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Abstract
Pre-training large language models (LLMs) ne-001
cessitates enormous diverse textual corpora,002
making effective data selection a key chal-003
lenge for balancing computational resources004
and model performance. Current methodolo-005
gies primarily emphasize data quality met-006
rics and mixing proportions, yet they fail007
to adequately capture the underlying seman-008
tic connections between training samples and009
quality disparities within individual domains.010
We introduce ToReMi (Topic-based Reweight-011
ing for Model improvement), a novel two-012
stage framework that dynamically adjusts train-013
ing sample weights according to their topical014
associations and observed learning patterns.015
Our comprehensive experiments reveal that016
ToReMi variants consistently achieve superior017
performance over conventional pre-training ap-018
proaches, demonstrating accelerated perplex-019
ity reduction across multiple domains and en-020
hanced capabilities on downstream evaluation021
tasks.022

1 Introduction023

Large language models (LLMs) typically undergo024

pre-training on extensive corpora derived from het-025

erogeneous sources of varying quality (Gao et al.,026

2020; Soldaini et al., 2024; Penedo et al., 2023).027

As model parameters and pre-training datasets028

continue to scale (Kaplan et al., 2020; Hoffmann029

et al., 2022), the pre-training phase has emerged030

as the critical determinant of an LLM’s founda-031

tional knowledge acquisition and reasoning capa-032

bilities (Zhou et al., 2023). Consequently, system-033

atic optimization of pre-training data constitutes034

a fundamental technical challenge in developing035

high-performance LLMs.036

Current pre-training data optimization method-037

ologies primarily address two complementary di-038

mensions: quality assessment and distribution op-039

timization. Both approaches aim to maximize the040

utility of pre-training data by prioritizing valuable041

Figure 1: The framework of ToReMi, a two-stage, topic-
based reweighting method for dynamic pre-training data
selection and model improvement. During each training
interval, training samples are reweighted based on their
topic labels and previous training dynamics.

content while mitigating potentially detrimental 042

samples. Conventional pre-processing pipelines in- 043

corporate language identification, corpora filtration, 044

deduplication, and noise reduction (Soldaini et al., 045

2024; Penedo et al., 2023; Albalak et al., 2024). 046

Quality assessment mechanisms predominantly uti- 047

lize rule-based heuristics and supervised classifica- 048

tion models (Raffel et al., 2023; Rae et al., 2022; 049

Longpre et al., 2023), while distribution optimiza- 050

tion refines corpus composition through calibrated 051

domain ratio adjustments and strategic sampling 052

techniques (Xie et al., 2023a; Du et al., 2022; Sol- 053

daini et al., 2024; Thrush et al., 2024) to enhance 054

model generalization capabilities. 055

Despite these advancements, constructing opti- 056
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mal pre-training datasets presents persistent chal-057

