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ABSTRACT

Text-video retrieval, the task of retrieving videos given a text query or vice versa,
plays a significant role in video understanding. A significant challenge in this
task is the semantic gap between video and text, primarily caused by the dispar-
ity in information capacity and the highly coupled nature of video information.
Existing alignment methods mainly focus on multi-grained alignment between
videos and text, which fails to address the capacity imbalance between video
and text feature space. To address these issues, we propose Modality-Balanced
Decoupling Alignment (MBDA) , a novel method that align the two modalities
with closer distribution and more balanced information capacity in the feature
space. Specifically, our model consists of two modules. The Modality Proximity
Alignment module brings the video embedding closer to the text embedding, while
the Video Representation Orthogonal Decoupling module separates the aligned
video embedding into two orthogonal components, achieving better balance with
their textual counterparts. Furthermore, we demonstrate that our decoupling ap-
proach achieves orthogonality while eliminating information redundancy among
components through low-rank decomposition and frequency-domain analysis via
Discrete Fourier Transform. The proposed method improves the baseline by a large
margin. Extensive experiments demonstrate that MBDA achieves state-of-the-art
performance on four most widely used public benchmarks, MSR-VTT(52.4%),
DiDeMo(53.1%), MSVD(54.0%), and ActivityNet(49.6%).

1 INTRODUCTION

With the explosive growth of video content on the internet, tasks related to video understanding
have become increasingly significant. Among them, Text-video retrieval (Yu et al., 2017), which
aims to retrieve relevant video clips based on textual queries or vice versa, has gained widespread
applications and thus attracts extensive exploration these days. However, the task remains inherently
challenging due to the modality gap between text and video. As Figure 1(a) shows, this difficulty is
further exacerbated by the semantic imbalance between the two modalities: videos often contain rich,
fine-grained information, while their associated textual descriptions, such as captions, subtitles, or
summaries tend to be sparse and coarse.

To further deal with this challenge, modality alignment is typically applied after obtaining video
and text representations from the multimodal encoders. These efforts have evolved from global
matching approaches, such as video-sentence alignment (Liu et al., 2022; Gabeur et al., 2020), to
more fine-grained strategies, including frame-word alignment (Wang et al., 2022) and multi-level
matching (Ma et al., 2022). However, these methods still fall short of fundamentally bridging the
modality gap because of the capacity imbalance between video and text is not solved.

As shown in Figure 1(b), when visualizing the shared feature space using t-SNE (Maaten, 2014),
we observe a significant imbalance in the semantic volumes occupied by video and text features,
which poses a major challenge for direct alignment. Methods like T-MASS (Wang et al., 2024) try
to alleviate this imbalance by expanding the text feature space. However, this method determines
the optimal text-video match through a search process, which results in significant computational
overhead, leading to a much prolonged inference phase. Differently, we propose to address the issue
by decoupling video features into components with smaller capacity of feature space. However, there
is another challenge: the information encoded in video features is highly entangled across multiple
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Description : “a man navigates a sailboat on calm waters, and then hit the wall.” 

Missed Information : “high-spirited” , “approaching” , “shocked” , “looking up” , unhighlighted regions

(a) (b)

Figure 1: There is a significant information gap between video and text. (a) shows that textual
descriptions often fail to fully capture all the information contained in a video. (b) shows that we
visualize the distribution of a set of video and corresponding text representations in the embedding
space, which reveals that the video representation space is significantly larger than that of the text.

dimensions such as spatial and temporal dimensions, making it inherently difficult to establish a
direct correspondence between video and text representations.

To address the challenges above, we propose a novel matching method termed Modality-Balanced
Decoupling Alignment, which explicitly balances the information capacity of video and text em-
beddings during the alignment process. Specifically, to facilitate the alignment of decoupled video
representations with text, we first perform a Modality Proximity Adjustment (MPA) step to reduce the
distance between video and text embeddings in the representation space. Next, we introduce an or-
thogonal vector decoupling technique named Video Representation Orthogonal Decoupling (VROD).
In this step, the video representation is decoupled into two orthogonal vectors by downsampling
on different dimensions, each capturing different aspects of the original embedding. Orthogonality
achieves balanced modality alignment by transforming the high-capacity video representation into
lower-capacity components, each of which is more comparable in scale to the text representation,
thus enabling a more precise and balanced alignment. To prove the orthogonality of the VROD
decoupling, subsequently, each vector is further factorized into two low-rank components, which are
then transformed into the frequency domain using the Discrete Fourier Transform (DFT) (Cooley
& Tukey, 1965). In this domain, we prove that the resulting components are mutually orthogonal,
indicating that the video information is effectively decoupled with minimal redundancy. This leads to
a significantly reduced semantic space for the video representation, which becomes comparable in
scale to that of the text.

We theoretically derive and visually demonstrate: (1) the MPA step effectively reduces the modality
gap by aligning video representations closer to the textual space, (2) our decoupling method suc-
cessfully produces orthogonal representations, resulting in a more balanced representation space
size between video and text. Then we evaluate our method on four benchmark datasets, i.e., MSR-
VTT (Xu et al., 2016), DiDeMo (Anne Hendricks et al., 2017), ActivityNet (Caba Heilbron et al.,
2015), and MSVD (Chen & Dolan, 2011). Our approach achieves state-of-the-art performance on all
of these datasets, showing the advantages of the proposed method.

