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Abstract

Pre-training large language models (LLMs) ne-
cessitates enormous diverse textual corpora,
making effective data selection a key chal-
lenge for balancing computational resources
and model performance. Current methodolo-
gies primarily emphasize data quality met-
rics and mixing proportions, yet they fail
to adequately capture the underlying seman-
tic connections between training samples and
quality disparities within individual domains.
We introduce ToReMi (Topic-based Reweight-
ing for Model improvement), a novel two-
stage framework that dynamically adjusts train-
ing sample weights according to their topical
associations and observed learning patterns.
Our comprehensive experiments reveal that
ToReMi variants consistently achieve superior
performance over conventional pre-training ap-
proaches, demonstrating accelerated perplex-
ity reduction across multiple domains and en-
hanced capabilities on downstream evaluation
tasks.

1 Introduction

Large language models (LLMs) typically undergo
pre-training on extensive corpora derived from het-
erogeneous sources of varying quality (Gao et al.,
2020; Soldaini et al., 2024; Penedo et al., 2023).
As model parameters and pre-training datasets
continue to scale (Kaplan et al., 2020; Hoffmann
et al., 2022), the pre-training phase has emerged
as the critical determinant of an LLM’s founda-
tional knowledge acquisition and reasoning capa-
bilities (Zhou et al., 2023). Consequently, system-
atic optimization of pre-training data constitutes
a fundamental technical challenge in developing
high-performance LLMs.

Current pre-training data optimization method-
ologies primarily address two complementary di-
mensions: quality assessment and distribution op-
timization. Both approaches aim to maximize the
utility of pre-training data by prioritizing valuable
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Figure 1: The framework of ToReMi, a two-stage, topic-
based reweighting method for dynamic pre-training data
selection and model improvement. During each training
interval, training samples are reweighted based on their
topic labels and previous training dynamics.

content while mitigating potentially detrimental
samples. Conventional pre-processing pipelines in-
corporate language identification, corpora filtration,
deduplication, and noise reduction (Soldaini et al.,
2024; Penedo et al., 2023; Albalak et al., 2024).
Quality assessment mechanisms predominantly uti-
lize rule-based heuristics and supervised classifica-
tion models (Raffel et al., 2023; Rae et al., 2022;
Longpre et al., 2023), while distribution optimiza-
tion refines corpus composition through calibrated
domain ratio adjustments and strategic sampling
techniques (Xie et al., 2023a; Du et al., 2022; Sol-
daini et al., 2024; Thrush et al., 2024) to enhance
model generalization capabilities.

Despite these advancements, constructing opti-



mal pre-training datasets presents persistent chal-
lenges. Quality assessment approaches based on
rules and classifiers remain inherently constrained
by subjective annotation biases and limited training
samples, effectively filtering only conspicuously
low-quality content while failing to discern sub-
tle quality variations (Wenzek et al., 2019; Xie
et al., 2023b). Similarly, current distribution opti-
mization techniques employ relatively rudimentary
methods, primarily validating effectiveness through
proportional adjustments across topical or domain
categories without adequately addressing intrinsic
semantic relationships or dynamic training require-
ments (Xie et al., 2023a; Du et al., 2022). These
limitations collectively impede improvements in
pre-training efficiency and model performance.

To address these limitations, we investigate
a fundamental research question: How can pre-
training dynamically prioritize high-quality data
while accounting for both latent semantic re-
lationships within the corpus and intra-domain
quality variations? We propose a two-stage
Topic-based Reweighting framework for Model
improvement (ToReMi) in response to these chal-
lenges. ToReMi’s innovation lies in its collective
weight adjustment mechanism operating on topic
categories. Rather than optimizing individual sam-
ple weights, ToReMi dynamically recalibrates all
the samples of the same topic categories based
on the aggregate performance of constituent sam-
ples during pre-training. The framework operates
through two sequential phases: (1) During initial
training, the system assigns elevated weights to
challenging topic categories, prioritizing the learn-
ing of these hard samples; (2) Subsequently, the
system progressively attenuates weights for under-
performing topic categories (potentially containing
higher noise concentrations) to minimize interfer-
ence effects. Through this topic-level collective ad-
justment strategy, ToReMi optimizes pre-training
data distribution without additional computational
overhead while providing interpretable analysis of
topic-specific training impact through weight tra-
jectory feedback.