lenges. Quality assessment approaches based on058

rules and classifiers remain inherently constrained059

by subjective annotation biases and limited training060

samples, effectively filtering only conspicuously061

low-quality content while failing to discern sub-062

tle quality variations (Wenzek et al., 2019; Xie063

et al., 2023b). Similarly, current distribution opti-064

mization techniques employ relatively rudimentary065

methods, primarily validating effectiveness through066

proportional adjustments across topical or domain067

categories without adequately addressing intrinsic068

semantic relationships or dynamic training require-069

ments (Xie et al., 2023a; Du et al., 2022). These070

limitations collectively impede improvements in071

pre-training efficiency and model performance.072

To address these limitations, we investigate073

a fundamental research question: How can pre-074

training dynamically prioritize high-quality data075

while accounting for both latent semantic re-076

lationships within the corpus and intra-domain077

quality variations? We propose a two-stage078

Topic-based Reweighting framework for Model079

improvement (ToReMi) in response to these chal-080

lenges. ToReMi’s innovation lies in its collective081

weight adjustment mechanism operating on topic082

categories. Rather than optimizing individual sam-083

ple weights, ToReMi dynamically recalibrates all084

the samples of the same topic categories based085

on the aggregate performance of constituent sam-086

ples during pre-training. The framework operates087

through two sequential phases: (1) During initial088

training, the system assigns elevated weights to089

challenging topic categories, prioritizing the learn-090

ing of these hard samples; (2) Subsequently, the091

system progressively attenuates weights for under-092

performing topic categories (potentially containing093

higher noise concentrations) to minimize interfer-094

ence effects. Through this topic-level collective ad-095

justment strategy, ToReMi optimizes pre-training096

data distribution without additional computational097

overhead while providing interpretable analysis of098

topic-specific training impact through weight tra-099

jectory feedback.100

To rigorously evaluate ToReMi’s efficacy, we101

conducted comprehensive experiments using the102

GPT-2 architecture (Raffel et al., 2023; Rae et al.,103

2022). The experimental corpus comprised 2.6B104

tokens of curated Wikipedia content, semantically105

partitioned into 39 topics through large language106

model annotation. Experimental results demon-107

strate that ToReMi consistently outperforms both108

standard pre-training protocols and enhanced noise- 109

resistant baselines in log perplexity evaluations on 110

the Paloma corpus (Gao et al., 2020). In noise- 111

injection experiments, ToReMi achieved 1.9% 112

average performance improvements on GLUE 113

benchmarks compared to standard pre-training ap- 114

proaches (Longpre et al., 2023). Further robustness 115

analysis confirms that ToReMi maintains perfor- 116

mance advantages across varied hyperparameter 117

configurations, demonstrating methodological sta- 118

bility and adaptability. 119

2 Related Work 120

2.1 Pretraining Data Filtering 121

Pre-training data filtering has been extensively stud- 122

ied to enhance model performance and training effi- 123

ciency (Liu et al., 2024; Albalak et al., 2024). Com- 124

mon steps typically include language filtering (Lau- 125

renon et al., 2023; Chowdhery et al., 2022), qual- 126

ity filtering (Raffel et al., 2023; Rae et al., 2022), 127

content filtering (Xu et al., 2021; Longpre et al., 128

2023), and deduplication (Hernandez et al., 2022; 129

Lee et al., 2022). Filtering methods generally fall 130

into two categories: heuristic-based and classifier- 131

based. Heuristic methods use manually designed 132

rules derived from corpus characteristics (Penedo 133

et al., 2023; Laurenon et al., 2023; Raffel et al., 134

2023), while classifier-based methods train classi- 135

fiers to assign quality scores (Brown et al., 2020; 136

Gao et al., 2020; Xie et al., 2023b). Deduplica- 137

tion, on the other hand, typically uses hash-based 138

techniques (Bloom, 1970; Wenzek et al., 2019) 139

for exact matching and model-based methods (Ab- 140

bas et al., 2023) for approximate matching. While 141

these approaches significantly improve corpus qual- 142

ity, their static nature hinders dynamic adjustments 143

during training, making them prone to discarding 144

valuable data (Muennighoff et al., 2023) and intro- 145

ducing biases (Gururangan et al., 2022; Longpre 146

et al., 2023; Dodge et al., 2021). 147

2.2 Pretraining Data Mixing 148

Pre-training datasets are often sourced from di- 149

verse domains, making effective data mixing strate- 150

gies essential for maximizing their utility. Fixed 151

data mixing proportions, commonly used in prac- 152

tice (Gao et al., 2020; Rae et al., 2022; Touvron 153

et al., 2023; Soldaini et al., 2024), often rely on 154

intuition and heuristics, such as upsampling high- 155

quality domains like academic texts. To automate 156

this process, (Xie et al., 2023a) trains a reference 157
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model to guide proxy model training by minimiz-158

