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CATALOG: CATALOG: Exploiting Joint Temporal Dependencies
for Enhanced Phishing Detection on Ethereum

Abstract
Phishing attacks on Ethereum have increasedwith its growing adop-
tion, creating significant challenges as phishing and non-phishing
users often display similar behavior. Additionally, while the net-
work as a whole experiences high activity, individual user behavior
is typically sparse, making it difficult to detect phishing patterns.
Current methods frequently fail to tackle these challenges and often
neglect the temporal sequence of transactions, resulting in data
leakage and reduced performance. In this paper, we propose a novel
approach that addresses these gaps by focusing on the association
of two key aspects: (1) local temporal behavior fluctuations
of individual users and (2) deviations from global transaction
patternswithin the network. To aim this, we introduceCATALOG
(CApturing joint TemporAl dependencies from LOcal and
Global user behaviour), a novel representation learning model
that jointly captures the local and global behavioral patterns of
a user and their correlations by leveraging a dual cross-attention
mechanism paired with a bi-directional Masked Language Mod-
elling (MLM) based pipelined transformer framework. Our pro-
posed model simultaneously learns from local behavioral shifts and
global market trends along with a contextually enriched embed-
dings, effectively distinguishing phishing from non-phishing users,
while addressing the existing research gaps. Extensive experiments
on real-world Ethereum transaction data show that our framework
improves phishing detection by 7-8% in F1-Score compared to exist-
ing models. Furthermore, it generalizes effectively across Ethereum
versions 1.0 and 2.0, demonstrating the robustness of our approach.

CCS Concepts
• Applied computing → Digital cash; • Security and privacy
→ Phishing.

Keywords
Ethereum Transaction Network, Phishing Scams, Representation
Learning, Blockchain Security

1 Introduction
The growing adoption of Ethereum [1], fueled by its wide range
of applications [2, 14, 17, 25], has attracted a large influx of users
seeking to invest in cryptocurrency. Unfortunately, many of these
users are unfamiliar with the complexities of the crypto market.
As a consequence, they become vulnerable to phishing attacks
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that compromise their wallets and perform fraudulent activities
[3]. The persistent nature of these phishing scams underscores the
urgent need for effective detection and prevention mechanisms on
Ethereum. However, identifying malicious actors presents signifi-
cant challenges of "indistinguishable user behavior" and "large scale
network and sparse user instances" resulting from the platform’s
unique characteristics.

As phishing users often attempt to blend in with non-phishing
users by showcasing a normal transaction behaviour over an ex-
tended period, thereby building trust within the network [8, 30].
Once the trust is established, they execute malicious activities
within a short time interval, after which they either become inac-
tive or revert back to normal behavior. Additionally, user activities
on Ethereum are frequently influenced by external factors such as
cryptocurrency price fluctuations, market trends, and social me-
dia dynamics [37]. For instance, sudden price changes can prompt
non-phishing users to alter their transaction frequency or volume,
which phishing users may mirror as well. To demonstrate this in a
practical scenario, we analyze the temporal variation of a particular
real-time average transaction amount of 50 phishing users and 50
non-phishing users of the Ethereum mainnet [15] (from the same
time interval), as shown in Figures 1(a) and 1(b). We found that the
phishing user exhibits behavioral patterns that are indistinguishable
to those of non-phishing users. Consequently, this substantial simi-
larity makes it difficult to identify such phishing users. On the other
hand, with the rapid growth of user counts on the Ethereum net-
work, reaching 283.63 million unique accounts as of September 23,
20241, Ethereum has evolved into a large-scale and complex transac-
tion network with substantial temporal variations [11]. Analyzing
user behavior in such a large-scale, dynamic network presents
significant challenges, especially given the sheer volume of trans-
actions and active users. Although the overall network remains
highly active, the activity of individual users tends to be relatively
sparse. We illustrate this phenomenon by examining a sample of 50
users’ behavior over 100 timestamps of real-time Ethereum data as
depicted in Figure 1(c) and observed that even within this relatively
small dataset, the consecutive user activities demonstrate a visible
sparsity. The observations reveal that identifying crucial patterns
or abnormalities within this type of data may be more challenging
than expected. As a consequence of this highly sparse and dynamic
nature of the data, analyzing user behavior over long time intervals
often leads to excessive information from different users, making
it more difficult to identify the critical patterns of phishing users.
Conversely, analyzing shorter time windows may fail to capture
temporal behaviors of individual users effectively. These combined
factors make detecting phishing behavior particularly difficult in
such a dynamic environment.

Despite the extensive research conducted on detecting phishing
users in Ethereum, none of the existing approaches singlehandedly
address all the challenges mentioned above. To be specific, several

1https://ycharts.com/indicators/ethereum_cumulative_unique_addresses
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(a) As senders.

14
80

52
08

45

14
96

60
32

57

14
96

61
39

27

14
96

76
72

06

14
96

76
72

15

14
96

76
83

23

14
98

17
10

95

14
98

17
11

95

14
98

24
25

04

15
00

05
75

80

15
00

06
93

61

15
06

36
30

60

15
22

84
13

04

15
25

60
93

68

Timestamp

0

5

10

15

20

T
ra

n
s
a
c
ti

o
n

 A
m

o
u

n
t

Trend Non-phishing
Trend Phishing
Non-phishing
Phishing

(b) As receivers.
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(c) Sparse instances of users.

