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ABSTRACT

In this work, we study the problem of explicit NeRF compression. Through an-
alyzing recent explicit NeRF models, we reformulate the task of explicit NeRF
compression as 3D data compression. We further introduce our NeRF compres-
sion framework, Attributed Compression of Radiance Field (ACRF), which fo-
cuses on the compression of the explicit neural 3D representation. The neural
3D structure is pruned and converted to points with features, which are further
encoded using importance-guided feature encoding. Furthermore, we employ an
importance-prioritized entropy model to estimate the probability distribution of
transform coefficients, which are then entropy coded with an arithmetic coder
using the predicted distribution. Within this framework, we present two models,
ACRF and ACRF-F, to strike a balance between compression performance and en-
coding time budget. Our experiments, which include both synthetic and real-world
datasets such as Synthetic-NeRF and Tanks&Temples, demonstrate the superior
performance of our proposed algorithm.

1 INTRODUCTION

In recent years, neural radiance fields (NeRFs) (Mildenhall et al., 2020) have emerged as a popular
research topic due to its wide application and expressive performance in novel view synthesis, 3D
reconstruction, and 3D perception. To improve the performance of NeRFs in terms of rendering
quality and training/inference efficiency, recent research has explored the use of explicit 3D repre-
sentations such as voxel grids (Sun et al., 2022; Chen et al., 2022a; Yu et al., 2022; 2021), point
clouds (Xu et al., 2022; Ost et al., 2022), and meshes (Chen et al., 2023). These representations
provide a stronger capacity for NeRFs to learn and represent 3D scenes by explicitly encoding the
geometry and topology of the scene into a structured data format. However, the use of explicit 3D
representations comes with a significant drawback, which is the substantial increase in model size,
leading to challenges in transmitting and storing NeRF models. In this regard, we study the criti-
cal problem of explicit NeRF compression, which aims to reduce the size of a NeRF model while
maintaining its rendering quality and other performance metrics.

Figure 1: Latent features of explicit
neural 3D representation.

Several previous works (Deng & Tartaglione, 2023; Li et al.,
2023; Rho et al., 2023; Xie et al., 2023) have explored vol-
umetric NeRF compression techniques. Re:NeRF (Deng &
Tartaglione, 2023) and HollowNeRF (Xie et al., 2023) focuses
on voxel pruning, while VQRF (Li et al., 2023) introduces a
pruning strategy and compresses voxel features using vector
quantization. Rho et al. (Rho et al., 2023) employ wavelet
transform to learn a more compact representation. These algo-
rithms utilize techniques in both model compression (i.e., prun-
ing and weight quantization) and data compression (i.e., vector quantization and wavelet transform),
and demonstrate promising compression performance. However, these algorithms primarily focus
on the voxel representation and overlook the redundancy inherent in the 3D geometry structure and
textured latent features. As depicted in Fig. 1, it is clear that latent features follow a certain dis-
tribution closely associated with the original color, revealing spatial redundancy between features.
This observation suggests the potential for explicit NeRF model compression. Moreover, existing
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methods have primarily emphasized compression performance and have not adequately considered
the compression time budget, which is crucial for real-world applications.

In this paper, we first conduct a comprehensive analysis of the task of explicit NeRF compression
and reformulate it as a 3D data compression problem. Next, we propose a novel NeRF compression
framework, named ACRF, which utilizes 3D data compression techniques. The proposed framework
focuses on compressing the explicit neural representation, by first pruning the neural 3D structure
to points with features, followed by importance-guided feature encoding of latent features. Finally,
we apply entropy coding to further compress the encoded results with an importance-prioritized
entropy model. To balance both compression performance and encoding time budget, we present two
pipelines, ACRF and ACRF-F. By simply combining the rendering and bitrate loss, our compression
pipeline, ACRF, can achieve a superior compression performance. By directly distribution fitting,
our ACRF-F can achieve fast NeRF compression. Our main contributions can be listed as follows:

• Based on an in-depth analysis of explicit NeRF models, we reformulate the task of NeRF
compression, shifting the focus of previous works from model compression to 3D data
compression. In light of this reformulation, we present an innovative NeRF compression
framework that incorporates advanced 3D data compression techniques.

• We introduce a time-efficient pruning strategy with only view-independent information,
and propose two importance-based components: importance-guided feature encoding and
importance-prioritized entropy modeling leveraging importance as auxiliary information.

