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ABSTRACT

Post-training of large language models involves a fundamental trade-off between
supervised fine-tuning (SFT), which efficiently mimics demonstrations but tends
to memorize, and reinforcement learning (RL), which achieves better generaliza-
tion at higher computational cost. Dynamic Fine-Tuning (DFT) recently emerged
as a promising middle ground, reweighting SFT objectives with token probabili-
ties and achieving improvements in certain reasoning domains, though it exhibits
instability in other tasks. We provide a analysis of DFT through the reward-
weighted regression (RWR) framework, revealing that it corresponds to a spe-
cific auxiliary distribution choice that yields provably tighter RL bounds than
standard SFT. However, our analysis also uncovers a critical limitation: this con-
struction lacks distributional anchoring, leading to progressive drift that under-
mines training stability. To address this, we propose Anchored Supervised Fine-
Tuning (ASFT), which augments DFT’s reweighting with lightweight KL regu-
larization to preserve tightness while ensuring stability. Empirically, ASFT con-
sistently outperforms both SFT and DFT across mathematical reasoning, medical
knowledge grounding, and code generation, achieving substantial improvements
with minimal computational overhead. Our RWR framework provides a system-
atic lens for understanding post-training methods and demonstrates that principled
theoretical analysis leads to both stronger guarantees and practical gains.

1 INTRODUCTION

Large language models (LLMs) have become a central substrate for modern AI systems, powering
instruction following, tool use, and multi-step reasoning at scale (Brown et al., 2020; Touvron et al.,
2023; Achiam et al., 2023; Guo et al., 2025). Post-training is crucial to adapt pretrained models to
tasks and human preferences. This process typically involves two primary paradigms: supervised
fine-tuning (SFT), which is an off-policy method that imitates expert demonstrations collected from
a fixed dataset, and reinforcement learning (RL), which is an on-policy approach that optimizes
outcome-based rewards by directly interacting with the model’s own outputs (Ouyang et al., 2022;
Rafailov et al., 2023; Shao et al., 2024). While SFT is data- and compute-efficient, excelling at
rapid acquisition of desired behaviors, it tends to memorize surface patterns rather than learn robust,
generalizable strategies (Chu et al., 2025; Zhang et al., 2021; Feldman, 2020). In contrast, RL
leverages outcome-driven updates and exploration to discover more transferable behaviors, but is
substantially more expensive and unstable in practice (Schulman et al., 2017; Ziegler et al., 2019;
Stiennon et al., 2020). This fundamental trade-off motivates methods that retain SFT’s efficiency
while inheriting RL’s generalization benefits (Bai et al., 2022; Lee et al., 2023; Yuan et al., 2024).

A growing body of work re-examines SFT through an RL lens, arguing that the implicit reward
induced by maximum likelihood is pathological and that principled reweighting or trust regions
are needed. Among these approaches, Dynamic Fine-Tuning (DFT) (Wu et al., 2025a) has gained
significant attention by identifying a pathological reward structure in standard SFT that leads to un-
bounded variance when model probabilities approach zero. DFT addresses this through probability-
based reweighting, achieving remarkable empirical improvements in mathematical reasoning tasks.
However, our preliminary experiments reveal that DFT’s effectiveness is domain-specific; it excels
in reasoning-intensive domains yet exhibits instability in knowledge-intensive tasks and lacks theo-
retical grounding for its design choices.
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Figure 1: Training dynamics comparison across fine-tuning methods on medical knowledge tasks.
Left: MMLU accuracy (out-of-domain evaluation); Center: MedMCQA accuracy (in-domain eval-
uation); Right: KL divergence from base model. DFT exhibits severe distributional drift (high KL
divergence) while ASFT maintains stability through KL anchoring and achieves superior perfor-
mance on both tasks.

To address these problems, we provide a principled theoretical analysis of DFT within a reward-
weighted regression framework inspired by reward-weighted regression and importance sampling
theory (Rubinstein & Kroese, 2016). From the theoretical perspective, we To address these prob-
lems, we provide a principled theoretical analysis of DFT within a reward-weighted regression
framework inspired by reward-weighted regression and importance sampling theory (Rubinstein
& Kroese, 2016). From the theoretical perspective, we reveal that DFT corresponds to a specific
auxiliary distribution construction that yields a provably tighter lower bound on the RL objective
compared to standard SFT. This causes a critical limitation: the absence of distributional anchoring
mechanisms leads to progressive drift away from the reference distribution. The distributional shift
undermines the validity of the reward-weighted framework and explains the training instabilities of
DFT.

To address these fundamental limitations, we propose Anchored Supervised Fine-Tuning (ASFT),
a lightweight extension of DFT that incorporates a KL divergence regularization term to prevent
distributional drift while preserving the tightness benefits of adaptive reweighting. As demonstrated
in Figure 1, ASFT maintains stable KL divergence while achieving superior performance across
both in-domain and out-of-domain evaluations.

Empirically, ASFT consistently outperforms both standard SFT and DFT across mathematical rea-
soning, medical knowledge, and code generation tasks. On mathematical reasoning benchmarks
with 100k training samples, ASFT achieves an average improvement of +4.85 points (18.6%) over
DFT and +17.89 points (142%) over the base model. In medical knowledge tasks with 10k samples,
ASFT delivers +8.28 points (24.8%) improvement over SFT and +10.65 points (33.9%) over the
base model, requiring only 3% of the training cost of full RL approaches.

Our contributions are threefold: (1) We provide a rigorous theoretical explanation for DFT’s
domain-specific effectiveness and inherent instabilities, grounding its heuristic design within the for-
mal reward-weighted regression framework and proving that it achieves a strictly tighter bound than
SFT while suffering from uncontrolled variance growth. (2) We propose ASFT, a simple yet prin-
cipled method that resolves DFT’s stability issues through lightweight KL anchoring while main-
taining its tightness advantages, requiring minimal computational overhead compared to full RL
approaches. (3) We demonstrate that ASFT delivers superior performance across both reasoning-
intensive and knowledge-intensive domains, achieving better generalization than SFT, greater sta-
bility and broader applicability than DFT, and RL-comparable performance with SFT-level compu-
tational efficiency.