Figure 1: Temporal variation of average transaction amount of the phishing users and non-phishing users as sender (Figure
1(a)) and receiver (Figure 1(b)) from the same time duration (Timestamp duration for sender plot: 1480532847 to 1507064393;
Timestamp duration for receiver Plot: 1480520845 to 1525609368). Figure 1(c) depicts user active instances with respect to time,
the activity gaps and user density, for better readability Ethereum hash addresses are represented through numerical digits and
the Unix timestamps also are scaled to float. Red dots are phishing users and green dots indicate non-phishing users.

current approaches leverage random subgraph sampling combined
with either Graph Neural Networks (GNNs) [4, 18, 19, 29, 31] or
feature engineering [8, 24, 36]. While these approaches handle
large-scale data with temporal dynamics, their focus on modeling
Ethereum transactions as a global network makes it difficult to
extract meaningful user-specific embeddings due to the relative
sparsity of individual activities. On the other hand, to mitigate spar-
sity, another line of investigation [13, 29, 32] introduced the notion
of user-specific local temporal-transaction networks, focusing more
on individual user activities. However, it has been observed that
all the above approaches ignore temporal sequence of user activi-
ties and transactions in the network, resulting in the inadvertent
inclusion of future information during the training process. This
oversight leads to data leakage [28] concerns, yielding an overly
optimistic model performance. Moreover, they often struggle to
capture useful user embeddings due to the identical behavioural
patterns of both phishing and non-phishing users.

To comprehensively solve these challenges, it is essential to
impart contextual insights in the embeddings obtained from the
temporal dependencies of users’ behaviors, which can effectively
differentiate between phishing and non-phishing patterns. Hence,
in our work, we have jointly analyzed these two crucial factors: (1)
correlation between user’s local behaviour (temporal fluctuations
in individual user behavior), and, global behavior (the deviation of
a user’s transaction patterns from the average behavior of users across
the network during the same period); and (2) the correlation between
consecutive temporal shifts in a user specific transaction behavior.
The main idea is to capture the commonalities and divergences
of local and global temporal variations, which are crucial for dis-
tinguishing between phishing and non-phishing users, especially
when their overall behavior appears to be similar.

To this end, we introduce a novel representation learning frame-
work CATALOG, that leverages a dual cross-attention mechanism
coupled with a context-sensitive transformer pipeline in order to
capture the above aspects. We aim to exploit the latent charac-
teristics of the obtained correlations to identify a phishing user
more effectively while mitigating the existing research gaps. More

specifically, the Ethereum transaction network is modeled as a
series of temporally ordered user-specific ego networks, helping
to mitigate sparsity by focusing attention on each user individu-
ally. Additionally, the temporal ordering also prevents data leakage.
Furthermore, to capture the dynamic variations and correlations be-
tween local and global behaviors, a dual cross-attention mechanism
is combined with an augmented transformer pipeline. This coupling
enhances contextual sensitivity by engraving both recurring trans-
action patterns and subtle but important behavioral shifts in the
representations. As a result, the CATALOG provides a standalone
solution to Ethereum phishing user detection that single handedly
deals with the key challenges and yields enhanced performance.
Thus, our major contributions are summarized as follows:

(1) We propose a novel representation learning model, CAT-
ALOG, which employs a bi-directional masked language
model Transformer to derive contextually enriched embed-
dings.

(2) The model integrates dual cross-attention layers to capture
both local and global temporal user behaviors.We introduce
one-hot encodings of temporal activity vectors, which serve
as positional encodings for phishing classification. To the
best of our knowledge, this is the first approach to jointly
model local and global behaviors in this way. The code
and our dataset will be available at our own anonymous
repository2.

(3) We contribute a new publicly available Ethereum transac-
tion dataset containing 60713 Ethereum 2.0 transactions.
Our curated dataset will be useful for the research commu-
nity to improve the adaptability of fraud detection models
within the evolving Ethereum ecosystem. Moreover, ro-
bustness experiments confirm that CATALOG maintains
strong performance across different Ethereum versions.

2https://anonymous.4open.science/r/CATALOG-model-and-dataset-D2E6/
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(4) Our framework demonstrates a 7-8% improvement in F1-
Score over state-of-the-art methods, validated on four real-
world Ethereum datasets. Extensive experiments, includ-
ing ablation studies and sensitivity analysis, underline the
model’s efficacy in addressing existing research gaps.

The remainder of this paper is structured as follows: Section 2 pro-
vides an overview of the related work, followed by a description of
the proposed methodology in Section 3. Section 4 details the exper-
imental setup, with the results and analysis presented in Section 5.
Finally, Section 6 concludes the paper.

2 Related Work
A plethora of research has focused on detecting phishing scams on
the Ethereum blockchain, as observed in [8, 13, 18, 19, 24, 28–31, 36].
These efforts generally fall into two main categories: (1) feature
engineering-based approaches [5, 24, 28, 36], which majorly rely on
manually crafted features to analyze user attributes, and (2) deep
representation learning methods, such as Graph Neural Networks
(GNNs) [4, 13, 18, 31], which automate feature extraction and can
more effectively handle complex transaction network structures.

While feature engineering approaches tend to overlook crucial
structural and temporal dynamics of transaction networks, often
resulting in suboptimal performance, representation learning tech-
niques have been shown to address these complexities more ef-
fectively [4, 13, 19, 30]. For instance, Wang et al. [29] proposed
using ego graphs to process large datasets with GNNs. However,
these methods typically rely on static network structures, which
can increase preprocessing costs and reduce their ability to adapt to
dynamic changes. Similarly, Xia et al. [32] modeled ego graphs with
transaction attributes such as timestamp and amount, and intro-
duced relabeling techniques to address class imbalance. Although,
they dealt with the sparsity problem, their employed relabeling
may be less effective in cases where phishing and non-phishing
users exhibit identical behavior, leading to suboptimal results.