To rigorously evaluate ToReMi’s efficacy, we
conducted comprehensive experiments using the
GPT-2 architecture (Raffel et al., 2023; Rae et al.,
2022). The experimental corpus comprised 2.6B
tokens of curated Wikipedia content, semantically
partitioned into 39 topics through large language
model annotation. Experimental results demon-
strate that ToReMi consistently outperforms both

standard pre-training protocols and enhanced noise-
resistant baselines in log perplexity evaluations on
the Paloma corpus (Gao et al., 2020). In noise-
injection experiments, ToReMi achieved 1.9%
average performance improvements on GLUE
benchmarks compared to standard pre-training ap-
proaches (Longpre et al., 2023). Further robustness
analysis confirms that ToReMi maintains perfor-
mance advantages across varied hyperparameter
configurations, demonstrating methodological sta-
bility and adaptability.

2 Related Work

2.1 Pretraining Data Filtering

Pre-training data filtering has been extensively stud-
ied to enhance model performance and training effi-
ciency (Liu et al., 2024; Albalak et al., 2024). Com-
mon steps typically include language filtering (Lau-
renon et al., 2023; Chowdhery et al., 2022), qual-
ity filtering (Raffel et al., 2023; Rae et al., 2022),
content filtering (Xu et al., 2021; Longpre et al.,
2023), and deduplication (Hernandez et al., 2022;
Lee et al., 2022). Filtering methods generally fall
into two categories: heuristic-based and classifier-
based. Heuristic methods use manually designed
rules derived from corpus characteristics (Penedo
et al., 2023; Laurenon et al., 2023; Raffel et al.,
2023), while classifier-based methods train classi-
fiers to assign quality scores (Brown et al., 2020;
Gao et al., 2020; Xie et al., 2023b). Deduplica-
tion, on the other hand, typically uses hash-based
techniques (Bloom, 1970; Wenzek et al., 2019)
for exact matching and model-based methods (Ab-
bas et al., 2023) for approximate matching. While
these approaches significantly improve corpus qual-
ity, their static nature hinders dynamic adjustments
during training, making them prone to discarding
valuable data (Muennighoff et al., 2023) and intro-
ducing biases (Gururangan et al., 2022; Longpre
et al., 2023; Dodge et al., 2021).

2.2 Pretraining Data Mixing

Pre-training datasets are often sourced from di-
verse domains, making effective data mixing strate-
gies essential for maximizing their utility. Fixed
data mixing proportions, commonly used in prac-
tice (Gao et al., 2020; Rae et al., 2022; Touvron
et al., 2023; Soldaini et al., 2024), often rely on
intuition and heuristics, such as upsampling high-
quality domains like academic texts. To automate
this process, (Xie et al., 2023a) trains a reference



model to guide proxy model training by minimiz-
ing worst-case excess loss, while (Fan et al., 2024)
learns domain weights that maximize proxy model
generalization to target domains. However, the
static nature of these methods hinders their adapt-
ability to evolving training dynamics, while the
need to train multiple models further reduces their
efficiency. To address these limitations, online data
mixing strategies have been proposed. ODM (Al-
balak et al., 2023) dynamically adjusts domain
weights at each iteration to prioritize domains that
reduce perplexity most effectively. Skill-it (Chen
et al., 2023) accelerates skill acquisition by lever-
aging the inherent order of prerequisite skills in
the data. Additionally, (Ye et al., 2024) introduces
data mixing laws to predict model performance
for different data mixtures. While these methods
focus on inter-domain data mixing, intra-domain
mixing of diverse data characteristics remains un-
derexplored.

3 Topic-Based Reweighting for Model
Improvement (ToReMi)

In this section, we introduce ToReMi (Figure 1), a
two-stage topic-based reweighting framework for
dynamic pre-training data selection and model im-
provement, which adjusts sample weights based on
their topic labels and model’s training dynamics.

