Under review as a conference paper at ICLR 2026

TOPOLOGY OF ATTENTION DETECTS HALLUCINA-
TIONS IN CODE LLLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

While the Al-code assistant tools become widespread, automatic assessment of
the correctness of the generated code becomes a significant challenge. Code
LLMs are prone to hallucinations, which may lead to code that does not solve
a required problem, or even to code with severe security vulnerabilities. In this
paper, we propose a new approach to assessment of code correctness. Our so-
lution is based on topological data analysis (TDA) of attention maps of code
LLMs. We carry out experiments with two benchmarks — HumanEval, MBPP and
5 code LLMs: StarCoder2-7B, CodeLlama-7B, DeepSeek-Coder-6.7B, Qwen2.5-
Coder-7B, Magicoder-S-DS-6.7B. The experimental results show that the pro-
posed method is better than several baselines. Moreover, the trained classifiers
are transferable between coding benchmarks.

1 INTRODUCTION

Large Language Models (LLMs) are now widespread and have great potential to transform natural
language processing and artificial intelligence. As far as code generation is concerned, LLMs that
are trained on large amounts of code are capable of generating human-level code for a plethora of
simple problems and are expected to revolutionize software engineering. At the same time, code-
generating LLMs are prone to hallucinations of various types. For example, syntactic and runtime
errors prevent proper program execution, while logical errors lead to incorrect solution of the prob-
lem. In some cases, the generated code might contain security issues or robustness issues, such as
a memory leak. While many definitions of hallucinations exist, in this paper we assume that code
hallucination is a code which is not functionally correct, that is, does not pass functional tests. For a
wide adoption of code LLMs, there is a high need for automatic assessment of code quality. As for
the current state of technology, significant time is spent on debugging and rewriting automatically
generated code (Liang et al., [2024).

We hypothesize that code quality can be inferred before its execution from an internal state of LLM,
in particular its attention maps. Previous studies have shown that attention maps of transformers are
useful for artificial text detection (Kushnareva et al., [2021), acceptability judgments (Cherniavskii
et al.| 2022)) and speech classification (Tulchinskii et al., [2022).

Attention maps of LLMs are shown to capture semantically meaningful information and might be an
illustration of model’s “thinking process”. The research community actively studies approaches to
mitigate hallucinations of LLMs by external knowledge bases (Peng et al.| 2023) or reducing them
to some degree (Elaraby et al.l [2023)). It is a highly desirable to evaluate a code quality before its
execution and a running of tests since the code might contain security vulnerabilities.

The study of hallucinations in LLMs is intrinsically tied to generalization in NLP models. Both
challenges stem from how models learn, represent, and apply knowledge. Improving generalization
— through robust training, diverse data, and better uncertainty handling — reduces hallucinations by
ensuring models produce contextually appropriate, factually grounded outputs. Conversely, analyz-
ing hallucinations provides insights into generalization failures, guiding the development of more
reliable NLP systems. This symbiotic relationship underscores the importance of addressing both
issues holistically in Al research.

Out contributions are the following:

Under review as a conference paper at ICLR 2026

* We propose a new approach to detection of hallucinations in LLM-generated code based
on analyzing a topology of attention maps;

* We carry out computational experiments with CodeLlama, StarCoder2, DeepSeek-Coder
and Qwen2.5-Coder and two benchmarks — HumanEval and MBPP, and show that the
proposed method outperforms baselines;

* We empirically show that proposed classifier of hallucinations is transferable between code
benchmarks.

2 RELATED WORK

Code generation via LLMs is a topic of active research. The popular projects are: CodeLlama
(Roziere et all [2023), StarCoder2 (Lozhkov et al. [2024), DeepSeek-Coder (Guo et al.| [2024),
Qwen2.5-Coder (Hui et al., [2024)), to name a few. Code LLMs differ by the data used for train-
ing, by their training and fine-tuning protocols, including RLHF, tokenizers, variants of attention
mechanism, etc.

Several works studied attention maps in transformer-based LL.Ms. |Clark et al. (2019) studied
BERT’s attention patterns: attending to delimiter tokens, specific positional offsets, or broadly at-
tending over the whole sentence, with heads in the same layer often exhibiting similar behaviors.
Clark et al.|(2019) further showed that certain attention heads correspond well to the linguistic no-
tions of syntax and coreference. [Htut et al.| (2019) found that for some universal dependency tree
relation types, there exist heads that can recover the dependency type significantly better than base-
lines on parsed English text, suggesting that some self-attention heads act as a proxy for syntactic
structure. Michel et al.| (2019) showed that for downstream tasks, a large proportion of attention
heads can be removed at test time without significantly affecting performance and that some layers
can even be reduced to a single head.

The phenomenon of code hallucinations is studied and categorized in several papers. [Tian et al.
(2024) introduces a categorization of code hallucinations into four main types: mapping, naming,
resource, and logic hallucinations, with each category further divided into different subcategories.
Tian et al|(2024) proposed the CodeHalu dataset and studied the frequencies of different types of
hallucinations in popular code LLMs. |Liu et al.|(2024) categorized hallucinations as intent con-
flicting, inconsistency, repetition, knowledge conflicting, dead code. |Liu et al.| (2024) released a
HaluCode benchmark with code hallucinations labeled. Jiang et al.|(2024) proposed Collu-Bench,
the benchmark with localized code hallucinations. [Jiang et al.|(2024) found that code LLMs are less
confident when hallucinating, since hallucinated tokens have a lower probability and hallucinated
generation steps have a higher entropy.

In the broader context of NLP, several works introduced methods for preventing and detecting hal-
lucinations. |Peng et al.| (2023) proposed to mitigate hallucination with an LLM-AUGMENTER, a
system that allows the LLM to generate responses grounded in external knowledge, for example,
stored in task-specific databases. |[Zhang et al.|(2024b) proposed Self-Eval, a self-evaluation compo-
nent, to prompt an LLM to validate the factuality of its own generated responses solely based on its
internal knowledge. [Feng et al.| (2024) proposed two novel approaches for hallucination detection
that are based on model collaboration, i.e., LLMs that investigate other LLMs for knowledge gaps,
cooperatively or competitively. [Zhang et al.|(2024a) proposed to improve the truthfulness of LLMs
by editing their internal representation during inference in the “truthful” space. |Yehuda et al.[(2024)
introduced InterrogateLLM, a method which prompts the model multiple times to reconstruct the
input query using the generated answer. Subsequently, InterrogateLL.M quantifies the inconsistency
level between the original query and the reconstructed queries.

3 BACKGROUND

3.1 TRANSFORMER-BASED LLMS

All of the state-of-the art code LLMs are based on different variants of the transformer architecture
(Vaswani, 2017)).

Under review as a conference paper at ICLR 2026

AL

©) (1))) (4) (@) (6)

Figure 1: An example of MTD evaluation for a graph having two groups of vertices — red and blue.
(0): initially, only edges connecting red vertices are present. (1)-(6): the rest of edges are added
sequentially in an ascending order by their weights. While adding edges, connected components
merge with each other. These moments are depicted by H bars in Fig. 2] At moment (4) a cycle
appears, at moment (6) this cycle disappears. These moments are depicted by the H; bar in Fig.

A transformer architecture comprises L lay-

ers of multi-head self-attention blocks each 41

of them having H heads. Each attention head

takes X € R™*? matrix as an input, and an

output is X% = A(XW"), where . —
(XWQ)<XWK)T) T T T T T T T

Vid ’

and W@ WHE WV ¢ R are projection

matrices, and A € [0,1]"*" is an attention

map. In the self-attention block, the attention

map shows how each token in the input sequence “interacts” to every other token in the same se-

quence. A token might attend more to other tokens that are contextually related. We interpret each
element a; ; of an attention map as an “interaction force” between tokens 7 and j.

A = softmax (

£ (time)

Figure 2: Cross-Barcode for a filtration from Fig.

3.2 REPRESENTING AN ATTENTION MAP BY A WEIGHTED GRAPH

While attention map is typically presented as a matrix, we treat it as a weighted graph. For n
tokens in a sequence, we consider a fully-connected weighted graph with n vertices, where weights
of edges are related to the “interaction force” between tokens (vertices). The natural idea is to
leave only the most interacting tokens, that is, attending to each other higher than some threshold.
However, the optimal threshold is not known in advance. Moreover, topology of such graph changes
discontinuously with the change of a threshold (or weights). Topological Data Analysis (TDA)
(Chazal & Michel, 2017) introduces a principled way to access topology of such graphs for all
thresholds simultaneously.