• Our framework is compatible with typical explicit representations (voxel grid and point
cloud), and strikes a well balance between rate-distortion and encoding time. Experimental
results on several datasets show the great potential and promising scalability of our method.

2 RELATED WORK

2.1 NEURAL RADIANCE FIELDS

Neural radiance field (NeRF) (Mildenhall et al., 2020) has seen significant improvements in the last
three years for novel view synthesis. Follow-up algorithms (Liu et al., 2020; Hedman et al., 2021; Yu
et al., 2021; 2022; Sun et al., 2022; Chen et al., 2022a) have introduced volumetric representations
to improve inference speed and rendering quality. For instance, NSVF (Liu et al., 2020) develops
a sparse voxel octree to represent the 3D scene, while DVGO (Sun et al., 2022) separately models
two voxel grids for density and color, and TensorRF (Chen et al., 2022a) decomposes its feature
voxel into low-rank tensor components. Apart from the aforementioned voxel-based representations,
MobileNeRF (Chen et al., 2023) represents the scene as a triangle mesh textured by deep features.
Ost et al. (Ost et al., 2022) merge measured LiDAR point clouds directly into their framework, and
PointNeRF (Xu et al., 2022) generates neural points using multi-view stereo and their point growing
and pruning strategy. Further, SPIDR (Liang et al., 2022) extends points to SDF.

Recently, a handful of works (Deng & Tartaglione, 2023; Li et al., 2023; Rho et al., 2023; Xie
et al., 2023; Shin & Park, 2023; Wang et al., 2023) have been proposed for volumetric NeRF com-
pression. For example, Re:NeRF (Deng & Tartaglione, 2023) and HollowNeRF (Xie et al., 2023)
presents a voxel pruning algorithm that iteratively removes voxels. VQRF (Li et al., 2023) pro-
poses a volumetric NeRF compression framework that includes voxel pruning, vector quantization,
and post-processing. Rho et al. (Rho et al., 2023) propose to learn a compact representation using
wavelet coefficients with a voxel mask.

2.2 3D DATA COMPRESSION

Existing algorithms (Meagher, 1982; Schwarz et al., 2018) usually adopt octree structures to en-
code 3D positions of point clouds or voxel occupancy. For instance, G-PCC (the MPEG point
cloud compression standard) (Schwarz et al., 2018), employs an octree-based method for position
compression. Learning-based methods (Huang et al., 2020; Biswas et al., 2020; Que et al., 2021;
Fu et al., 2022; Chen et al., 2022b) have also leveraged the octree representation and introduced
octree-based entropy models for entropy coding.

To achieve attribute compression (i.e., compression of point attributes such as color and reflectance),
several techniques have been proposed to extend image compression methods (Wallace, 1992;
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Goyal, 2001; Skodras et al., 2001; Sullivan et al., 2012; Bellard, 2015) to point clouds. Generally,
this process involves three steps: transform coding, quantization, and entropy coding. Transform
coding involves carefully designing a transformation of attributes into the frequency domain to re-
duce signal redundancy. For example, Zhang et al. (Zhang et al., 2014) construct a graph by dividing
a point cloud into blocks and applying the graph Fourier transform to point attributes. Queiroz et
al. (De Queiroz & Chou, 2016) propose a region adaptive hierarchical transform (RAHT) by in-
troducing wavelet transforms to point clouds. Quantization is used to quantize coefficients from
transform coding into transmitted symbols. Entropy coding aims to encode these symbols into a
bitstream through an entropy coder, such as Huffman (Huffman, 1952), arithmetic (Witten et al.,
1987), or Golomb-Rice coders (Weinberger et al., 2000; Richardson, 2004). To achieve attribute
compression, 3DAC (Fang et al., 2022) introduces an attribute-oriented deep entropy model based
on the RAHT tree structure. Rho et al. (Rho et al., 2023) and ReRF (Wang et al., 2023) also use
run-length coding and Huffman coding in their NeRF compression pipeline.

3 REVISIT NERF COMPRESSION

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) leverage implicit neural representation to
model a 3D scene through volume rendering. Specifically, it first employs multi-layer perceptrons
(MLPs) to map a spatial position x and a view direction d to the point density σ and color c:

(c, σ) = MLPs(x,d). (1)
Then, volume rendering (Kajiya & Von Herzen, 1984) is further adopted to accumulate the point
densities σ and colors c into an expected color C(r) of ray r following Max (Max, 1995):

Ĉ(r) =

N∑
i=1

Ti · αi · ci, where Ti = exp

−
i−1∑
j=1

σjδj

 , αi = 1− exp(−σiδi). (2)

N is the number of sampled points and δi is the distance between two nearby points. Finally, the
ray colors are merged into an image with a rendering loss as the optimization objective.