Some studies, such as [19, 20], addressed these challenges by uti-
lizing a self-supervised contrastive learning framework. However,
inherent issues like network sparsity and fluctuating user behavior
continue to restrain model performance. Notably, recent research
has made notable advancements by incorporating temporal fac-
tors and sequencing into their models, often utilizing a fusion of
domain-specific feature engineering and GNN model [6, 22, 33, 36]
or tensor-based representation learning [9]. Nevertheless, these
methods’ reliance on domain-specific features can make them vul-
nerable to feature re-engineering attacks and less suitable for highly
fluctuating network behavior. While Huang et al. [13] introduced a
temporal ego-graph approach to address some of these concerns,
the challenge of similar user behavior still remains as a significant
obstacles. These aforementioned research gaps havemotivated us to
design a comprehensive solution aimed at improving the detection
of phishing users on Ethereum.

3 Methodology
3.1 Problem Definition
We address the problem of phishing user detection in Ethereum
by framing it as a node classification task. For a given user 𝑣𝑎 ∈
𝑉 , with a sequence of transaction activities over a time span T ,

we represent this as a set of time series weighted directed 𝑘-hop
ego networks, denoted as: G𝑣𝑎 = {𝐺𝑡𝑖𝑣𝑎 | 𝑡𝑖 ∈ T }. The network
𝐺
𝑡𝑖
𝑣𝑎 = (𝑉 𝑡𝑖𝑣𝑎 , 𝐸

𝑡𝑖
𝑣𝑎 ,𝑊

𝑡𝑖
𝑣𝑎 ) is defined as follows: 𝑉 𝑡𝑖𝑣𝑎 = {𝑣𝑎} ∪ {𝑣 ′ |

𝑣 ′ transacts within 𝑘 hops of 𝑣𝑎 at time 𝑡𝑖 } is the set of nodes.𝐸𝑡𝑖𝑣𝑎 =

{(𝑣 ′, 𝑣 ′′) | 𝑣 ′, 𝑣 ′′ ∈ 𝑉 𝑡𝑖𝑣𝑎 , 𝑣
′ transacts with 𝑣 ′′} is the set of directed

edges within 𝑘 hops of 𝑣𝑎 ,𝑊 𝑡𝑖
𝑣𝑎 = {𝑤𝑡𝑖𝑒 | 𝑒 ∈ 𝐸

𝑡𝑖
𝑣𝑎 } is the set of

edge weights denoting the transaction amounts between the users
associated with all edges at time 𝑡𝑖 . The aim is to learn an objective
function 𝑓 (G) : 𝑉 → R𝑑 that maps users to 𝑑-dimensional node
embeddings based on the set of 𝑘 hop ego networks G correspond-
ing to all users, forming the matrix F ∈ R |𝑉 |×𝑑 . These embeddings
are used to classify users as phishing (1) or non-phishing (0).

3.2 Proposed Architecture: CATALOG
Our proposed architecture, CATALOG, comprises four key com-
ponents: local temporal correlation, contextual enrichment, global
temporal correlation, and embedding fusion with classification. The
input Ethereum transaction data is modeled as time series of 𝑘-hop
weighted directed ego networks, processed using a sliding window
with GNN layers to generate user embeddings. These embeddings
are then passed through a cross-attention layer to capture local
temporal correlations between consecutive user embeddings. The
attention-based time-series vectors are further processed by a Trans-
former to provide contextual enrichment, capturing users’ overall
behavioral patterns. Simultaneously, a parallel layer captures global
temporal correlations by analyzing interactions across users in the
network. Finally, the fused features are used for phishing user de-
tection. Figure 2 illustrates the flow of the proposed model, with
details of each component described as follows.

3.2.1 Local Correlation Analysis. Given an Ethereum transaction
network of𝑛 users over𝑚 timestamps, we construct𝑘-hopweighted
directed ego networks for each user to capture local temporal cor-
relations and dependencies. Since users have sparse local networks,
we use a sliding window of size𝑤 to focus on relevant transactions
with neighbors and detect subtle behavioral shifts across consec-
utive timestamps. The sliding window improves computational
efficiency by processing smaller time windows, which is crucial for
large-scale networks like Ethereum, with its high and continuous
transaction volumes. It also helps mitigate noise and sparsity by
focusing on meaningful data chunks. After preliminary analysis, we
selected𝑤 based on the sensitivity experiments detailed in Section
5.4. For each user 𝑣𝑎 , the sliding window processes𝑤 of consecutive
timestamps while generating embeddings via a GNN layer:

h𝑤𝑖
𝑣𝑎 = 𝜎

©«
∑︁

𝑣𝑏 ∈N(𝑣𝑎 )
Wh𝑤𝑖−1

𝑣𝑏
+W𝑣𝑎h

𝑤𝑖−1
𝑣𝑎 + bª®¬ (1)

where h𝑡𝑤𝑖
𝑣𝑎 and h

𝑡𝑤𝑖−1
𝑣𝑎 are the hidden representations of 𝑣𝑎 at win-

dow number𝑤𝑖 and𝑤𝑖−1, respectively and N(𝑣𝑎) represents the
neighbors of 𝑣𝑎 in Equation 1. Thus, this process yields a time
series of embeddings: {h𝑤1

𝑣𝑎 , . . . , h
𝑤𝑚
𝑣𝑎 } for each user with dimen-

sion R16. Cross Attention layer [26] is then employed to analyze
the relationship between the current and subsequent embeddings
of users, enabling the capture of subtle yet significant temporal
shifts in a user’s local behavior across consecutive time windows.
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Figure 2: Overall architecture of proposed CATALOG.

In this context, the embedding h𝑤𝑖
𝑣𝑎 is designated as the query, while

the subsequent embedding h𝑤𝑖+1
𝑣𝑎 serves as both the key and value

for 𝑖 = {1, . . . ,𝑚}. The fundamental idea behind this approach is
that cross-attention empowers our model to discern how a user’s
transactional behavior during the window𝑤𝑖 correlates with their
subsequent transactions in window𝑤𝑖+1. This establishes temporal
relationships between each user’s transactions, thereby facilitating
a deeper understanding of how their behavioral patterns evolve
over time. The attention scores are then computed using Equation
2, where W𝑄 ,W𝐾 ,W𝑉 are the query, key, and value matrices, and
𝑑𝑘 is the dimensionality of the key.