3.3 MANIFOLD TOPOLOGY DIVERGENCE

MTD (Manifold Topology Divergence) (Barannikov et al.|[2021)) is a tool of TDA which can be used
to evaluate the “dissimilarity” between two sets of vertices in a weighted graph G = (V, E, W) or,
in other words, to which degree one set of vertices is covered by another set.

Let a set of vertices V = P U G, be split into disjoint sets P, G. We consider a nested sequence
of graphs Gy C ... C G; C G;41 C ... C G in the following way. Gy has all the vertices P,G
and all the edges connecting vertices from P. The sequence G; is obtained by adding the rest of
edges one by one in an ascending order by their weights, see Figure[I] During this process, graphs’
topology naturally changes: connected components are merged, cycles appear and disappear, etc.
This process is rigorously described by the theory of persistence barcodes (Chazal & Michel, [2017).
Each topological feature like connected component or cycle has a “birth time” and a “death time”,
by a corresponding edge weight. The multi-set of these birth-death pairs (intervals) altogether is
called a Cross-Barcodey, see Figure[2| Here k is an index of a persistence homology, each of them
reflects a kind of topological feature: O - connected components, 1 - cycles, 2 - voids, etc. MTDy,
is an integral characteristic of a Cross-Barcodey, and it is defined as a sum of birth-death intervals’
lengths. The higher MTDy, is, the bigger is a “dissimilarity” between sets of tokens. Note, that
according to a definition, MTDy, is not symmetric. Also, MTDy, as a kind of persistence barcode,
enjoys stability w.r.t. small perturbations of weights (Cohen-Steiner et al., 2005).

Under review as a conference paper at ICLR 2026

= s /\ ..~
F— ‘:\ \ /\"
=> = i Il‘ = K N = [=
1 1 £ —~ = "
Code LLM Attention maps Weighted géaphs Cross-Barcodes, MTD

Figure 3: A pipeline of the proposed method for hallucination detection: (1) a prompt concatenated
with a generated code is fed into a Code LLM. (2) Attention maps from the Code LLM are obtained.
(3) Attention maps are transformed into fully-connected weighted graphs. (4) Cross-Barcodes and
MTD features for weighted graphs are calculated. (5) On the top of the generated features a binary
classifier of hallucinations is fitted.

Table 1: Characteristics of generated data: Pass@ 1, number of correct (#Pos.) and incorrect (#Neg.)
solutions for each of the selected code LLM:s.

Model HumanEval MBPP

Pass@1 #Pos. #Neg. Pass@l #Pos. #Neg.
StarCoder2-7B 28.9 1186 2914 42.8 1071 1429
CodeLlama-7B 25.9 1064 3036 35.2 879 1621
DeepSeek-Coder-6.7B 40.3 1653 2447 52.6 1315 1185
Qwen2.5-Coder-7B 47.8 1961 2139 52.1 1302 1198

Magicoder-S-DS-6.7B 65.5 2689 1411 61.3 1533 967

4 METHODS

In the context of code generation, we naturally have two sets of tokens — a prompt and a generation.
A common cause of hallucination is when the model’s attention drifts away from the promplﬂ Our
topology-based features quantify this mismatch, yet the same signal helps to identify other error
patterns as shown below (Section [5.6). As was pointed in Section [3.2] attention matrices can be
analyzed as weighted graphs. Specifically, for n tokens in a sequence, we consider a fully-connected
weighted graph with n vertices, where weights of edges are obtained by a symmetrization of an
attention map: w; ; = 1 —max(a; j, a;;), for ¢ # j. Then, Cross-Barcode and MTD for a weighted
“attention graph” can be Calculate To predict code hallucinations, we use the following set of
features:

* MTDy(P,G)/|G|, MTDy(G, P)/|P|

« MTD; (P, G)/|G|, MTD; (G, P)/|P|

* Diep @il [Pl Xicq 0ii/ |G
Here all the features are normalized by a size of corresponding vertices set for better transferability.
Additionally, sums of diagonal values of attention matrices which are not directly present in edge
weights are included. These features are calculated for every layer and head of a code LLM. At

the top of the proposed topological features, we applied XGBoost (Chen & Guestrin, 2016) for a
classiﬁcationﬂ The high-level pipeline of the proposed method is shown in Figure

5 EXPERIMENTS

5.1 GENERATION OF DATASETS

To assess the efficacy of the proposed method for hallucination prediction, we carry out a set of
computational experiments. In the main experiments, we use the following popular code LLMs:

!"The definition of a hallucination is discussed in Appendix
2 Appendix E contains examples of Cross-Barcodes and corresponding attention maps.
3 Appendix [E] contains an ablation study of a classifier model.

Under review as a conference paper at ICLR 2026

StarCoder2-7B (Lozhkov et all [2024), CodeLlama-7B (Roziere et al.| [2023)), DeepSeek-Coder-
6.7B (Guo et al.| [2024), Qwen2.5-Coder-7B (Hui et al., |2024), Magicoder-S-DS-6.7B (Wei et al.,
2024). We adapted two public benchmarks for evaluation of code generation: HumanEval (Chen
et al., [2021) and MBPP (Austin et al.| 2021) ﬂ In order to account for various possible code gen-
erations, for each of the coding problems several solutions were generated by each of the selected
code LLMs: we obtained 25 generations per task for HumanEval and 5 generations per task for
MBPP unless otherwise specified. To address the quality of the proposed approach in different LLM
prompting regimes, we used 0-shot prompt for the HumanEval dataset and 1-shot prompt for the
MBPP dataset. To enable diversity of generated solutions, a sampling with non-zero temperature
of was done. Thus, we obtain 4100 samples for HumanEval and 2500 samples for MBPP for each
code LLM (see Appendix [A]for further details). Table[I] presents a summary of generated code so-
Iutions. The correctness of code is evaluated via functional tests provided together with the coding
benchmarks. Functional tests check that the function called with the certain arguments has the corre-
sponding output (examples are shown in Figures[6] [7lin Appendix [A]). Incorrect code is considered
a “hallucination”; prediction of code’s correctness is a binary classification problem. The pass@1
metric is slightly lower that reported in original papers, mostly because we have used sampling with
non-zero temperature instead of greedy search. Before moving further, note that there is a strong
negative dependency between prompt and generation lengths and code quality, see Figure[8] [0] The
longer the prompt (i.e. task description) and generation (i.e. task solution) are, the lower is the
probability of code’s correctness. This dependency is more pronounced for HumanEval than MBPP,
because MBPP employed more complicated 1-shot prompts. These attributes are natural baselines
for hallucination’s prediction.

5.2 ANALYZING METHOD’S CLASSIFICATION QUALITY

Using the generated data, we estimated the classification quality of the proposed approach. We
applied 5-fold stratified group cross-validation where different solutions of the same coding prob-
lem belonged to the same group. In this way, training and testing were performed always at non-
overlapping coding problems (prompts). The reported results are the mean and standard deviation
estimated over the 5 folds.

As baselines for comparison, we used XGBoost classifier trained on simple features: tokenized
prompt length, tokenized generation length, and mean log-probability of generated tokens Chen
et al.| (2021). Also, we trained a linear classification head on top of a frozen CodeT5-base|Wang et al.
(2021) encoder. Furthermore, we have adapted the Self-Eval Zhang et al.| (2024b) and Interrogate-
LLM |Yehuda et al.| (2024) to detect hallucinations in LLM-generated code and utilized them as
baselines as well. Finally, we utilize a combination of all features, i.e. tokenized prompt length,
tokenized generation length, mean log-probability and the proposed attention features, to train a
classifier (we refer to it ‘All Feat.” for brevity). Training details are provided in Appendix [B] Table[2]
presents the main results. Table [I2]in Appendix presents the additional results for the 32 — 34B
models.

In the majority of cases, the proposed classifier based on features of attention maps performed
significantly better than the baselines and demonstrated stable results for all models and datasets as
measured by ROC-AUC score. Further analysis revealed that some features made a high contribution
to the classification quality, see Figure[d Usage of additional features can both decrease and increase
the overall performance. Thus, we suppose the proposed attention features are strong enough to
capture the most important information for code hallucination detection.