2 RELATED WORK

Supervised fine-tuning and reinforcement learning. Supervised fine-tuning (SFT) and rein-
forcement learning (RL) are the two dominant paradigms for post-training large language models.
SFT can be viewed as optimizing a stable but loose lower bound on the RL objective, which ensures
efficiency and robustness but often leads to memorization and limited generalization (Wei et al.,
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2022; Chung et al., 2024; Zhang et al., 2021; Chu et al., 2025). In contrast, RL directly optimizes
outcome-based rewards, achieving tighter alignment and stronger generalization but at the cost of
instability, high variance, and heavy computation (Ouyang et al., 2022; Schulman et al., 2015; 2017).
Recent work seeks to bridge this trade-off by either tightening the SFT bound via reweighting and
importance weighting (Wu et al., 2025a; Qin & Springenberg, 2025) or stabilizing RL through trust-
region and hybrid methods (Sheng et al., 2025; Zhu et al., 2025).

Importance weighting and policy optimization. The connection between supervised learning
and reinforcement learning through importance weighting has deep theoretical roots (Kahn & Mar-
shall, 1953; Dayan & Hinton, 1997). In the context of policy optimization, importance sampling
enables off-policy learning by reweighting samples from a behavior policy to estimate gradients
for a target policy (Metelli et al., 2018; Jiang & Li, 2016), though the resulting weights can suf-
fer from high variance when distributions are misaligned (Andradóttir et al., 1995). To address
this, trust-region methods (Schulman et al., 2015) and proximal policy optimization (Schulman
et al., 2017) constrain policy updates to remain close to a reference policy. Building on these
ideas, recent advances in language model fine-tuning have explored importance-weighted super-
vised objectives (Qin & Springenberg, 2025), proximal supervised fine-tuning (Zhu et al., 2025),
and probability-based reweighting in dynamic fine-tuning (Wu et al., 2025a), as well as unified
frameworks that combine SFT and RL principles (Lv et al., 2025; Wu et al., 2025b). Our work
follows this line of research by anchoring the auxiliary distribution itself to the base model, thereby
extending importance-weighted approaches with a mechanism that stabilizes training while retain-
ing their theoretical tightness.

3 PRELIMINARIES

In this section, we establish the theoretical foundation connecting supervised fine-tuning and re-
inforcement learning through the reward-weighted regression framework, setting the stage for our
analysis of existing methods and our proposed ASFT approach.

3.1 PROBLEM FORMULATION AND BASIC FRAMEWORKS

We consider language modeling where trajectories τ = (x, y) consist of input prompts x and gener-
ated responses y. A parametric policy πθ(τ) = πθ(y | x) =

∏|y|
t=1 πθ(yt | y<t, x) assigns probabil-

ity via autoregressive decomposition. The reinforcement learning objective maximizes expected
reward J(θ) = Eτ∼πθ

[R(τ)] where R(τ) : X ×Y → [0, 1] evaluates trajectory quality. In contrast,
supervised fine-tuning performs behavior cloning on expert demonstrations D = {(x, y∗)} sam-
pled from reference distribution πref(τ) by minimizing LSFT(θ) = −E(x,y∗)∼D[log πθ(y

∗ | x)].

3.2 THE REWARD-WEIGHTED REGRESSION FRAMEWORK

Building on prior work in reward-weighted regression and importance sampling (Peters & Schaal,
2007; Rubinstein & Kroese, 2016; Qin & Springenberg, 2025), we adopt the reward-weighted
regression (RWR) framework for language model fine-tuning. This framework provides a princi-
pled connection between SFT and RL objectives by leveraging importance sampling and auxiliary
distributions to construct tighter bounds on the RL objective.

Under sparse rewards where R(τ) = I[y = y∗] and the assumption that supp(πθ) ⊆ supp(πref),
we can establish the following fundamental result:

Proposition 1 (SFT as RL Lower Bound). The RL objective satisfies:

J(θ) ≥ cref · Eτ∈D+ [log πθ(τ)] (1)

where D+ = {(x, y∗) | R(x, y∗) = 1} and cref = Pπref
(τ ∈ D+).

This reveals that SFT optimization implicitly maximizes a lower bound on the RL objective. How-
ever, this bound becomes increasingly loose as πθ diverges from πref during training.

3
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Within the RWR framework, we can generalize to tighter bounds through auxiliary distributions.
For any distribution q(τ) with appropriate support:

J(θ) ≥ cref · Eτ∈D+

[
q(τ)

πref(τ)
log πθ(τ)

]
(2)

The choice of auxiliary distribution q determines both the tightness of the bound and the stability of
the resulting optimization procedure. This sets up the fundamental trade-off between validity and
tightness that we address in this work.

3.3 DYNAMIC FINE-TUNING: AN EXISTING APPROACH

Dynamic Fine-Tuning (DFT) (Wu et al., 2025a) addresses SFT’s limitations by identifying a patho-
logical reward structure in standard SFT. When viewed as a policy gradient method, SFT’s implicit
reward rSFT(y | x) = I[y=y∗]

πθ(y|x) exhibits inverse-probability weighting that causes unbounded vari-
ance when πθ(y

∗ | x) approaches zero.

DFT addresses this through probability-based reweighting:

LDFT(θ) = −E(x,y∗)∼D[sg[πθ(y
∗ | x)] log πθ(y

∗ | x)] (3)

where sg[·] denotes the stop-gradient operator.

While DFT achieves empirical improvements, its theoretical properties within the RWR framework
remained unclear—a gap we address in our analysis.

4 METHOD

4.1 THEORETICAL ANALYSIS OF DFT WITHIN THE RWR FRAMEWORK

We found that DFT can be precisely characterized within the RWR framework through a specific
auxiliary distribution construction. This analysis reveals both DFT’s strengths and fundamental
limitations.

Key Finding 1: DFT corresponds to a specific auxiliary distribution choice. We discovered that
the DFT objective is mathematically equivalent to choosing the auxiliary distribution:

q(τ) =
πref(τ | D+) sg[pθ(τ)]

Eτ∼πref (·|D+)[sg[pθ(τ)]]
(4)

This construction directly recovers the DFT sequence-level objective:

LDFT(θ) = −Eτ∈D+ [sg(pθ(τ)) log pθ(τ)] (5)

Key Finding 2: DFT achieves provably tighter bounds than SFT. We proved that this auxil-
iary distribution yields a strictly tighter lower bound on the RL objective compared to standard
SFT whenever the policy assigns non-uniform probabilities to demonstrations (detailed proof in
Appendix E).

