(ĥ(x)) > 1/2

)
= I

(
exp(ĥ(x))

1 + exp(ĥ(x))
> 1/2

)
.

To simplify notation, we denote η̂(x) = ϕ(ĥ(x)).

Step 1: Establishing the connection between R(f̂)−R(f⋆) and ∥η − η̂∥2L2(PX)

Specifically, we first decompose R(f̂)−R(f⋆) into two parts:

R(f̂)−R(f⋆) = E
[
I(f̂(X) ̸= f⋆(X))|2η(X)− 1|

]
=2E

[
I(f̂(X) ̸= f⋆(X))|η(X)− 1/2|I(|η(X)− 1/2| < t)

]
+2E

[
I(f̂(X) ̸= f⋆(X))|η(X)− 1/2|I(|η(X)− 1/2| ≥ t)

]
≜ I1 + I2,

for any positive constant t > 0.

Next, we turn to bound I1 and I2 separately. Following from the fact that |η(x)−1/2| ≤ |η(x)−η̂(x)|
when f̂(x) ̸= f⋆(x), we have

I1 =2E
[
I(f̂(X) ̸= f⋆(X))|η(X)− 1/2|I(|η(X)− 1/2| < t)

]
≤2E

[
I(f̂(X) ̸= f⋆(X))|η(X)− η̂(x)|I(|η(X)− 1/2| < t)

]
≤2

√
E
[
(η(X)− η̂(x))2

]
·
√
P(|η(X)− 1/2| < t) ≤ 2∥η − η̂∥L2(PX)C

1/2
0 tγ/2, (10)
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where the last inequality follows from the Cauchy–Schwarz inequality.

Next, I2 can be bounded as

I2 =2E
[
I(f̂(X) ̸= f⋆(X))|η(X)− 1/2|I(|η(X)− 1/2| ≥ t)

]
≤2E

[
I(f̂(X) ̸= f⋆(X))|η(X)− η̂(x)|I(|η(X)− 1/2| ≥ t)

]
≤2E

[
(η(X)− η̂(x))

2
]
t−1 = 2t−1∥η − η̂∥2L2(PX). (11)

Combining (10) and (11) yields

R(f̂)−R(f⋆) ≤2∥η − η̂∥L2(PX)C
1/2
0 tγ/2 + 2t−1∥η − η̂∥2L2(PX).

Setting t = C
− 1

γ+2

0 ∥η − η̂∥
2

γ+2

L2(PX) yields

R(f̂)−R(f⋆) ≤ 4C
1

γ+2

0

(
∥η − η̂∥2L2(PX)

) γ+1
γ+2

.

Step 2. Establish the convergence of ∥η − η̂∥2L2(PX)

For the mixed dataset D = {xi}ni=1 ∪ {x̃i}ni=1, we introduce a dataset D0 = {(x(0)
i , y

(0)
i )}2ni=1

with (x
(0)
i , y

(0)
i ) = (xi, 1) and (x

(0)
n+i, y

(0)
n+i) = (x̃i, 0). Here D0 can be understood as a set of i.i.d.

realizations of (X, Y ) with X ∼ 1
2N(µ1,Σ1) +

1
2N(µ2,Σ2) and P (Y = 1|X) = P(X)

P(X)+Q(X) .
Under the distribution of (X, Y ), we first define Rϕ(h) = E

[
(ϕ(h(X))− Y )2

]
as

Rϕ(h)−Rϕ(h
⋆
ϕ) = E

[
(ϕ(h(X))− Y )2

]
− E

[
(ϕ(h⋆ϕ(X))− Y )2

]
=E

{
η(X)[ϕ(h(X))− 1]2 + [1− η(X)]ϕ2(h(X))− η(X)(1− η(X))

}
=E

[
(η(X)− ϕ(h(X))

2
]
= ∥η − ηh∥2L2(PX).

Next, we define R̂ϕ(h) as an empirical version of Rϕ(h).

R̂ϕ(h) =
1

2n

2n∑
i=1

(
ϕ(h(x

(0)
i ))− y

(0)
i

)2
.