3.1 Preliminary

Training dynamics refer to statistical and perfor-
mance metrics monitored throughout the model’s
training process, where high loss or prediction un-
certainty is often used to identify challenging or
noisy samples (Thakkar et al., 2023; Jiang et al.,
2019; Swayamdipta et al., 2020). In this work, we
track training loss to guide dynamic data reweight-
ing and selection. In specific, pre-training dataset
2 consists of .4 samples {xj,x2,...,xy}, where
x; = {text, £} and .Z; = {{1,4,, ...} denotes topic
labels assigned to sample x;. Let £ = Ui-vzl % de-
note the total set of all unique topic labels in the
dataset. For each topic label ¢; € .Z, an associated
weight wy, is assigned, and initially, all weights are
uniformly set to 1.

In LLM pre-training, for each sample x; with
ground truth y;, the training sample loss L(x;) is
computed using the cross-entropy loss between the
model’s predicted probability distribution and the

target ground truth labels, which is calculated as:

1 T
L(xi) = =7 Y logP(y: | %,0) (D)
t=1

where T is the sequence length of x;.

For a specific label ¢ € .Z, the training label loss
Ly is defined as the average loss over all samples
containing ¢, which is calculated as:

1
Ly=— L(x;) 2)
7.k,
where 9y = {x; € 7 : { € £} is the subset of sam-
ples tagged with £. The average label loss L & is:

1
— Y L 3)

Ly =
’j’ e

3.2 ToReMi: Topic-Based Reweighting

As a two-stage topic-based reweighting framework,
ToReMi aims to prioritize high-quality and impact-
ful data while minimizing the influence of noisy or
less relevant data. Reweighting is an effective ap-
proach for online data selection, as it dynamically
adjusts the influence of individual samples during
training, offering nuanced control without the need
to exclude data outright. Prior work (Thakkar et al.,
2023) computes the squared norm of a sample’s
gradient, showing that in the early stage of training,
samples with higher scores are key contributors
to the model’s learning, while in later stage, such
samples are more likely to represent noise or out-
of-domain data. Since samples with higher training
loss generally produce larger gradients, ToReMi
simplifies the process by monitoring training loss
directly.

In the first stage, ToReMi focuses on samples
with high training loss, prioritizing their learning
to help the model efficiently acquire diverse and
foundational knowledge. To incorporate topic-level
associations, sample weights are adjusted based on
their relative topic weights. Specifically, the entire
training process is divided into multiple fixed train-
ing intervals {¢1,5,,...,77}. Over a fixed training
interval ¢, for each topic ¢ trained during ¢, we com-

pute the training label loss Lg)

(1)

the average label loss L fg) across all topics within
the interval. In the subsequent interval 7 + 1, the
sample loss is adjusted using the weight:

for the topic and

Wg == .
1 otherwise

“

0 {min(wg—1>+a.ALgf>,B) if 1) > L)



where ALE’) = Lg) — Lg} is the difference between
the topic’s loss and the average label loss. « is
a scaling factor controlling the adjustment magni-
tude. B is the upper limit for label weights, prevent-
ing excessive upweighting and maintaining training
stability. The weighted sample loss is calculated
by:

L () = min([Twl”, B) - LV (), L€.%

(&)
The weighted loss is then utilized for backpropaga-
tion, enabling the model to dynamically adapt its
training focus.

In the second stage, the focus transitions to min-
imizing the impact of noisy data while further pri-
oritizing high-quality samples. The label weights
are adjusted as follows:

e min(wg_l) +o -ALé’),[i ) otherwise

(6)
where 7 is the lower limit for label weights to en-
sure sufficient representation of all labels. Then,
the weighted sample loss is calculated as described
in the first stage and utilized in backpropagation to
guide the training process. The complete algorithm
is presented in Algorithm 1.