Theorem 1 (Strict Tightness). The DFT auxiliary distribution yields a strictly tighter lower bound
than standard SFT whenever Var(pθ(τ)) > 0 on D+.

This theoretical result explains DFT’s superior empirical performance in domains where the policy
distribution exhibits sufficient variance across training examples.

Key Finding 3: DFT suffers from distributional drift. However, our analysis also revealed a
critical limitation: the policy distribution progressively diverges from the reference distribution dur-
ing training. As optimization proceeds, q becomes increasingly concentrated on trajectories with
high pθ(τ), creating a feedback loop where the model focuses on a diminishing subset of training
data. This distributional drift undermines the foundational assumptions of the RWR framework and
threatens the validity of the lower bound guarantees.
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We formalized this instability by noting that the fundamental inequality u ≥ 1 + log u (used to
derive the RL lower bound) achieves equality if and only if u = 1. In DFT’s case, u = πθ(τ)

qθ(τ)
,

so the bound is tight only when πθ(τ) = qθ(τ), i.e., when pθ(τ) is constant on D+. However, as
training progresses, pθ(τ) becomes increasingly non-uniform, making the inequality strictly loose.
This leads to deteriorating bound quality, reduced effective sample size, and training instability.

4.2 ANCHORED SUPERVISED FINE-TUNING (ASFT)

To address DFT’s distributional drift while preserving its tightness advantages, we propose An-
chored Supervised Fine-Tuning (ASFT). Our method adds a lightweight KL regularization term
that constrains the policy within a trust region of a reference checkpoint:

LASFT(θ) = LDFT(θ) + λEs[DKL(πθ(· | s)∥πbase(· | s))] (6)

where πbase is a fixed reference policy (typically the pretrained model) and λ > 0 controls anchoring
strength.

Theoretical Guarantees. This design preserves DFT’s tightness benefits since the KL term does
not alter the lower-bound structure, while providing explicit variance control that prevents the expo-
nential growth that destabilizes pure DFT training. The anchoring mechanism creates a trust region
around the reference policy, allowing controlled exploration of tighter bounds without sacrificing
distributional stability.

Practical Implementation. Following standard practice in language model training (Ouyang et al.,
2022; Shao et al., 2024), we implement ASFT at the token level by distributing sequence-level
weights across tokens using normalized per-position allocation, ensuring mathematical equivalence
to our theoretical framework while enabling efficient computation. Our method requires minimal
computational overhead compared to standard SFT - adding only a simple KL penalty - yet delivers
RL-comparable generalization performance along with SFT-level efficiency.

5 EXPERIMENTS

5.1 SETUP

Models. We conduct fine-tuning experiments using LLaMA-2-7B(Touvron et al., 2023) and
Qwen2.5-7B(Qwen et al., 2025), two widely adopted models in the field. We select LLaMA-2-
7B specifically to avoid potential contamination from prior supervised knowledge. Qwen2.5-7B, on
the other hand, is a state-of-the-art model that is broadly used in current research. For knowledge-
intensive (medical) tasks, we utilize both LLaMA-2-7B and Qwen2.5-7B to evaluate knowledge
fine-tuning. For mathematical reasoning tasks, we focus exclusively on Qwen2.5-7B due to its su-
perior reasoning capabilities, whereas LLaMA-2-7B is less competitive in mathematical reasoning.
This setup enables a systematic study of knowledge and reasoning learning across both fact-based
and reasoning-intensive domains.

Datasets. We evaluate ASFT on two domains: (i) Mathematical reasoning, using 10k/30k/100k
samples from NuminaMath CoT (LI et al., 2024) for training, and testing on Math500 (Hendrycks
et al., 2021), Minerva Math (Lewkowycz et al., 2022), OlympiadBench (AI Mathematical Olympiad,
2024), AIME 2024 (American Institute of Mathematics, 2024), and AMC 2023 (Mathematical As-
sociation of America, 2023); (ii) Medical knowledge, using 10k/30k/100k MedMCQA (Pal et al.,
2022) samples for training, and testing on MMLU-medical (Hendrycks et al., 2020), MedQA (Jin
et al., 2021), and the MedMCQA test set.

Training and Evaluation Settings. All methods are implemented using AdamW optimizer, co-
sine learning rate decay, and warm-up ratio 0.1. For mathematical reasoning, SFT and DFT use
model max length 2048, global batch size 256, learning rate 5× 10−5, and are trained for 1 epoch.
ASFT follows the same configuration with coefficient λ = 0.05. For medical knowledge, we set
model max length 512, global batch size 64, learning rate 2 × 10−5, and train for 3 epochs, with
ASFT again using λ = 0.05. At the evaluation stage, for math, we use the default chat template

5
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Model MedQA MMLU MedMCQA Avg AIME24 Math500 Minerva Olympiad ACM23 Avg
LLaMA-2-7B/Qwen2.5-7B 29.85 30.52 33.76 31.38 1.65 28.79 9.26 7.69 15.65 12.61

Dataset Scale: 10k
SFT 33.31 (+3.46) 33.52 (+3.00) 33.28 (-0.48) 33.37 (+1.99) 1.24 (-0.41) 41.84 (+13.05) 11.30 (+2.04) 12.26 (+4.57) 17.03 (+1.38) 16.73 (+4.12)
SFT w/ KL 29.22 (-0.63) 30.63 (+0.11) 33.01 (-0.75) 30.95 (-0.43) 0.41 (-1.24) 42.21 (+13.42) 12.05 (+2.79) 12.08 (+4.39) 17.19 (+1.54) 16.79 (+4.18)
DFT 29.69 (-0.16) 26.69 (-3.83) 31.20 (-2.56) 29.19 (-2.19) 4.18 (+2.53) 59.51 (+30.72) 17.10 (+7.84) 24.95 (+17.26) 31.09 (+15.44) 27.77 (+15.16)
ASFT 39.28 (+9.43) 46.37 (+15.85) 40.45 (+6.69) 42.03 (+10.65) 3.33 (+1.68) 59.60 (+30.81) 19.91 (+10.65) 24.50 (+16.81) 36.41 (+20.76) 28.75 (+16.14)