Here ĥ = argminh∈H R̂ϕ(h)+λ∥β∥22 and η̂(x) = ϕ(ĥ(x)). Denote A = {D : ∥η−η̂∥2L2(PX) > δ}
and let H0 = {h ∈ H : ∥η− ηh∥2L2(PX) > δ} be a subset of the function class H. First, if the dataset

D0 ∈ A, then we have ĥ ∈ H0, implying suph∈H0
R̂ϕ(h

⋆
ϕ)− R̂ϕ(h) + λ(∥β⋆∥22 − ∥β∥22) ≥ 0 due

to the optimality of ĥ in minimizing R̂ϕ(h) within H. Therefore, we have

P (A) ≤ P

(
sup
f∈H0

R̂ϕ(h
⋆
ϕ)− R̂(h) + λ∥β⋆∥22 − λ∥β∥22 ≥ 0

)
. (12)

Next we can decompose H0 as H0 = ∪∞
i=1H

(i)
0 with H(i)

0 being defined as

H(i)
0 = {h ∈ H0 : 2i−1δ ≤ Rϕ(h)−Rϕ(h

⋆
ϕ) ≤ 2iδ}
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Therefore, (12) can be equivalently written as

P (A) ≤P

 sup
∪∞

i=1H
(i)
0

R̂ϕ(h
⋆
ϕ)− R̂(h) + λ∥β⋆∥22 − λ∥β∥22 ≥ 0


≤

∞∑
i=1

P

 sup
h∈H(i)

0

R̂ϕ(h
⋆)− R̂ϕ(h) + λ∥β⋆∥22 − λ∥β∥22 > 0


≤

∞∑
i=1

P

 sup
h∈H(i)

0

R̂ϕ(h
⋆
ϕ)−Rϕ(f

⋆
ϕ)− R̂ϕ(h) +Rϕ(h) > inf

h∈H(i)
0

Rϕ(h)−Rϕ(h
⋆
ϕ) + λ∥β∥22 − λ∥β⋆∥22


≤

∞∑
i=1

P

 sup
h∈H(i)

0

R̂ϕ(h
⋆
ϕ)−Rϕ(h

⋆
ϕ)− R̂ϕ(h) +Rϕ(h) > 2i−1δ − λ∥β⋆∥22


≤

∞∑
i=1

P

 sup
h∈H(i)

0

R̂ϕ(h
⋆
ϕ)−Rϕ(h

⋆
ϕ)− R̂ϕ(h) +Rϕ(h) > 2i−2δ − λ∥β⋆∥22

 ≜
∞∑
i=1

Ii.

where the last inequality by choosing λ = δ/(2∥β⋆∥22).
Step 3. Bounding Ii
First, we define

Di(h) =
(
ϕ(h⋆ϕ(x

(0)
i ))− y

(0)
i

)2
−
(
ϕ(h(x

(0)
i ))− y

(0)
i

)2
,

D(h) = E
[
(ϕ(h⋆ϕ(X))− Y )2 − (ϕ(h(X))− Y )2

]
.

Then Ii can be rewritten as

Ii =P

 sup
h∈H(i)

0

1

2n

2n∑
i=1

[Di(h)−D(h)] > 2i−2δ


=P

 sup
h∈H(i)

0

1

2n

2n∑
i=1

[Di(h)−D(h)]− νi(D0) > 2i−2δ − νi(D0)

 ,

where νi(D0) = E
[
sup

h∈H(i)
0

1
2n

∑2n
i=1[Di(h)−D(h)]

]
. Here we assume νi(D0) ≤ 2i−3δ and

then we have

Ii ≤ P

 sup
h∈H(i)

0

1

2n

2n∑
i=1

[Di(h)−D(h)]− νi(D0) > 2i−3δ

 .

Step 4. Verifying νi(D0) ≤ 2i−3δ for i ≥ 1
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Next, we intend to present the conditions under which νi(D0) ≤ 2i−2δ. Let D′ be an independent
copy of D0 and (τi)

2n
i=1 be independent Rademacher random variables. Then we have

νi(D0) =
1

2n
ED0

 sup
h∈H(i)

0

2n∑
i=1

[Di(h)−D(h)]

 ≤ 1

2n
ED0

ED′

 sup
h∈H(i)

0

2n∑
i=1

[Di(h)−D′
i(h)]

∣∣∣D0


=

1

2n
ED0,D′

 sup
h∈H(i)

0

2n∑
i=1

τi[Di(h)−D′
i(h)]


=

1

2n
ED0,D′

 sup
h∈H(i)

0

2n∑
i=1

τi[Di(h)−Di(h0) +D′
i(h0)−D′

i(h)]


≤ 1

n
E

 sup
h∈H(i)

0

2n∑
i=1

τi[Di(h)−Di(h0)]

 ,

for any h0 ∈ H(i)
0 . Here the first inequality follows from the Jensen’s inequality, and the second

equality follows from the standard symmetrization argument.