Explicit 3D representations, such as voxel grids (Sun et al., 2022), point clouds (Xu et al., 2022),
and meshes (Chen et al., 2023), can be incorporated into the NeRF pipeline to improve rendering
quality and training/inference speed (e.g., use spatial interpolation to obtain latent features instead
of using MLPs in Eq. (1)). However, these 3D representations also result in a significant increase in
model size, which poses a challenge for transmitting and storing these NeRF models.

3.1 COMPRESS EXPLICIT NERF AS 3D DATA

The task of NeRF compression is still in its early stages, and there is currently no general and
universal framework for this task. Several recent works have investigated this problem from different
aspects. A handful of recent studies designed to learn a compact neural representation (Rho et al.,
2023; Wang et al., 2023; Shin & Park, 2023), while others focus on model or data compression
techniques such as pruning and quantization (Deng & Tartaglione, 2023; Li et al., 2023; Xie et al.,
2023). In this section, we first analyze the components of explicit NeRF models and then present
our formulation of this task.

MLPs (<1%) Feature Grid
Density Grid

(a)

MLPs Point Features
Point Positions

(b)

Figure 2: Percentage of disk storage of each part
for (a) DVGO (Sun et al., 2022) and (b) Point-
NeRF (Xu et al., 2022).

First, we identify that explicit NeRF algorithm with
additional 3D data structures such as voxel grids,
neural points, or meshes in addition to MLPs, re-
quire more storage than the original MLP-based
NeRF model (5 MB). For example, DVGO (Sun
et al., 2022) constructs their model using two voxel
grids (100 MB) and a shallow MLP (0.1 MB), while
PointNeRF (Xu et al., 2022) combines neural points
(over 100 MB) and MLPs (1.4 MB). As shown in
Fig. 2, explicit 3D representations take up a significant amount of storage compared to other net-
work parameters (i.e., MLPs).

Considering the spatial redundancy illustrated in Fig. 1, we point out that the neural 3D representa-
tion constitutes a novel category of 3D data. Thus, we propose to reformulate the problem of explicit
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Figure 3: The frameworks of our NeRF compression method, (a) ACRF and (b) ACRF-F.

NeRF compression as the task of 3D data compression. In other words, we aim to compress the
neural 3D representations (including the geometry structure and the textured deep features) to re-
duce the model size. Given that deep features contribute significantly more information to the NeRF
model and consequently require greater storage, we focus on the feature compression stage, also
known as attribute compression in the data compression community.

4 METHODOLOGY

In this study, we introduce a novel NeRF compression framework, with a particular focus on com-
pressing explicit neural 3D representations. Given a pre-trained NeRF model with an explicit 3D
representation, the objective of our framework is to reduce the model size while maintaining high-
quality rendering. In particular, we present two compression pipelines, ACRF (a full model) and
ACRF-F (a light model), balancing compression performance and encoding time complexity.

Compression Pipeline of ACRF. Figure 3 illustrates the compression framework of ACRF. Given a
NeRF model with an explicit neural representation, our framework begins by converting the explicit
representation into points with features through view-dependent pruning (VD pruning, Section 4.1).
We then perform importance-guided feature encoding for point features (Section 4.2). Furthermore,
we minimize the information entropy within the 3D model through jointly training an importance-
prioritized entropy model and updating the point features with both cross-entropy (i.e., loss for
probability estimation) and rendering loss (Section 4.3). Finally, we convert transform coefficients
to a bitstream using arithmetic coding.

Compression Pipeline of ACRF-F. The overall pipeline of ACRF-F, as depicted in Fig. 3 (b), is
closely similar to the ACRF process. The primary difference lies in the utilization of our proposed
view-independent pruning (VI pruning) for the fast removal of less important voxels (Section 4.1).
Additionally, we learn the entropy model to fit the coefficient distribution while keeping the point
features and other NeRF parameters fixed (Section 4.3).

4.1 PRUNING

Voxel pruning (Li et al., 2023; Deng & Tartaglione, 2023; Xie et al., 2023) is a key step in volumetric
NeRF compression to remove voxels with low information. Most existing algorithms (Deng &
Tartaglione, 2023; Xie et al., 2023) integrate pruning strategies into their training pipeline, which is
time-consuming and impractical for compression. In contrast, VQRF (Li et al., 2023) achieves voxel
pruning by constructing importance for each voxel and then removing voxels with low cumulative
importance.