Moreover, the classifier detects diverse failure modes: SyntaxError, ZeroDivisionError, NameError,
etc., across six categories (Section [5.6] Table [3)), confirming that the approach generalizes beyond
the prompt-insufficient attention failure mode.

Furthermore, we evaluate the proposed approach on Java (high resource), Go (medium resource),
Rust (low resource) and Lua (niche) programming languages of the HumanEval subdivision of the
MultiPL-E dataset [Cassano et al.| (2023)). Tables demonstrate that the performance of
the proposed approach is comparable to the main experiments. Also, we increase the linguistic
complexity of the prompt via two-shot prompts on MBPP dataset, see Table [T3] for the results.
Finally, for additional comparison with zero-shot classification via larger LLMs, see Appendix

*Licenses of pretrained models and benchmarks permit use for research purposes.

Under review as a conference paper at ICLR 2026

Table 2: Quality of code hallucination detection for HumanEval and MBPP datasets. Bold and
underline denote the first and second best results.

Model HumanEval MBPP
ROC-AUC F1-Score ROC-AUC F1-Score
StarCoder2-7B
Prompt Len. 54.5+6.6 24.64+11.2 51.2+23 40.0+3.8
Gen. Len. 57.7+5.6 13.5+ 4.8 57.7+0.9 454435
Mean Log. Prob. 709+1.3 324+48 62.0+20 475+34
CodeT5-base ft. 70.1+£7.1 33.34+10.1 585+35 43.3+9.0
Self-Eval 50.0 £2.9 0.0£0.0 58.9+2.6 0.0+0.0
Interrogate-LLM 63.9 + 2.1 48.1+4.2 58626 60.9+1.3
Attn. Feat. (ours) 829427 542469 819+24 684+5.3

All Feat. 83.7+41 575+79 818+21 687451
Codel.lama-7B

Prompt Len. 61.6 44 25.7+15.0 59.1+42 354+29

Gen. Len. 60.1 £5.3 106 7.0 60.8+25 24.2+5.3

Mean Log. Prob. 64.1+£2.0 254+6.2 61.0+3.7 27.2+1.5
CodeT5-base ft. 745+£63 43.6£132 61.7£3.0 191+7.1
Self-Eval 49.7+1.7 39.6+44 50.0£0.0 0.0+0.0
Interrogate-LLM 67.9+25 445+42 576+24 525+1.6
Attn. Feat. (ours) 85.6+39 564472 834+£33 64.0+44

All Feat. 85.7+38 579+97 838+20 652+4.3
DeepSeek-Coder-6.7B

Prompt Len. 56.2+46 444+43 525£25 56.4+3.6

Gen. Len. 57.9+24 344+£49 546+£19 594+1.3

Mean Log. Prob. 69.8+2.5 51.1+34 61.0+£19 623+1.6
CodeT5-base ft. 69.1+4.2 526465 55.7+3.0 64.8+2.7
Self-Eval 56.7 £ 2.5 0.0£0.0 51.1£+0.6 69.24+1.6
Interrogate-LLM 71.8+24 62.94+27 60.1+£51 69.0+1.8
Attn. Feat. (ours) 85.6 £2.8 68.9+££5.5 826+19 76.5+£2.7

All Feat. 86.4+27 693+53 831+12 770+1.3
Qwen2.5-Coder-7B

Prompt Len. 54.3+8.7 51.0£5.7 51.8+3.6 56.2+4.4

Gen. Len. 57.6 £3.6 48.9+5.1 55.6 £2.1 59.7+4.8

Mean Log. Prob. 63.1+24 556+55 61.5+13 60.4+1.8
CodeT5-base ft. 65.9 £ 3.7 58.2+4.5 56.0+ 1.3 65.2+2.0
Self-Eval 73.8+16 756+38 66.6+23 76.0+1.3
Interrogate-LLM 60.1 £3.7 65.7 5.1 55.0+ 1.8 68.3+2.1
Attn. Feat. (ours) 81.7 +2.8 70.24+42 822422 754+1.7

All Feat. 81.8+23 69.6+£3.0 823+20 76.7+1.7
Magicoder-S-DS-6.7B

Prompt Len. 57.3+54 T704£7.0 54.0£26 69.2+£3.0

Gen. Len. 52.5+21 763+£26 523+21 T14+24

Mean Log. Prob. 71.0£5.3 784+29 605+3.7 71.4+2.1
CodeT5-base ft. 64727 77527 61.0+£37 T748+14
Self-Eval 443+32 791+31 4924+14 T755+£24
Interrogate-LLM 65.3+2.1 79.6+3.1 59071 76.1+2.1
Attn. Feat. (ours) 82.3+49 80.7+36 81.5+16 806=L20
All Feat. 81.8+3.3 80.7+3.0 81.24+20 80.6L2.2

5.3 ANALYZING METHOD’S RANKING QUALITY

Next, we assess the usefulness of the proposed code hallucination classifier for ranking of code gen-
erations. For each problem, all generations were ranked via predicted probability of correctness and
one with the highest probability was selected. A baseline was random picking of a code generation.
The usage of a classifier is always significantly better by a pass@1 score, see Table[3]

Under review as a conference paper at ICLR 2026

Table 3: pass@1 scores for variants of ranking of code generations.

Model HumanEval MBPP

Random CIf. Prob. Random CIf. Prob.
StarCoder2-7B 286 £5.5 43.3+9.0 43.0+£3.6 49.6 4.6
CodeLlama-7B 26.0+5.1 39.7+72 352+£33 43.6+34

DeepSeek-Coder-6.7B 39.1+£49 56.7+74 53.0+25 61.4+23
Qwen2.5-Coder-7B 51.8+80 64.0+73 526£3.6 620+24
Magicoder-S-DS-6.7B 7254+ 10.0 74.3+6.1 61.4+34 64.8+21

Table 4: Transferability of code hallucination detectors. Each classifier was trained on HumanEval
(MBPP) dataset and tested on MBPP (HumanEval) dataset.

Model HumanEval - MBPP MBPP — HumanEval
ROC-AUC F1-Score ROC-AUC F1-Score
StarCoder2-7B

Prompt Len. 48.6 0.0 52.1 45.0
Gen. Len. 56.0 14.6 52.4 38.3
Mean Log. Prob. 63.7 36.2 71.8 45.4
CodeT5-base ft. 53.7 0.0 59.1 0.0
Attn. Features 67.5 0.14 67.2 25.5
Attn. Feat. (ours) + Mean. Log. Prob 71.0 24.0 61.7 15.7
CodeLlama-7B
Prompt Len. 51.7 0.0 53.4 429
Gen. Len. 61.5 4.2 50.0 41.0
Mean Log. Prob. 57.7 15.2 65.0 34.9
CodeT5-base ft. 54.9 0.0 62.4 0.0
Attn. Features 69.5 0.2 80.3 34.1
Attn. Feat. (ours) + Mean. Log. Prob. 72.3 15.1 79.0 34.9
DeepSeek-Coder-6.7B
Prompt Len. 48.0 15.6 52.2 58.2
Gen. Len. 55.3 414 54.0 51.3
Mean Log. Prob. 62.5 56.3 69.1 58.3
CodeT5-base ft. 53.4 0.0 55.9 57.4
Attn. Features 67.7 70.4 72.4 20.4
Attn. Feat. (ours) + Mean. Log. Prob. 68.0 71.0 72.5 22.6
Qwen2.5-Coder-7B
Prompt Len. 49.9 34.1 51.1 64.1
Gen. Len. 51.6 46.1 54.5 54.3
Mean Log. Prob. 60.3 60.4 64.7 60.8
CodeT5-base ft. 49.1 52.3 51.6 65.6
Attn. Features 70.6 63.3 64.2 54.3
Attn. Feat. (ours) + Mean. Log. Prob. 70.0 55.7 65.4 56.1
Magicoder-S-DS-6.7B
Prompt Len. 48.1 56.3 54.5 79.5
Gen. Len. 54.8 75.2 56.1 74.6
Mean Log. Prob. 63.7 74.9 69.8 76.5
CodeT5-base ft. 49.3 76.0 45.9 79.2
Attn. Features 73.5 78.4 56.9 37.6
Attn. Feat. (ours) + Mean. Log. Prob. 71.8 79.1 63.7 45.8