Dataset Scale: 30k
SFT 33.54 (+3.69) 38.48 (+7.96) 36.03 (+2.27) 36.02 (+4.64) 2.71 (+1.06) 44.74 (+15.95) 13.21 (+3.95) 13.44 (+5.75) 21.56 (+5.91) 19.93 (+7.32)
SFT w/ KL 30.56 (+0.71) 29.86 (-0.66) 33.56 (-0.20) 31.33 (-0.05) 2.70 (+1.05) 44.91 (+16.12) 13.03 (+3.77) 13.48 (+5.79) 18.90 (+3.25) 18.60 (+5.99)
DFT 31.26 (+1.41) 33.08 (+2.56) 35.09 (+1.33) 33.14 (+1.76) 3.34 (+1.69) 57.93 (+29.14) 23.28 (+14.02) 25.31 (+17.62) 28.44 (+12.79) 27.66 (+15.05)
ASFT 42.03 (+12.18) 44.94 (+14.42) 39.06 (+5.30) 42.01 (+10.63) 5.81 (+4.16) 57.03 (+28.24) 20.61 (+11.35) 24.44 (+16.75) 30.00 (+14.35) 27.18 (+14.57)

Dataset Scale: 100k
SFT 33.46 (+3.61) 38.01 (+7.49) 35.67 (+1.91) 35.71 (+4.33) 0.83 (-0.82) 47.30 (+18.51) 13.46 (+4.20) 14.16 (+6.47) 20.00 (+4.35) 19.15 (+6.54)
SFT w/ KL 30.09 (+0.24) 31.62 (+1.10) 33.85 (+0.09) 31.85 (+0.47) 1.44 (-0.21) 46.81 (+17.02) 14.13 (+4.87) 13.74 (+6.05) 20.00 (+4.35) 19.22 (+6.61)
DFT 36.61 (+6.76) 41.26 (+10.74) 36.31 (+2.55) 38.06 (+6.68) 6.26 (+4.61) 56.88 (+28.09) 21.18 (+11.92) 22.68 (+14.99) 27.19 (+11.54) 26.04 (+13.43)
ASFT 40.61 (+10.76) 42.02 (+11.50) 37.32 (+3.56) 39.98 (+8.60) 6.66 (+5.01) 59.99 (+31.20) 23.55 (+14.29) 25.57 (+17.88) 36.72 (+21.07) 30.50 (+17.89)

Table 1: Performance comparison of fine-tuning methods on medical benchmarks (left) and math
benchmarks (right) under different dataset scales. Bold numbers indicate the best performance in
each group, and rows with blue background highlight our ASFT approach. Numbers in (olive) or
(red) show improvements or drops relative to the base model.

and Chain-of-Thought (CoT) prompting, report average accuracy over 16 decoding runs (temper-
ature 1.0, max length 4096). For medical, we use standard prompt templates and multiple-choice
accuracy. Baselines include SFT, SFT w/ KL, and DFT (Wu et al., 2025b).

5.2 MAIN RESULTS

Our experimental results demonstrate that ASFT consistently delivers superior performance across
both knowledge-intensive and reasoning-intensive domains while maintaining training stability. As
shown in Table 1, across both medical knowledge and mathematical reasoning tasks, ASFT consis-
tently delivers strong and stable improvements over all baselines. In knowledge-intensive domains,
ASFT not only avoids the severe performance degradation observed with DFT (which drops by an
average of -2.19 points at 10k samples), but also achieves substantial gains—outperforming the base
model by +10.65 points (a 33.9% relative improvement) at 10k scale, and maintaining robust advan-
tages as the dataset size increases (10k: +10.65, 30k: +10.63, 100k: +8.60). This stability across
scales highlights ASFT’s scalability and addresses the distributional drift issues that limit DFT in
such settings. For mathematical reasoning, both DFT and ASFT surpass standard SFT, but ASFT
maintains a consistent edge and greater training stability. With 100k samples, ASFT improves over
the base by +17.89 points (versus DFT’s +13.43), and the advantage is even more pronounced on
challenging benchmarks like AMC23 (36.72% vs. 27.19% for DFT), reflecting superior general-
ization. Overall, ASFT’s improvements are not only larger but also more consistent across diverse
benchmarks, while DFT’s gains are more variable—especially on tasks requiring broad mathemati-
cal reasoning—underscoring the robustness and effectiveness of ASFT.

5.3 ABALTION STUDY

We conduct two ablations: (1) comparing forward vs. reverse KL regularization, and (2) analyzing
the impact of learning rate and batch size. These studies clarify the effect of KL direction and the
robustness of ASFT to key hyperparameters.

Forward vs. Reverse KL. Here we follow the RLHF convention: let Q denote the policy model
(i.e., the fine-tuned model with parameters θ), and P denote the base model, which is the pretrained
model before any fine-tuning. In our approach, we use the reverse KL divergence, DKL(Q ∥P ), to
regularize the policy model towards the base model at each step. For comparison, we also exper-
iment with the forward KL divergence, DKL(P ∥Q). As shown in Figure 2, reverse KL leads to
stable convergence and consistent improvements. In contrast, forward KL tends to encourage mode-
covering behavior, causing the model to spread probability mass more broadly. We further sweep
the regularization coefficient λ and find that an optimal range is around λ = 0.1; both excessively
small and large values lead to under-anchoring or over-regularization, respectively.
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Figure 2: Comparison of reverse KL (RKL) and forward KL divergence regularization effects across
different coefficient values (λ) on MedQA, MMLU, and MedMCQA benchmarks. Performance is
measured in accuracy scores, with horizontal dashed lines indicating baseline performance of Base,
SFT, and DFT models for reference.
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Figure 3: Comparison of model performance across three benchmarks (MedQA, MMLU, MedM-
CQA) for five models (LLaMA-2-7B, LLaMA-2-70B, Qwen2.5-7B, Qwen2.5-32B, Qwen2.5-72B)
using four fine-tuning strategies (Base, SFT, DFT, ASFT). Each subplot shows the scores for a
specific benchmark, highlighting the relative effectiveness of different fine-tuning methods across
models.