© {max(wgl)_a.ALgﬂ, ) i) > 1Y)

4 Topic Annotation

Pre-training datasets are vast and encompass a wide
range of topics and domains. However, the scarcity
of datasets with predefined topic labels makes it dif-
ficult to directly leverage labeled data for effective
training. Thus, we propose two methods for anno-
tating topic labels to each sample within general
pre-training corpora.

Given the growing volume of data and the com-
putational costs, clustering algorithms are first ap-
plied to group similar samples based on their se-
mantic features. After forming the clusters, the
generative capabilities of LLMs are utilized to as-
sign meaningful topic labels. This process involves
extracting representative keywords from each clus-
ter, which are then used to generate topic labels
through LLMs. Specifically, there are two strate-
gies: one where the LLM generates abstract and
customized labels directly from the keywords, and
another where it selectes the most relevant labels
from a predefined taxonomy of topics. The first
strategy, Cluster&Generate, enables the creation
of customized topic labels, which offers flexibility
and makes it particularly useful for datasets that do

not align with existing classification systems. In
contrast, the second strategy, Cluster&Select, maps
clusters to an existing taxonomy, ensuring consis-
tency and standardization across diverse datasets.

S Experiments

5.1 Experimental Setup

Dataset and Model The pre-training dataset is
sampled from Dolma-v1_5-sample (Soldaini et al.,
2024), a high-quality English-only corpus curated
from diverse sources. Input sequences consist of
1024 consecutive tokens randomly sampled from
the dataset. Due to computational constraints, we
pre-train GPT-2 (Radford et al., 2019) models from
scratch, focusing on the 124M parameter variant
trained on 2.6B tokens in this work. Additionally,
we curate a 30B token subset to support future
research, including experiments with the largest
GPT-2 models (GPT-XL which contains 1.5B pa-
rameters) for compute-sufficient teams. This setup
aligns with the Chinchilla-optimal scaling law
(Hoffmann et al., 2022), which recommends train-
ing tokens to be 20 X the number of model param-
eters.

Topic Annotaion Details For topic annotation,
K-means clustering is first applied to group sam-
ples based on their embeddings generated by the
BGE-M3 model (Chen et al., 2024). Then, 100 rep-
resentative keywords per cluster are extracted using
TF-IDF. These keywords serve as input for Llama3-
70B (Al@Meta, 2024), which is utilized to either
generate topic labels directly or select the most
relevant labels from Wikipedia’s main topic classi-
fications. The prompts employed for this purpose
are detailed in Fig. 6 and Fig. 7. Fig. 2 presents the
topic distribution of the entire 30B-token dataset as
categorized according to the Wikipedia taxonomy.

Baselines We compare our two-stage ToReMi
framework against two baseline approaches: stan-
dard pre-training (referred to as Standard) and a
partial implementation that applies only Stage 1 of
our framework (denoted as ToReMi+Stagel). The
latter approach consistently prioritizes high-loss
samples throughout training, similar to the strategy
employed in Focal Loss (Lin et al., 2018), which
aims to enhance the model’s capacity to learn from
challenging samples.

Pre-training Settings During pre-training, train-
ing dynamics are monitored at intervals of £ = 100



Algorithm 1 Topic-Based Reweighting Framework for Model Improvement (ToReMi)

1: Input: Training dataset & with samples {x1,x2,...,xy}, associated topic labels £ = {¢1,02,... (.},
label weights {wy,,wy,,...,wy, }, training intervals {z,t,...,¢r}, scaling factor o, upper limit S,

lower limit y. Initialize wy = 1 for all / € .Z.
2: forr=1,2,.... T —1do
3: Compute Lg) and Lg} forall ¢ € £,
4: for each / € . do

5: if Stage 1 then
o [minw! ™V +a.AL p), Ll > 1Y)
6: Wy 4 .
, otherwise
7: else if Stage 2 then
) o [mas—aeal ), i)
’ ! min(wgfl) +a- ALI(;),[}), otherwise
9: end if
10: end for
11: for each sample x; € 20+ do
12: Compute LS (x;) < min([Trer w”, B) - LED (x,).
13: end for
14: Perform backpropagation using ey (x;) to update model parameters.
15: end for
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Figure 2: Topic distribution of the 30B-token dataset
organized by Wikipedia taxonomy.

steps. The weight adjustment scaling factor « is
configured with a default value of 1.0, while the
upper and lower limits 8 and y are set to 5.0 and
0.1 respectively. The reweighting mechanism tran-
sitions from Stage 1 to Stage 2 after completing
4,000 training steps.

