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Abstract
Machine learning enables extracting clinical in-
sights from large temporal datasets. The applica-
tions of such machine learning models include
identifying disease patterns and predicting pa-
tient outcomes. However, limited interpretability
poses challenges for deploying advanced machine
learning in digital healthcare. Understanding the
meaning of latent states is crucial for interpreting
machine learning models, assuming they capture
underlying patterns. In this paper, we present a
concise algorithm that allows for i) interpreting
latent states using highly related input features;
ii) interpreting predictions using subsets of in-
put features via latent states; and iii) interpreting
changes in latent states over time. The proposed
algorithm is feasible for any model that is differen-
tiable. We demonstrate that this approach enables
the identification of a daytime behavioral pattern
for predicting nocturnal behavior in a real-world
healthcare dataset.

1. Introduction
Digital healthcare is a rapidly growing field empowered
by the internet, computers, and mobile devices. It offers
promising prospects for enhancing healthcare quality and ac-
cessibility. Machine learning techniques have the potential
to unlock valuable insights from extensive temporal datasets,
enabling healthcare providers to identify disease patterns
and predict patient outcomes. However, deploying sophis-
ticated machine learning technologies in digital healthcare
poses challenges due to their limited interpretability. The
interpretability of machine learning models is crucial in
healthcare applications because it enables professionals to
understand how a model arrived at a particular prediction
or decision. This is especially important when making de-
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cisions that can have significant consequences for patients,
such as in disease diagnosis or treatment recommendation.

Explainable Artificial Intelligence (XAI) has drawn increas-
ing attention in recent years due to the growing use of deep
learning models in critical decision-making applications.
Various approaches have been developed for explaining
black-box models, such as feature importance explanations
(Datta et al., 2016; Ribeiro et al., 2016; Lundberg & Lee,
2017; Sundararajan et al., 2017) and example-based expla-
nations (Li et al., 2018; Chen et al., 2019; Gurumoorthy
et al., 2019; Crabbé et al., 2021). However, when it comes
to healthcare applications, obtaining only the importance of
each feature or example is not enough for interpreting the
underlying patterns. Understanding the meaning of latent
states (representations) learned by a black-box model is key
to this issue, assuming they capture underlying patterns. We
posit that a latent state can be translated to a comprehensible
pattern that is formed by a subset of features.

In this paper, we introduce a simple, yet efficient algorithm
that aims to: i) interpret latent states using highly related
input features; ii) interpret predictions using subsets of in-
put features via latent states; and iii) interpret changes in
latent states over time. Once the first two goals are achieved,
the algorithm can readily fulfill the third one as long as the
model is able to learn latent states over time. This algorithm
is feasible for any differentiable latent state with respect to
input features. Hence, it can work as a readily available plu-
gin for most deep-learning models for temporal data, such
as transformers (Vaswani et al., 2017), recurrent neural net-
works (Tealab, 2018), Long Short-Term Memory (LSTM)
networks (Hochreiter & Schmidhuber, 1997), and advanced
state space models (Gu et al., 2021). To demonstrate the
portability of our method, we additionally provide a neat
solution for applying it to models using Neural Controlled
Differential Equation (NCDE) (Kidger et al., 2020). NCDE
models are capable of i) fitting the dynamics of latent states
(i.e. first-order derivatives w.r.t. time), ii) capturing long-
term dependencies in latent states, iii) dealing with irreg-
ularly sampled time series, and iv) working in an online
fashion. In short, NCDE is an attractive approach for mod-
eling healthcare time-series data. We demonstrate that the
proposed algorithm enables the identification of a daytime
behavioral pattern for predicting nocturnal behavior in a
real-world healthcare dataset using a NCDE model.
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2. Related work
In this section, we introduce several prior methods in XAI
that are related to our work.