ing worst-case excess loss, while (Fan et al., 2024)159

learns domain weights that maximize proxy model160

generalization to target domains. However, the161

static nature of these methods hinders their adapt-162

ability to evolving training dynamics, while the163

need to train multiple models further reduces their164

efficiency. To address these limitations, online data165

mixing strategies have been proposed. ODM (Al-166

balak et al., 2023) dynamically adjusts domain167

weights at each iteration to prioritize domains that168

reduce perplexity most effectively. Skill-it (Chen169

et al., 2023) accelerates skill acquisition by lever-170

aging the inherent order of prerequisite skills in171

the data. Additionally, (Ye et al., 2024) introduces172

data mixing laws to predict model performance173

for different data mixtures. While these methods174

focus on inter-domain data mixing, intra-domain175

mixing of diverse data characteristics remains un-176

derexplored.177

3 Topic-Based Reweighting for Model178

Improvement (ToReMi)179

In this section, we introduce ToReMi (Figure 1), a180

two-stage topic-based reweighting framework for181

dynamic pre-training data selection and model im-182

provement, which adjusts sample weights based on183

their topic labels and model’s training dynamics.184

3.1 Preliminary185

Training dynamics refer to statistical and perfor-186

mance metrics monitored throughout the model’s187

training process, where high loss or prediction un-188

certainty is often used to identify challenging or189

noisy samples (Thakkar et al., 2023; Jiang et al.,190

2019; Swayamdipta et al., 2020). In this work, we191

track training loss to guide dynamic data reweight-192

ing and selection. In specific, pre-training dataset193

D consists of N samples {x1,x2, . . . ,xN}, where194

xi = {text, Li} and Li = {ℓ1, ℓ2, . . .} denotes topic195

labels assigned to sample xi. Let L =
⋃N

i=1 Li de-196

note the total set of all unique topic labels in the197

dataset. For each topic label ℓi ∈L , an associated198

weight wℓi is assigned, and initially, all weights are199

uniformly set to 1.200

In LLM pre-training, for each sample xi with201

ground truth yi, the training sample loss L(xi) is202

computed using the cross-entropy loss between the203

model’s predicted probability distribution and the204

target ground truth labels, which is calculated as: 205

L(xi) =−
1
T

T

∑
t=1

logP(yt | xi,θ) (1) 206

where T is the sequence length of xi. 207

For a specific label ℓ ∈L , the training label loss 208

Lℓ is defined as the average loss over all samples 209

containing ℓ, which is calculated as: 210

Lℓ =
1
|Dℓ| ∑

xi∈Dℓ

L(xi) (2) 211

where Dℓ = {xi ∈D : ℓ ∈Li} is the subset of sam- 212

ples tagged with ℓ. The average label loss LL is: 213

LL =
1
|L | ∑

ℓ∈L
Lℓ (3) 214

3.2 ToReMi: Topic-Based Reweighting 215

As a two-stage topic-based reweighting framework, 216

ToReMi aims to prioritize high-quality and impact- 217

ful data while minimizing the influence of noisy or 218

less relevant data. Reweighting is an effective ap- 219

proach for online data selection, as it dynamically 220

adjusts the influence of individual samples during 221

training, offering nuanced control without the need 222

to exclude data outright. Prior work (Thakkar et al., 223

2023) computes the squared norm of a sample’s 224

gradient, showing that in the early stage of training, 225

samples with higher scores are key contributors 226

to the model’s learning, while in later stage, such 227

samples are more likely to represent noise or out- 228

of-domain data. Since samples with higher training 229

loss generally produce larger gradients, ToReMi 230

simplifies the process by monitoring training loss 231

directly. 232

In the first stage, ToReMi focuses on samples 233

with high training loss, prioritizing their learning 234

to help the model efficiently acquire diverse and 235

foundational knowledge. To incorporate topic-level 236

associations, sample weights are adjusted based on 237

their relative topic weights. Specifically, the entire 238

training process is divided into multiple fixed train- 239

ing intervals {t1, t2, . . . , tT}. Over a fixed training 240

interval t, for each topic ℓ trained during t, we com- 241

pute the training label loss L(t)
ℓ for the topic and 242

the average label loss L(t)
L across all topics within 243

the interval. In the subsequent interval t + 1, the 244

sample loss is adjusted using the weight: 245

w(t)
ℓ =

{
min(w(t−1)

ℓ +α ·∆L(t)
ℓ ,β ) if L(t)

ℓ > L(t)
L

1 otherwise
(4) 246
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where ∆L(t)
ℓ = L(t)

ℓ −L(t)
L is the difference between247

the topic’s loss and the average label loss. α is248

a scaling factor controlling the adjustment magni-249

tude. β is the upper limit for label weights, prevent-250

ing excessive upweighting and maintaining training251

stability. The weighted sample loss is calculated252

by:253

L(t+1)
w (xi) = min(∏w(t)