The main contributions are as follows: (1) We provide an insightful and intuitive analysis of the
fundamental limitation in text-video retrieval: the imbalance of information capacity between modal-
ities and the highly coupled nature of video information, which are major obstacles to effective
cross-modal alignment. (2) To alleviate such limitation, we propose a novel video representation
decoupling method that pulls video embeddings closer to text embeddings and decouple them into in-
dependent components, avoiding redundancy and information loss. Through mathematical derivation
and geometric visualization, we validate the effectiveness of the approach. (3) Our method signifi-
cantly improves the baseline by a large margin on four benchmark datasets, achieving state-of-the-art
performance on MSR-VTT(52.4%), DiDeMo(53.1%), MSVD(54.0%), and ActivityNet(49.6%).

2 RELATED WORKS

Text-Video Retrieval Text-video retrieval is a fundamental task in video understanding. Many
studies in this domain can mainly be categorized into three main directions: feature extraction,
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Tags: <SpongeBob SquarePants> <Cartoon>

Titles: "SpongeBob and Patrick's Messy Adventure"

Summaries : "Chaos Ensues as SpongeBob and Patrick 
Try to Plan Their Next Big Idea"

Query: "SpongeBob is enthusiastically explaining his latest 
idea while standing in the Krusty Krab kitchen"

Figure 2: The figure illustrates the architecture of our method, MBDA. The upper flowchart depicts the
processing of video features through the MPA and orthogonal decoupling modules. The bottom-left
figure shows the effect of the MPA process, where video features are brought closer to text features.
The bottom-right figure shows the video features are divided into two orthogonal (non-overlapping)
components, which show reduced distribution ranges compared to the original.

feature alignment and matching, objectives functions. For feature extractors, early methods employed
separate extractors for the video and text modalities, such as CNN and its variations (Guo et al., 2021;
Hu et al., 2018; Qiu et al., 2019; Miech et al., 2018) for video extractors and RNNs (Otani et al., 2019;
Wu et al., 2021), Transformers (Gabeur et al., 2020; Patrick et al., 2020; Liu et al., 2021) for text
extractors. Since the emergence of contrastive pretrained vision-language encoder, CLIP (Radford
et al., 2021), recent methods (Luo et al., 2021; Tang et al., 2025; Gao et al., 2021; Cao et al., 2024;
Liu et al., 2023a) primarily focus on fine-tuning CLIP-based models on text-video datasets. Feature
alignment and matching aim to project video and text representations into a joint semantic space and
compute their similarity. Some former works (Miech et al., 2017; Luo et al., 2020) mainly align on
the global features without considering the local details. And recent studies (Wang et al., 2022; Li
et al., 2023; Guan et al., 2023) begin to align the feature across the modalities in more fine-grained
ways. The existing methods use different objective functions, among which the contrastive loss such
as InfoNCE (Oord et al., 2018) has become the most commonly used function. Other loss functions
such as triplet loss (Gabeur et al., 2020; Wang et al., 2021; Han et al., 2023) are also used in this task.

Text-Video Alignment To address the modality gap between video and text, researchers have
explored various strategies for better alignment recent years. CLIP4Clip (Luo et al., 2021) use
an aggregate module to get the feature of all frames and then perform the cross-modal alignment.
To get more cross-modal correspondences for alignment, many approaches of multi-grained align-
ment (Zhang et al., 2018; Chen et al., 2020; Yang et al., 2021; Ma et al., 2022) are proposed, which can
be divided into mainly two categories: coarse-grained alignment and fine-grained alignment. Coarse-
grained alignment (Zhu & Yang, 2020; Li et al., 2021; Dzabraev et al., 2021; Dou et al., 2022) utilizes
frame-level or video-level features to match text features, while fine-grained approaches (Wray et al.,
2019; Zou et al., 2022; Messina et al., 2021) leverage patch-level features for more precise alignment
with text. Some alignment methods combine the above approaches, such as DRL (Wang et al., 2022)
using both frame-wise and channel-wise approaches. Existing alignment methods mainly perform a
multi-grained split of the input videos and then find the correspondence between the split video and
text representations. This makes the alignment vulnerable to the imbalance in modality information
capacity and the highly entangled nature of video information. Unlike the aforementioned methods,
we propose an alignment approach by pulling video features closer to text and then decoupling them.
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3 METHOD

In this section, we introduce the novel text-video retrieval approach, Modality-Balanced Decoupling
Alignment, as shown in the Figure 2. We first introduce a Modality Proximity Alignment (MPA)
module that brings video representations closer to textual representations in the embedding space. To
further decouple the large amount of video information, we propose an orthogonal decomposition
strategy and demonstrate its orthogonality via both frequency-domain projection and t-SNE (Maaten,
2014) visualization. The decoupled video components retain a smaller proportion of the original
information, resulting in a more balanced representation relative to the textual features. Finally, we
perform modality-balanced alignment between the decoupled video and textual representations.

3.1 PRELIMINARY

Feature Extraction For the video modality, a video v is represented as a sequence of sampled
frames v = {v1, v2, . . . , vt}, where t denotes the number of frames. We employ ViT as the visual
encoder backbone. Each frame is divided into non-overlapping patches, which are linearly projected
into a 1D token space. A special [CLS] token is prepended to the patch tokens, and all tokens are
jointly processed by a Transformer to capture global and local spatial relationships. As a result, the
embedding of each frame is represented as a set of tokens {zcls, z1, . . . , zp2} ∈ R(1+p2)×d, where
p × p is the number of spatial patches and d is the token embedding dimension. The sequence of
frame embeddings for video v is thus represented as a tensor of shape t × (1 + p2) × d. For the
text modality, we adopt CLIP’s text encoder, which is also based on a Transformer architecture. The
activation corresponding to the [EOS] token in the final layer is used as the text embedding. Given a
caption c, its representation is denoted as w ∈ Rd.
Discrete Fourier Transform The Discrete Fourier Transform (DFT) provides a frequency-domain
representation of discrete signals and is widely used for analyzing structural properties such as
periodicity, redundancy, and orthogonality. Given a discrete sequence x = {x0, x1, . . . , xN−1} ∈
RN , its DFT is defined as:

x̂k =

N−1∑
n=0

xn e
−i2πkn/N , k = 0, 1, . . . , N − 1, (1)

where i denotes the imaginary unit.