5.4 METHOD’S TRANSFERABILITY BETWEEN BENCHMARKS

We study further the transferability of the classifiers, based on topological features. In this setting,
hallucination classifiers for a fixed code LLM were trained on data for one benchmark (HumanEval,
MBPP) and evaluated on another, then repeated vise versa. Table 4] shows results: the proposed
classifiers are transferable, albeit the performance is lower when training and testing is done on the

Under review as a conference paper at ICLR 2026

3.5 1| 70 1 1 | 337 1
0 0 3.07
3.0 A 60 - 0 |30 0
2.5
2.5 A 50 - 2.5
2.0
2.0 A 40 2.0
157 30 154 1.5
1.0 20 107 1.0
0.5 10 1 0.5 1 0.5
0.0 T 10 T T 0.0 T ¢ 0.0 5 T .
0.0 0.5 1.0 0.0 0.1 0.2 0.0 0.5 1.0 00 0.5 1.0
MTDo(P,G),layer=1,head=17 MTD1(G,P),layer=2 head=25 MTDg(P,G) layer=15head=26 sum_diag(G) layer=15head=26
(a) HumanEval (b) MBPP

Figure 4: Distribution of classes (0-code is not correct, hallucination, 1-code is correct) vs. features
from attention maps. Some of the most discriminative features are presented. Features are normal-
ized with MinMaxScaler. Features come from CodelLlama-7B.

0.80
/ -
0.75

—— StarCoder2-7B —— StarCoder2-7B

0.65 CodelLama-7B 0.60 CodelLama-7B

—— DeepSeek-Coder-6.7B —— DeepSeek-Coder-6.7B
—— Qwen2.5-Coder-78 —— Qwen2.5-Coder-7B
0.60 1 —— Magicoder-S-DS-6.7B) —— Magicoder-5-DS-6.7B

0 20 40 60 80 100 0 20 40 60 80 100

(a) ROC-AUC vs. percentage of retained (b) ROC-AUC vs. percentage of retained
features, HumanEval. features, MBPP.

Figure 5: Analysis of feature importance of the proposed method, ROC-AUC.

same benchmark. The proposed attention features achieve better transferability in 70% of cases
as measured by ROC-AUC for both HE — MBPP and MBPP — HE transfer. Next, it is possible
to further improve the transferability by combining the proposed attention features with mean log.
probability of a generation. The combined classifier outperforms the Mean. Log. Prob. baseline
in 80% of cases. This indicates that these two approaches cover different aspects, and the proposed
attention features are indeed useful.

5.5 ANALYZING FEATURE IMPORTANCE

In its base setup, the proposed approach requires computation of attention features from attention
maps for all layers and heads. However, we observed that the trained XGBoost classifier experi-
enced a natural sparsity with only about 25% of meaningful features as measured by classifiers’
feature importance. To explore further the feature importance and feature selection, we followed
the two-stage pipeline. First, for a given sparsity level, we selected the most important features as
measured by feature importance of the classifier trained on all attention features simultaneously.
Second, we trained a new XGBoost classifier on the selected set of attention features. As indicated
by Figures the proposed feature selection procedure could retain only 5% of all attention fea-
tures without significant loss of classification quality highlighting that only a limited number of all
attention heads is relevant for the hallucination detection.

We carry out additional experiments benchmarks different programming languages (Python, Go,
Rust, Java) and find that topological features of some heads exhibit a high predictive performance
consistently across all programming languages, see Appendix [K]

Under review as a conference paper at ICLR 2026

Table 5: Performance of multi-classification of error types.

Model Accuracy F1-Score
StarCoder2-7B 0.7+0.02 0.68=£0.02
CodeLlama-7B 0.66 +0.02 0.62£0.02

DeepSeek-Coder-6.7B 0.7 £0.03 0.68 £0.04
Qwen2.5-Coder-7B 0.64+0.02 0.6 +£0.02
Magicoder-S-DS-6.7B 0.73 £0.02 0.71 £ 0.02

5.6 A FINE-GRAINED CLASSIFICATION OF ERROR TYPES

We carried out additional experiments to study the ability of the proposed approach to detect spe-
cific types of hallucinations. A Python exception can be considered as a hallucination type. Here
are the common exceptions from HumanEval and MBPP benchmarks: AssertionError, AttributeEr-
ror, IndentationError, IndexError, ModuleNotFoundError, NameError, RecursionError, SyntaxError,
TypeError, UnboundLocalError, ValueError, ZeroDivisionError, timed out

Therefore, we did multi-classification instead of binary classification in XGBoost. Table E] shows
results. Here is a breakdown of detection accuracy of particular types of errors for CodeLlama-7B:
AssertionError: 82.0%, IndexError: 97.8%, NameError: 75.7%, RecursionError: 100%, Syntax-
Error: 93.3%, TypeError: 80.6%, ValueError: 87.5%, ModuleNotFoundError, ZeroDivisionError,
UnboundLocalError, IndentationError, AttributeError, timed out : 80%. Some error types were
grouped together because of a very low frequency.

5.7 ABLATION STUDY

The proposed approach is based on the two types of attention features: the diagonal elements of
attention maps corresponding to a prompt and a generation, and topological features (MTD) com-
puted for the corresponding “attention graph” (see Section[d]for details). In this Section, we provide
an ablation study to estimate the contribution of each type of attention features. For this purpose, we
trained the XGBoost classifier using 1) only MTD features 2) only diagonal attention values 3) both
types of features (our initial setup). As demonstrated in Table [9]in Appendix, the DeepSeek-Coder-
6.7B and Qwen2.5-Coder-7B achieved the best performance when both types of attention features
were used for both HumanEval and MBPP datasets. In contrast, the best performance of StarCoder2-
7B and Magicoder-S-DS-6.7B was achieved with different sets of attention features dependent on
dataset and metric choices. In order to account for various information available via attention maps,
we propose to use both types of features as the most universal choice. Nevertheless, we note that
for some code LLM one certain type of attention features may result in better performance than
combination of both typeﬂ

6 CONCLUSIONS

In this paper, we have proposed a new hallucination detection approach for code-generating LLMs.
Our approach is based on the introspection of a LLM: we get attention maps for a prompt and gen-
eration and study their topology after transforming to weighed graphs. The proposed topological
features of these graphs are empirically shown to be relevant to detection of code hallucinations. A
classifier built on top of these features outperformed several baselines. These classifiers are trans-
ferable across coding benchmarks. The natural extension of our research is detection of specific
places of code with bugs, we leave it for a further research. We believe that our work may lead to a
wider application of code generating LLMs by making them more reliable. In a wider context, our
work contributes to study of interpretation and generalization in NLP models since hallucinations
and generalization ability are intrinsically tied.

5 Addition] ablation study in Appendix [[| shows that for small models (QwenCoder-1.5b, QwenCoder-3b),
and transfer learning setting, the differences in contribution of diagonal and MTD features is more pronounced.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

The source code to reproduce the presented results is provided in the supplementary material. Hy-
perparameters are either disclosed in the main text and Appendices [A] [B] or were equal to default
values in the code.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Serguei Barannikov, Ilya Trofimov, Grigorii Sotnikov, Ekaterina Trimbach, Alexander Ko-
rotin, Alexander Filippov, and Evgeny Burnaev. Manifold topology divergence: a
framework for comparing data manifolds. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Infor-
mation Processing Systems 2021, NeurlPS 2021, December 6-14, 2021, virtual, pp.
7294-7305, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
3bc31a430954d8326605fc690ed22f4d-Abstract.html.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and polyglot approach to bench-
marking neural code generation. IEEE Transactions on Software Engineering, 49(7):3675-3691,
2023. doi: 10.1109/TSE.2023.3267446.

Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental
and practical aspects for data scientists. CoRR, abs/1710.04019, 2017.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Daniil Cherniavskii, Eduard Tulchinskii, Vladislav Mikhailov, Irina Proskurina, Laida Kushnareva,
Ekaterina Artemova, Serguei Barannikov, Irina Piontkovskaya, Dmitri Piontkovski, and Evgeny
Burnaev. Acceptability judgements via examining the topology of attention maps. arXiv preprint
arXiv:2205.09630, 2022.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does BERT look
at? an analysis of BERT’s attention. Proceedings of the 2019 ACL Workshop BlackboxNLP, 2019.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
In Proceedings of the twenty-first annual symposium on Computational geometry, pp. 263-271,
2005.