2.1. Feature importance to predictions

The most popular methods in XAI focus on identifying im-
portant features for the prediction of a given sample, such
as SHAP (Lundberg & Lee, 2017) and LIME (Ribeiro et al.,
2016). These methods do not consider the factor of time.
Crabbé et al. (2021) proposed Dynamask to identify feature
importance over time, and Crabbé & van der Schaar (2022)
proposed for measuring feature importance without labels.
However, we aim to detect salient patterns rather than indi-
vidual features, which could be more helpful in understand-
ing disease progression or predicting certain symptoms.

2.2. Interpreting latent states

We can view a latent state as a compact code of an under-
lying pattern of observed features. It is often referred to
as a latent representation. Esser et al. (2020) introduced
an approach to transform a latent state into an interpretable
one. The interpretability comes from a decomposition of
semantic concepts, which requires prior knowledge to find
associated semantic concepts in the data. Accessing this
information is rather difficult in healthcare data.

The integrated Jacobian (also known as integrated gradients)
(Sundararajan et al., 2017; Crabbé et al., 2021) can quantify
the impact of an input feature on the shift of a latent state.
Although this is a one-to-one impact measure, we can utilize
it to identify subsets of key features for each latent state.

Assume we have a model G to infer the latent state z ∈
RH of an observation x ∈ RD, i.e. z = G(x) : RD →
RH , H < D. Let xi denote the i-th feature of a baseline
sample x, x̂i denotes the i-th feature of a test sample x̂.
We can compute the integrated Jacobian of the i-th feature
ji ∈ RH regarding (x, x̂) as below:

ji = (xi − x̂i)

∫ 1

0

∂G(x)
∂xi

∣∣∣
γi(λ)

dλ, (1)

Here γi(λ) = x̂i + λ(xi − x̂i), ∀λ ∈ [0, 1], represents a
point between xi and x̂i.

3. Methods
In this section, we first define a measurement that quantifies
the impact of an input feature on a latent state. We then
propose an algorithm for identifying the most influential
features that affect each latent state. With this algorithm,
we can interpret each latent state by two sets of influential
features, which likely result in the most positive and negative
magnitude shift of a latent state. We can further analyze

how these feature sets affect predictions by combining them
with other methods (such as SHAP, LIME).

3.1. Impact of an input feature to a latent state

We quantify the impact of i-th input feature on s-th latent
state in terms of the shift between two samples (x, x̂) as the
following equation:

pi,s =
ji,s

|zs − ẑs|
, z = G(x), ẑ = G(x̂) (2)

ji,s is the s-th element in ji which can be obtained by Equa-
tion (1). zs, ẑs are the s-th element in z and ẑ respectively.

The absolute value of pi,s is the ratio of the shift caused by
the specific feature compared to the total shift caused by all
features for a latent state. The impact can be in the posi-
tive (increasing) or negative (decreasing) direction which
enables us to analyze the shifts more precisely. Crabbé et al.
(2021) provides a measurement called projected Jacobian
which quantifies the total impact of an input feature on all
latent states. Using Equation (2), we can measure the impact
of an input feature on individual latent states.

3.2. Interpreting latent states by influential features

Algorithm 1 Generate Feature Heat Map of Latent States
Input: The direction of impact d ∈ {True, False},
training set {X, y}, model G, baseline set X̂ , the direction
of impact d ∈ {True, False}, number of latent states H ,
number of input features D, size of a subset of training
samples m, number of top samples k, number of latent
states h, and number of top features l.

Xc ← balanced subset(X, y,m)
Zc ← latent states(Xc,G)
Initialize the heat map matrix M with zeros: ∀ 0 ≤ i <
H, 0 ≤ j < D,Mi,j = 0

for x̂ ∈ X̂ do
ẑ ← latent states(x̂,G)
Zid ← TopDissimilarSamples(Zc, ẑ, k)
F← TopImpactfulFeatures(d,G, x̂, Xc[Zid], l)
for ki ∈ {1, . . . , k} do