Note that conditional on D0, 1√
2n

∑2n
i=1 τiDi(h) is a sub-Gaussian process with respect to d, where

ρ2
(
h1, h2

)
=

1

2n

2n∑
i=1

(
Di(h1)−Di(h2)

)2
,

for any h1, h2 ∈ H(i)
0 . It then follows from Theorem 3.1 of Koltchinskii (2011) that

1√
2n

ED0

 sup
h∈H(i)

0

2n∑
i=1

τi[Di(h)−Di(h0)]

 ≲ E

(∫ D(H(i)
0 )

0

H1/2
(
H(i)

0 , ρ, η
)
dη

)
,

where D(H(i)
0 ) is the diameter of H(i)

0 with respect to ρ, and H(H(i)
0 , ρ, η) is the η-entropy of

(H(i)
0 , ρ). For any h1, h2 ∈ H(i)

0 , it follows that

Eρ2
(
h1, h2

)
=

1

2n

2n∑
i=1

E
(
Di(h1)−Di(h2)

)2 ≤ 1

2n

2n∑
i=1

E
(
D2

i (h1)
)
+

1

2n

2n∑
i=1

E
(
D2

i (h2)
)

≤8∥ηh1 − η∥2L2(PX) + 8∥ηh2 − η∥2L2(PX).

Therefore, we get

ED(H(i)
0 ) ≤ 4 sup

h∈H(i)
0

∥ηh − η∥L2(PX) ≤
√
2i+4δ. (13)

Moreover,

d2
(
h1, h2

)
=

1

2n

2n∑
i=1

(
Di(h1)−Di(h2)

)2
=

1

2n

2n∑
i=1

(
(ϕ(h1(x

(0)
i ))− y

(0)
i )2 − (ϕ(h2(x

(0)
i ))− y

(0)
i )2

)2
≤ 2

n

2n∑
i=1

(
ϕ
(
h1(x

(0)
i )
)
− ϕ

(
(h2(x

(0)
i

))2
≤ 1

8n

2n∑
i=1

(
h1(x

(0)
i )− h2(x

(0)
i )
)2

≤1

4
∥β1 − β2∥22

1

2n

2n∑
i=1

∥ψ(x(0)
i )∥22 ≜

M(D0)

4
∥β1 − β2∥22

where h1(x) = βT
1 ψ(x), h2(x) = βT

2 ψ(x), the second inequality follows from the fact that
ϕ(x) is a 1/4-Lipschitz function, and M(D0) =

1
2n

∑2n
i=1 ∥ψ(x

(0)
i )∥22. Thus, ρ2

(
h1, h2

)
≤ η2 if

∥β1 − β2∥22 ≤ M(D0)η
2

4 . This further leads to

H(H(i)
0 , ρ, η) ≤ H

(
B2(d), ∥ · ∥2,

CH
√
M(D0)η

2

)
≤ d log

(
6

CH
√
M(D0)η

)
,
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where B2(d) is the unit l2-ball in Rd and the last inequality follows by setting 6

CH
√

M(D0)η
≤ 1.

Then, applying the Dudley’s integral entropy bound (Koltchinskii, 2011), we have

νi(D0) ≲
1√
n
E

(∫ D(H(i)
0 )

0

H1/2
(
H(i)

0 , d, η
)
dη

)

≲E

 1√
n

∫ D(H(i)
0 )

0

√√√√d log

(
6

CH
√
M(D0)η

)
dη

 .

For ease of notation, we let C1 =
CH

√
M(D0)

6 . Next,√
d

n

∫ D(H(i)
0 )

0

√
log

(
1

C1η

)
dη =

√
d

C1
√
n

∫ C1D(H(i)
0 )

0

√
log

(
1

η

)
dη

=

√
d

C1
√
n

∫ C1D(H(i)
0 )

0

√
log

(
1

η

)
dη =

√
d

C1
√
n

∫ +∞

1

C1D(H(i)
0 )

√
log (t)

t2
dt

=
1

C1

√√√√√ d

n log

(
1

C1D(H(i)
0 )

) ∫ +∞

1

C1D(H(i)
0 )

log (t)

t2
dt. (14)