Additionally, the Nyquist–Shannon sampling theorem (Shannon, 1949) is an essential principle for
digital signal processing, which states that the sample rate must be at least twice the bandwidth
of the signal to avoid aliasing. Otherwise, the signal information in the frequency domain will be
significantly attenuated due to aliasing.
Motivation Video-text retrieval faces a fundamental challenge due to the inherent asymmetry
between the two modalities: video features are highly coupled and information-dense, while text
features are concise and abstract. Direct alignment in a shared embedding space often leads to
redundancy in video representations or loss of fine-grained semantics. To mitigate this, we propose to
orthogonally decompose video features into complementary subspaces, ensuring more efficient and
semantically balanced alignment with text.

3.2 PROPOSED METHOD: MODALITY-BALANCED DECOUPLING ALIGNMENT

In this work, we propose a strategy to address the inherent asymmetry between video and text
modalities for retrieval. First, we preprocess the video representations to bring their distribution
closer to that of the textual space, which facilitates more effective feature alignment in the subsequent
steps. Building on this, we further decouple the video features into orthogonal components, yielding
a more balanced semantic space comparable to that of text, thereby enhancing retrieval performance.
Query-Text Retrieval In real-world video platforms, it is common practice to associate each video
with various forms of textual metadata, such as tags, titles, subtitles, and summaries. This approach
appears to be the simplest way to narrow the gap between video and text representations. Moreover,
this setup naturally balances the information density and feature place distribution of two modalities
by replacing video representations with their textual counterparts. Thus we adopt this method as our
baseline, where each video is represented by its associated text. Given a user’s query, the retrieval
task is formulated as a query-to-text matching problem, where the query is directly compared with
the stored textual representation. Formally, each video V is represented by textual data H(V ), and
the similarity score Sim(q,H(V )) is used to rank candidates.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Modality Proximity Alignment Although the baseline method above successfully pulls the video
embedding space to that of the text, it inevitably suffers from information loss: the textual data, as a
compressed abstraction of the video content, often omits fine-grained visual details that are crucial for
accurately matching diverse user queries. As a result, retrieval performance degrades when queries
target specific scenes, objects, or temporal dynamics not explicitly covered in the text data.

To address this limitation, we prove the method above by refining the video representation through
incorporating both the global semantics from the textual data H(V ) and the rich local details from
the original video frames. Specifically, given the video feature sequence V = {v1, v2, . . . , vn}
and the text feature H(V ), we perform a feature-fusion module where video features attend to text
data features to incorporate textual semantic information. Specifically, the fused video features are
computed by:

ṽi =

N∑
j=1

exp
(
⟨WV

Q vi,W
H
K hj⟩/

√
d
)

∑N
k=1 exp

(
⟨WV

Q vi,WH
K hk⟩/

√
d
) (WH

V hj), (2)

where WV
Q , WH

K , and WH
V are learnable projection matrices, h denotes the components of textual

data H(V ), d is the hidden dimension, and ⟨·, ·⟩ denotes the inner product. Finally, a feed-forward
network (FFN) and residual connection are applied to obtain the final video representation:

V ′ = LayerNorm
(

FFN(Ṽ ) + V
)
, (3)

where Ṽ = {ṽ1, ṽ2, . . . , ṽn}.
This enriched representation better preserves the essential visual information needed for fine-grained
alignment with textual queries, while maintaining a distribution closer to the text space for more
effective retrieval.
Video Representation Orthogonal Decoupling We propose a novel method to orthogonally
decouple video representations into two complementary branches, enabling efficient spatiotemporal
modeling without redundancy. Given a video patch-token feature tensor X ∈ Rn×p2×d, where n is
the number of frames, p2 corresponds to the number of patch tokens, and d is the feature dimension,
our goal is to decouple X into two orthogonal subspaces, each focusing on different spatiotemporal
properties. It should be noted that the decoupled patch tokens are individually concatenated with the
original [CLS] token, serving as the final visual embeddings for video-text retrieval.

We design two distinct feature branches as follows. We introduce projection functions based on
learnable gated linear units (GLUs) to enable more expressive and adaptive feature decomposition.
Specifically, we construct two gated branches that project X into temporally and spatially enhanced
representations using independent linear projections followed by GLUs. The temporal-enhanced
branch maintains the original frame rate n while reducing the spatial resolution by a factor of λ
across patch tokens. The spatial-enhanced branch maintains full spatial resolution while reducing the
temporal resolution by a factor of µ.

Xtemporal = GLUtem(X) ∈ Rn×(p/λ)2×d. (4)

Xspatial = GLUspa(X) ∈ R(n/µ)×p2×d. (5)

Our MBDA method is primarily presented above through the use of MPA and VROD modules. In the
following theoretical analysis, we further demonstrate the orthogonality of the decoupled branches.