Evaluation Settings The evaluation of ToReMi
encompasses two primary aspects. For language
modeling capabilities, we measure perplexity on
the Paloma dataset (Magnusson et al., 2023) to
evaluate how well the model fits to language distri-
butions in diverse domains. Specifically, Paloma
contains data collected from 12 distinct sources,

all of which are held out from the pre-training cor-
pus. For downstream task performance, the GLUE
benchmark (Wang et al., 2019) (i.e., CoLA, SST-
2, MRPC, QQP, STS-B, MNLI, QNLI, RTE, and
WNLI) is utilized, which covers various dimen-
sions of language understanding from grammati-
cality judgment to natural language inference. Ad-
ditionally, we also evaluate on PIQA (Bisk et al.,
2020) for physical commonsense reasoning and
SciQ (Johannes Welbl, 2017) for scientific knowl-
edge assessment. Both tasks are selected according
to the Pythia scaling experiment (Biderman et al.,
2023), which demonstrates that models with ap-
proximately 160M parameters perform meaning-
fully above chance.

5.2 Overall Performance

The experimental results are presented in Fig. 3 and
Tab. 1. As is shown in Fig 3, all ToReMi variants
consistently reduce perplexity more rapidly than
the standard method in all domains, particularly
during steps 1000-5000, indicating faster conver-
gence with the topic-based reweighting mechanism.
By final training steps, ToReMi achieves lower per-
plexity scores than the standard method in most
datasets, indicating better overall language model-
ing capability.

Furthermore, the first section of Tab. 1 reveals
that ToReMi’s impact on downstream tasks is task-
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Figure 3: The log perplexity for different methods on the Paloma test dataset across 12 domains. ToReMig refers
to ToReMi with directly generated topic labels, and ToReMis refers to ToReMi with topic labels selected from

Wikipedia taxonomy.

dependent. For example, ToReMis + Stagel im-
proves by 5.78% over standard method on CoLLA,
and all ToReMi variants show consistent gains on
SST-2. However, standard method outperforms on
tasks like STS-B and RTE. This pattern indicates
that topic-based reweighting has varying effects
on different linguistic capabilities. ToReMi excels
in tasks requiring broad linguistic patterns across
diverse topics, strengthening foundational represen-
tations for syntactic understanding and sentiment
analysis. Conversely, specialized reasoning tasks
benefit from exposure to difficult examples that
may be underrepresented after reweighting. The
downweighting mechanism, while reducing noise,
potentially limits exposure to challenging but in-
formative instances needed for complex reasoning
and domain-specific tasks.

5.3 Synthetic Experiment

To further evaluate the effectiveness of ToReMi
in dynamically selecting high-quality data during
pre-training, a synthetic experiment was conducted

by injecting noise into samples associated with a
specific topic label. The Technology label, which
accounts for a significant proportion of the dataset
and represents an important domain for evaluation,
was selected for this purpose. Noise was introduced
by randomly shuffling all characters within each
sample to simulate low-quality data. For better
reproducibility, ToReMi with the Wikipedia topic
classification (ToReMis) was adopted for all subse-
quent experiments.

The results are presented in the second section
of Tab. 1. Standard pre-training performs poorly on
most metrics, indicating that noisy samples signifi-
cantly impede model learning. ToReMi with Stagel
achieves notable gains in CoL A (5.02%) and RTE
(6.5%), demonstrating that prioritizing high-loss
labels in early training enhances the model’s lin-
guistic understanding, strengthening its grasp of
both grammatical structures and semantic relation-
ships. The complete two-stage ToReMi achieves
the highest overall score (61.52) with substantial
improvements on both MRPC and STS-B com-



Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI SciQ PIQA Overall
Overall Performance of Pre-training the 124M GPT-2 Model Using Different Methods