Here, we refer to the pruning strategy proposed by VQRF as view-dependent pruning as it relies
on training camera poses to generate importance (Details can be found in appendix Sec. B.). This
approach proves effective because it directly considers blending weights wi in the rendering func-
tion. However, this approach necessitates the availability of trained camera poses for generating
the transmittance Ti and weights wi. Additionally, the time required for pruning increases with the
number of training views and sampled ray points, making it impractical for several real-world scans
(e.g., the Tanks&Temples dataset), where pruning times are even comparable to fine-tuning times
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as shown in Table 1. Here, we introduce our view-independent pruning strategy leveraging voxel
features and sampled points in voxel space.

Pruning with Voxel Features. Our approach leverages the insight that the feature tensor fv of a
voxel grid vl encodes essential information for recovering the color and density of the 3D scan.
Therefore, statistical measures, such as the maximum absolute value, can be employed to quantify
the amount of information contained in a feature tensor. Specifically, we can compute the importance
Iv directly from the voxel vl as the maximum absolute value of the feature fv:

Iv = MAX(|fv|). (3)

The rationale for utilizing the maximum absolute value of features is grounded in the observation that
this value is indicative of the corresponding feature’s information content. During initialization, the
NeRF model is information-devoid, and most works (e.g., DVGO (Sun et al., 2022) and PointNeRF
(Xu et al., 2022)) initialize features with zeros or small random values. During optimization, these
features become informational as they encode color and density. As shown in Fig. 1, the feature
distribution aligns with the scene over time. More explicitly, the feature values elevate from their
origin (typically zeros during initialization) to form a distribution reflecting the scene. Consequently,
features with small values approximating zero often contain less information, indicating minimal
updates during optimization. In contrast, features with larger values are usually more informative.
More statistical analyses about the maximum absolute value are provided in appendix Sec. G.

Our goal for compression is to eliminate features with low informational content and retain those
with higher value. This process justifies the use of the distance from the origin as an importance met-
ric for the features. Similar to some model pruning algorithms (Li et al., 2016) which use statistical
measures to estimate the importance of convolution kernels, several values, such as the maximum
absolute value, the sum of absolute value, and the mean square value, were considered. However,
given that features are further fed into NeRF MLPs to generate colors, and networks are usually
more sensitive to larger inputs, we opted for the maximum absolute value as the importance indica-
tor. This approach, for instance, would favor preserving a feature of (16, 0, ..., 0) over (1, 1, ..., 1),
despite them having the same mean square distance to the origin.

Pruning with Sampled Points. In addition to voxel features fv , the interpolated feature tensor fi
at the sampled position xi and the corresponding probability of termination αi can also provide
important information for neural rendering. Similar to Eq. (3), the sampled point importance Ix can
be calculated as Ix = MAX(|fi|) · αi. In practice, we adopt a uniform sampling strategy in the 3D
space with a sampling step set as half of the grid size. Similar to VQRF (appendix Eq. (1)), this
enables us to obtain the importance Ip of the voxel vl by evaluating the contributions of sampled
points to the voxel’s feature tensor. We can finally get our view-independent importance Il = Iv ·Ip,
then use it to prune voxels through the quantile function in VQRF (appendix Eq. (2)).

4.2 FEATURE ENCODING

Following the pruning process, we obtain a concise point representation that includes both point
positions (approximately 10%) and point features (about 90%), as shown in Fig. 2 (b). Inspired by
previous work (Schnabel & Klein, 2006) which organizes point cloud as octree to skip empty space,
we employ octree coding to encode point positions, and then conduct feature encoding.

To reduce point feature redundancy, we employ a point-based wavelet transform, region adaptive
hierarchical transform (RAHT) (De Queiroz & Chou, 2016) as the basis for our baseline algorithm.
This involves taking quantized points p from octree coding and converting their features f into trans-
form coefficients e as e = RAHT (p, f). Notably, RAHT primarily relies on matrix multiplication,
allowing us to create a fully differentiable pipeline for feature encoding and subsequent entropy
minimization. Details about position encoding and RAHT can be found in appendix Sec. C and D.