Theoretical Analysis via Discrete Fourier Transform To derive the orthogonality between the
two branches, we model X under a spatiotemporally separable low-rank decomposition:

X(t, x) = T(t) · S(x)⊤, x ∈ [0, p2], (6)

where T(t) ∈ Rn×δ×d captures temporal structures, and S(x) ∈ Rp2×δ×d captures spatial struc-
tures. δ represents the rank of matrix X . We separately apply the decomposition (6) on both
branches(Xspatial and Xtemporal), getting four decomposed matrix: Ttemporal, Stemporal, Tspatial, and
Sspatial.

5
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Table 1: Text-to-video retrieval performance on MSR-VTT, DiDeMo, MSVD, and ActivityNet. Bold
denotes the best performance. “–” denotes that the result is unavailable.

(a) MSR-VTT Retrieval

Method R@1
↑

R@5
↑

R@10
↑

MdR
↓

MnR
↓

CLIP-ViT-B/32
ProST (Li et al., 2023) 48.2 74.6 83.4 2.0 12.4
DiffusionRet (Jin et al., 2023) 49.0 75.2 82.7 2.0 12.1
UCOFIA (Wang et al., 2023) 49.4 72.1 83.5 2.0 12.9
TEFAL (Ibrahimi et al., 2023) 49.4 75.9 83.9 2.0 12.0
Cap4Video (Wu et al., 2023) 49.3 74.3 83.8 2.0 12.0
TeachCLIP (Tian et al., 2023) 45.6 71.9 81.8 – –
AVIGATE (Jeong et al., 2025) 50.2 74.3 83.2 – –
TempMe (Shen et al., 2024) 46.1 71.8 80.7 – 14.8
MBDA (Ours) 52.4 75.9 85.4 1.0 13.2

CLIP-ViT-B/16
X-CLIP (Ma et al., 2022) 49.3 75.8 84.8 2.0 12.2
ProST (Li et al., 2023) 49.5 75.0 84.0 2.0 11.7
UCOFIA (Wang et al., 2023) 49.8 74.6 83.5 2.0 13.3
Cap4Video (Wu et al., 2023) 51.4 75.7 83.9 1.0 12.4
AVIGATE (Jeong et al., 2025) 52.1 76.4 85.2 – –
TempMe (Shen et al., 2024) 49.0 74.4 83.3 – –
MBDA (Ours) 52.6 76.5 84.4 1.0 11.6

(b) ActivityNet Retrieval

Method R@1
↑

R@5
↑

R@10
↑

MdR
↓

MnR
↓

CLIP-ViT-B/32
DRL (Wang et al., 2022) 44.2 74.5 86.1 2.0 –
DiffusionRet (Jin et al., 2023) 45.8 75.6 86.3 2.0 6.5
X-CLIP (Ma et al., 2022) 44.3 74.1 – – 7.9
UCOFIA (Wang et al., 2023) 45.7 76.6 86.6 2.0 6.4
CenterCLIP (Zhao et al., 2022) 43.9 75.3 85.2 2.0 7.0
TempMe (Shen et al., 2024) 44.9 75.2 85.5 – 6.8
MBDA (Ours) 49.6 79.4 89.3 2.0 5.2

CLIP-ViT-B/16
DRL (Wang et al., 2022) 46.2 77.3 88.2 2.0 –
X-CLIP (Ma et al., 2022) 46.2 75.5 – – 6.8
CenterCLIP (Zhao et al., 2022) 46.2 77.0 87.6 2.0 5.7
MBDA (Ours) 51.8 81.2 90.5 1.0 4.5

(c) DiDeMo Retrieval

Method R@1
↑

R@5
↑

R@10
↑

MdR
↓

MnR
↓

CLIP-ViT-B/32
X-CLIP (Ma et al., 2022) 45.2 74.0 – – 14.6
DRL (Wang et al., 2022) 47.9 73.8 82.7 2.0 –
STAN (Liu et al., 2023b) 46.5 71.5 80.9 2.0 –
ProST (Li et al., 2023) 44.9 72.7 82.7 2.0 13.7
DiffusionRet (Jin et al., 2023) 46.7 74.7 82.7 2.0 14.3
UCOFIA (Wang et al., 2023) 46.5 74.8 84.4 2.0 13.4
Cap4Video (Wu et al., 2023) 52.0 79.4 87.5 1.0 10.5
TempMe (Shen et al., 2024) 48.0 72.4 81.8 – –
MBDA (Ours) 53.1 78.7 86.5 1.0 10.4

CLIP-ViT-B/16
X-CLIP (Ma et al., 2022) 47.8 79.3 – – 12.6
DRL (Wang et al., 2022) 49.0 76.5 84.5 2.0 –
ProST (Li et al., 2023) 47.5 75.5 84.4 2.0 12.3
MBDA (Ours) 54.3 79.3 87.6 1.0 9.8

(d) MSVD Retrieval

Method R@1
↑

R@5
↑

R@10
↑

MdR
↓

MnR
↓

CLIP-ViT-B/32
DRL (Wang et al., 2022) 48.3 79.1 87.3 2.0 –
X-Pool (Gorti et al., 2022) 47.2 77.4 86.0 2.0 9.3
DiffusionRet (Jin et al., 2023) 46.6 75.9 84.1 2.0 15.7
X-CLIP (Ma et al., 2022) 47.1 77.8 – – 9.5
UCOFIA (Wang et al., 2023) 47.4 77.6 – – 9.6
CenterCLIP (Zhao et al., 2022) 47.6 77.5 86.0 2.0 9.8
Cap4Video (Wu et al., 2023) 51.8 80.8 88.3 1.0 8.3
TeachCLIP (Tian et al., 2023) 47.4 77.3 – – –
MBDA (Ours) 54.0 81.6 88.2 1.0 8.7