Mohamed Elaraby, Mengyin Lu, Jacob Dunn, Xueying Zhang, Yu Wang, Shizhu Liu, Pingchuan
Tian, Yuping Wang, and Yuxuan Wang. Halo: Estimation and reduction of hallucinations in
open-source weak large language models. arXiv preprint arXiv:2308.11764, 2023.

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Vidhisha Balachandran, and Yulia Tsvetkov.
Don’t hallucinate, abstain: Identifying Ilm knowledge gaps via multi-llm collaboration. arXiv
preprint arXiv:2402.00367, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

10

https://proceedings.neurips.cc/paper/2021/hash/3bc31a430954d8326605fc690ed22f4d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3bc31a430954d8326605fc690ed22f4d-Abstract.html

Under review as a conference paper at ICLR 2026

Phu Mon Htut, Jason Phang, Shikha Bordia, and Samuel R Bowman. Do attention heads in bert
track syntactic dependencies? arXiv preprint arXiv:1911.12246, 2019.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Nan Jiang, Qi Li, Lin Tan, and Tianyi Zhang. Collu-bench: A benchmark for predicting language
model hallucinations in code. arXiv preprint arXiv:2410.09997, 2024.

Laida Kushnareva, Daniil Cherniavskii, Vladislav Mikhailov, Ekaterina Artemova, Serguei Baran-
nikov, Alexander Bernstein, Irina Piontkovskaya, Dmitri Piontkovski, and Evgeny Burnaev.
Artificial text detection via examining the topology of attention maps. arXiv preprint
arXiv:2109.04825, 2021.

Jenny T Liang, Chenyang Yang, and Brad A Myers. A large-scale survey on the usability of ai
programming assistants: Successes and challenges. In Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering, pp. 1-13, 2024.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, Li Zhang, Zhongqi Li,
and Yuchi Ma. Exploring and evaluating hallucinations in llm-powered code generation. arXiv
preprint arXiv:2404.00971, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances
in neural information processing systems, 32, 2019.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars
Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language
models with external knowledge and automated feedback. arXiv preprint arXiv:2302.12813,
2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Yuchen Tian, Weixiang Yan, Qian Yang, Qian Chen, Wen Wang, Ziyang Luo, and Lei Ma.
Codehalu: Code hallucinations in llms driven by execution-based verification. arXiv preprint
arXiv:2405.00253, 2024.

Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Serguei Baran-
nikov, Irina Piontkovskaya, Sergey Nikolenko, and Evgeny Burnaev. Topological data analysis
for speech processing. arXiv preprint arXiv:2211.17223,2022.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation, 2021. URL https:
//arxiv.org/abs/2109.00859.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with OSS-instruct. In Proceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 52632-52657.
PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.press/v235/wei24h.
html.

Yakir Yehuda, Itzik Malkiel, Oren Barkan, Jonathan Weill, Royi Ronen, and Noam Koenigstein.
Interrogatellm: Zero-resource hallucination detection in 1lm-generated answers. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 9333-9347, 2024.

11

https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html

Under review as a conference paper at ICLR 2026

Shaolei Zhang, Tian Yu, and Yang Feng. Truthx: Alleviating hallucinations by editing large lan-
guage models in truthful space. arXiv preprint arXiv:2402.17811, 2024a.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, Lifeng Jin, Linfeng Song, Haitao Mi, and
Helen Meng. Self-alignment for factuality: Mitigating hallucinations in llms via self-evaluation.
arXiv preprint arXiv:2402.09267, 2024b.

12

Under review as a conference paper at ICLR 2026

6 R M M M M O M M M M O M M M M M BN M M B B M B B BN M M B NN N M M N M NN M M M M M M M M W W e

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

P I T e
s s s s s s e .

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

Ueel, problem description
: for i in range(len(numbers) - 1): :
: for j in range(i+1, len(numbers)): 1
1 if abs(numbers[i] - numbers([j]) <= threshold: :
: return True i 1
' return False generation ,

Figure 6: Example of prompt (problem description) and model generation for the HumanEval
dataset.

EE E RS EEEEEEESEE RS SEESSEESEEEE RS ESEEEESEESEEEEEEEEEEEEEEE. .,
:You are an expert Python programmer, and here is your task: Write a function to find the *
1 similar elements from the given two tuple lists. Your code should pass these tests:
|]

: assert similar_elements((3, 4, 5, 6),(5, 7, 4, 18)) == (4, 5)

! assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)

: assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)
" [BEGIN]

" def similar_elements(test_tupl, test_tup2):

res = tuple(set(test_tupl) & set(test_tup2))

return (res)

I]

You are an expert Python programmer, and here is your task: Write a
remove first and last occurrence of a given character from the strin
pass these tests:

h
. Your code should

assert remove_Occ("hello","1") == "heo"
assert remove_Occ("abcda","a") == "bcd"
assert remove_Occ("PHP","P") == "H"

[BEGIN] problem description

s EEEEEEEEEE SRS S S S S EE S S S EEE S S S S S S ESE s EEEEEEsEsEEEesesmmme?
o M W W M m W MM mmEmmEmEEE Yy

def remove_Occ(s,c):

return s.replace(c,"',s.count(c)-1) i
[DONE] generation

- EEEEEEEEE SN S EEE NS EE NSNS NSNS SN I NS NN SRS EEEEEEE

eEEEEEEEEE - emmmm
*a

- em mmmmom®

o= mmy

L

Figure 7: Example of prompt (one-shot example and problem description) and model generation for
the MBPP dataset.

A DETAILS ON GENERATION PROCEDURE

We generated solutions for the coding problems with a temperature of 0.8. For the HumanEval
dataset, the maximum length of model output (i.e. input prompt + generation) was limited to 512 to-
kens. For the MBPP dataset, the maximum number of new tokens to generate was set to 256. Figures
[61 [7] provide examples of prompts and generations for HumanEval and MBPP datasets. We followed
the guidelinesﬂto post process the model output and extract the valid problem solution. To compute
attention features according to the proposed method in Section] we used the attention submatrix
corresponding to input prompt and valid problem solution. For computational experiments we used
NVIDIA TITAN RTX.

Ohttps://github.com/bigcode-project/bigcode-evaluation-harness

13

Under review as a conference paper at ICLR 2026

—— Probability of correctness —— Probability of correctness
0.4
0.2
0.0

T T T T T T T T T T T T T T T T T T T T

67 105 144 182 221 259 298 336 375 413 26 72 118 164 210 256 302 348 394 440

(a) Prompt length, tokens. HumanEval (b) Generation length, tokens. HumanEval

Figure 8: The individual conditional expectations for prompt and generation lengths, CodeLlama-
7B.

0.4 4 —— Probability of correctness

0.4 -
0.3 -
0.3
0.2 -
0.2 -
0.1+
0.0 —— Probability of correctness 0.1
) T
305 349 394 438 483 527 572 616 661 705 26 50 74 98 122 147 171 195 219 243
(a) Prompt length, tokens. MBPP (b) Generation length, tokens. MBPP

Figure 9: The individual conditional expectations for prompt and generation lengths, CodeLlama-
7B.

B DETAILS ON TRAINING PROCEDURE

For the code hallucination detectors, based on the XGBoost classifier training, we utilized the XG-
BClassifier with an approximation tree method “hist” from the XGBoost librar For the code
hallucination detector based on the embeddings from CodeT5-base, we used the pretrained frozen
CodeT5-base encoder with a trainable classification head consisting of 2 linear layers with hidden
dimensionality 768. The classification head was trained for 100 epochs with batch size 32 and
learning rate 3e — 5.

Self-Eval (Zhang et al.| [2024b) is a way to evaluate responses of an LLM using its internal knowl-
edge. Self-Eval extracts a list of atomic claims from the responses and then prompts an LLM itself
to validate the factuality of claims. Self-Eval is not directly applicable to Code LLMs since there
are no “facts” in code. However, we applied the core idea of Self-Eval by prompting Code LLMs
to evaluate the functional correctness of a generated code. Also, we have adapted Interrogate-LLM
(Yehuda et al. 2024) to hallucination detection in LLM-generated code. As an embedding model
we used CodeT5+ 110M Embedding model, K = 5 and a fixed temperature.