Importance-Guided Feature Encoding. As illustrated in Sec. 4.1, points with higher importance
typically carry more information, and are thus more essential for the accurate recovery of the 3D
scan. However, regarding that RAHT is originally designed to process point cloud attributes, pri-
marily focusing on the spatial relationships between point features while neglecting the concept of
point importance Il. One straightforward implementation for this limitation is to enhance features
based on their importance as e = RAHT (p, f · Il). More details are provided in appendix Sec. H.
Although this approach preserves high-importance features, it introduces additional high-frequency
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noise to the original features and necessitates the transmission of importance values for decoding.
Consequently, this augmentation significantly increases the final storage requirements.

To deal with these issues, we employ the importance metric Il as selective masks to split points to
several independent point sets, and derive coefficients e following this formulation:

e =

{
eIl∈(θ0,θ1)

Q1
,
eIl∈(θ1,θ2)

Q2
, . . . ,

eIl∈(θn−1,θn)

Qn

}
,

eIl∈(θi−1,θi) = RAHT (pIl∈(θi−1,θi), fIl∈(θi−1,θi)).

(4)

Here, Il ∈ (θi − 1, θi) is the selective mask, and i ∈ {0, 1, . . . , n}. We can tune the masks through
two sets of hyperparameters, the importance threshold θi and the quantization factor Qi, to encode
features with their importance. In practice, θi can be tuned by the quantile function similar to VQRF
(appendix Eq. (2)), and Qi can be set based on the chosen θi. Furthermore, the masks can be merged
and transmitted using standard zip compression techniques, incurring negligible storage overhead.

4.3 ENTROPY MINIMIZATION

According to information theory (Shannon, 1948), the information entropy H(e) of coefficients e
indicates the average level of ‘information’ as H(e) = E [− log2 p (e)], where p(e) is the probability
distribution of coefficients e. The objective of this section is to minimize the information entropy
H(e) inherent to the NeRF model through imposing constraints on the distribution p(e), thereby
reducing the model size of NeRF. Inspired by deep image compression (Ballé et al., 2017), we learn
an estimated distribution q(e) to constrain p(e). It is also worth noting that there exists a strong
interrelation between the distribution of point features and their corresponding importance Il. Thus,
we further introduce Il as a prior information component.

Formulation. Given coefficients e and importance Il, we aim to minimize the KL Divergence D
between the coefficient distribution p(e) and the estimated distribution q(e), incorporating Il as
prior knowledge: D = Ee∼p [− log2 q (e | Il)]. Inspired by deep image compression (Ballé et al.,
2017), we learn a deep entropy model to generate the estimated distribution q(e). Moreover, we can
further factorize q(e) into a product of conditional probabilities: q(e) =

∏
j q

(
e(j) | Il,w

)
, where

w is the weights of our entropy model.

Importance-Prioritized Entropy Modelling. In the context of our task, the challenge is how to
leverage importance Il as prior information. This is because there is no straightforward one-to-
one correspondence between coefficients and importance (The RAHT algorithm has converted the
spatial-domain features into the frequency-domain coefficients, and the importance is still in the
spatial domain. More details are provided in appendix Sec. D.). One simple yet effective ap-
proach is to model multiple independent distributions based on importance Il. Specifically, we
reuse the definitions of selective masks and coefficients in Eq. (4): e = {e1, . . . , en}, where
ei =

eIl∈(θi−1,θi)

Qi
. For each set of coefficients ei, we introduce independent learnable parameters

wi to generate the corresponding distribution q(ei). Consequently, we can further factorize q(e) as
q(e) =

∏
i q (ei | wi) =

∏
i,j q

(
e
(j)
i | wi

)
for each coefficient e(j)i , and optimize all parameters

with a cross-entropy loss ℓce = −
∑

i,j log q
(
e
(j)
i | wi

)
. This approach allows us to implicitly

incorporate importance information and thus benefiting entropy modelling.

Joint Learning. In our full model ACRF, we simultaneously update the weights of the entropy
model and fine-tune the NeRF model. As a result, the cross-entropy loss ℓce can further reduce
the spatial redundancy by updating the transform coefficients. The final optimization loss L is a
combination of the rendering loss ℓrd and the cross-entropy loss ℓce: L = ℓrd + λℓce, where λ can
be tuned to control the model size. Since the cross-entropy loss updates a large number of features,
we add ℓce every 100 iterations to accelerate learning. For the fast mode ACRF, we simply fix the
NeRF model and only enable the cross-entropy loss: L = ℓce.