Att(h𝑤𝑖
𝑣𝑎 , h

𝑤𝑖+1
𝑣𝑎 , h𝑤𝑖+1

𝑣𝑎 ) = softmax

(
(h𝑤𝑖
𝑣𝑎 )

⊤W𝑄 (h𝑤𝑖+1
𝑣𝑎 )W⊤

𝐾√︁
𝑑𝑘

)
h𝑤𝑖+1
𝑣𝑎 W𝑉

(2)
The above obtained Attention score gives us the local correlation
embeddings for a given user 𝑣𝑎 denoted as, 𝐿𝑣𝑎 . This results in the
attention-based feature vectors for all users denoted as, L ∈ R𝑛×

𝑚
𝑤

(considering 𝑛 is the number of users, 𝑚 is the total number of
unique timestamps and𝑤 is thewindow size), representing enriched
temporal embeddings of their transactional behavior.

3.2.2 Contextual Enrichment. Once local user embeddings (𝐿𝑣𝑎 )
are obtained, we aim to enhance them by capturing overall temporal
dependencies. While the cross-attention layer effectively extracts
correlations between consecutive time windows (e.g.,𝑤𝑖 and𝑤𝑖+1),
it does not account for long-range bi-directional dependencies (e.g.,
between𝑤𝑖 and𝑤𝑖+𝑥 for 𝑥 = {1, 2, . . . ,𝑚}). Since phishing behavior
often resembles non-phishing activity before or after fraudulent
events, capturing the full behavioral context is crucial for distin-
guishing between these behaviors.

To enrich the embeddings with the temporal dependencies, we
employ a Transformer model with Bi-directional Masked Language
Modeling (MLM) [7]. The bi-directional masking approach predicts
embeddings by analyzing both past and future contexts, capturing
two-way temporal coherency. While phishing and non-phishing
users may exhibit similar overall behavior, their subtle behavioral
fluctuations should follow a coherent pattern and a two way long-
term dependency. By masking the a certain embedding to predict
its subsequent, and vice versa, the model improves its perceptions
of the overall temporal relationships. This method enhances user

behaviour consistency and context thereby enabling the model
identify phishing and non-phishing patterns more accurately. For
a user 𝑣𝑎 , the embeddings sequence is H𝑣𝑎 = {h𝑤1

𝑣𝑎 , . . . , h
𝑤𝑚
𝑣𝑎 }, and

P𝑣𝑎 are the positional encodings defined in Equation 3.

P𝑣𝑎 (𝑤𝑖 , 2 𝑗) = sin

(
𝑤𝑖

10000
2𝑗
𝑑

)
, P𝑣𝑎 (𝑤𝑖 , 2 𝑗 + 1) = cos

(
𝑤𝑖

10000
2𝑗
𝑑

)
(3)

where 𝑑 is the embedding dimension and 𝑗 is the index. We apply
the transformer’s multi-head attention mechanism considering the
Query, Key and Values calculation using Equation 4.

𝑄 = (H𝑣𝑎 +P𝑣𝑎 )W𝑄 , 𝐾 = (H𝑣𝑎 +P𝑣𝑎 )W𝐾 , 𝑉 = (H𝑣𝑎 +P𝑣𝑎 )W𝑉

(4)
where W𝑄 ,W𝐾 ,W𝑉 are learned projection matrices, and 𝑑𝑘 is the
dimensionality of the key. The final concatenations of the attention
heads are formalized as Equation 5,

H′
𝑣𝑎 = Concat(head1, . . . , headℎ)W𝑂 (5)

with each head computing head𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ), followed
by output projection viaW𝑂 . The transformer aggregates the ob-
tained embeddings into a combined one C𝑣𝑎 (for node 𝑣𝑎) thereby
capturing the holistic temporal contextual patterns. Thus, for each
node we follow this process to generate the contextually enriched
embeddings.

3.2.3 Global Correlation Analysis. Simultaneously, with the extrac-
tion of local correlations, we examine the global correlation of a
user’s temporal behavior, which is essential for assessing an individ-
ual’s activities in comparison with the other active users during the
same period. This analysis is vital to understand behavioral changes
concerning the market trends; for instance, during a Ether price
hike, an increase in activity across all users is expected. Captur-
ing these crucial correlations is imperative for effective distinction
of phishing and non-phishing patterns thereby highlighting the
necessity of exploring a global perspective. To comprehend this
global correlation, we initially derive a temporal activity vector that
encapsulates the overall temporal activity of a user within the net-
work. To depict each user’s temporal activity over a given period,
we use one-hot encoding. Let𝑚 be the total unique timestamps,
and T𝑣𝑎 = {𝑡1, 𝑡2, . . . , 𝑡𝑙 } represent the timestamps where user 𝑣𝑎 is
active, with 𝑙 ≤ 𝑚. We define a vector z𝑣𝑎 ∈ {0, 1}𝑚 in Equation 6
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as:

z𝑣𝑎 (𝑡𝑖 ) =
{
1, if 𝑣𝑎 is active at 𝑡𝑖 ,
0, otherwise.