C METRICS USED FOR EVALUATION

In order to account for possible class imbalance, we use ROC-AUC and F1-Score to evaluate the
code hallucination detectors. We briefly introduce them below.

ROC curve demonstrates the quality of a binary classifier for all possible classification thresholds.
X-axis corresponds to False Positive Rate (FPR) and Y-axis corresponds to True Positive Rate (TPR)

that can be defined as follows: FFPR = FPZ%, TPR = FPTJr%, where TP — true positive

samples, FP — false positive samples, TN — true negative samples, FN — false negative samples.

"https://xgboost.readthedocs.io/en/latest/index.html

14

Under review as a conference paper at ICLR 2026

0.7
0.6 1

08 0.80
) 075

—0

0.5 1 —— StarCoder2-78 055 —— StarCoder2-7B
Codelama-7B Codelama-7B

—— DeepSeek-Coder-6.7B —— DeepSeek-Coder-6.7B

0.4 4 —— Qwen2.5-Coder-78 0.45 —— Qwen2.5-Coder-7B

—— Magicoder-S-DS-6.7B —— Magicoder-5-D5-6.7B

0 20 40 60 80 100 0o 20 40 60 80 100

(a) F1 vs. percentage of retained features, (b) F1 vs. percentage of retained features,
HumanEval. MBPP.

Figure 10: Analysis of feature importance of the proposed method, F1-score

ROC-AUC is defined as the area under the ROC curve. ROC-AUC of a random model is equal to
0.5, ROC-AUC of a perfect model is 1.

F1-score is a harmonic mean of Precision and Recall:

2

1 1

F = .
Precision + Recall

To study the ranking ability of the hallucinations detector, we used pass@1 metric. pass@1 is a
proportion of coding problems from a benchmark for which a Code LLM generated the correct
solution passing all the tests, with a restriction that only one solution (among 25 generations for
HumanEval and 5 for MBPP) is executed.

D EXAMPLES OF CROSS-BARCODES

Figure [[T] shows examples of Cross-Barcode for a fixed attention head. Cross-Barcode; (P, G) is
empty for these attention maps. Correct generations (a), (b) tend to have more and more Hy bars
than not-correct ones (c), (d).

Figure [12] shows examples of Cross-Barcode(, Cross-Barcode; for a fixed attention head. Correct
generations (a), (b) tend to have more and longer H; bars than not-correct ones (c), (d).

Attention maps for the correspondind head are shown in Figures[I3] [I4]

E EXPERIMENTS ON THE CLASSIFIER MODEL SELECTION

We carried out additional experiments with the feed-forward network (MLP), logistic regression,
and support vector classifier (SVC) instead of XGBoost as a hallucinations classifier (the rightmost
block in Figure [3). We used MLP with two hidden layers of size 256 and ReLU activations. This
configuration was selected after a moderate optimization of an architecture. For logistic regression
and SVC, we tuned the value of regularization strength. Table 6] presents results. MLP tends to have
lower ROC-AUC but sometimes it has higher Fl-score. While Fl-score is a threshold-dependent
metric, ROC-AUC integrates over all thresholds. In an unbalanced setting, ROC-AUC is often more
stable thus a classifier may have a higher ROC-AUC even when its Fl-score is lower. XGBoost
offers (a) strong average performance across all the code LLMs, (b) negligible training cost (= 30s
per fold), and (c) no hyper-parameter tuning in our setting. XGBoost guarantees a low computational
overhead while providing a single, robust baseline for subsequent work.

F A NOTE ON APPLICABILITY OF GNNS TO ATTENTION MAPS

To train a GNN-based approach on the graphs with edge weights obtained from attention matrices,
these attention matrices need to be stored. We can estimate the approximate memory footprint to
store attention matrices of size (seq_len_k)? for a model with n_layers and n_heads for a dataset of

15

Under review as a conference paper at ICLR 2026

40 40 4

w
=]
w
=]

g 2
L o
£ 201 £ 20
o o
8 &

10 1 10

0 — HO 01 — HO

0:0 0.‘1 0.‘2 0:3 0.‘4 0.‘5 0.‘6 0.‘0 0.‘1 0.‘2 0:3 0:4 0:5 0.‘6
£ (time) £ (time)
(a) Generation 1 (correct). (b) Generation 2 (correct).
40 40 -

w
=]
w
S

£ H
u v
£ 20 £ 20
o o
8 &
10 1 10
0 — HO 0 — HO
0:0 0.‘1 0:2 0.‘3 0.‘4 0.‘5 0.‘6 0.‘0 0:1 0:2 0:3 0.‘4 0.‘5
£ (time) £ (time)
(¢) Generation 3 (not correct, hallucination). (d) Generation 4 (not correct, hallucination).

Figure 11: Examples of Cross-Barcodey(P, G), CodeLLama-7B, HumanEval dataset, problem 14,
layer 4, head 18. Cross-Barcode; (P, G) is empty for these attention maps.

size N using the formula: n_layers x n_heads x s X Ele (seq_len_k)? where s is the size of the
float type. We assume s = 4 bytes. If one uses only attention matrices from the last layer of the
model, we obtain the memory footprint approximately 20.7 - 31.1 Gb for the Human Eval dataset
and 36.6 - 53.7 Gb for MBPP (depending on the model). However, to store the attention matrices for
all layers and all heads, the memory footprint is about 578.2 - 996.4 Gb for Human Eval and 1023.5
- 1718.7 Gb for MBPP. We highlight that even for datasets of moderate size (i.e. 4100 generations
for HumanEval and 2500 generations for MBPP), the memory footprint becomes prohibitively high.
Thus, it is not always feasible to store such features. In contrast, in our approach, we do not need to
store the attention matrices since we compute all the features immediately during generation. Hence,
the size of our training dataset is negligible. Moreover, our approach demonstrates high performance
without hyperparameter tuning. Therefore, we suppose the proposed approach has better scalability
and is more practical.

G ON DEFINITION OF A CODE HALLUCINATION

In our approach, the topological features obtained from attention maps account for dissimilar struc-
tures in the prompt and generation subsets. Our intuition is that a correct solution should correspond
to the prompt’s structure as their high-level semantic meanings correspond. While other reasons
behind the hallucinations are possible, our approach estimates the code correctness based only on
the model’s internal information flow not requiring additional resources. Nevertheless, the proposed
approach can be further integrated with other tools of code hallucination detection to achieve better
performance. Also, the most popular benchmarks like HumanEval and MBPP check only functional
correctness, that is, whether a code solves the corresponding problem as it is stated in a prompt. The
verification of a code is done by running functional tests, as explained in Section[5.1]

16

Under review as a conference paper at ICLR 2026

100 A ——— 100 A

80

204 201

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
£ (time) € (time)

(a) Generation 1 (correct). (b) Generation 2 (correct).

100 -

80 4

60 1

segment
segment

40

204

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
£ (time) £ (time)

(¢) Generation 3 (not correct, hallucination). (d) Generation 4 (not correct, hallucination).

Figure 12: Examples of Cross-Barcode((G, P), Cross-Barcode; (G, P). CodeLLama-7B, HumanEval
dataset, problem 14, layer 15, head 5.

H LIMITATIONS

Although we have achieved good experimental results, we realize that our research have several
limitations. Our method targets hallucinations that manifest in the model’s attention geometry; it
does not disentangle all root causes (e.g. spurious pre-training correlations, decoding drift, RLHF
bias). Extending the analysis to those factors is left for future work. We mostly explored code
LLMs having no more than 7B parameters. Information in larger models are more distributed in
attention heads and results might differ. Also, processing more attention heads is computationally
costly. Next, the proposed classifiers of hallucinations are based on the attention maps of the same
code LLMs as for code generations. We leave more general setting to a further research. Finally,
our approach can predict whether a code is correct as a whole but can not point to a specific place
with a bug.

I ADDITIONAL ABLATION STUDY

Our main argument in the Ablation study is that different models benefit from different types of
attention features. In this section, we provide additional evaluation to further support our claim.
We observe that the smaller QwenCoder-1.5b and QwenCoder-3b models experience substantial
performance decrease when removing the topological features, see Table[7} To further support our
observations, we provide some examples of transferability from MBPP to HE datasets where the
contribution of diagonal and MTD features is different for different models, see Table Therefore,
we propose to account for both types of features in our approach or at least be aware of potential
benefits of using each type.