ℓ ,β ) ·L(t+1)(xi), ℓ ∈Li

(5)254

The weighted loss is then utilized for backpropaga-255

tion, enabling the model to dynamically adapt its256

training focus.257

In the second stage, the focus transitions to min-258

imizing the impact of noisy data while further pri-259

oritizing high-quality samples. The label weights260

are adjusted as follows:261

w(t)
ℓ =

{
max(w(t−1)

ℓ −α ·∆L(t)
ℓ ,γ) if L(t)

ℓ > L(t)
L

min(w(t−1)
ℓ +α ·∆L(t)

ℓ ,β ) otherwise
(6)262

where γ is the lower limit for label weights to en-263

sure sufficient representation of all labels. Then,264

the weighted sample loss is calculated as described265

in the first stage and utilized in backpropagation to266

guide the training process. The complete algorithm267

is presented in Algorithm 1.268

4 Topic Annotation269

Pre-training datasets are vast and encompass a wide270

range of topics and domains. However, the scarcity271

of datasets with predefined topic labels makes it dif-272

ficult to directly leverage labeled data for effective273

training. Thus, we propose two methods for anno-274

tating topic labels to each sample within general275

pre-training corpora.276

Given the growing volume of data and the com-277

putational costs, clustering algorithms are first ap-278

plied to group similar samples based on their se-279

mantic features. After forming the clusters, the280

generative capabilities of LLMs are utilized to as-281

sign meaningful topic labels. This process involves282

extracting representative keywords from each clus-283

ter, which are then used to generate topic labels284

through LLMs. Specifically, there are two strate-285

gies: one where the LLM generates abstract and286

customized labels directly from the keywords, and287

another where it selectes the most relevant labels288

from a predefined taxonomy of topics. The first289

strategy, Cluster&Generate, enables the creation290

of customized topic labels, which offers flexibility291

and makes it particularly useful for datasets that do292

not align with existing classification systems. In 293

contrast, the second strategy, Cluster&Select, maps 294

clusters to an existing taxonomy, ensuring consis- 295

tency and standardization across diverse datasets. 296

5 Experiments 297

5.1 Experimental Setup 298

Dataset and Model The pre-training dataset is 299

sampled from Dolma-v1_5-sample (Soldaini et al., 300

2024), a high-quality English-only corpus curated 301

from diverse sources. Input sequences consist of 302

1024 consecutive tokens randomly sampled from 303

the dataset. Due to computational constraints, we 304

pre-train GPT-2 (Radford et al., 2019) models from 305

scratch, focusing on the 124M parameter variant 306

trained on 2.6B tokens in this work. Additionally, 307

we curate a 30B token subset to support future 308

research, including experiments with the largest 309

GPT-2 models (GPT-XL which contains 1.5B pa- 310

rameters) for compute-sufficient teams. This setup 311

aligns with the Chinchilla-optimal scaling law 312

(Hoffmann et al., 2022), which recommends train- 313

ing tokens to be 2̃0× the number of model param- 314

eters. 315

Topic Annotaion Details For topic annotation, 316

K-means clustering is first applied to group sam- 317

ples based on their embeddings generated by the 318

BGE-M3 model (Chen et al., 2024). Then, 100 rep- 319

resentative keywords per cluster are extracted using 320

TF-IDF. These keywords serve as input for Llama3- 321

70B (AI@Meta, 2024), which is utilized to either 322

generate topic labels directly or select the most 323

relevant labels from Wikipedia’s main topic classi- 324

fications. The prompts employed for this purpose 325

are detailed in Fig. 6 and Fig. 7. Fig. 2 presents the 326

topic distribution of the entire 30B-token dataset as 327

categorized according to the Wikipedia taxonomy. 328

Baselines We compare our two-stage ToReMi 329

framework against two baseline approaches: stan- 330

dard pre-training (referred to as Standard) and a 331

partial implementation that applies only Stage 1 of 332

our framework (denoted as ToReMi+Stage1). The 333

latter approach consistently prioritizes high-loss 334

samples throughout training, similar to the strategy 335

employed in Focal Loss (Lin et al., 2018), which 336

aims to enhance the model’s capacity to learn from 337

challenging samples. 338

Pre-training Settings During pre-training, train- 339

ing dynamics are monitored at intervals of t = 100 340
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Algorithm 1 Topic-Based Reweighting Framework for Model Improvement (ToReMi)