(6)

The resulting vector z𝑣𝑎 has ’1’s for timestamps where 𝑣𝑎 is active,
providing a temporal activity representation. Following the above,
we compute the global temporal correlation between users using a
cross-attentionmechanism using one-hot encoded temporal vectors
Z ∈ R𝑛×𝑚 (with𝑚 as the number of unique timestamps). In this
context, the cross-attention layer is designed to capture deviations
in an individual user’s behavior relative to the overall behavior of
other users in the network. Specifically, this layer helps to analyze
how a particular user deviate from the general trend, which may be
indicative of suspicious or unusual activity. For user 𝑣𝑎 , the query is
z𝑣𝑎 , and the key and value are the one-hot vectors of all other users
in the same time period, z𝑣𝑏 , . . . , z𝑣𝑛 . The corresponding global
attention is computed in Equation 7 as:

Att(z𝑣𝑎 , z𝑣𝑏 , z𝑣𝑏 ) = softmax

(
(z𝑣𝑎 )⊤W𝑄 (z𝑣𝑏 )W⊤

𝐾√︁
𝑑𝑘

)
z𝑣𝑏W𝑉 (7)

whereW𝑄 ,W𝐾 ,W𝑉 are projection matrices, and 𝑑𝑘 is the dimen-
sionality of the key. This results in an attention score vector for
each user, that captures global temporal patterns across all users
with respect to the average behaviour of other users in the network.
The global correlation vector is denoted as, G ∈ R𝑛×(𝑛−1) .

3.2.4 Embedding Fusion and Classification. In order to capture
the inter-dependencies between the three main aspects in terms
of the user’s local temporal embeddings with their contextual re-
lations along with the global behavior to classify phishing and
non-phishing users, we apply a weighted attention layer. The com-
ponents L𝑣𝑎 (local embeddings), C𝑣𝑎 (contextual transformer em-
beddings) and G𝑣𝑎 (global temporal attention) are fused together
using weighted attention, yielding the final embedding F𝑣𝑎 . The
role of the weighted attention layer is to balance and prioritize the
influence of each component based on their relevance to the task
of detecting phishing users. This ensures that the final embedding
incorporates comprehensive information from both short-term and
long-term behavioral patterns along with their correlations thereby
improving the model’s ability to make accurate predictions.

We compute attention scores 𝛼𝐿 , 𝛼𝐶 , and 𝛼𝐺 for each embedding
component using a softmax over their respective query projections.
The associated projection vectors are learned during the training
process, with the weight matrices𝑤𝐿 ,𝑤𝐶 , and𝑤𝐺 corresponding
to the local, contextual, and global embeddings, respectively and
formalized as Equations 8, 9, and 10.

𝛼𝐿 =
exp(𝑤⊤

𝐿
L𝑣𝑎 )

exp(𝑤⊤
𝐿
L𝑣𝑎 ) + exp(𝑤⊤

𝐶
C𝑣𝑎 ) + exp(𝑤⊤

𝐺
G𝑣𝑎 )

(8)

𝛼𝐶 =
exp(𝑤⊤

𝐶
C𝑣𝑎 )

exp(𝑤⊤
𝐿
L𝑣𝑎 ) + exp(𝑤⊤

𝐶
C𝑣𝑎 ) + exp(𝑤⊤

𝐺
G𝑣𝑎 )

(9)

𝛼𝐺 =
exp(𝑤⊤

𝐺
G𝑣𝑎 )

exp(𝑤⊤
𝐿
L𝑣𝑎 ) + exp(𝑤⊤

𝐶
C𝑣𝑎 ) + exp(𝑤⊤

𝐺
G𝑣𝑎 )

(10)

These scores represent the relative importance of each embedding
component in the final fused representation. The final fused embed-
ding F𝑣𝑎 is the weighted sum of the three components, using the

attention scores 𝛼𝐿 , 𝛼𝐶 , and 𝛼𝐺 as the weights depicted in Equation
11.

F𝑣𝑎 = 𝛼𝐿L𝑣𝑎 + 𝛼𝐶C𝑣𝑎 + 𝛼𝐺G𝑣𝑎 (11)
These fused embeddings F ∈ R𝑛×32 are then fed to the transformer
for the final phishing user detection. As transformer [26] can cap-
ture complex patterns and relationships within sequential data,
we also utilize transformer to perform our binary classification
task to better exploit the temporal embeddings. Furthermore, we
demonstrate the efficacy of transformer in the classification task
with rigorous experimentation which is illustrated in Appendix A.
Here, the one-hot encoded temporal activity vector z𝑣𝑎 serves as
the positional encoding for the transformer coupled with a clas-
sification layer, added to the fused embedding. While the fused
embedding captures user behavior over time, benefits from the
one-hot encoding by providing an explicit time anchor. Specifically,
this acts as a form of time marker or tag that enriches the continu-
ous embeddings for discretization thereby helping the transformer
understand the temporal progression of user actions.

H𝑣𝑎 = F𝑣𝑎 ⊕ z𝑣𝑎 (12)

The output embedding is passed through a classification layer with
softmax activation function and binary cross entropy loss function
detailed in Equations 13 and 14 as,

𝑦𝑣𝑎 = softmax(H𝑣𝑎W𝑐 ) (13)

L𝑣𝑎 = −
[
𝑦𝑣𝑎 log(𝑦𝑣𝑎 ) + (1 − 𝑦𝑣𝑎 ) log(1 − 𝑦𝑣𝑎 )

]
(14)

4 Experiments
In this section, we perform empirical evaluations to demonstrate
the effectiveness of the proposed framework. Specifically, we aim
to answer the following research questions:

• RQ1: To what extent is the proposed approach effective in
identifying phishing addresses within the Ethereum trans-
action network?

• RQ2: What is the individual impact of each component
of CATALOG (i.e., Local Correlation, Global Correlation,
and Contextual Enrichment) on the overall detection per-
formance?

• RQ3: The ability of our model to ensure robustness and
handling the existing research gap of Data Leakage?

4.1 Dataset Details
We consider three publicly available Ethereum transaction datasets
from [4], [31], and [35], accessible via XBlock3, to evaluate the per-
formance of CATALOG. These datasets primarily focus on transac-
tions from Ethereum 1.0, which may not fully reflect the current
state of the network following the introduction of Ethereum 2.0
(up to 2022). The earlier datasets may contain outdated phishing
patterns, limiting the pertinence of models trained on them in de-
tecting recent fraudulent activities. To address this, we contribute
a new dataset that captures recent Ethereum 2.0 transactions from
August 01, 2024, to October 09, 2024. This updated dataset crucial for
enhancing the accuracy and adaptability of fraud detection models
within the evolving Ethereum ecosystem, offering up-to-date data
on phishing and non-phishing activity. Following the data collection
3https://xblock.pro/#/
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Table 1: Detailed dataset statistics.