Training Hyper-Parameters Ablation. We conduct an ablation study to evaluate the robustness
of ASFT with respect to learning rate and batch size, using LLaMA-2-7B and 10k samples from
MedCAQA. For learning rate, we examine six values ranging from 5e-6 to 2e-4. ASFT consistently
outperforms both SFT and DFT across all configurations, with the best performance observed at
intermediate rates (1e-5 and 2e-4). Extreme low (5e-6) or high (2e-4) rates lead to minor drops,
highlighting that moderate learning rates are preferable but ASFT remains robust overall. For batch
size, we sweep values from 32 to 256. The results show stable performance across the full range,
with only small fluctuations. This indicates that batch size is not a sensitive factor for ASFT, and
standard settings suffice. Overall, ASFT demonstrates both strong robustness and low sensitivity to
key hyperparameters, maintaining a consistent advantage over SFT and DFT in medical QA fine-
tuning tasks. The detailed results for learning rate and batch size sweeps are shown in Appendix G.1.

6 ANALYSIS AND DISCUSSION

6.1 SCALING ANALYSIS ACROSS MODEL SIZE

We evaluate fine-tuning methods on medical-domain datasets using 10k training samples (Figure
see 3, detailed results in Appendix F.1). Our experiments cover both LLaMA-2 (7B and 70B) and
Qwen2.5 (7B, 32B, and 72B) models. Across all model sizes, ASFT consistently outperforms Base,
SFT, and DFT, and its improvements remain robust as models scale, demonstrating effective and
stable adaptation under low-resource settings.
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Model MedQA MMLU MedMCQA Average

LLaMA-2-7B 29.85 30.52 33.76 31.38
DFT 24.67 (-5.18) 22.82 (-7.70) 30.43 (-3.33) 25.97 (-5.41)
iw-SFT 28.36 (+1.49) 35.89 (+5.37) 34.88 (+1.12) 33.04 (+1.66)
SFT 33.31 (+3.56) 33.52 (+3.00) 33.28 (-0.48) 33.44 (+2.06)
ASFT 39.28 (+9.43) 46.37 (+15.85) 40.45 (+6.69) 42.03 (+10.65)

GRPO 30.48 (+0.63) 32.46 (+1.94) 34.64 (+0.88) 32.53 (+1.15)
DAPO 39.75 (+9.90) 48.63 (+18.11) 38.37 (+4.61) 42.25 (+10.87)

SFT + DAPO 36.84 (+6.99) 44.76 (+14.24) 39.11 (+5.35) 40.24 (+8.86)
ASFT + DAPO 41.32 (+11.47) 49.54 (+19.02) 41.45 (+7.69) 44.10 (+12.72)

Table 2: Comparison of different post-training strategies on medical benchmarks. Numbers in paren-
theses indicate differences relative to LLaMA-2-7B.

6.2 COMPARISON WITH REINFORCEMENT LEARNING METHODS

Table 2 presents the performance comparison of different fine-tuning methods on several medical
reasoning benchmarks. Our proposed method, ASFT, consistently outperforms all SFT-based ap-
proaches, including standard SFT, SFT with KL regularization, DFT, and iw-SFT, demonstrating the
effectiveness of our adaptive weighting strategy. For example, ASFT achieves an average score of
42.03, which is substantially higher than iw-SFT (33.04) and SFT (33.44). However, as expected,
ASFT still falls short of advanced reinforcement learning-based methods such as DAPO, which
achieves an average of 42.25, indicating that while our method narrows the gap with RL approaches,
RL still maintains a slight advantage in these tasks. The experimental results validate our theoretical
analysis from Section 4. The comparison between SFT and DFT (33.44 vs 25.97) confirms DFT’s
distributional drift problem in knowledge-intensive tasks, while SFT vs ASFT (33.44 vs 42.03)
demonstrates the effectiveness of our anchored auxiliary distribution construction. Using final ac-
curacy as a proxy for bound tightness, the performance ordering SFT < ASFT < DAPO (33.44
< 42.03 < 42.25) empirically supports our reward-weighted regression framework, showing that
ASFT achieves a tighter lower bound on the RL objective as proven in Theorem 1. The substantial
improvement of ASFT over standard SFT while remaining computationally efficient demonstrates
the practical value of our theoretically grounded approach.

6.3 ASFT AS ENHANCED INITIALIZATION FOR REINFORCEMENT LEARNING

The results in Table 2 further demonstrate that ASFT provides a superior initialization point for sub-
sequent RL fine-tuning.Starting from ASFT and continuing training with DAPO yields consistent
gains over SFT + DAPO (44.10 vs. 40.24 average, +3.86 points), with the largest improvements
on MMLU-medical (+4.78) and MedQA (+4.48). ASFT + DAPO also surpasses standalone DAPO
(44.10 vs. 42.25), indicating that KL-anchored fine-tuning not only improves direct supervised per-
formance but also creates a more stable policy foundation for RL optimization. This finding sug-
gests that the distributional stability provided by ASFT’s KL anchoring not only improves direct
fine-tuning performance but also creates a more robust foundation for advanced RL algorithms,
extending the practical utility of our method beyond standalone applications.

6.4 CROSS-DOMAIN VALIDATION ON CODE GENERATION

To examine the generality of ASFT, we fine-tune LLaMA-2-7B on 10k samples from the Magicoder-
Evol-Instruct-110K (Wei et al., 2023) dataset using the same setup as Section 5, but for 2 epochs.
Evaluation is performed with the evalplus framework (Liu et al., 2023) on HumanEval, Hu-
manEval+ (Chen et al., 2021), MBPP, and MBPP+ (Austin et al., 2021). The results are sum-
marized in Table 3, ASFT achieves the highest average score, notably improving HumanEval and
HumanEval+ while remaining competitive on MBPP, confirming that the anchoring mechanism gen-
eralizes effectively to code generation.
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Methods HumanEval (%) HumanEval+ (%) MBPP (%) MBPP+ (%) Avg (%)
LLamMA2-7B 17.1 14.6 28.3 21.2 20.3
SFT 23.2 19.5 34.1 28.6 26.4
iw-SFT 23.8 21.3 31.0 26.5 25.7
DFT 15.9 12.8 28.3 22.3 19.8
ASFT 27.2 21.4 32.5 26.7 27.0

Table 3: Performance on code generation with LLaMA-2-7B.

6.5 COMPUTATIONAL EFFICIENCY AND MEMORY ANALYSIS

While ASFT demonstrates superior performance across both knowledge-intensive and reasoning-
intensive domains, the KL divergence computation against the reference model introduces signifi-
cant computational overhead that merits careful analysis. During training, ASFT requires maintain-
ing the reference model πbase in memory alongside the training model πθ, effectively doubling GPU
memory consumption from 38.96GB to 88.02GB for full-parameter fine-tuning on LLaMA-2-7B.