1: Input: Training dataset D with samples {x1,x2, . . . ,xN}, associated topic labels L = {ℓ1, ℓ2, . . . ℓL},
label weights {wℓ1 ,wℓ2 , . . . ,wℓL}, training intervals {t1, t2, . . . , tT}, scaling factor α , upper limit β ,
lower limit γ . Initialize wℓ = 1 for all ℓ ∈L .

2: for t = 1,2, . . . ,T −1 do
3: Compute L(t)

ℓ and L(t)
L for all ℓ ∈L (t).

4: for each ℓ ∈L (t) do
5: if Stage 1 then

6: w(t)
ℓ ←

{
min(w(t−1)

ℓ +α ·∆L(t)
ℓ ,β ), if L(t)

ℓ > L(t)
L

1, otherwise
7: else if Stage 2 then

8: w(t)
ℓ ←

{
max(w(t−1)

ℓ −α ·∆L(t)
ℓ ,γ), if L(t)

ℓ > L(t)
L

min(w(t−1)
ℓ +α ·∆L(t)

ℓ ,β ), otherwise
9: end if

10: end for
11: for each sample xi ∈D (t+1) do
12: Compute L(t+1)

w (xi)←min(∏ℓ∈Li w(t)
ℓ ,β ) ·L(t+1)(xi).

13: end for
14: Perform backpropagation using L(t+1)

w (xi) to update model parameters.
15: end for

Figure 2: Topic distribution of the 30B-token dataset
organized by Wikipedia taxonomy.

steps. The weight adjustment scaling factor α is341

configured with a default value of 1.0, while the342

upper and lower limits β and γ are set to 5.0 and343

0.1 respectively. The reweighting mechanism tran-344

sitions from Stage 1 to Stage 2 after completing345

4,000 training steps.346

Evaluation Settings The evaluation of ToReMi347

encompasses two primary aspects. For language348

modeling capabilities, we measure perplexity on349

the Paloma dataset (Magnusson et al., 2023) to350

evaluate how well the model fits to language distri-351

butions in diverse domains. Specifically, Paloma352

contains data collected from 12 distinct sources,353

all of which are held out from the pre-training cor- 354

pus. For downstream task performance, the GLUE 355

benchmark (Wang et al., 2019) (i.e., CoLA, SST- 356

2, MRPC, QQP, STS-B, MNLI, QNLI, RTE, and 357

WNLI) is utilized, which covers various dimen- 358

sions of language understanding from grammati- 359

cality judgment to natural language inference. Ad- 360

ditionally, we also evaluate on PIQA (Bisk et al., 361

2020) for physical commonsense reasoning and 362

SciQ (Johannes Welbl, 2017) for scientific knowl- 363

edge assessment. Both tasks are selected according 364

to the Pythia scaling experiment (Biderman et al., 365

2023), which demonstrates that models with ap- 366

proximately 160M parameters perform meaning- 367

fully above chance. 368

5.2 Overall Performance 369

The experimental results are presented in Fig. 3 and 370

Tab. 1. As is shown in Fig 3, all ToReMi variants 371

consistently reduce perplexity more rapidly than 372

the standard method in all domains, particularly 373

during steps 1000-5000, indicating faster conver- 374

gence with the topic-based reweighting mechanism. 375

By final training steps, ToReMi achieves lower per- 376

plexity scores than the standard method in most 377

datasets, indicating better overall language model- 378

ing capability. 379

Furthermore, the first section of Tab. 1 reveals 380

that ToReMi’s impact on downstream tasks is task- 381
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Figure 3: The log perplexity for different methods on the Paloma test dataset across 12 domains. ToReMig refers
to ToReMi with directly generated topic labels, and ToReMis refers to ToReMi with topic labels selected from
Wikipedia taxonomy.