Dataset Transactions Phishing Non-phishing

𝐷1 [4] 15 million 1165 2.89 million
𝐷2 [31] 84489 1259 37533
𝐷3 [35] 1048576 1660 312179
𝐷4 [Ours] 60713 270 20194

method of Li et al. [18] we include 57 flagged phishing addresses
from Etherscan4 and their first-order neighborhood transactions,
as well as 57 active non-phishing addresses with their 2,000 most
recent transactions, totaling 60,686 transactions, with 270 phishing
and 20,194 non-phishing users (considering the neighbors). The
dataset is publicly available, and we denote them as 𝐷1, 𝐷2, 𝐷3, and
𝐷4. A 1 : 1 ratio was used to address class imbalance, with scalabil-
ity experiments in Section 5.3 showing CATALOG’s robustness to
imbalance. All four dataset provides details on Ethereum transac-
tions, including the sender, receiver, amount, and timestamps. Each
sender and receiver is labeled as either phishing or non-phishing.
Comprehensive statistics can be found in Table 1.

4.2 Reproducibility Setup
For improved reproducibility, we present a detailed experimental
setup for CATALOG. The reproducibility materials along with the
novel dataset are available here2. We employ a 𝑘 = 1 for the ego
networks sliding window approach with a size of𝑤 = 3, processing
three consecutive timestamps simultaneously. A two-layer GNN
processes ego networks, with hidden dimensions of 64 and 128,
followed by ReLU activation andmean aggregation. To capture local
correlations, we apply a cross-attention layer with Query, Key, and
Value dimensions of R16, generating local attention scores. A three-
layer Transformer with four attention heads and a feed-forward
network (hidden size 256, ReLU activation) produces contextually
enriched embeddings. The Query, Key, and Value dimensions are
R𝑚 , where 𝑚 is the number of unique timestamps, resulting in
global attention vectors. The final fused embeddings are fed into
a phishing detection Transformer and classification is performed
using softmax activation and Binary Cross-Entropy loss, with a
70:30 train-test split.

4.3 Baselines
For rigorous experimentation, we evaluate our model against five
baseline models selected based on their novelty and relevance,
namely Trans2Vec [31], TTAGN [18], Bert4Eth [12], Expanded Fea-
ture space [8], PEAEGNN [13]. Additionally, we compare our ap-
proach with four SOTA GNNmodels GCN [16], GAT [27], GIN [34],
Dy-GCN [21], and SOTA node embedding methods Deepwalk [23],
and Node2Vec [10]. To ensure a fair comparison, all baselines were
evaluated using the same classifier and hyperparameters.
Evaluation metrics: We employ three conventional evaluation
metrics to thoroughly assess the performance of CATALOG : (1)
Recall: measures the proportion of actual phishing users correctly
detected amongst all users detected as phishing and wrongly de-
tected as non-phishing ; (2) Precision: indicates the proportion

4https://etherscan.io/

of correctly classified phishing users amongst all users detected
as phishing; and (3) F1-Score: provides a balanced evaluation by
combining both Precision and Recall.

5 Results & Analysis
We demonstrate the efficiency of CATALOG through a set of exten-
sive experiments discussed as follows. Due to space constraints we
have added experiments on different classifiers Appendices A and
the limitations of the model in Appendix B.

5.1 Baseline Comparison
To address RQ1, we evaluate the performance of the baseline meth-
ods for detecting phishing scams on Ethereum, as detailed in Table
2. Several insights appear, with CATALOG consistently outper-
forming other models across all three metrics. Specifically, on the
𝐷3 dataset, our model yields 0.90 Precision, 0.86 Recall, and 0.88
F1-Score. Although Trans2Vec and our CATALOG show compara-
ble performance in terms of precision for the 𝐷1 and 𝐷2 datasets,
CATALOG achieves a 2% improvement in Recall, resulting in an
overall better F1-Score of 0.91 and 0.90, respectively. CATALOG’s
higher Recall provides better network security and user trust, as
the impact of undetected phishing is far more severe, making our
model more relevant for detecting such potential threats. Notably,
on the novel 𝐷4 dataset, CATALOG achieves the best results, while
TTAGN surpasses Trans2Vec in Recall. Expanded Features and
PEAEGNN perform similarly, with F1-Scores around 0.85, whereas
Bert4Eth shows the weakest performance, with just 0.46 Recall.
These findings highlight the model’s ability to capture both local
and global network features, unlike models like Trans2Vec and
TTAGN, which struggle with similar behavior patterns in phishing
and non-phishing users.

Furthermore, our proposed model also excels in representing dy-
namic graphs, outperforming static models such as GCN, GAT, and
GIN, which focus on static properties. Even when compared to Dy-
GCN, CATALOG achieves higher Recall, as Dy-GCN’s reliance on
neighborhood aggregation results in lower Recall (0.55) due to non-
phishing users in phishing user neighborhoods [8]. Similarly, static
models like Node2Vec and DeepWalk perform poorly, underscoring
their limitations in dynamic networks. CATALOG surpasses these
methods by around 20% across all metrics, proving its strength in
leveraging temporal dependencies in Ethereum transaction data
for phishing detection. Overall, our proposed model outperforms
all baselines by effectively capturing both local and global features
and temporal dependencies, leading to superior phishing detection.