Method Time Memory Acc
(hrs) (GB)

SFT 0.524 38.96 33.04
DFT 0.521 38.90 25.97
iw-SFT 8.287 100.05 33.04
GRPO 51.24 483.98 32.53
DAPO 21.595 488.26 42.25

ASFT-LoRA 0.562 40.70 34.32
ASFT 0.648 88.02 42.03

Table 4: Training time, mem-
ory, and accuracy of different
methods on LLaMA-2-7B.

The KL computation additionally introduces approximately 23.7%
training time overhead compared to standard SFT (0.648 vs 0.524
hours), though remaining substantially more efficient than full RL
approaches like GRPO (51.24 hours). All training times are mea-
sured on a single NVIDIA A100 GPU. More critically for deploy-
ment, inference requires loading both models simultaneously, cre-
ating scalability concerns where memory efficiency is paramount.

To address these practical limitations, we propose ASFT-LoRA,
leveraging the mathematical properties of low-rank adaptation to
enable memory-efficient implementation. The key insight exploits
LoRA’s parameter decomposition ∆W = BA where the fine-tuned
model becomes πθ(y|x) = πbase(y|x;Wbase + BA). This param-
eterization enables computing DKL(πθ(·|s)|πbase(·|s)) using a sin-
gle model instance by dynamically switching between Wbase and Wbase + BA during forward
passes, eliminating the need for separate model copies while preserving theoretical anchoring guar-
antees. As shown in Table 4, ASFT-LoRA (rank = 8) reduces memory consumption to 40.70GB
(comparable to standard SFT) and training time to 0.562 hours (7.3% overhead over SFT), while
maintaining meaningful improvements over SFT baselines (34.32 vs 33.04 overall accuracy). Al-
though performance degrades compared to full-parameter ASFT (42.03 overall accuracy), ASFT-
LoRA provides a practical compromise for resource-constrained environments while demonstrating
the versatility of our anchoring framework across different parameter-efficiency regimes.

7 CONCLUSION

We present Anchored Supervised Fine-Tuning (ASFT), a principled approach that addresses the
fundamental trade-off between supervised fine-tuning’s efficiency and reinforcement learning’s gen-
eralization. By grounding Dynamic Fine-Tuning in the reward-weighted regression framework, we
show that DFT achieves tighter RL lower bounds than SFT but suffers from distributional drift.
ASFT resolves this through lightweight KL anchoring, preserving tightness while ensuring stability.
Empirically, ASFT consistently outperforms SFT and DFT across mathematical reasoning, medi-
cal knowledge injection, and code generation. The method achieves substantial improvements with
minimal computational overhead, demonstrating that principled theoretical analysis can lead to both
stronger guarantees and practical gains.
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ETHICS STATEMENT

All experiments in this work were conducted using publicly available datasets and standard bench-
marks. The proposed Anchored Supervised Fine-Tuning (ASFT) method is intended for research
purposes to improve model generalization and stability. When deploying models trained with ASFT
in high-stakes applications, we recommend thorough validation, human oversight, and appropriate
safeguards to ensure outputs are accurate, reliable, and aligned with ethical guidelines. We acknowl-
edge potential risks of harmful or biased content and encourage the use of input filtering, output
moderation, and ongoing monitoring to mitigate such risks. Our goal is to contribute to robust,
efficient, and trustworthy AI systems that can be safely deployed.

REPRODUCIBILITY STATEMENT

We provide comprehensive implementation details in Section 5, including specific hyperparameters,
datasets, and evaluation protocols. All experiments use publicly available datasets and standard
benchmarks. We will release our implementation code to ensure reproducibility of our results.
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A LLM USAGE

In the preparation of this paper, we only used large language models (LLMs) as an assistive tool for
grammar correction and text polishing.

B LIMITATIONS

We evaluate ASFT on three domains—mathematical reasoning, medical knowledge, and code gen-
eration. Although results are consistent across these areas, broader evaluation across diverse task
types and domains is needed to fully establish the method’s generalizability.

Our work lacks systematic analysis of what capabilities or behaviors SFT may lose when transition-
ing to ASFT. While we observe consistent improvements, a more comprehensive understanding of
the trade-offs involved in our reweighting scheme would provide valuable insights for practitioners.

C BROADER IMPACTS

ASFT offers a lightweight and computationally efficient alternative to standard supervised fine-
tuning, requiring only KL regularization rather than complex reward modeling. This simplicity
makes advanced fine-tuning techniques more accessible to researchers and practitioners with lim-
ited computational resources. The method shows potential as a practical path forward for improving
language model post-training, particularly in specialized domains requiring both knowledge injec-
tion and reasoning capabilities. However, as with any fine-tuning approach, careful evaluation and
validation remain essential when deploying models in high-stakes applications such as medical or
educational settings.

D THEORETICAL FOUNDATIONS

This appendix provides detailed derivations for the key theoretical results presented in Section 3.

D.1 DERIVATION OF SFT AS RL LOWER BOUND

We provide a complete proof of Proposition 1, following the theoretical framework established in
(Qin & Springenberg, 2025), showing that SFT optimizes a lower bound on the RL objective in
sparse reward settings.

Proof of Proposition 1. We start with the RL objective under sparse rewards R(τ) = I[y = y∗]:

J(θ) = Eτ∼πθ
[R(τ)] = Eτ∼πθ

[I[y = y∗]] (7)

Since we only observe trajectories from the reference distribution πref , we use importance sampling
to rewrite this expectation. Under the assumption supp(πθ) ⊆ supp(πref):

J(θ) = Eτ∼πref

[
πθ(τ)

πref(τ)
I[y = y∗]

]
(8)

Now we apply the fundamental inequality u ≥ 1 + log u for all u > 0. Setting u = πθ(τ)
πref (τ)

:

πθ(τ)

πref(τ)
≥ 1 + log

πθ(τ)

πref(τ)
= 1 + log πθ(τ)− log πref(τ) (9)

Substituting this into our importance-sampled expression:

J(θ) ≥ Eτ∼πref
[(1 + log πθ(τ)− log πref(τ)) I[y = y∗]] (10)

= Eτ∼πref
[I[y = y∗]] + Eτ∼πref

[I[y = y∗] log πθ(τ)] (11)
− Eτ∼πref

[I[y = y∗] log πref(τ)] (12)
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The first and third terms are constants independent of θ. Let cref = Eτ∼πref
[I[y = y∗]] = Pπref

(τ ∈
D+). Then:

J(θ) ≥ cref + Eτ∼πref
[I[y = y∗] log πθ(τ)] + const (13)

The expectation over indicator-weighted trajectories can be rewritten as an expectation over the
filtered dataset D+ = {(x, y∗) | R(x, y∗) = 1}:

Eτ∼πref
[I[y = y∗] log πθ(τ)] = crefEτ∈D+ [log πθ(τ)] (14)

Dropping the constant terms, we obtain:

J(θ) ≥ crefEτ∈D+ [log πθ(τ)] (15)

This completes the proof. Note that the right-hand side is precisely the SFT objective (up to scaling),
establishing that SFT optimizes a lower bound on the RL objective.