dependent. For example, ToReMiS + Stage1 im-382

proves by 5.78% over standard method on CoLA,383

and all ToReMi variants show consistent gains on384

SST-2. However, standard method outperforms on385

tasks like STS-B and RTE. This pattern indicates386

that topic-based reweighting has varying effects387

on different linguistic capabilities. ToReMi excels388

in tasks requiring broad linguistic patterns across389

diverse topics, strengthening foundational represen-390

tations for syntactic understanding and sentiment391

analysis. Conversely, specialized reasoning tasks392

benefit from exposure to difficult examples that393

may be underrepresented after reweighting. The394

downweighting mechanism, while reducing noise,395

potentially limits exposure to challenging but in-396

formative instances needed for complex reasoning397

and domain-specific tasks.398

5.3 Synthetic Experiment399

To further evaluate the effectiveness of ToReMi400

in dynamically selecting high-quality data during401

pre-training, a synthetic experiment was conducted402

by injecting noise into samples associated with a 403

specific topic label. The Technology label, which 404

accounts for a significant proportion of the dataset 405

and represents an important domain for evaluation, 406

was selected for this purpose. Noise was introduced 407

by randomly shuffling all characters within each 408

sample to simulate low-quality data. For better 409

reproducibility, ToReMi with the Wikipedia topic 410

classification (ToReMiS) was adopted for all subse- 411

quent experiments. 412

The results are presented in the second section 413

of Tab. 1. Standard pre-training performs poorly on 414

most metrics, indicating that noisy samples signifi- 415

cantly impede model learning. ToReMi with Stage1 416

achieves notable gains in CoLA (5.02%) and RTE 417

(6.5%), demonstrating that prioritizing high-loss 418

labels in early training enhances the model’s lin- 419

guistic understanding, strengthening its grasp of 420

both grammatical structures and semantic relation- 421

ships. The complete two-stage ToReMi achieves 422

the highest overall score (61.52) with substantial 423

improvements on both MRPC and STS-B com- 424
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Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI SciQ PIQA Overall

Overall Performance of Pre-training the 124M GPT-2 Model Using Different Methods

Standard 17.49 86.58 75.37 74.64 84.42 75.10 82.81 59.20 56.33 24.60 56.31 62.99
ToReMiS +Stage1 23.27 88.07 77.47 54.55 84.75 75.32 82.26 52.34 43.66 23.50 57.07 60.21
ToReMiS 18.18 86.69 75.88 72.80 84.71 75.46 82.46 55.23 54.93 24.30 56.53 62.47
ToReMiG +Stage1 15.93 87.27 76.34 72.48 84.75 75.24 82.96 57.04 43.66 23.50 56.91 61.46
ToReMiG 16.84 87.61 76.36 73.24 84.72 75.26 82.04 54.15 42.25 23.70 56.31 61.13

Pre-training the 124M GPT-2 Model on Synthetic Noise Text

Standard 17.79 86.35 74.40 71.18 84.09 75.08 81.84 48.01 54.93 24.60 55.88 61.29
ToReMiS +Stage1 22.81 86.81 74.43 69.09 84.47 75.36 81.69 54.51 43.66 23.20 56.91 61.18
ToReMiS 21.35 86.69 76.23 73.25 84.39 75.61 82.15 51.98 43.66 25.20 56.20 61.52

Effect of Stage Transition Point

ToReMiS +3000step 20.79 86.81 75.48 68.71 84.12 75.04 81.73 52.70 43.66 27.40 56.80 61.20
ToReMiS +4000step 21.35 86.69 76.23 73.25 84.39 75.61 82.15 51.98 43.66 25.20 56.20 61.52
ToReMiS +5000step 13.01 87.50 74.68 72.78 84.37 75.46 82.75 58.12 38.02 24.00 56.80 60.68
ToReMiS +6000step 22.62 86.35 75.24 68.72 84.52 75.24 82.20 49.45 53.52 27.00 56.31 61.92
ToReMiS +7000step 20.13 87.50 77.06 70.30 84.54 75.57 82.39 54.51 42.25 25.40 56.69 61.49

Effect of Reweighting Bounds (γ,β )