By the fact that
∫∞
a

log(x)/x2dx = (log(a) + 1)/a, we further have

(14) ≲

√
dD(H(i)

0 )√
n

√√√√log

(
1

C1D(H(i)
0 )

)
,

where the inequality follows from the fact that 1/x + x ≤ 2x for x ≥ 1. Next, by the fact that

f(x, y) = x
√
log( 1

xy ) is a concave function, we further have

E

√
dD(H(i)

0 )√
n

√√√√log

(
1

C1D(H(i)
0 )

)
≤E

(
D(H(i)

0 )
)√ d

n

√√√√√log

 1

E
(
C1D(H(i)

0 )
)
 ≲

√
d2i+4δ

n

√
log

(
1

2i+4δ

)
.

If
√

d2i+4δ
n

√
log
(

1
2i+4δ

)
≤ 2iδ, we have d

n log(n/d) ≲ δ.

Step 5. Bounding
∑∞

i=1 Ii

Applying Theorem 1.1 of (Klein & Rio, 2005) to Ii, we have

I1 ≤ exp

(
− 22i−4δ2n2

8νi(D0)n+ 2Vin+ 3 · 2i−3δn

)
≤ exp

(
− 22i−4δ2n2

8Vin+ 7 · 2i−2δn

)
(15)

where Vi = sup
h∈H(i)

0
Var
[
(ϕ(h⋆ϕ(X))− Y )2 − (ϕ(h(X))− Y )2

]
. Next, we establish the relation

betwen V and δ.
Vi = sup

h∈H(i)
0

Var
[
(ϕ(h⋆ϕ(X))− Y )2 − (ϕ(h(X))− Y )2

]
≤ sup

h∈H(i)
0

E
[
(ϕ(h⋆ϕ(X))− Y )2 − (ϕ(h(X))− Y )2

]2
≤ sup

h∈H(i)
0

E
[
(ϕ(h⋆ϕ(X))− ϕ(h(X))) · (ϕ(h⋆ϕ(X)) + ϕ(h(X))− 2Y )

]2
≤4 sup

h∈H(i)
0

E
[
ϕ(h⋆ϕ(X))− ϕ(h(X))

]2 ≤ 4 sup
h∈H(i)

0

∥η − ηh∥2L2(PX) ≤ 2i+2δ.
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Therefore, (15) can be further bounded as Ii ≤ exp
(
−C2iδn

)
≤ exp (−Ciδn) for some positive

constant C.
∞∑
i=1

Ii ≤
∞∑
i=1

exp (−Ciδn) ≤ exp(−Cδn)
1− exp(−Cδn)

≲ exp(−Cδn).

Since d
2n log(n) ≲ δ, we further have

∑∞
i=1 Ii ≲ n−C for some positive constant C. Finally, we

have

P

(
R(f̂)−R(f⋆) ≥ 4C

1
γ+2

0

(
d log n

2n

) γ+1
γ+2

)
≤ P

(
∥η − η̂∥2L2(PX) ≥

d log n

2n

)
≲ n−C ,

for some positive constant C. Therefore

ED

{
TV(P,Q)− T̂V(P,Q)

}
≤ 2E

(
R(f̂)−R(f⋆)

)
≲ C

1
γ+2

0

(
d log n

2n

) 2
3

. (16)

This completes the proof.

C.2 PROOF OF THEOREM 3.6

By Lemma 3.5, we have

P (|η(X)− 1/2| < t) ≤ 2t

(1− 2c)
√
π∥µ1 − µ2∥Σ

,

for any t < c with c ≤ 1/2. Furthermore, the result in (16) holds with t = C
− 1

γ+2

0 ∥η − η̂∥
2

γ+2

L2(PX),
which converges to 0 in probability. Therefore, we can simply consider c = 1/4 and the choice of t is
asymptotically achievable. Therefore, in the case of Σ1 = Σ2 = Σ, C0 in Assumption 3.1 becomes

4√
π∥µ1−µ2∥Σ

. It then follows that

ED

{
TV(P,Q)− T̂V(P,Q)

}
≲

(
1

∥µ1 − µ2∥Σ

) 1
3
(
d log n

2n

) 2
3

.

This completes the proof.