D.2 FROM IMPORTANCE SAMPLING TO IMPORTANCE-WEIGHTED LOWER BOUNDS

We now derive the generalized importance-weighted framework that enables tighter bounds through
auxiliary distributions.

[Importance-Weighted Lower Bound] Starting from the importance-sampled RL objective:

J(θ) = Eτ∼πref

[
πθ(τ)

πref(τ)
R(τ)

]
(16)

We introduce an auxiliary distribution q(τ) with supp(q) ⊇ supp(πθ) and rewrite the importance
ratio:

J(θ) = Eτ∼πref

[
q(τ)

πref(τ)
· πθ(τ)

q(τ)
R(τ)

]
(17)

Now we apply the inequality u ≥ 1 + log u to the ratio πθ(τ)
q(τ) :

πθ(τ)

q(τ)
≥ 1 + log

πθ(τ)

q(τ)
= 1 + log πθ(τ)− log q(τ) (18)

Substituting this bound:

J(θ) ≥ Eτ∼πref

[
q(τ)

πref(τ)
(1 + log πθ(τ)− log q(τ))R(τ)

]
(19)

= Eτ∼πref

[
q(τ)

πref(τ)
R(τ)

]
+ Eτ∼πref

[
q(τ)

πref(τ)
R(τ) log πθ(τ)

]
(20)

− Eτ∼πref

[
q(τ)

πref(τ)
R(τ) log q(τ)

]
(21)

The first and third terms are independent of θ, so we can drop them from the optimization objective:

J(θ) ≥ Eτ∼πref

[
q(τ)

πref(τ)
R(τ) log πθ(τ)

]
+ const (22)

For sparse rewards R(τ) = I[y = y∗], this reduces to:

J(θ) ≥ Eτ∼πref

[
q(τ)

πref(τ)
I[y = y∗] log πθ(τ)

]
+ const (23)

Converting to an expectation over the filtered dataset D+:

J(θ) ≥ crefEτ∈D+

[
q(τ)

πref(τ)
log πθ(τ)

]
+ const (24)

where cref = Pπref
(τ ∈ D+).

Key Insights:
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1. When q(τ) = πref(τ), we recover the standard SFT bound from Proposition 1.

2. As q(τ) → πθ(τ), the bound becomes tighter since the inequality πθ(τ)
q(τ) ≥ 1 + log πθ(τ)

q(τ)

approaches equality.
3. The choice of q involves a fundamental trade-off: tighter bounds (by making q closer to

πθ) versus stability (by keeping q close to πref ).

This theoretical framework provides the foundation for both existing methods like DFT and our pro-
posed ASFT approach, which aims to achieve tight bounds while maintaining optimization stability
through principled anchoring mechanisms.

D.3 FROM IMPORTANCE SAMPLING TO REWARD-WEIGHTED LOWER BOUNDS

We now derive the generalized reward-weighted framework that enables tighter bounds through
auxiliary distributions.

E PROOF OF TIGHTNESS

We provide the detailed proof that the DFT auxiliary distribution q yields a strictly tighter lower
bound than standard SFT whenever the policy distribution is non-degenerate.

Proof of Theorem 1. Let X = pθ(τ) with τ ∼ πref(· | D+), and f(x) = log x. We compare:

BSFT = crefE[f(X)], BDFT = cref
E[Xf(X)]

E[X]
(25)

The difference is:

BDFT −BSFT = cref

(
E[Xf(X)]

E[X]
− E[f(X)]

)
(26)

=
cref
E[X]

(
E[Xf(X)]− E[X]E[f(X)]

)
(27)

=
cref
E[X]

Cov(X, f(X)) (28)

Since f(x) = log x is strictly increasing on (0, 1], variables X and f(X) are comonotone, yielding
Cov(X, f(X)) ≥ 0 with equality iff X is constant. Therefore BDFT ≥ BSFT, with strict inequality
when Var(X) > 0.
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F ANALYSIS

F.1 MODEL SCALE RESULTS

Model Method MedQA (%) MMLU (%) MedMCQA (%) Average (%)

LLaMA-2-7B

Base 29.85 30.52 33.76 31.38
SFT 33.31 (+3.46) 33.52 (+3.00) 33.28 (-0.48) 33.37 (+1.99)
SFT w KL 29.22 (-0.63) 30.63 (+0.11) 33.01 (-0.75) 30.95 (-0.43)
iw-SFT 35.35 (+5.50) 38.92 (+8.40) 34.74 (+0.98) 36.34 (+4.96)
DFT 29.69 (-0.16) 26.69 (-3.83) 31.20 (-2.56) 29.19 (-2.19)
GRPO 30.48 (+0.63) 32.46 (+1.94) 34.64 (+0.88) 32.53 (+1.15)
DAPO 39.75 (+9.90) 48.63 (+18.11) 38.37 (+4.61) 42.25 (+10.87)
ASFT 39.28 (+9.43) 46.37 (+15.85) 40.45 (+6.69) 42.03 (+10.65)

LLaMA-2-70B

Base 47.37 65.32 47.21 53.30
DFT 36.84 (-10.53) 46.77 (-18.55) 42.39 (-4.82) 42.00 (-11.30)
SFT 41.24 (-6.13) 47.02 (-18.30) 36.43 (-10.78) 41.56 (-11.74)
ASFT 49.57 (+2.20) 65.86 (+0.54) 50.61 (+3.40) 55.35 (+2.05)