5.2 Ablation Study
To address RQ2 and evaluate the contribution of each component
within the CATALOG framework, we conducted an ablation study,
with results shown in Table 3. This study isolates the impact of
each module. First, using only local correlations with a temporal
layer resulted in a significantly lower Recall of 0.71, indicating that
local temporal dynamics alone fail to capture the broader struc-
ture, leading to suboptimal representations. Similarly, using only
global correlations produced an even lower Recall of 0.65, reveal-
ing that global temporal dependencies alone are insufficient for
effective phishing detection due to network sparsity. When we
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Table 2: Performance comparisons of CATALOG with the baseline methods for three Ethereum transaction datasets [Best
results are bold, and second best is underlined].

Datasets → D1 D2 D3 D4

Model Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Trans2Vec [31] 0.92 0.87 0.89 0.91 0.87 0.88 0.88 0.83 0.85 0.84 0.81 0.82
TTAGN [18] 0.80 0.85 0.82 0.79 0.83 0.81 0.86 0.82 0.84 0.80 0.83 0.81
Bert4Eth [12] 0.58 0.46 0.52 0.55 0.43 0.48 0.61 0.49 0.54 0.53 0.47 0.50
Expanded Features [8] 0.90 0.84 0.87 0.86 0.83 0.85 0.84 0.81 0.82 0.82 0.80 0.81
PEAEGNN [13] 0.87 0.84 0.86 0.85 0.81 0.83 0.86 0.82 0.84 0.84 0.81 0.82

Deepwalk [23] 0.57 0.51 0.54 0.55 0.49 0.52 0.59 0.51 0.54 0.51 0.44 0.47
Node2Vec [10] 0.54 0.41 0.46 0.51 0.43 0.46 0.51 0.46 0.48 0.53 0.42 0.47

GCN [16] 0.54 0.47 0.50 0.49 0.45 0.47 0.53 0.46 0.49 0.52 0.43 0.47
GAT [27] 0.55 0.49 0.52 0.53 0.48 0.50 0.54 0.50 0.52 0.56 0.51 0.53
GIN [34] 0.61 0.58 0.59 0.52 0.56 0.54 0.54 0.58 0.56 0.56 0.53 0.54
DyGCN [21] 0.78 0.74 0.76 0.76 0.72 0.74 0.79 0.74 0.76 0.74 0.71 0.72

CATALOG 0.91 0.88 0.91 0.89 0.91 0.90 0.90 0.86 0.88 0.91 0.87 0.89

Table 3: Ablation study results to measure individual contri-
butions of the components for phishing user detection.

Components Precision Recall F1-Score

Local Emb. 0.75 0.71 0.73
Global Emb. 0.71 0.65 0.68
Contextual Emb. 0.80 0.76 0.0.78
Local+Global 0.79 0.79 0.77
Local+Contextual 0.84 0.81 0.82
CATALOG 0.92 0.89 0.91

combined both local and global correlations, Recall improved by
9%, highlighting the benefit of integrating both aspects. The con-
textual embedding module achieves a Recall of 0.76, demonstrating
that capturing the overall temporal context significantly enhances
detection accuracy. Combining local correlations with contextual
enhancement resulted in a further 10% increase in performance.
Finally, when all three components—local correlation, global cor-
relation, and contextual enrichment—were combined in the full
CATALOG model, Recall improved by 14%, demonstrating the com-
plementary strengths of each module.

5.3 Effectiveness Study
To address RQ3, we perform a robustness evaluation of CATALOG,
assessing its effectiveness in mitigating data leakage along with a
scalability analysis, which are detailed below.

5.3.1 Robustness Study: To evaluate the robustness of the pro-
posed model across different datasets, we conduct an experiment
where the classifier was trained on embeddings generated from
𝐷1 [15] and tested on embeddings from three other datasets: 𝐷2
[31], 𝐷3 [35], and 𝐷4 [Ours]. A 70:30 train-test split was employed,
ensuring that the training and testing sets contained entirely dis-
tinct users. As shown in Table 4, CATALOG consistently performs
well under varying data conditions. This experiment highlights the
model’s ability to produce high-quality user representation vec-
tors that jointly capture both local and global behavioral patterns,
enhancing phishing detection across different Ethereum datasets.

5.3.2 Mitigating the Dataleakage: We evaluate CATALOG’s
effectiveness using a range of temporally sequenced train-test splits,
focusing on its ability to mitigate data leakage—an issue often

Table 4: Robustness experiment of CATALOG on different
training and testing data distribution.

Test Data Precision Recall F1-Score

𝐷2 [31] 0.91 0.89 0.90
𝐷3 [35] 0.90 0.87 0.88
𝐷4 [Ours] 0.91 0.87 0.89

Table 5: Comparison of the performances of CATALOG and
Trans2Vec (Second best results) on data leakage handling.

Test size Models Precision Recall F1-Score

10 Trans2Vec 0.71 0.67 0.69
CATALOG 0.84 0.81 0.82

15 Trans2Vec 0.73 0.68 0.70
CATALOG 0.85 0.82 0.83

20 Trans2Vec 0.73 0.71 0.72
CATALOG 0.85 0.83 0.84

25 Trans2Vec 0.74 0.72 0.73
CATALOG 0.88 0.85 0.86

30 Trans2Vec 0.75 0.71 0.72
CATALOG 0.91 0.88 0.89

overlooked in current research. As previously noted, many models
display inflated performance due to data leakage. To ensure rigorous
evaluation, we implement a sequential train-test split analysis. The
model is trained on consecutive 100 days of transaction data and
tested on various sequential test sets spanning 10, 15, 20, 25, and
30 days. Crucially, the training and testing sets are strictly non-
overlapping to prevent any temporal leakage. The performance of
the proposed model is compared to the baseline model, Trans2Vec.
As shown in Table 5, the baseline’s performance declines noticeably,
while CATALOG consistently maintains strong results across all
test sets, confirming its robustness in preventing data leakage.