Monte Carlo Sampling for Distribution Fitting. Directly predicting probabilities for all coeffi-
cients can be time-consuming, particularly when the number of coefficients is large. For example,
PointNeRF (Xu et al., 2022) generates millions of points for scans in the Tanks&Temples dataset,
and processing coefficients from these points directly can be challenging. To tackle this issue, we
perform random sampling to obtain n% of coefficients, and estimate the probabilities of only these
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coefficients as ℓce = −
∑

i,j∈N log q
(
e
(j)
i | wi

)
, where N is the set of sampled indices in each

iteration. We set the number of iterations to 100 and the sampling percentage to 1% empirically.

Finally, we have transform coefficients from Sec. 4.2 and predicted distributions of coefficients
from our deep entropy model. Thus, the coefficients can be losslessly encoded into a final bitstream
through the arithmetic coder. We transmit several components, including a position bitstream, a fea-
ture bitstream, the importance masks, the learned entropy model, NeRF MLPs and other metadata.
After decoding, we can reconstruct our explicit NeRF model on the decoder side.

5 EXPERIMENTS

(1) Datasets. We conduct experiments on two datasets:
• Synthetic-NeRF (Mildenhall et al., 2020). This is a view synthesis dataset consisting of 8 syn-

thetic scans, with 100 views used for training and 200 views for testing.
• Tanks&Temples (Knapitsch et al., 2017). This is a real-world dataset with 5 scenes (Barn,

Caterpillar, Family, Ignatius, and Truck). We used the default settings of DVGO (Sun et al., 2022)
and PointNeRF (Xu et al., 2022) for the voxel and point-based methods, respectively.

(2) Baselines. We compare our ACRF and ACRF-F with the following baselines. Additional imple-
mentation details and hyperparameter settings are provided in appendix Sec. F.
• DVGO (Sun et al., 2022). This is an explicit NeRF algorithm that uses voxel grids as the neural

representation. We train a DVGO model from scratch following the default setting, and use the
same model for all voxel-based compression methods to ensure a fair comparison.

• PointNeRF (Xu et al., 2022). This is an explicit NeRF algorithm that uses a point representation.
We use the PointNeRF model trained with 200K iterations for compression and adopt the official
pre-trained model for all point-based methods.

• VQRF (Li et al., 2023). This is a recent volumetric NeRF compression method. We re-implement
the algorithm on the pretrained DVGO model following the official implementation to ensure a
fair comparison with our method.

• VQRF-F. We directly disable the joint finetune step of VQRF for fast NeRF compression.

5.1 EXPERIMENTAL RESULTS

Quantitative Evaluation. The quantitative compression results of different methods are presented
in Fig. 4. The first row presents a comparison of all voxel-based methods. To obtain the rate-
distortion curve for ACRF, we fixed the quantization factors of RAHT and tuned the loss factor λ,
while for ACRF-F, we tuned the quantization factors. All compression algorithms exhibit high com-
pression ratios, highlighting the substantial redundancy in voxel-based representations. Moreover,
our proposed methods, ACRF and ACRF-F, outperform VQRF and VQRF-F, respectively. This can

Figure 4: Quantitative results of our ACRF and other NeRF compression approaches on Synthetic-
NeRF (Synthetic) and Tanks&Temples (T&T).
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GT DVGO VQRF ACRF-F
(DVGO)

ACRF
(DVGO) PointNeRF ACRF-F

(PointNeRF)
ACRF

(PointNeRF)

(124.54, 34.59) (1.48, 34.25) (1.07, 34.34) (1.39, 33.6) (78.19, 35.04) (9.06, 34.94) (12.8, 34.97)

(97.7, 33.74) (1.2, 33.67) (1.03, 33.65) (1.05, 33.23) (453.13, 36.27) (36.57, 36.27) (64.31, 36.18)

Figure 5: Qualitative results (lego and Family) of our ACRF and other baselines. ACRF/ACRF-F
(DVGO/PointNeRF) means DVGO/PointNeRF-based ACRF/ACRF-F. Model size in MB and PSNR
are displayed below the figure as (model size, PSNR).