Qwen2.5-7B

Base 62.53 74.84 58.45 65.27
SFT 59.07 (-3.46) 71.19 (-3.65) 49.80 (-8.65) 60.02 (-5.25)
SFT w KL 61.12 (-1.41) 69.77 (-5.07) 51.52 (-6.93) 60.80 (-4.47)
DFT 36.45 (-26.08) 54.65 (-20.19) 45.90 (-12.55) 45.67 (-19.60)
GRPO 63.00 (+0.47) 76.16 (+1.32) 58.93 (+0.48) 66.03 (+0.76)
DAPO 63.94 (+1.41) 73.82 (-1.02) 58.88 (+0.43) 65.55 (+0.28)
ASFT 61.98 (-0.55) 76.60 (+1.76) 59.00 (+0.55) 65.86 (+0.59)

Qwen2.5-32B

Base 61.90 62.50 45.09 56.50
SFT 67.09 (+5.19) 76.12 (+13.62) 61.20 (+16.11) 68.14 (+11.64)
DFT 68.42 (+6.52) 57.03 (-5.47) 42.51 (-2.58) 55.99 (-0.51)
ASFT 71.80 (+9.90) 79.23 (+16.73) 58.76 (+13.67) 69.93 (+13.43)

Qwen2.5-72B

Base 75.57 78.28 64.91 72.92
SFT 28.04 (-47.53) 34.57 (-43.71) 38.92 (-25.99) 33.84 (-39.08)
DFT 71.01 (-4.56) 79.04 (+0.76) 64.69 (-0.22) 71.58 (-1.34)
ASFT 77.69 (+2.12) 87.08 (+8.80) 71.00 (+6.09) 78.59 (+5.67)

Table 5: Performance of various fine-tuning methods on medical domain datasets for both LLaMA-
2 and Qwen2.5 series. Numbers are expressed as percentages. Bold numbers indicate the best
performance in each column, while rows with blue background highlight our ASFT approach.
(olive) and (red) show the difference compared to each series’ Base model.
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F.2 TOKEN PROBABILITY DISTRIBUTION ANALYSIS
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Figure 4: Token probability distribution across different models on the numina cot training dataset.
The x-axis shows the probability intervals of generated tokens, while the y-axis reports the percent-
age of tokens falling into each interval on a logarithmic scale.

G ABALTION STUDY

G.1 TRAINING HYPER-PARAMETERS
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Figure 5: Ablation study of ASFT on MedCAQA (10k) using LLaMA-2-7B. Right: Effect of batch
size, indicating stable performance across a wide range (32–256). ASFT consistently outperforms
SFT and DFT under all settings. Left: Effect of different learning rates on average performance,
showing that intermediate rates (1e-5 and 1e-4) achieve the best results.
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H DATASET EXAMPLE

H.1 MEDICAL KNOWLEDGE DATASETS

Medical Knowledge Training Set

Instruction:
Disulfiram is a type of:-
A. Aversion therapy
B. Anticraving therapy
C. Detoxification
D. Opioid management therapy

Response:
Deterrent agents/Aversive agents Disulfiram (tetraethyl thiuram disulfide) When alcohol is ingested
by a person who is on disulfiram, alcohol-derived acetaldehyde cannot be oxidized to acetate and this
leads to an accumulation of acetaldehyde in blood. This causes the impoant disulfiram-ethanol reac-
tion (DER) characterized by flushing, tachycardia, hypotension, tachypnoea, palpitations, headache,
sweating, nausea, vomiting, giddiness and a sense of impending doom associated with severe anxiety.
When we try to decrease the frequency of behavior because it can cause a really bad consequence It
will be called as an aversion or Aversive therapy. Anti-craving agents Acamprosate, naltrexone and
SSRIs (such as fluoxetine) are among the medications tried as anti-craving agents in alcohol depen-
dence. Detoxification Detoxification is the treatment of alcohol withdrawal symptoms, i.e. symptoms
produced by the removal of the ’toxin’ (alcohol). The drugs of choice for detoxification are usually
benzodiazepines.
So the answer to this question is A

Figure 6: An example from the medical knowledge training set illustrating an instruction-response
pair on alcohol dependence therapy

Medical Knowledge Test Set

Question:
Which of the following is not true for myelinated nerve fibers:
Options:
A. Impulse through myelinated fibers is slower than non-myelinated fibers
B. Membrane currents are generated at nodes of Ranvier
C. Saltatory conduction of impulses is seen
D. Local anesthesia is effective only when the nerve is not covered by myelin sheath
Answer: A

Figure 7: An example from the medical knowledge test set illustrating a multiple-choice question
on physiology (myelinated nerve fibers)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H.2 MATH REASONING DATASETS

Math Reasoning Training Set

Instruction:
Let a, b, and c be the roots of the equation x3 − 2x− 5 = 0. Find 1

a−2
+ 1

b−2
+ 1

c−2
.

Response:
First, substitute x = z + 2 to transform the polynomial so that z + 2 are the new roots, i.e., a − 2,
b− 2, and c− 2 are the roots for z. We then have:

(z + 2)3 − 2(z + 2)− 5 = z3 + 6z2 + 12z + 8− 2z − 4− 5 = z3 + 6z2 + 10z − 1

We are interested in 1
a−2

+ 1
b−2

+ 1
c−2

, which are the reciprocals of the roots of z3 + 6z2 + 10z − 1.
By Vieta’s formulas, the sum of the reciprocals of the roots of a polynomial z3 + pz2 + qz + r is
−q/r. For our polynomial, p = 6, q = 10, and r = −1, so:

1

a− 2
+

1

b− 2
+

1

c− 2
= −q

r
= − 10

−1
= 10

Figure 8: An example from the math reasoning training set illustrating an instruction-response pair
on algebraic root manipulation

Math Reasoning Test Set

Question:
What is the smallest positive perfect cube that can be written as the sum of three consecutive integers?

Answer:
27

Solution:
The sum of three consecutive integers takes the form (k − 1) + (k) + (k + 1) = 3k and hence is a
multiple of 3. Conversely, if a number n is a multiple of 3, then n/3− 1, n/3, and n/3 + 1 are three
consecutive integers that sum to give n. Therefore, a number is a sum of three consecutive integers if
and only if it is a multiple of 3. The smallest positive perfect cube that is a multiple of 3 is 33 = 27 .

Figure 9: An example from the math reasoning test set illustrating a problem with its solution on
sums of consecutive integers
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