C.3 PROOF OF THEOREM 3.7

Proof of Theorem 3.7: Let P(x) and Q(x) be the density functions of two different random variables
from the exponential family:

P(x) = h1(x) · exp [η1(θ1) · T1(x)−A1(θ1)] ,

Q(x) = h2(x) · exp [η2(θ2) · T2(x)−A2(θ2)] .

According to proof of Lemma 3.2, the optimal classifier is
f⋆(x) = sign

(
P(x)−Q(x)

)
.

Observing that
P(x)
Q(x)

=
h1(x) · exp [η1(θ1) · T1(x)−A1(θ1)]

h2(x) · exp [η2(θ2) · T2(x)−A2(θ2)]

=
h1(x)

h2(x)
· exp [A2(θ2)−A1(θ1) + η1(θ1) · T1(x)− η1(θ2) · T2(x)] ,

and that sign(P(x)−Q(x)) = sign
(
log
(

P(x)
Q(x)

))
, thus the optimal classifier is given as

f⋆(x) = I

(
log

(
h1(x)

h2(x)

)
+A2(θ2)−A1(θ1) + T1(x)η1(θ1)− T2(x)η(θ2) > 0

)
.

This completes the proof.
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Table 6: Competing Total Variation Estimation Methods

Methods Estimator Samples
True Total Variation 1

N

∑N
i=1

∣∣∣Q(x′
i)−P(x′

i)
P(x′

i)+Q(x′
i)

∣∣∣ {x′
i}Ni=1

i.i.d.∼ P+Q
2

Parameter Estimation 1
N

∑N
i=1

∣∣∣ Q̂(x′
i)−P̂(x′

i)

P̂(x′
i)+Q̂(x′

i)

∣∣∣ {x′
i}Ni=1

i.i.d.∼ P̂+Q̂
2

Kernel Density Estimation (Sasaki et al., 2015) 1
N

∑N
i=1

∣∣∣ Q̃kde(x
′
i)−P̃kde(x

′
i)

P̃kde(x′
i)+Q̃kde(x′

i)

∣∣∣ {x′
i}Ni=1

i.i.d.∼ P̃kde+Q̃kde
2

Nearest Neighbor Ratio Estimation (Noshad et al., 2017) 1
n

∑M
i=1

1
2

∣∣∣ ηNi

Mi+1 − 1
∣∣∣ {x′

i}Ni=1
i.i.d.∼ P, {x̃′

i}Mi=1
i.i.d.∼ Q

Esemble Estimation (Moon & Hero, 2014) 1
n

∑N
i=1

1
2

∣∣∣M2(ρ2,k(i))
p

M1(ρ1,k(i))p
− 1
∣∣∣ {x′

i}
M1
i=1

i.i.d.∼ P, {x̃′
i}ni=1

i.i.d.∼ Q

D EXPERIMENTAL SETTING

D.1 SIMULATION STUDY

Two groups of Gaussian mixture (D(x) = P(x)+Q(x)
2 ) samples are generated as training data and

testing data respectively. Training data size is set to either 1000 or 10, 000, while test data size is
50, 000.

Discriminative estimation (DisE): A classifier in the corresponding function class f̂ is trained with
the use of transformed training data, and its classification error in test data can be used to estimate
total variation via T̂V(P,Q) = 1− 2R(f̂).

True total variation: Since there is no closed form of TV distance between two Gaussian distribu-
tions, as the standard, we employ the Monte Carlo method to approximate the true total variation via
TV(P,Q) ≈ 1

N

∑N
i=1

∣∣∣Q(x′
i)−P(x′

i)
P(x′

i)+Q(x′
i)

∣∣∣, where {x′
i}Ni=1

i.i.d.∼ P+Q
2 .

Parameter estimation (PE): TV(P̂, Q̂) ≈ 1
N

∑N
i=1

∣∣∣ Q̂(x′
i)−P̂(x′

i)

P̂(x′
i)+Q̂(x′

i)

∣∣∣, P̂ and Q̂ denote the multivariate

Gaussian distribution with parameters estimated based on {xi}ni=1 and {x̃i}ni=1, respectively.

Kernel density estimation (KDE): TV(P̃, Q̃) ≈ 1
N

∑N
i=1

∣∣∣ Q̃(x′
i)−P̃(x′

i)

P̃(x′
i)+Q̃(x′

i)

∣∣∣, where P̃ and Q̃ denote

the kernel density estimation based on {xi}ni=1 and {x̃i}ni=1, respectively. We select the optimal
bandwidth based on Silverman’s rule of thumb (Silverman, 2018).