Methods Synthetic-NeRF Tanks&Temples

VD Pruning VQ Finetune Total VD Pruning VQ Finetune Total
VQRF (Li et al., 2023) 26s 40s 3min 22s 4min 28s 4min 31s 39s 4min 3s 9min 14s
VQRF-F 26s 40s - 1min 6s 4min 31s 39s - 5min 10s

VD Pruning RAHT EM Total VD Pruning RAHT EM Total
ACRF 26s 0.5s 3min 28s 3min 55s 4min 31s 0.4s 4min 25s 8min 56s

VI Pruning RAHT EM Total VI Pruning RAHT EM Total
ACRF-F 2.2s 0.4s 1.3s 3.9s 2.3s 0.4s 1.2s 3.9s

Table 1: Encoding time of VQRF and our ACRF. “VQ” and “EM” denotes vector quantization and
entropy minimization, respecitvely. “VD” and “VI” denotes view-dependent and view-independent
pruning, respectively.

be primarily attributed to the proposed feature and entropy encoding algorithms. The second row
presents the results of all point-based methods. For ACRF, our method can achieve a 10 × compres-
sion ratio with negligible performance degradation. Compared to the voxel representation, neural
points are more compact, making it more challenging to achieve a 100 × compression ratio.

Qualitative Comparison. The qualitative results depicted in Fig. 5 are consistent with the quan-
titative results. Despite a minor reduction in performance, it is difficult to discern any noticeable
differences between the rendering outputs of the various algorithms.

Encoding Time Comparison. We also compare the encoding time of DVGO-based approaches
in Table 1. For consistency and fairness across all experiments, we utilize a workstation equipped
with an Intel Xeon Silver 4210 CPU @2.20 GHz and an NVIDIA TITAN RTX GPU. For VQRF
and ACRF, we set the same iteration (10K) for finetuning and joint learning (the main part of EM).
Our ACRF takes shorter to complete the joint learning phase and achieves a better compression
performance than VQRF, because it adopts our feature encoding strategy and learns an auxiliary
cross-entropy loss for entropy minimization. Moreover, with our pruning, feature encoding, and
entropy coding modules, our ACRF-F can encode a NeRF model within seconds while delivering
competitive compression results. During decoding, our methods require additional time for the
inverse RAHT transform and entropy decoding, which takes less than 1s.

5.2 ABLATION STUDY

We conduct several ablation studies on chair of the Synthetic-NeRF dataset.
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Sampled Points Voxel Grid PSNR SIZE
A F A F (dB)↑ (MB)↓
✓ 33.97 2.46
✓ ✓ 33.99 2.34
✓ ✓ ✓ 33.99 2.18
✓ ✓ ✓ ✓ 31.08 1.16

Table 2: Ablation study on the view-
independent voxel pruning (Sec. 4.1). “A” and
“F” denote the probability of termination α and
features, respectively.

View-Independent Pruning. We investigate
the impact of view-independent pruning on our
DVGO-based ACRF algorithm. Our experiments,
reported in Table 2, show that progressively incor-
porating the probability of termination (A), fea-
tures (F) of sampled points, and features (F) of the
voxel grid leads to steady improvements in PSNR
and reductions in model size. We observe that fur-
ther incorporating the probability of termination α
(A) of the voxel grid can result in unacceptable
distortion. This is because the density and feature
grid of DVGO are separated, and a voxel with low
α may also contain valuable features.

Importance-based Feature Encoding and Entropy Modelling. We further study the effect of
importance-guided feature encoding and importance-prioritized entropy modelling on our ACRF
and ACRF-F. As depicted in Fig. 6 (a), we start with two baseline models without our importance-
based strategies, denoted as ’baseline A’ and ’baseline B’ for ACRF-F and ACRF, respectively.
Subsequently, we introduce importance-guided feature encoding (Imp FE) to these two baseline
models. It is worth noting that directly applying feature encoding with importance masks might ini-
tially lead to a performance decrease. This is primarily because transforms in different regions yield
coefficients that follow distinct distributions. We further include the importance-prioritized entropy
modelling to develop our ACRF and ACRF-F. The results clearly demonstrate that the combination
of importance-based feature encoding and entropy modeling significantly improves the compression
performance of both ACRF and ACRF-F, which underscores the effectiveness of our importance-
based strategies in enhancing the overall performance of our methods.

Effectiveness of Components. As shown in Fig. 6 (b), we evaluate the effectiveness of each com-
ponent of our framework. We start with the original DVGO method and progressively incorporate
our view-independent pruning, deep entropy model, RAHT, joint learning, and importance-based
modules (importance-guided feature encoding and importance-prioritized entropy modelling). Fi-
nally, we can obtain our full model, ACRF. The results show that the performance is consistently
improved with the addition of each module, which proves the effectiveness of each component.