for hi ∈ {1, . . . , h} do
i = hi, ∀j ∈ Fki,hi

, M[i, j]+ = 1
end for

end for
end for
Return: M

Our proposed approach for interpreting latent states is based
on contrastive methods, i.e. at least one pair of different
samples is required to compute the similarities and shifts in
latent and input spaces.
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Figure 1. The two heat maps for interpreting latent state z1 over time t learned by the NCDE model. The y-axis is the latent state along
the time axis, z1(tn) means z1 at the n-th time step. The x-axis is the input features which are named by the locations of sensors and the
aggregate methods, e.g. ”kitchen” is the number of activities in the kitchen during one hour, ”kitchen ctime” is the cumulative number of
hours that ”kitchen” has non-zero values, ”kitchen cmax” is the maximum value of ”kitchen” among all passed hours, etc.

More specifically, we identify the most different samples
{x|x ∈ Xdif} compared to a baseline sample x̂ and locate
features that contribute most to the positive/negative shift
of each latent state between each pair of (x, x̂). To obtain
an overall result, we iterate this process on a small set of
baseline samples and generate a heat map that indicates how
frequently an input feature has been identified as one of
the most impactful features of a latent state. Please refer
to Algorithms 1 to 3 for more details. By visualizing this
heat map, we can readily observe the relation between latent
states and input features over time. Figure 1 shows an
example of this heat map obtained by real-world data.

In order to identify influential features, we focus on the most
dissimilar pairs of training samples. These pairs are likely
to exhibit significant shifts in their latent states. On the other
hand, the most similar pairs tend to have minimal shifts in
most latent states, making it challenging to determine which
features contribute the most to their similarity.

Algorithm 2 TopDissimilarSamples
Input: Latent states of the subset samples Z, latent states
of a baseline sample z, number of top samples k.

Scos ← Cosine Similarities between z and Z
Sids ← Argsort(Scos, ascending=True)
Return: Sids[: k]

Algorithm 3 TopImpactfulFeatures
Input: The direction of impact d ∈ {True, False},
a differentiable model G, input features of a baseline
sample x̂ ∈ RD, input features of a subset samples X ∈
Rk×D, number of top features l.

P ← ImpactMeasure(d,X ,x̂,G) # apply Equation (2)
on all pairs of {(x̂, x)|x ∈ X} for each latent state.
Pid ← Argsort(P , descending=d, axis=-1)
Return: Pid[:, :, : l]

3.3. Interpreting latent states of NCDE models

Assuming that there are latent states representing the under-
lying patterns of time series, which depend on the cumula-
tive influence from all previous states, differential equations
are often applied to find the dynamics of such latent states
and forecast future states.

3.3.1. PRILIMINARY: NEURAL CONTROLLED
DIFFERENTIAL EQUATION (NCDE)

Neural Ordinary Differential Equation (NODE) (Chen et al.,
2018) is a deep learning technique that can use neural net-
works to approximate a latent state that has no explicit
formulation with its dynamics. For instance: z(t1) =

z(t0) +
∫ t1
t0

fθ(z(t), t)dt. Here z(t) denotes latent states at
time t, fθ(·) represents an arbitrary neural network. NCDE
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Figure 1. The two heat maps for interpreting latent state z1 over time t learned by the NCDE model. The y-axis is the latent state along
the time axis, z1(tn) means z1 at the n-th time step. The x-axis is the input features which are named by the locations of sensors and the
aggregate methods, e.g. ”kitchen” is the number of activities in the kitchen during one hour, ”kitchen ctime” is the cumulative number of
hours that ”kitchen” has non-zero values, ”kitchen cmax” is the maximum value of ”kitchen” among all passed hours, etc.

illustrates how this latent state evolves over time. Combined
with SHAP values (Lundberg & Lee, 2017) of important
latent states (Figure 2), we can discover subsets of features
that jointly affect the model prediction through latent states.
Section 4 provides top 3 features for all latent states at the
last time step in both positive and negative directions. These
results could be further used to discover digital biomarkers
of healthcare applications.