CLIP-ViT-B/16
UATVR (Fang et al., 2023) 49.7 79.0 87.3 2.0 8.9
DRL (Wang et al., 2022) 50.0 81.5 89.5 2.0 –
X-CLIP (Ma et al., 2022) 50.4 80.6 – – 8.4
CenterCLIP (Zhao et al., 2022) 50.6 80.3 88.4 1.0 8.4
MBDA (Ours) 55.1 82.8 89.2 1.0 8.1

To analyze their orthogonality, we project the components into the frequency domain via the Discrete
Fourier Transform (DFT), separately along the temporal and spatial axes as follows:

Ft(Xt./s.)(ω, x) =

n−1∑
t=0

Xt./s.(t, x)e
−i2πωt/n (7)

Fx(Xt./s.)(t, ξ) =

p2−1∑
x=0

Xt./s.(t, x)e
−i2πξx/p2

, (8)

and utilizing the separability assumption, we apply a 2D joint discrete Fourier transform (DFT) along
the temporal axis t ∈ [0, n− 1] and spatial axis x ∈ [0, p2 − 1]:

Ft,x(Xt./s.)(ω, ξ) =

n−1∑
t=0

p2−1∑
x=0

Xt./s.(t, x)·e−i2πωt/n·e−i2πξx/p2
Matrixization
−−−−−→←−−−−−
Serialization

Ft(Tt./s.)(ω)·Fx(St./s.)(ξ)
⊤

(9)

Specifically, the temporal branch retains the original temporal resolution while performing spatial
downsampling, and vice versa for the spatial branch. In the frequency domain, downsampling
introduces aliasing effects, high-frequency components are lost. When the sampling rate is sufficiently
low, most of the information in the frequency domain can be considered lost. This is exactly what
Tspatial and Stemporal undergo, while Ttemporal and Sspatial retain the full frequency-domain information:

⟨F(Ttemporal),F(Tspatial)⟩ = 0, ⟨F(Stemporal),F(Sspatial)⟩ = 0

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Ablation study of the Modality Proximity Adjustment (MPA) and Video Representation
Orthogonal Decoupling (VROD) modules on the MSR-VTT dataset.

Method R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
Video features for retrieval 45.8 72.1 79.6 2.0 15.5
Query-Text Retrieval (QTR) Baseline 42.1 67.3 75.9 2.0 20.5
MPA only 49.2 74.5 83.2 2.0 13.6
VROD only 47.8 73.5 80.7 2.0 14.6
MPA + VROD (Full Model) 52.4 75.9 85.4 1.0 13.2
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Figure 3: Figure (a) and (b) shows the comparison of frame downsampling rate (µ) and downsampled
patch token size on retrieval performance (R@1). Best performance is achieved at µ = 3 and a patch
size of 4× 4.

(9)−−→ ⟨Ft,x(Xtemporal),Ft,x(Xspatial)⟩ = 0 (10)

Based on the above derivation, we can conclude that Xtemporal and Xspatial are orthogonal in the
frequency domain, ensuring that our decomposition does not introduce redundant information. We
also employ t-SNE (Maaten, 2014) visualizations in Section 4.3 and quantitative calculation of cosine
similarities in Appendix A.5 to illustrate the orthogonality.
Orthogonal Decoupling Alignment Loss We employ a unified cross-entropy retrieval loss

Lv→t = −
1

N

N∑
i=1

log
exp(s(ti, vi)/λ)∑N
j=1 exp(s(tj , vi)/λ)

(11)

Lt→v = − 1

N

N∑
i=1

log
exp(s(ti, vi)/λ)∑N
j=1 exp(s(ti, vj)/λ)

(12)

LCE(t, v) =
1

2
(Lt→v + Lv→t). (13)

Let Vtemporal and Vspatial be the orthogonally decoupled video branches added with [CLS] tokens
respectively. We define their combined alignment loss as

Lalign = αLCE(q, Vtemporal) + β LCE(q, Vspatial), (14)

with weights α, β > 0. To stay consistent with the query-text retrieval (Sec. 3.2), we also include
LT = LCE

(
q, H(V )

)
. (15)

The final training objective is
Ltotal = Lalign + LT, (16)

4 EXPERIMENTS

We conduct our experiments on four popular text-video retrieval datasets, i.e., MSR-VTT (Xu et al.,
2016), MSVD (Wu et al., 2016), DiDeMo (Hendricks et al., 2017), and ActivityNet (Caba Heilbron
et al., 2015). The detailed experiment settings are shown in the appendix A.1. Additionally, we show
the experiments on video-to-text retrieval, experiments with post-processing techniques, additional
ablation studies, qualitative and quantitative results in the appendix.
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Table 3: Performance comparison with different
weight (α and β) allocations between the two
decoupled branches.

α β R@1 ↑
1.0 0.0 50.7
0.7 0.3 51.2
0.5 0.5 52.4
0.3 0.7 50.6
0.0 1.0 49.7

Table 4: Ablation study on the effectiveness of
each loss component. The combination of both
losses achieves the best performance.

Lalign LT R@1 ↑
✓ 51.1

✓ 42.1
✓ ✓ 52.4

4.1 COMPARISONS WITH STATE-OF-THE-ART

We compare the text-to-video retrieval performance of MBDA with recent state-of-the-art methods
on four benchmark datasets. Comparisons on MSR-VTT, DiDeMo, MSVD and ActivityNet are
shown in Table 1. The proposed MBDA can achieve the best performance on different datasets.
For example, on MSR-VTT, our method outperforms the AVIGATE by 2.2% at R@1 on CLIP-
ViT-B/32. On DiDeMo, MBDA outperforms Cap4Video by 1.1% with CLIP-ViT-B/32. On the
MSVD dataset, where each video is associated with multiple captions under different evaluation
process, our method also achieves the best performance, outperforming Cap4Video by 2.2%. On
larger-scale video datasets such as ActivityNet, our method still maintains a significant performance
lead, outperforming DiffusionRet by 3.8%. Moreover, our method also performs well on larger CLIP
backbones such as CLIP-ViT-B/16, outperforming previous SOTA methods by 0.5%, 5.3%, 4.5%,
and 5.6% on MSR-VTT, DiDeMo, MSVD, and ActivityNet respectively.