(a) (b)

Figure 6: Ablation studies. (a): Ablation study on the importance-based feature and entropy encod-
ing. (b): Ablation study on each component of our framework.

6 CONCLUSION

In this paper, we propose an explicit NeRF compression algorithm. Our method includes several key
components, including a view-independent pruning strategy, importance-guided feature encoding,
and importance-prioritized entropy modeling. Extensive experimental results validate the effective-
ness of our 3D-data-oriented NeRF compression methodology, showcasing a remarkable improve-
ment in compression performance while achieving a reduction in encoding time complexity. It is
feasible to further extend our algorithm for dynamic and real-time NeRF compression.

Acknowledgements. This work was partially supported by the National Natural Science Foundation
of China (No. U20A20185).
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Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compression.
In ICLR, 2017.

Fabrice Bellard. BPG image format. https://bellard.org/bpg, 2015.

Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang, and Raquel Urtasun. MuSCLE: Multi
sweep compression of LiDAR using deep entropy models. NeurIPS, 33, 2020.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. TensoRF: Tensorial radiance
fields. In ECCV, 2022a.

Zhili Chen, Zian Qian, Sukai Wang, and Qifeng Chen. Point cloud compression with sibling context
and surface priors. In ECCV, pp. 744–759. Springer, 2022b.

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. MobileNeRF: Exploit-
ing the polygon rasterization pipeline for efficient neural field rendering on mobile architectures.
In CVPR, pp. 16569–16578, 2023.

Ricardo L De Queiroz and Philip A Chou. Compression of 3D point clouds using a region-adaptive
hierarchical transform. IEEE TIP, 25(8):3947–3956, 2016.

Chenxi Lola Deng and Enzo Tartaglione. Compressing explicit voxel grid representations: fast
NeRFs become also small. In WACV, pp. 1236–1245, 2023.

Guangchi Fang, Qingyong Hu, Hanyun Wang, Yiling Xu, and Yulan Guo. 3DAC: Learning attribute
compression for point clouds. In CVPR, pp. 14819–14828, 2022.

Chunyang Fu, Ge Li, Rui Song, Wei Gao, and Shan Liu. Octattention: Octree-based large-scale
contexts model for point cloud compression. In AAAI, volume 36, pp. 625–633, 2022.

Vivek K Goyal. Theoretical foundations of transform coding. IEEE Signal Processing Magazine,
18(5):9–21, 2001.

Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. Baking
neural radiance fields for real-time view synthesis. In ICCV, pp. 5875–5884, 2021.

Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and Raquel Urtasun. Octsqueeze: Octree-
structured entropy model for LiDAR compression. In CVPR, pp. 1313–1323, 2020.

David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 1952.

James T Kajiya and Brian P Von Herzen. Ray tracing volume densities. ACM SIGGRAPH computer
graphics, 18(3):165–174, 1984.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM TOG, 36(4), 2017.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, 2016.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. Compressing volumetric radi-
ance fields to 1 MB. In CVPR, pp. 4222–4231, 2023.

Ruofan Liang, Jiahao Zhang, Haoda Li, Chen Yang, Yushi Guan, and Nandita Vijaykumar.
SPIDR: SDF-based neural point fields for illumination and deformation. arXiv preprint
arXiv:2210.08398, 2022.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. NeurIPS, 33:15651–15663, 2020.

Nelson Max. Optical models for direct volume rendering. IEEE TVCG, 1(2):99–108, 1995.

10

https://bellard.org/bpg


Published as a conference paper at ICLR 2024

Donald Meagher. Geometric modeling using octree encoding. Computer graphics and image pro-
cessing, 19(2):129–147, 1982.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Julian Ost, Issam Laradji, Alejandro Newell, Yuval Bahat, and Felix Heide. Neural point light fields.
In CVPR, pp. 18419–18429, 2022.

Zizheng Que, Guo Lu, and Dong Xu. VoxelContext-Net: An octree based framework for point cloud
compression. In CVPR, pp. 6042–6051, 2021.

Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan Lee, Jong Hwan Ko, and Eunbyung Park.
Masked wavelet representation for compact neural radiance fields. In CVPR, pp. 20680–20690,
2023.

Iain E Richardson. H. 264 and MPEG-4 video compression: video coding for next-generation
multimedia. John Wiley & Sons, 2004.

Ruwen Schnabel and Reinhard Klein. Octree-based point-cloud compression. In SIGGRAPH, pp.
111–120, 2006.

Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Cesar, Philip A
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