Latent state Top 3 positive
impact features

Top 3 negative
impact features

z0(t11)
back door ctime hallway ctime
fridge door ctime bathroom ctime
front door ctime back door csum

z1(t11)
back door ctime back door csum
front door ctime ridge door ctime
bedroom ctime bathroom csum

z2(t11)
front door ctime back door ctime
lounge csum hallway ctime
lounge ctime kitchen ctime

z3(t11)
back door ctime kitchen ctime
hallway ctime lounge csum
bedroom ctime lounge ctime

5. Conclusion and future work
We propose a method that can identify the most influential
features of a latent state, which may or may not be linearly

Figure 2. Top 10 latent states that have the highest absolute SHAP
values. The SHAP value represents a latent state’s impact on the
model output regarding a given sample. The violin plot illustrates
the distribution of SHAP values which are estimated by test sam-
ples during cross-validation. The color indicates whether the raw
value of a latent state is high or low.

correlated. Our method allows linking model outcomes to
important latent states, and most contributing features. Fu-
ture work can be done in multiple directions, such as causal
analysis of identified features, or probabilistic modeling on
joint distributions of those features.

4
Figure 2. A demonstration of identifying a behavioral pattern that is likely related to the model output. We first identify the most important
latent state z2(t11) of the model output by SHAP value (the top one in the left figure); we then get the top influential features of the top
latent state (the third row in the table) by the proposed method; finally, we can analyze the correlations between the specific latent state
and its top features, e.g. using scatter plot to show how the top two features with positive impact correlate to the value of the latent state
(the right figure). The example shows that it is more likely to get higher values of z2(t11) when lounge cum (the cumulative sum of
activities in the lounge) is low and front door ctime (the cumulative active hours at the front door) is high. Higher values of z2(t11) are
likely to give a negative impact on the model output, which indicates less likely being awake during night time.

(Kidger et al., 2020) uses a controlled different equation, in
which the dynamics of z(t) are assumed to be controlled or
driven by an input signal x(t).

z(t1) = z(t0) +

∫ t1

t0

f̃θ(z(t), t)dx(t)

= z(t0) +

∫ t1

t0

f̃θ(z(t), t)
dx

dt
dt,

(3)

where f̃θ : RH → RH×D, H is the dimension of z, D is
the dimension of x. The NODE is a special case of NCDE
when dx/dt = I . By treating fθ(z(t), t)

dx
dt as one function

gθ(z(t), t, x), one can solve NCDE by regular methods for
solving NODE. The trajectory of control signals (x(t)) in
NCDE can be fitted independently with f̃θ, which enables
NCDE to deal with irregular sampled time series and work
with online streaming data.

3.3.2. INTEGRATED JACOBIAN OF NCDE MODELS

We cannot compute the integrated Jacobian of NCDE mod-
els readily by Equation (1) because z ̸= G(x) in this case.
Interestingly, we can obtain the Jacobian ∂z/∂x easily when
we i) use observations as control signals; ii) x(t) is approx-
imated by an invertible function. According to the chain
rule:

∂z

∂x
=

∂z

∂t

dt

dx
=

(
f̃θ(z(t), t)

dx

dt

)
dt

dx
= f̃θ(z(t), t) (4)

This way only needs a forward computation instead of a
back-propagation to obtain the Jacobian ∂z/∂x.

4. Experiments
We conducted experiments on two different datasets: 1).
one uses data from an ongoing study of dementia care; 2)

the other is the Sepsis dataset (Reyna et al., 2019) from
PhysioNet 1. We use NCDE models for both datasets. We
also conducted feature augmentation by cumulative opera-
tions on both datasets. For example: ”feature ctime” is the
cumulative number of time steps that a specific feature has
non-zero values, ”feature cmax” is the maximum value of a
specific feature among all passed time steps, ”feature csum”
is the value sum of a specific feature over passed time steps.
Each time step represents one-hour information for both
datasets.