ToReMiS +Stage1+(1.0,5.0) 22.81 86.81 74.43 69.09 84.47 75.36 81.69 54.51 43.66 23.20 56.91 61.18
ToReMiS +Stage1+(1.0,10.0) 24.11 87.72 76.79 74.62 84.72 75.29 83.39 59.20 36.62 23.90 56.26 62.06
ToReMiS +Stage1+(1.0,20.0) 19.73 87.38 76.80 71.43 84.66 75.64 82.02 51.62 40.84 24.80 56.58 61.05
ToReMiS +(0.1,5.0) 21.35 86.69 76.23 73.25 84.39 75.61 82.15 51.98 43.66 25.20 56.20 61.52
ToReMiS +(0.1,10.0) 21.31 86.23 76.91 73.06 84.37 75.35 82.04 57.04 56.33 25.80 56.64 63.19
ToReMiS +(0.1,20.0) 20.68 85.78 75.05 63.26 84.50 75.19 82.31 49.81 56.33 24.80 55.98 61.24

Table 1: Model performance using different pre-training methods on downstream tasks. The table presents results
for: (1) pre-training with normal data, (2) pre-training with synthetic noise data, (3) effect of various stage transition
points, and (4) effect of different reweighting bounds.

pared to the standard method and Stage1-only vari-425

ant, highlighting how effectively its downweighting426

strategy mitigates the impact of noisy data.427

5.4 Ablation Experiment428

Effect of Stage Transition Point To investigate429

the impact of stage transition point between train-430

ing phases in ToReMi, we conducted experiments431

by varying the step at which training switches from432

weighting (Stage 1) to de-weighting (Stage 2) on433

the noisy dataset introduced in Sec. 5.3. While434

the default transition occurs at 4000 steps within435

a total of 8000 steps, additional experiments were436

conducted with the transition points at {3000, 5000,437

6000, 7000} steps. We primarily focused on de-438

layed transitions, as entering Stage 2 prematurely439

before model convergence results in downweight-440

ing certain topics before adequate learning, decreas-441

ing pre-training efficiency.442

Results presented in the third section of Tab. 1443

indicate that transition timing significantly im-444

pacts model performance. The 6000-step transition445

point achieved the highest overall score (61.92),446

effectively balancing the initial aggressive learning447

phase with the subsequent noise-reduction phase.448

This point provides sufficient time for the model449

to learn important patterns while still allowing ade-450

quate time to downweight noisy samples. In con-451

trast, the 5000-step point produced the lowest per- 452

formance with a significant drop in CoLA (13.01) 453

despite achieving the highest RTE score (58.12), 454

suggesting that delayed transitions may cause over- 455

fitting to noisy samples in certain tasks while bene- 456

fiting others. The non-linear relationship between 457

transition point and model performance demon- 458

strates that hyperparameter is critical when apply- 459

ing ToReMi to different task settings. 460

Furthermore, Fig. 4 illustrates the performance 461

difference between standard method and ToReMi 462

with various stage transition points. ToReMi out- 463

performs standard method on most tasks regardless 464

of transition point, with the exception of WNLI. 465

The consistent improvement on various tasks fur- 466

ther validates the effectiveness and robustness of 467

ToReMi. The underperformance on WNLI is at- 468

tributed to its unique characteristics as a natural 469

language inference task with a small dataset (only 470

634 training examples). WNLI requires understand- 471

ing of complex pronoun resolution and discourse 472

relationships, which are disproportionately affected 473

by the topic-based reweighting mechanism. The 474

sample reweighting approach inadvertently down- 475

weights examples crucial for this particular task 476

during Stage 2, indicating that specialized treat- 477

ment is necessary for tasks heavily dependent on 478

specific linguistic phenomena. 479
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Figure 4: Performance difference between the standard
method and ToReMi with various stage transition points.
Red indicates performance improvement over the stan-
dard model, while blue indicates degradation.