4.2 ABLATION STUDY

Model Components We provide an ablation study on MSR-VTT in terms of Modality Proximity
Adjustment module and Video Representation Orthogonal Decoupling in Table 2. First, we show
the baseline method Query-Text Retrieval, where we use text summaries to take place the video
representations for retrieval. To improve this baseline method, we use a MPA module to preserve
the video information, while at the same time maintaining the privilege of QTR, pulling video
representation closer to that of the query. By comparison, we obtain 7.1% boost at R@1. Also,
this also outperforms the method where the video representations before MPA processing are used
for retrieval. We further add the decoupling module, and get 3.2% boost at R@1 comparing to the
experiment with MPA. We also find that without MPA module, the decoupling module cannot fully
demonstrate its effectiveness solely. This is because, without first pulling video features closer to
the text feature space, the decoupled video components cannot be clearly separated in the frequency
domain where text representations serve as the basis. As a result, both branches processed by only
VROD module fail to align well with the textual queries, leading to suboptimal improvement.

Analysis for Decouple Module Effect of downsampling rates The parameter µ, which means
the downsampling rate of frame number, we evaluate the scale range setting µ ∈ [1, 6] as shown in
Figure 3(a). Also we evaluate the downsampled patch token amount from 1× 1 to 6× 6, as shown in
Figure 3(b). We find that R@1 preforms best when µ = 3 and the downsampled patch token amount
is 4 × 4. Subsequent experiments confirm that this setting of downsampling rate is consistently
optimal across all four datasets tested.

Effect of the weights of two branches We further investigate the impact of the weight allocation
between the two decoupled branches on the MSR-VTT dataset. As shown in Table 3, assigning equal
weights (0.5 for each branch) achieves the best overall performance, indicating that balancing the
contributions of both branches is crucial for optimal results. Subsequent experiments confirm that
this weight setting is consistently optimal across all four datasets tested.

Analysis for Loss Function We conduct ablation studies on the effectiveness of each component
in the total loss function, defined as Ltotal = Lalign +LT. Specifically, we compare the performance
when using only Lalign, only LT, and the combination of both on the MSR-VTT dataset. As shown
in Table 4, incorporating both loss components leads to consistently better results, indicating that
each part contributes positively to the overall performance.
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(a) (b)

Figure 4: This figure visualizes the impact of the Modality Proximity Alignment (MPA) module and
the Video Representation Orthogonal Decoupling (VROD) module on the distribution of video and
text features using t-SNE (Maaten, 2014). (a) shows how the MPA aligns video features closer to
text features in vector space, enhancing their proximity. (b) shows the VROD’s ability to decouple
video features into orthogonal spatial and temporal components, which results in a more balanced
distribution relative to the original video features, thereby improving alignment with text features.

4.3 DOES MBDA EFFECTIVELY DECOUPLE THE VIDEO REPRESENTATION?

We further analyze the behavior of our MBDA method by examining the distribution of text and
video representations in the embedding space through visualization and computing the similarity
between decoupled components. As shown in Figure 4(a), we employ t-SNE (Maaten, 2014) to
visualize the embeddings of the text representations ti, as well as the video representations before
and after the MPA module, i.e., vi and v′i. We observe that the distance between the two modalities is
effectively reduced after applying the MPA module. Furthermore, we visualize the transformed video
embeddings v′i and the two branches obtained after the decoupling module, denoted as (v′t)i and
(v′s)i. As illustrated in Figure 4(b), the original video embedding v′i, which initially spans a relatively
large space, is decomposed into two components that occupy significantly smaller and more compact
subspaces. To quantitatively verify this result, we compute the orthogonality of these resulting
components in our experiments in Appendix A.5, where we show their average cosine similarity
approaches zero. This decomposition mitigates the modality gap caused by the inherent information
imbalance between video and text. In addition, the minimal overlap between the two disentangled
components further supports the orthogonality and non-redundancy of our decomposition strategy.

Furthermore, to demonstrate their semantic meaningfulness, we conduct a case study in Appendix
A.5 showing that the temporal and spatial components align better with corresponding motion- and
scene-related text queries, respectively. Finally, to confirm that our method enhances alignment
without information loss, we also show in Appendix A.5 that the average similarity between the video
components and text embeddings is significantly higher than that of the baseline.