5.3.3 Scalability Study: As outlined in the dataset description,
a significant class imbalance exists between phishing and non-
phishing transactions. Previous studies have addressed this via un-
dersampling [5, 29, 31, 32] or oversampling [8, 24]. However, after
transaction sampling, the class imbalance was effectively managed,
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Table 6: Scalability analysis of CATALOG.

Phishing Precision Recall F1-Score
to Non-phishing ratio

1 : 1 0.92 0.89 0.90
1 : 1.5 0.92 0.89 0.90
1 : 2 0.92 0.88 0.89
1 : 3 0.91 0.88 0.90
1 : 4 0.90 0.88 0.89
1 : 5 0.89 0.86 0.87
1 : 6 0.87 0.84 0.86
1 : 7 0.85 0.81 0.83
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Figure 3: Performance on different Feature Fusion.

as shown in earlier experiments. To assess CATALOG’s scalability,
we conduct an experiment starting with a 1:1 phishing-to-non-
phishing ratio, gradually increasing the number of non-phishing
transactions to observe performance changes. As shown in Table 6,
our model maintains stable results until the ratio reached 1:5, be-
yond which a slight performance drop occurred due to the growing
imbalance affecting classifier training. These results indicate that
the proposed model scales well up to a certain phishing-to-non-
phishing ratio, with minor declines afterward and it is suitable for
real-world deployment.

5.4 Sensitivity Analysis
5.4.1 Different Feature Fusions: We experimented with sev-
eral feature fusion techniques to combine the three embeddings,
including element-wise summation, simple concatenation, neural
networks, and weighted attention mechanisms. As shown in Fig-
ure 3, while element-wise summation emerged as the second-best
performer, the weighted attention mechanism consistently outper-
formed the others. This superior performance is likely due to the
attention mechanism’s ability to assign learned weights according
to the underlying data distribution, allowing it to extract more
informative and meaningful embeddings.

5.4.2 Different Window Size: To determine the optimal sliding
window size, we conducted experiments with window sizes ranging
from {2, . . . , 6}. The results, presented in Figure 4, indicate that a
window size of three yields the best performance. Beyond this point,
there is a noticeable decline in performance, can be attributed to
the sparse activity of users. Therefore, we have selected a window
size of three for our analysis.
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Figure 4: Experiment on different window size
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Figure 5: Performance variation on different hops.

5.4.3 DifferentHop-Length. To determine the optimal hop length
for 𝑘-hop ego graphs, we experiment with hop lengths from 1 to
4. The results showed that 1-hop performed the best, with 2-hop
yielding the second best performance, followed by a significant per-
formance drop beyond that. This decline is likely due to network
sparsity and the oversmoothing issue in GNNs. Hence, we set the
hop length as 1 to ensure optimal performance.

6 Conclusion
This paper introduces CATALOG, a novel representation learning
framework designed to improve Ethereum phishing user detection.
By addressing inherent challenges like data leakage, network spar-
sity, and identical user behavior, the framework enhances phish-
ing detection with its innovative dual cross-attention layer and
bi-directional MLM-based transformer pipeline. Unlike existing ap-
proaches, CATALOG jointly captures both local and global temporal
dependencies while enriching user representations with contextual
information, offering a more robust solution. The framework’s vali-
dation on four real-world transaction datasets shows considerable
performance gains, surpassing baseline models with a 7-8% increase
in the F1-score. The improved performance and high scalability
of CATALOG makes it suitable for real-world deployment on the
back-end of Etherscan, where it can early flag suspicious accounts
based on their behavioral patterns, thereby enhancing the security
of Ethereum network. While CATALOG enhances phishing detec-
tion on Ethereum, it faces some limitations due to the high training
time complexity and memory demand of transformers that makes it
computationally expensive, particularly for long sequences. Hence,
our future work will focus on optimizing the model for improved
real-time performances.
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A Different Classifier
To conduct a thorough evaluation, we assess the performance of
CATALOG using several commonly used classifiers, such as MLP,
SVM, Random Forest, XGBoost, and LightGBM, as presented in
Figure 6. In this experiment, we replaced the phishing detector
transformer with these classifiers to directly compare their abil-
ity to identify phishing users, thus highlighting the advantages
of the transformer. Also, this experiment demonstrate the overall
quality of the embeddings as well. The results show that all clas-
sifiers performed effectively, with the Transformer achieving the
highest Recall of 0.89. Notably, LightGBM exhibited a comparable
performance to the Transformer, whereas MLP and SVM yields
the poorest performances. With the attention mechanisms, Trans-
formers can effectively analyze the temporal dependencies and
contextual information in user behavior, enabling more accurate
detection of subtle phishing activities. This capability allows for
a deeper understanding of user interactions over time, ultimately
enhancing the model’s effectiveness in identifying potential threats
within the Ethereum network. This evaluation affirms both the ro-
bustness of the obtained embeddings by CATALOG and the reliable
performance of the embeddings across various classifiers, while
also reinforcing the superiority of the Transformer in detecting
phishing users.
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Figure 6: Performance of CATALOG on different classifiers.

B Limitations and Future work
Despite CATALOG’s improvements in phishing user detection on
Ethereum, several limitations arise due to the use of transformer

models. Transformers have high training time complexity, largely
due to the self-attention mechanism, making them computation-
ally expensive, particularly for long sequences. Their substantial
memory requirements also present challenges for scaling to larger
models. Additionally, transformers demand large amounts of la-
beled data for optimal performance, which is often scarce in real-
world settings. Furthermore, their interpretability is limited, as the
decision-making process within the deep attention layers can be
difficult to decipher, leading to a "black box" nature in some appli-
cations. To address these limitations, our future work will focus
on model optimization to reduce computational and memory over-
head, potentially through more efficient attention mechanisms or
model pruning techniques. These improvements aim to enhance
the model’s real-time reliability and usage.
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