Standard 17.49 86.58 7537 74.64 8442 7510 8281 5920 5633 24.60 56.31 62.99
ToReMis + Stagel 23.27 88.07 7747 5455 8475 7532 8226 5234 43.66 2350 57.07 60.21
ToReMig 18.18 86.69 75.88 7280 84.71 75.46 8246 5523 5493 2430 5653 6247
ToReMiG + Stagel 1593 87.27 7634 7248 84.75 7524 8296 57.04 43.66 2350 5691 6146
ToReMig 16.84 87.61 7636  73.24 8472 7526 82.04 54.15 4225 2370 56.31 61.13
Pre-training the 124M GP1T-2 Model on Synthetic Noise Text

Standard 1779 86.35 7440  71.18 84.09 75.08 81.84 48.01 5493 24.60 5588 61.29
ToReMis + Stagel 22.81 86.81 7443 69.09 8447 7536 81.69 54,51 4366 2320 5691 61.18
ToReMig 2135 86.69 7623 73.25 8439 75.61 82.15 5198 43.66 2520 5620 @ 61.52
Effect of Stage Transition Point

ToReMig +3000step 20.79 86.81 7548 68.71 84.12 7504 81.73 5270 43.66 2740 56.80 61.20
ToReMis + 4000step 21.35 86.69 7623 7325 8439 75.61 82.15 5198 43.66 2520 5620 61.52
ToReMis + 5000step 13.01 87.50 74.68 72778 8437 7546 8275 5812 38.02 2400 56.80 60.68
ToReMis +6000step 22.62 86.35 7524 68772 8452 7524 8220 4945 53,52 27.00 5631 @ 61.92
ToReMig +7000step 20.13 87.50 77.06 7030 84.54 7557 8239 5451 4225 2540 56.69 61.49
Effect of Reweighting Bounds (v,3)

ToReMis + Stagel + (1.0,5.0) 22.81 86.81 7443 69.09 8447 7536 81.69 5451 43.66 2320 5691 61.18
ToReMis + Stagel +(1.0,10.0) 24.11 87.72 76.79 74.62 84.72 7529 83.39 5920 36.62 2390 5626 62.06
ToReMis+ Stagel +(1.0,20.0) 19.73 87.38  76.80 7143 84.66 75.64 82.02 51.62 40.84 2480 56.58 61.05
ToReMis + (0.1,5.0) 21.35 86.69 7623 7325 8439 7561 82.15 5198 43.66 2520 5620 61.52
ToReMis+ (0.1,10.0) 21.31 86.23 7691 73.06 8437 7535 82.04 57.04 5633 2580 56.64 63.19
ToReMis+ (0.1,20.0) 20.68 85.78 75.05 6326 8450 75.19 8231 4981 56.33 2480 5598 6124

Table 1: Model performance using different pre-training methods on downstream tasks. The table presents results
for: (1) pre-training with normal data, (2) pre-training with synthetic noise data, (3) effect of various stage transition

points, and (4) effect of different reweighting bounds.

pared to the standard method and Stagel-only vari-
ant, highlighting how effectively its downweighting
strategy mitigates the impact of noisy data.

5.4 Ablation Experiment

Effect of Stage Transition Point To investigate
the impact of stage transition point between train-
ing phases in ToReMi, we conducted experiments
by varying the step at which training switches from
weighting (Stage 1) to de-weighting (Stage 2) on
the noisy dataset introduced in Sec. 5.3. While
the default transition occurs at 4000 steps within
a total of 8000 steps, additional experiments were
conducted with the transition points at {3000, 5000,
6000, 7000} steps. We primarily focused on de-
layed transitions, as entering Stage 2 prematurely
before model convergence results in downweight-
ing certain topics before adequate learning, decreas-
ing pre-training efficiency.