5 CONCLUSION

In this work, we proposed MBDA, a novel text-video retrieval method by decoupling the video em-
bedding into orthogonal components, to address the challenge of multi-modal alignment in text-video
retrieval. The primary contribution of this work lies in introducing a strategy to orthogonally decouple
the complex semantics in video representations, thereby addressing the imbalance between the feature
spaces of video and text. We identified two key challenges in text-video retrieval: (1) an imbalance in
the semantic capacity of video and text representations—videos often contain rich information not
described by text, making alignment difficult; (2) the highly entangled nature of information within
video representations, which hinders the direct mapping or correspondence with text representations.
To tackle these issues, MBDA brings video and text representations closer in feature space to facilitate
disentanglement and alignment, and further decouples the video representation into two orthogonal
components. These orthogonal representations are more semantically balanced with respect to text
features, thereby enabling more effective alignment. Extensive experiments demonstrate that MBDA
achieves state-of-the-art performance across multiple benchmark datasets. We hope MBDA can
inspire future research on modality balance in the text-video retrieval.
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6 ETHICS STATEMENT

Data Usage Our experiments were conducted exclusively on publicly available, well-established
benchmark datasets: MSR-VTT, DiDeMo, MSVD, and ActivityNet. These datasets are widely used
by the research community for academic purposes and were collected and distributed by their original
creators in accordance with their respective data usage policies. We did not collect any new data for
this study, nor did we involve human subjects in our experiments.

Potential Societal Impacts We acknowledge that advancements in retrieval technology, including
our own, could potentially be misused for applications such as the retrieval of sensitive or private
information if applied to non-public data sources. However, the primary goal of our research is to
advance cross-modal understanding, which has numerous beneficial applications, including improved
accessibility for visually impaired users, enhanced educational tools, and more efficient content
discovery on public platforms. We believe that the positive applications of this technology outweigh
the potential risks, and we encourage the community to continue developing responsible AI practices
and safeguards alongside technological progress. Our work does not introduce any inherent biases
beyond those that may already exist in the benchmark datasets, and we have not designed it for any
malicious purposes.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we have made the
following efforts.

Code The source code for our model, is zipped in the Supplementary Material. This will allow for
the complete replication of our experiments and results.

Implementation Details We provide comprehensive implementation details in both main text and
Appendix. Thess sections cover the specific settings for all datasets, including batch size, learning
rates, optimizer parameters, and the number of training epochs.

We believe these resources provide a clear and sufficient pathway for the research community to
reproduce our findings and build upon our work.
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A APPENDIX

We provide in-depth discussions, more results of the proposed MBDA as follows:

• Some implementation details of our experiments.

• Experiments on video-to-text retrieval on four datasets.

• Experiments with post-processing techniques.

• Some quantitative results.

• Some qualitative results.

• About our use of LLMs.

A.1 SOME IMPLEMENTATION DETAILS

Datasets and Evaluation Metris We conduct our experiments on four popular text-video retrieval
datasets, i.e., MSR-VTT (Xu et al., 2016), MSVD (Wu et al., 2016), DiDeMo (Hendricks et al.,
2017), and ActivityNet (Caba Heilbron et al., 2015). Following common practices (Luo et al., 2021;
Wang et al., 2022; Jin et al., 2022), we preprocess these datasets to ensure fair comparisons across
experiments. We adopt standard retrieval metrics, including Recall at rank K (R@K), median rank
(MdR) and mean rank (MnR) as metrics, to evaluate the performance of text-video and video-text
retrieval tasks. MSR-VTT (Xu et al., 2016) is the most popular benchmark consisting of 10,000
YouTube video clips from 20 categories, and each video clip is annotated with 20 English sentences.
We follow the 1k-A split (Liu et al., 2019) with 9,000 videos for training and 1,000 for testing.
MSVD (Wu et al., 2016) includes 1,970 videos with 80,000 captions. We report results on split
set, where train, validation and test are 1200, 100 and 670 videos. DiDeMo (Hendricks et al.,
2017) contains 10,000 videos annotated with 40,000 sentences. We use the training/testing data
following (Jin et al., 2023). ActivityNet (Caba Heilbron et al., 2015) consists of 20,000 YouTube
videos. We concatenate all descriptions of a video to a single query and evaluate on the ‘val1’ split
(10,009 training, 4,917 testing).

Implementation Settings We utilize the CLIP (ViT-B/32) (Radford et al., 2021) equipped with
Temporal Transformer (Luo et al., 2021) as pre-trained Bi-Encoder. Following the setup in previous
work (Luo et al., 2021), we finetune our model using frame number of 12 and word number of 32
for MSR-VTT and MSVD, and 64, 64 for DiDeMo and ActivityNet. The batch size is set to 256
for MSR-VTT and MSVD, 64 for ActivityNet and DiDeMo. We adopt Adam optimizer (Kingma &
Ba, 2014) with a linear warmup as our optimizer, with warm-up proportion of 0.1, and weight decay
of 0.2. The learning rate is set as 1e-7 for CLIP model and the gate linear unit modules, and 1e-4
for non-CLIP modules. The training epochs is set to 5 for all datasets. During our decoupling step,
we set the downsample rate µ for the number of frames is 3. And we downsample the patch token
from 7× 7 to 4× 4. The weight of both branches (α, β) is 0.5 and 0.5. The weight of Lalign and LT

(θ, γ) is 0.6, 0.4 for MSR-VTT, 0.5, 0.5 for MSVD and 0.7, 0.3 for other datasets. We implement our
experiments with PyTorch on 8 NVIDIA V100 GPUs.

For datasets like MSR-VTT, where each video in the training set is associated with multiple captions,
we add a portion of the captions from the training set as textual data in the Modality Proximity
Alignment module. This approach achieves competitive performance. We also adopt the LLaVA-
Video-7B model (Zhang et al., 2024) to generate textual data on the four datasets. Specifically, we
input only the video frames from the datasets into the model, without any query data, to obtain
summaries of the videos.