Nearest neighbor ratio estimation (NNRE): TV(P,Q) ≈ 1
M

∑M
i=1 g̃

(
ηNi

Mi+1

)
, where g̃(x) =

1
2 |x− 1|, η = M

N is ratio of samples from P and Q. For each sample x′
i from {x̃i}Mi=1, find out the k

nearest neighbors in {xi}Ni=1 ∪ {x̃i}Mi=1, among which Ni points from {xi}Ni=1 and Mi points from
{x̃i}Mi=1. We select the optimal choice of k =

√
M (Noshad et al., 2017)

Ensemble estimation (EE): TV(P,Q) ≈ 1
n

∑N
i=1 g̃

(
M2(ρ2,k(i))

p

M1(ρ1,k(i))p

)
, where g̃(x) = 1

2 |x − 1|. All

samples in {x̃i}ni=1 are divided into two sets {x̃i}Ni=1 and {x̃i}N+M2

i=N+1, and M1 samples are drawn
from {xi}ni=1. For each sample x′

i from {x̃i}Ni=1, find out the distance of k- nearest neighbor of x′
i

in {xi}M1
i=1, denoted by ρ1,k(i), and the distance of k- nearest neighbor of x′

i in {x̃i}ni=N+1, denoted
by ρ2,k(i). The optimal choice of k =

√
N (Moon & Hero, 2014).

D.2 REAL APPLICATION

With the use of MNIST and CIFAR-10 dataset, we train Generative Adversarial Network models for
100, 300, and 500 epochs, subsequently generating images with each of these models.

MNIST database: This dataset contains 70, 000 grayscale images of handwritten digits. The dataset
is divided into a training set of 60, 000 images and a test set of 10, 000 images. Each image is 28×28
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pixels in size, and each pixel value ranges from 0 to 255, representing the intensity of the pixel. The
dataset includes ten classes, corresponding to the digits 0 through 9.

CIFAR-10 database: This dataset contains 60, 000 color images of 10 distinct categories: airplanes,
automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The dataset is divided into a
training set of 50, 000 images and a test set of 10, 000 images. Each color image is 32× 32 pixels in
size.

Generative adversarial network models (GANs) settings for MNIST database:

generator ={ Linear(100, 128),
LeakyReLU(0.2, inplace=True),
Linear(128, 256),
BatchNorm1d(256),
LeakyReLU(0.2, inplace=True),
Linear(256, 784),
Tanh() }

discriminator ={ Linear(784, 256),
LeakyReLU(0.2, inplace=True),
Linear(256, 128),
BatchNorm1d(256),
LeakyReLU(0.2, inplace=True),
Linear(128, 1),
Sigmoid() }

Adam optimizer is used for both networks with learning rate 0.0002 and the loss function is defined
to be binary cross-entropy loss.

Generative adversarial network models (GANs) settings for CIFAR-10 database:

generator ={ Linear(100, 2048),
BatchNorm1d(2048),
LeakyReLU(0.2, inplace=True),
ConvTranspose2d(512, 256),
BatchNorm2d(256),
LeakyReLU(0.2, inplace=True),
ConvTranspose2d(256, 128),
BatchNorm2d(128),
LeakyReLU(0.2, inplace=True),
ConvTranspose2d(128, 64),
BatchNorm2d(64),
LeakyReLU(0.2, inplace=True),
ConvTranspose2d(64, 3),
Tanh() }

discriminator ={ Conv2d(3, 64),
LeakyReLU(0.2, inplace=True),
Dropout(0.3),
Conv2d(64, 128),
LeakyReLU(0.2, inplace=True),
Dropout(0.3),
Conv2d(128, 256),
LeakyReLU(0.2, inplace=True),
Dropout(0.3),
Conv2d(256, 512),
LeakyReLU(0.2, inplace=True),
Dropout(0.3),
Linear(20482, 1),
Sigmoid() }

Each ConvTranspose2d layer and Conv2d layer are with these parameter settings: kernel size=5,
stride=2, padding=2, output padding=1.

Then we use pretrained ResNet-18 model to find out the embedding of each image. We modify the
output size in last fully-connected layer of this model to the desired dimension of embeddings {20,
35, 50}. After obtaining the embedding, we estimate TV distance between embedding of original
images and generated images for each class using different approaches. Finally, we calculate mean
values and standard deviation of all classes.
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