4.1. Experiments with dementia care data

The data were collected from sensors deployed in 91 partic-
ipants’ homes, including Passive Infra-Red (PIR) sensors
installed in multiple locations, door sensors, and an under-
the-mattress sleep mat. The dataset is not public but a
smaller dataset with similar properties is available on Zen-
odo repository 2. We train an NCDE model using household
sensor data between 6:00 AM and 6:00 PM daily to predict
if a participant will be awake more than half of the time
when he/she is in bed during the night. Each data sample
includes 12 time steps each of which has 36 features that are
generated from sensor activations and feature augmentation.

The NCDE model learns four latent states at each time step
and we concatenate all latent states as the input to the fi-
nal linear layer. Figure 1 demonstrates the heat maps for
interpreting one of these latent states at each time step. It
illustrates how this latent state evolves over time. Combined
with SHAP values (Lundberg & Lee, 2017) of top 10 impor-
tant latent states (the left figure in Figure 2), we can discover

1https://physionet.org/content/
challenge-2019/1.0.0/

2https://zenodo.org/record/7622128
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subsets of features that jointly affect the model prediction
through latent states. In Figure 2, we demonstrate how
to identify a behavioral pattern using the aforementioned
dataset by the proposed method. The figure shows that it is
more likely to get higher values of z2(t11) when lounge cum
(the cumulative sum of activities in the lounge) is low and
front door ctime (the cumulative active hours at the front
door) is high. Higher values of z2(t11) are likely to give a
negative impact on the model output, which indicates less
likely being awake during night time.

4.2. Experiments with Sepsis dataset

The Sepsis dataset (Reyna et al., 2019), applied in the Phys-
ioNet/Computing in Cardiology Challenge 2019, is a public
dataset consisting of hourly vital signs and lab data, along
with demographic data, for 40366 patients obtained from
three distinct U.S. hospital systems. The objective is to
predict sepsis within 72 hours from the time a patient was
admitted to the ICU. We use a subset of this dataset which
consists of data from 12000 patients. The task is a binary
classification of predicting the onset of sepsis. Therefore,
each data sample includes 72 time steps (hours) each of
which has 136 features that are augmented by 34 original
features (vital signs and lab data). For patients who have no
records of the full 72 hours, we treated features of missing
hours as missing values filled by 0. All original features
were preprocessed by min-max normalization and shifted
from the range [0,1] to the range [1,2].

The NCDE model learns two latent states at each time step.
The SHAP values plot in Figure 3(a) shows the 10 most
impactful latent states on the sepsis outcome. z0(t35) is the
most influential latent state according to the figure, which
is the first latent state at the 36-th hour. Using our method
to link this latent state to the most influential input fea-
tures, the top three on z0(t35) are SBP csum, O2sat csum,
and Resp csum. We see from Figures 3(b) and 3(c) that
when values of SBP csum (cumulative sum of Systolic
BP), O2sat csum (cumulative sum of Pulse oximetry), and
Resp csum (cumulative sum of Respiration rate) are all in
the lower side, z0(t35) is likely having a larger value and
thus likely having a positive impact on the prediction, i.e.,
increasing the likelihood of sepsis.

5. Conclusion and future work
We propose a method that can identify the most influential
features of a latent state, which may or may not be linearly
correlated. Our method allows linking model outcomes to
the most contributing features, which brings insights into
understanding the knowledge that learned by the model.
However, after discovering influential features, we still need
to manually analyze the relations between those features,
latent states, and model outputs. In order to get more readily

interpretable results, we consider developing algorithms
that can automatically discover interpretable patterns using
top influential features in the future. More future work
can be done in multiple directions, such as causal analysis
of identified features, or probabilistic modeling on joint
distributions of those features.

(a) SHAP values of top 10 latent states on Sepsis
dataset
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(b) Scatter plot using values of SBP csum,
O2sat csum at t35, the color indicates values of
the top latent state z0(t35)
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(c) Scatter plot using values of SBP csum,
Resp csum at t35, the color indicates values of
the top latent state z0(t35)

Figure 3. Interpreting the top latent state in Sepsis dataset
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