17

Under review as a conference paper at ICLR 2026

-10 -10
-08 -0.8

- 0.6 -0.6
-04 -0.4
I 02 Ioz
0.0 0.0

prompt prompt

prompt
prompt

(a) Generation 1 (correct). (b) Generation 2 (correct).
-10 -10
-0.8 -0.8
- 0.6 - 0.6
- 0.4 -0.4
0.2 I 0.2
£
8 —
a [=%
E 3
]
a
0.0 0.0
prompt prompt
(c¢) Generation 3 (not correct, hallucination). (d) Generation 4 (not correct, hallucination).

Figure 13: Attention maps. CodeL.Lama-7B, HumanEval dataset, problem 14, layer 4, head 18.

J EXPERIMENTS WITH LARGER MODELS

We carried out additional experiments, where code hallucinations are detected by a recent reasoning
DeepSeek R1 model having 671 billion parameters with Chain of Thought inference on MBPP
dataset. We used the following prompt:

You are provided with two coding tasks with solutions. The first one is just an example and it does
not need an assessment. Tell whether the second task is correctly solved by the code provided in the
second [BEGIN] [DONE] block. The answer must be Yes or No

For code generated with DeepSeek-6.7B model, we prompted DeepSeek R1 using the prompt above,
extracted the final answers (i.e. “Yes” or “No”) from the generated responses and trained XGboost
classifier using these features. The quality of hallucination detection via such zero-shot prompting
is in Table [I0} row “DeepSeek R1, (671B model)”. Quality of the proposed approach is in Table
110} row “Attn. Feat (ours, from 6.7B model)”. Note that in this case we use only attention features
from DeepSeek-6.7B model obtained during code generation. Finally, we combine both type of
features to train a classfifier and report its performance in Table [I0] row “Attn. Feat. (ours, from
6.7B model) + DeepSeek R1”. The larger DeepSeek R1 model demonstrates a higher performance
than the classifier trained on attention features. However, by adding an output of DeepSeek R1
to our attention-based features and training XGBoost classifier we can achieve the best ROC-AUC
score. Study of DeepSeek R1’s Chain of Thoughts shows that this LLM is doing verification of
code by interpreting Python code step by step for unit tests. This can explain the high accuracy of
Deep Seek R1. At the same time, our method opens opportunities for deeper understanding of inner
working and information flow inside transformer models. Our attention features were based on a

18

Under review as a conference paper at ICLR 2026

prompt

- L0
-08
- 0.6
- 0.4

0.0

prompt

(a) Generation 1 (correct).

prompt

-L0
-0.8

- 0.6

- 0.4
|oz
0.0

prompt

(b) Generation 2 (correct).

prompt

prompt

-10
-0.8
- 0.6
- 0.4

0.0

prompt

-10
-0.8

- 0.6

- 0.4
|oz
0.0

prompt

(¢) Generation 3 (not correct, hallucination). (d) Generation 4 (not correct, hallucination).

Figure 14: Attention maps. CodeL.Lama-7B, HumanEval dataset, problem 14, layer 15, head 5.

small 6.7B model in this experiment, however, our features were able to improve the performance
of DeepSeek R1.

Additionally, we perform similar experiment with QwenCoder2.5-32B. In this case, we use the same
QwenCoder2.5-32B to generate code, extract attention features and evaluate its performance with
zero-shot prompting. Table [1 1| provides the experimental results. The proposed approach is able
to achieve better detection quality than zero-shot prompting which supports the applicability of the
proposed approach to larger models.

K ADDITIONAL RESULTS ON CONTRIBUTION OF INDIVIDUAL HEADS

We carry out additional experiments with 7B-models and MultiPL-E benchmarlﬁ which is a transla-
tion of HumanEval to several popular programming languages; we used Go, Java, Rust, Lua among
them. We find that features of some heads has quite high correlation with target value (presence of
a hallucination) and can be used as individual predictors. We report in Table [14|ROC AUC scores
of the top-performing features.

8https://github.com/nuprl/MultiPL-E

19

Under review as a conference paper at ICLR 2026

Table 6: Ablation study for the choice of a classification model for code hallucination detection.

Model HumanEval MBPP
ROC-AUC F1-Score ROC-AUC F1-Score
StarCoder2-7B

XGBoost 829+27 5424+69 819£24 684=£5.3
MLP 80.9+4.7 60.7+£76 81.1+£1.7 68.7£3.0
Logistic Regression 84.34+3.9 64.2+80 829+23 69.7+34
SvC 849+40 656+74 823+£26 69.1+44
CodeLlama-7B
XGBoost 85.6+39 564+72 834+33 640+44
MLP 81.8+72 581+11.8 81.6+£22 644156
Logistic Regression 81.8+7.1 582+79 826+2.1 63.6+4.7
SvC 83.2+54 598+92 824+£12 609+4.6
DeepSeek-Coder-6.7B
XGBoost 85.6+28 689455 826+19 76.5+27
MLP 84.3+24 69639 81.7£11 T48%£1.9
Logistic Regression 85.8+3.2 71.1+4.7 81.84+24 75.7+22
SvC 87.0+24 729+37 814+£16 T752£1.7
Qwen2.5-Coder-7B
XGBoost 81.7+£28 702+42 822+22 T754+£1.7
MLP 81.3+16 70.8+25 T795+£2.0 T729+£3.0
Logistic Regression 80.0+1.6 71.3+£3.8 81.0+19 759+£2.0
SvC 79.6+1.7 689+£24 81.0x17 76.7L£3.3
Magicoder-S-DS-6.7B
XGBoost 823+49 80.7+36 Tr8E£25 T734+34
MLP 76.5+33 T789+£18 786+36 73.3+35
Logistic Regression 81.7+1.6 81.6+24 81.3+£28 821+1.7
SvC 80.5+24 820+31 825+26 81.3+1.9

Table 7: HumanEval and MBPP features ablation for smaller models.

Model HumanEval MBPP
ROC-AUC F1-Score ROC-AUC F1-Score
QwenCoder2.5-1.5b
Attn. Feat. (ours) 85.9+4.1 581+96 828+14 592+2.7
- w/o Diag. Feat. 85.0+3.8 57.6+£6.8 82.14+1.8 58.6+4.2
-w/o MTD Feat. 82.94+39 53.6+108 795+1.5 57.0+4.5
QwenCoder2.5-3b

Attn. Feat. (ours) 80.4+6.6 65.5+85 78.0+3.0 73.3+3.6
- w/o Diag. Feat. 79.0+6.1 67.24+64 79.6+3.0 74.8+3.9
-w/o MTD Feat. 7494+44 59.0+5.7 755422 71.0+3.1

Table 8: MBPP transferability ablation.

Method DeepSeek-Coder-6.7b QwenCoder2.5-3b StarCoder2-7b
Attn. Feat. (ours) 72.4 65.6 67.2
- w/o Diag. Feat. 71.3 67.4 64.2
- w/o MTD Feat. 63.5 61.3 66.8

20

Under review as a conference paper at ICLR 2026

Table 9: HumanEval and MBPP features ablation

Model HumanEval MBPP
ROC-AUC F1-Score ROC-AUC F1-Score
StarCoder2-7B
Attn. Feat. (ours) 82.9+2.7 542+69 81.9+24 684153
- w/o Diag. Feat. 82.2+45 56.1£9.7 805+28 66.3+5.3
-w/o MTD Feat. 83.8+2.7 525+84 81.1£26 67.7%+5.0
CodeLlama-7B
Attn. Feat. (ours) 85.6 +3.9 56.4 + 7.2 83.4+2.2 64.0+44
- w/o Diag. Feat. 83.5 £4.8 50.0 £ 6.5 81.5+2.6 60.24+4.2
-w/o MTD Feat. 85.5+44 583+10.1 835+18 63.9+4.3
DeepSeek-Coder-6.7B
Attn. Feat. (ours) 85.6+28 689+55 826+19 765127
- w/o Diag. Feat. 85.1 £2.2 67.0+5.9 81.3+2.6 749432
-w/o MTD Feat. 84.4+ 2.2 67.1+ 3.8 822+17 759417
Qwen2.5-Coder-7B
Attn. Feat. (ours) 81.7+28 70.2+42 822+22 754+1.7
- w/o Diag. Feat. 80.6 2.3 68.9+ 3.9 80.8+21 754+04
-w/o MTD Feat. 78.9+ 1.9 66.4+ 1.4 76.9+22 71.6+1.7
Magicoder-S-DS-6.7B

Attn. Feat. (ours) 82.3 +4.9 80.7 + 3.6 81.5+1.6 80.6+20
- w/o Diag. Feat. 79.8 £2.7 81.1+1.8 81.2+19 80.1+1.4
-w/o MTD Feat. 82.1+34 81.6+26 803+25 79.7+22

Table 10: MBPP features for larger models. See Sectionfor details.