Results presented in the third section of Tab. 1
indicate that transition timing significantly im-
pacts model performance. The 6000-step transition
point achieved the highest overall score (61.92),
effectively balancing the initial aggressive learning
phase with the subsequent noise-reduction phase.
This point provides sufficient time for the model
to learn important patterns while still allowing ade-
quate time to downweight noisy samples. In con-

trast, the 5000-step point produced the lowest per-
formance with a significant drop in CoLA (13.01)
despite achieving the highest RTE score (58.12),
suggesting that delayed transitions may cause over-
fitting to noisy samples in certain tasks while bene-
fiting others. The non-linear relationship between
transition point and model performance demon-
strates that hyperparameter is critical when apply-
ing ToReM i to different task settings.

Furthermore, Fig. 4 illustrates the performance
difference between standard method and ToReMi
with various stage transition points. ToReMi out-
performs standard method on most tasks regardless
of transition point, with the exception of WNLI.
The consistent improvement on various tasks fur-
ther validates the effectiveness and robustness of
ToReMi. The underperformance on WNLI is at-
tributed to its unique characteristics as a natural
language inference task with a small dataset (only
634 training examples). WNLI requires understand-
ing of complex pronoun resolution and discourse
relationships, which are disproportionately affected
by the topic-based reweighting mechanism. The
sample reweighting approach inadvertently down-
weights examples crucial for this particular task
during Stage 2, indicating that specialized treat-
ment is necessary for tasks heavily dependent on
specific linguistic phenomena.
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Figure 4: Performance difference between the standard
method and ToReMi with various stage transition points.
Red indicates performance improvement over the stan-
dard model, while blue indicates degradation.

Effect of Reweighting Bounds To investigate
the impact of reweighting bounds on model perfor-
mance, experiments was conducted by varying the
weight upper bound 8 while maintaining a constant
downweighting lower bound (y = 0.1). The exper-
iment focus on upper bound because excessively
high weighting is susceptible to loss overexpansion
for certain samples and introduces training insta-
bility, while the lower bound has comparatively
smaller influence on overall performance. Both the
ToReMi+Stagel variant and the complete ToReMi
were evaluated with 8 values of {5.0, 10.0, 20.0}.

The results are presented in the fourth section of
Tab. 1. It is shown that moderate weight (8 = 10.0)
produces optimal performance for both methods
(62.06 for ToReMi+Stagel and 63.19 for complete
ToReMi), while further increasing f3 to 20.0 causes
degradation below even the 8 = 5.0 configuration.
These findings indicate that increased weighting
helps the model focus on challenging samples,
though excessive upweighting leads to overfitting
on particular topics and introduces instability in the
training process. Furthermore, when comparing
the upweighting-only approach and the complete
ToReMi at the same f3 values, it is observed that the
two-stage approach consistently outperforms the
upweighting-only variant. The performance gap
is particularly pronounced at 8 = 10.0, where the
complete ToReMi achieved 1.13% improvement.
The results show the importance of noise reduction

[SUW. +28.22% | +35.53% QESLAIEZE +20.01% | +19.79%
30

SST-2- +0.53% +1.59% +1.19% +0.39% -0.14% -0.66%

MRPC- +0.04%  +3.21% +3.23% +2.46% +3.37% +0.87%

STS-B- -2.94% +4.83% +0.35% +2.91% +2.64% -11.13%

-10

QQP- +0.45%  +0.75%  +0.68%  +0.36%  +0.33%  +0.49%

MNLI - +0.37% +0.28% +0.75% +0.71% +0.36% +0.15%

QNLI- -0.18% +1.89% +0.22% +0.38% +0.24% +0.57%

Benchmark Tasks
o

RTE - +13.54% EFEREIEZE +7.52% +8.27% [EIERINE +3.75%

LA -20.52% -25.65% | -20.52% [EEFELY

SciQ - -5.69% -2.85%

Relative Performance Change (%)

+2.55%

+0.81% +2.44% +4.88% +0.81%

PIQA- +1.84%  +0.68% +1.25% +0.57% +1.36%  +0.18%
Overall - -0.18%  +1.26%  -0.39%  +0.38%  +3.10%  -0.08% -30
. . . . . .
) 10 20 W5 10 .20
xS0 o0 R I E g
TR e et

Methods with Different Upper Bounds

Figure 5: Performance difference between the standard
method and ToReMi variants with various weight upper
bounds. Red indicates performance improvement over
the standard model, while blue indicates degradation.

during later training. Initial upweighting enables
model to efficiently learn challenging topic-specific
patterns, while subsequent downweighting reduces
the influence of noisy samples.