Effect of Reweighting Bounds To investigate480

the impact of reweighting bounds on model perfor-481

mance, experiments was conducted by varying the482

weight upper bound β while maintaining a constant483

downweighting lower bound (γ = 0.1). The exper-484

iment focus on upper bound because excessively485

high weighting is susceptible to loss overexpansion486

for certain samples and introduces training insta-487

bility, while the lower bound has comparatively488

smaller influence on overall performance. Both the489

ToReMi+Stage1 variant and the complete ToReMi490

were evaluated with β values of {5.0, 10.0, 20.0}.491

The results are presented in the fourth section of492

Tab. 1. It is shown that moderate weight (β = 10.0)493

produces optimal performance for both methods494

(62.06 for ToReMi+Stage1 and 63.19 for complete495

ToReMi), while further increasing β to 20.0 causes496

degradation below even the β = 5.0 configuration.497

These findings indicate that increased weighting498

helps the model focus on challenging samples,499

though excessive upweighting leads to overfitting500

on particular topics and introduces instability in the501

training process. Furthermore, when comparing502

the upweighting-only approach and the complete503

ToReMi at the same β values, it is observed that the504

two-stage approach consistently outperforms the505

upweighting-only variant. The performance gap506

is particularly pronounced at β = 10.0, where the507

complete ToReMi achieved 1.13% improvement.508

The results show the importance of noise reduction509
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Figure 5: Performance difference between the standard
method and ToReMi variants with various weight upper
bounds. Red indicates performance improvement over
the standard model, while blue indicates degradation.

during later training. Initial upweighting enables 510

model to efficiently learn challenging topic-specific 511

patterns, while subsequent downweighting reduces 512

the influence of noisy samples. 513

Fig. 5 illustrates the performance difference be- 514

tween standard method and ToReMi variants with 515

different weight upweighting upper bounds. It is 516

shown that both ToReMi and ToReMi+Stage1 out- 517

perform standard method on most tasks, demon- 518

strating the effectiveness of our topic reweight- 519

ing mechanism. Notable improvements appear on 520

CoLA and RTE, where ToReMi+Stage1 with β 521

= 10.0 achieves gains of 35.53% on CoLA and 522

23.31% on RTE. However, ToReMi+Stage1 un- 523

derperforms on WNLI, indicating that the sole up- 524

weighting leads to overfitting on specific patterns, 525

and the complete ToReMi (particularly with β = 526

10.0) addresses this limitation through its down- 527

weighting strategy in later training. 528

6 Conclusion 529

We propose ToReMi, a two-stage framework that 530

dynamically reweights pre-training data by topic. 531

Experiments with GPT-2 on Dolma show ToReMi 532

accelerates perplexity reduction and improves final 533

performance, especially on syntactic and sentiment 534

tasks. Our results highlight topic-aware reweight- 535

ing as a powerful tool for efficient and effective 536

pre-training. Future work could explore optimal 537

topic characteristics for further gains. 538
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Limitations539

One key limitation of ToReMi is its reliance on540

topic annotation quality, which depends on cluster-541

ing accuracy and LLM-generated labels. Noisy or542

imbalanced topic assignments may skew reweight-543

ing decisions. Additionally, the framework as-544

sumes topic-level homogeneity in sample qual-545

ity, which may not hold for fine-grained intra-546

topic variations. Computational overhead for dy-547

namic weight tracking—though modest—scales548

with topic diversity, potentially limiting applicabil-549

ity to ultra-large corpora. Finally, the two-stage550

transition requires manual tuning of hyperparam-551

eters (e.g., stage switch timing), which may need552

adaptation across datasets.553

Ethical Concerns554

ToReMi’s topic-based reweighting could inadver-555

tently amplify biases if certain topics correlate with556

demographic or cultural groups. We mitigate this557

by auditing topic distributions for skew and using558

diverse annotation taxonomies. Data privacy risks559

are minimal as our method processes existing pub-560

lic corpora without collecting user-generated con-561

tent. The noise-reduction stage further reduces ex-562

posure to potentially harmful text by downweight-563

ing low-quality samples. All experiments comply564

with dataset licenses, and our open-source release565

enables transparency in reweighting logic.566
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Figure 6: Prompt for generating topic labels for each
sample using the provided extracted keywords.

Figure 7: Prompt for assigning topic labels to each
sample based on the provided Wikipedia taxonomy.
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