Method ROC-AUC
DeepSeek-Coder-6.7B

Attn. Feat (ours, from 6.7B model) 82.6 £1.9

DeepSeek R1 (671B model) 92.3+1.1

Attn. Feat. (from 6.7B model) + DeepSeek R1 (671B) 95.1 £ 0.7

Table 11: HumanEval features for larger models. See Section E] for details.

Method ROC-AUC
QwenCoder2.5-32B
Attn. Feat (ours) 85.0 £2.7

Zero-shot prompt 67.4 £ 3.5

F1-Score

77.0+£5.5
71.8+£3.6

21

Under review as a conference paper at ICLR 2026

Table 12: Code hallucination detection for HumanEval dataset for larger models. For each task, 10
candidate solutions were generated. Bold and underline denote the first and second best results.

Method ROC-AUC F1-Score
CodeLlama-34B

Prompt Len. 57.3£6.3 37.7+13.6

Gen. Len. 62.8+1.8 38.24+4.0

Mean Log. Prob. 74.1£50 51.8£7.6
CodeT5-base ft. 54.7 £5.5 0.0£0.0
Attn. Feat. (ours) 83.2 4+ 3.8 62.5+7.1

All. Feat. 84.8+28 628+6.7
Qwen2.5-Coder-32B

Prompt Len. 53.24+9.2 5344128

Gen. Len. 58.0+3.1 62.5£3.8

Mean Log. Prob. 65.8+4.8 63.6 £2.8
CodeT5-base ft. 53.3+4.5 59.54+15.2
Attn. Feat. (ours) 85.0+2.7 77.0+5.5

All. Feat. 849+3.1 77757
DeepSeek-Coder-33B

Prompt Len. 53.3£6.5 44.0£5.3

Gen. Len. 56.6 £4.2 482+34

Mean Log. Prob. 66.4+3.4 57.14+29
CodeT5-base ft. 57.6 +3.9 1.1£+2.2

Attn. Feat. (ours) 88.04+2.9 77.94+2.2
All. Feat. 889+28 786+3.1

Table 13: Code hallucination detection with attention features for MBPP dataset with increasing
complexity of prompt: two-shot prompts.

Method ROC-AUC F1-Score
Qwen2.5-Coder-7B

Prompt Len. 53.0£29 602=£1.5

Gen. Len. 56.9+ 3.3 63.2+20

Mean Log. Prob. 58.1+2.6 61.1£3.3
Attn. Feat. (ours) 78.3+3.1 742+1.8
All. Feat. 76.7T+£27 T722+£21
Self-Eval 68.4+10 77.4+24
Interrogate-LLM 56.6 £1.5 69.1£2.1
DeepSeek-Coder-6.7B
Prompt Len. 56.0£2.0 58.0£24
Gen. Len. 544+13 59.6+£1.6
Mean Log. Prob. 64.9+1.7 642+24
Attn. Feat. (ours) 81.4+2.2 75.0+£5.3
All. Feat. 80.4+0.7 745426
Self-Eval 50.0+£0.0 69.3£5.1
Interrogate-LLM 61.1 £3.1 69.4£5.2

22

Under review as a conference paper at ICLR 2026

Table 14: ROC AUC scores of top-performing features across several benchmarks.

Feature HumalEval MBPP
Python Go Rust Java Lua Python
StarCoder2-7B
avg. prompt’s self-attention, layer 14, head 0 70.8 76.8 746 689 703 55.2
avg. prompt’s self-attention, layer 15, head 5 71.1 784 751 729 724 581
avg. prompt’s self-attention, layer 23, head 20 69.2 722 742 64.7 67.7 50.7
CodeLlama-7B
-MTD; (P, G)/|P], layer 15, head 27 67.6 71.1 737 710 - 66.1
avg. prompt’s self-attention, layer 7, head 22 746 757 765 69.7 - 63.1
MTDy (P, G)/|P|, layer 11, head 23 69.1 71.0 719 654 - 69.1
DeepSeek-Coder-6.7B
MTDy (P, G)/|P], layer 30, head 11 67.5 65.7 67.0 66.3 69.1 58.1
avg. prompt’s self-attention, layer 12, head 17 65.0 73.6 70.0 69.8 69.8 58.2
avg. prompt’s self-attention, layer 12, head 23 64.1 71.0 66.8 644 67.6 58.2
Qwen2.5-Coder-7B
avg. generation’s self-attention, layer 24, head 2 ~ 65.8 60.2 58.8 60.2 66.7 60.8
MTDy(P, G)/|P|, layer 11, head 5 66.2 68.8 59.5 61.6 727 594
avg. prompt’s self-attention, layer 9, head 26 65.4 75.8 66.9 67.0 T1.1 61.0
Magicoder-S-DS-6.7B
MTDy (P, G)/|P], layer 30, head 11 68.8 70.2 60.0 651 63.8 @ 58.2
avg. prompt’s self-attention, layer 13, head 13 63.1 649 69.0 673 632 588
avg. prompt’s self-attention, layer 12, head 17 63.0 63.2 68.0 67.1 60.8 58.9

Table 15: Characteristics of generated data, Pass@1. For each problem, we generated 25 candidate
solutions for HumanEval, Python, 10 candidate solutions for HumanEval, Java, Go, Rust, Lua, and

5 candidate solutions for MBPP.

Model HumalEval MBPP
Python Java Go Rust Lua Python
StarCoder2-7B 289 245 175 209 191 428
CodeLlama-7B 259 258 176 20.8 0.0 35.2
DeepSeek-Coder-6.7B 40.3 33.5 23.6 28.7 16.6 52.6
Qwen2.5-Coder-7B 478 227 119 226 235 521
Magicoder-S-DS-6.7B 65.5 48.9 403 442 346 61.3

Table 16: Performance of the proposed method on different programming languages, ROC-AUC.

Model Java Go Rust Lua
StarCoder2-7B 82.7+49 86.5+3.6 82.4+£52 820+35
CodelLlama-7B 76.8 6.1 81.9+6.2 77.5+10.8 -
DeepSeek-Coder-6.7B 84.9+4.2 84.7+29 828+7.1 86.7+£4.3
Qwen2.5-Coder-7B 82.6+4.1 91.84+09 &87.3+2.6 90.2+3.0
Magicoder-S-DS-6.7B 77.8 £4.5 80.84+2.0 75.1+£59 79.0+3.2

Table 17: Performance of the proposed method on different programming languages, F1-Score.

Model Java Go Rust Lua
StarCoder2-7B 50.4+7.6 397119 36.5+9.2 39.0 £ 8.7
Codel.lama-7B 36.4+20.6 26.5+10.2 34.8+17.3 -
DeepSeek-Coder-6.7B 64.1 +4.5 53.2+87 56.8+£6.6 41.6+15.1
Qwen2.5-Coder-7B 45.84+9.6 37.6+11.5 49.9+6.9 64.6 7.9
Magicoder-S-DS-6.7B 68.0 4.9 63.3 2.0 63.1 = 8.7 58.4 +6.7

23

	Introduction
	Related work
	Background
	Transformer-based LLMs
	Representing an attention map by a weighted graph
	Manifold Topology Divergence

	Methods
	Experiments
	Generation of datasets
	Analyzing method's classification quality
	Analyzing method's ranking quality
	Method's transferability between benchmarks
	Analyzing feature importance
	A fine-grained classification of error types
	Ablation study

	Conclusions
	Reproducibility statement
	Details on generation procedure
	Details on training procedure
	Metrics used for evaluation
	Examples of Cross-Barcodes
	Experiments on the classifier model selection
	A note on applicability of GNNs to attention maps
	On definition of a code hallucination
	Limitations
	Additional ablation study
	Experiments with larger models
	Additional results on contribution of individual heads