Fig. 5 illustrates the performance difference be-
tween standard method and ToReMi variants with
different weight upweighting upper bounds. It is
shown that both ToReMi and ToReMi+Stagel out-
perform standard method on most tasks, demon-
strating the effectiveness of our topic reweight-
ing mechanism. Notable improvements appear on
CoLA and RTE, where ToReMi+Stagel with 8
= 10.0 achieves gains of 35.53% on CoLA and
23.31% on RTE. However, ToReMi+Stagel un-
derperforms on WNLI, indicating that the sole up-
weighting leads to overfitting on specific patterns,
and the complete ToReMi (particularly with § =
10.0) addresses this limitation through its down-
weighting strategy in later training.

6 Conclusion

We propose ToReMi, a two-stage framework that
dynamically reweights pre-training data by topic.
Experiments with GPT-2 on Dolma show ToReMi
accelerates perplexity reduction and improves final
performance, especially on syntactic and sentiment
tasks. Our results highlight topic-aware reweight-
ing as a powerful tool for efficient and effective
pre-training. Future work could explore optimal
topic characteristics for further gains.



Limitations

One key limitation of ToReMi is its reliance on
topic annotation quality, which depends on cluster-
ing accuracy and LLM-generated labels. Noisy or
imbalanced topic assignments may skew reweight-
ing decisions. Additionally, the framework as-
sumes topic-level homogeneity in sample qual-
ity, which may not hold for fine-grained intra-
topic variations. Computational overhead for dy-
namic weight tracking—though modest—scales
with topic diversity, potentially limiting applicabil-
ity to ultra-large corpora. Finally, the two-stage
transition requires manual tuning of hyperparam-
eters (e.g., stage switch timing), which may need
adaptation across datasets.

Ethical Concerns

ToReMi’ s topic-based reweighting could inadver-
tently amplify biases if certain topics correlate with
demographic or cultural groups. We mitigate this
by auditing topic distributions for skew and using
diverse annotation taxonomies. Data privacy risks
are minimal as our method processes existing pub-
lic corpora without collecting user-generated con-
tent. The noise-reduction stage further reduces ex-
posure to potentially harmful text by downweight-
ing low-quality samples. All experiments comply
with dataset licenses, and our open-source release
enables transparency in reweighting logic.
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A Prompt for Topic Annotation

Task:

Please generate one to three abstract labels with one
word based on the following list of 100 keywords.

The labels should be general and as abstract as
possible, aiming to cover the main topics and categories.

You must response with the following format, and don't
response anything else:
### Labels: Label1, Label2

Examples:
### Labels: Technology, Health

Keyword list:
v

Figure 6: Prompt for generating topic labels for each
sample using the provided extracted keywords.

Task: Select one to three most related topic labels
based on the given keywords.

[Keywords]
¢

[Topic labels]
¢

Based on the given keywords, please select one to
three most relevant labels from the provided topic labels.
Ensure that the selected labels best capture the primary
concepts and topics represented by the keywords.

Note:

1. The selected labels must be from the given topic
labels!

2. Don't respond any reasoning process or explanations!

You must respond with the following format, and don't
respond anything else:
### Labels: Label1, Label2

Examples:
#HH# Labels: xxxx, xxxx, ...

Figure 7: Prompt for assigning topic labels to each
sample based on the provided Wikipedia taxonomy.



	Introduction
	Related Work
	Pretraining Data Filtering
	Pretraining Data Mixing

	Topic-Based Reweighting for Model Improvement (ToReMi)
	Preliminary
	ToReMi: Topic-Based Reweighting

	Topic Annotation
	Experiments
	Experimental Setup
	Overall Performance
	Synthetic Experiment
	Ablation Experiment

	Conclusion
	Prompt for Topic Annotation