Training Resources Usage Our experiments are performed on 8 NVIDIA V100 GPUs. The batch
size is set to 256 for MSR-VTT and MSVD, 64 for ActivityNet and DiDeMo on CLIP-ViT-B/32. We
should decrease the batch size to a quarter when we perform on CLIP-ViT-B/16. The test dataset
of ActivityNet is much larger than that of MSR-VTT. To avoid the CUDA out of memory error, we
move the processed video and text features to CPU and place each chunked block back onto the GPU
to calculate the similarity blocks. Finally, we concatenated these chunked similarity matrices and
finish the evaluation. This processing method saves CUDA memory at the cost of increased training
time. The training resources used on different datasets is shown in Table 5.
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Table 5: Training Resources Usage

Dataset Training Time GPU Memory Usage (per GPU)
MSR-VTT 4.72 h 26.63 GiB
DiDeMo 2.23 h 24.90 GiB
MSVD 3.53 h 20.73 GiB
ActivityNet 10.59 h 19.08 GiB

A.2 EXPERIMENTS ON VIDEO-TO-TEXT RETRIEVAL

Experiment Settings We conduct our video-to-text retrieval experiments with the same dataset
settings as the text-to-retrieval ones. It should be noted that all other experimental settings are the
same as those of the text-to-video retrieval experiment.

Results The results of video-to-text experiments on four dataset benchmarks, MSR-VTT, DiDeMo,
MSVD and ActivityNet are shown in the Table 6, 7, 8, 9. As the table shows, our MBDA method
successfully outperforms other state-of-art approaches on CLIP-ViT-B/32 and CLIP-ViT-B/16.

Table 6: Video-to-text retrieval performance on MSR-VTT. Bold denotes the best performance. “–”
denotes that the result is unavailable.

Method R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
X-CLIP (Ma et al., 2022) 46.8 73.3 84.0 2.0 9.1
X-Pool (Gorti et al., 2022) 44.4 73.3 84.0 2.0 9.0
ProST (Li et al., 2023) 46.3 74.2 83.2 2.0 8.7
DiffusionRet (Jin et al., 2023) 47.7 73.8 84.5 2.0 8.8
UATVR (Fang et al., 2023) 46.9 73.8 83.8 2.0 8.6
UCOFIA (Wang et al., 2023) 47.1 74.3 83.0 2.0 11.4
TEFAL (Ibrahimi et al., 2023) 47.1 75.1 84.9 2.0 7.4
AVIGATE (Jeong et al., 2025) 49.7 75.3 83.7 – –
TempMe (Shen et al., 2024) 45.6 72.4 81.2 – 10.2
MBDA (Ours) 51.4 77.3 85.6 1.0 8.9

CLIP-ViT-B/16
X-CLIP (Ma et al., 2022) 48.9 76.8 84.5 2.0 8.1
ProST (Li et al., 2023) 48.0 75.9 85.2 2.0 8.3
UATVR (Fang et al., 2023) 48.1 76.3 85.4 2.0 8.0
UCOFIA (Wang et al., 2023) 49.1 77.0 83.8 2.0 11.2
AVIGATE (Jeong et al., 2025) 51.2 77.9 86.2 – –
TempMe (Shen et al., 2024) 47.6 75.3 85.4 – 9.0
MBDA (Ours) 52.8 77.7 86.5 1.0 8.1

A.3 EXPERIMENT WITH POST-PROCESSING TECHNIQUES

We also employ the commonly used post-processing techniques (Cheng et al., 2021; Bogolin et al.,
2022) in text-video retrieval, on our method, showing better performance. The experiment result is
shown in Table 10.

A.4 QUALITATIVE RESULTS

We showcase text-to-video retrieval outcomes of the intermediate-structure based method EMCL (Jin
et al., 2022) and our MBDA. As shown in Figure 5, our method accurately captures the motion
information presented in the image. In Figure 6, it also demonstrates a strong ability to recognize
fine-grained visual details.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Video-to-text retrieval performance on DiDeMo. Bold denotes the best performance. “–”
denotes that the result is unavailable.

Method R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CLIP-ViT-B/32
X-CLIP (Ma et al., 2022) 43.1 72.2 – – 10.9
DiffusionRet (Jin et al., 2023) 46.2 74.3 82.2 2.0 10.7
UCOFIA (Wang et al., 2023) 46.0 71.9 81.5 2.0 12.1
TempMe (Shen et al., 2024) 48.4 75.4 83.6 – 9.1
MBDA (Ours) 51.7 79.3 86.6 1.0 7.7
CLIP-ViT-B/16
CLIP4Clip (Luo et al., 2021) 47.2 74.0 – – 10.5
DRL (Wang et al., 2022) 49.9 75.4 83.3 2.0 –
X-CLIP (Ma et al., 2022) 47.8 76.8 – – 10.5
MBDA (Ours) 52.1 80.2 88.7 1.0 7.2

Table 8: Video-to-text retrieval performance on MSVD. Bold denotes the best performance. “–”
denotes that the result is unavailable.

Method R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CLIP-ViT-B/32
DRL (Wang et al., 2022) 62.3 86.3 92.2 1.0 –
X-Pool (Gorti et al., 2022) 66.4 90.0 94.2 1.0 3.3
DiffusionRet (Jin et al., 2023) 61.9 88.3 92.9 1.0 4.5
X-CLIP (Ma et al., 2022) 60.9 87.8 – – 4.7
CenterCLIP (Zhao et al., 2022) 63.5 86.4 92.6 1.0 3.8
MBDA (Ours) 70.2 92.5 95.9 1.0 2.5
CLIP-ViT-B/16
DRL (Wang et al., 2022) 68.7 92.5 95.6 1.0 –
X-CLIP (Ma et al., 2022) 66.8 90.4 – – 4.2
CenterCLIP (Zhao et al., 2022) 68.4 90.1 95.0 1.0 3.0
MBDA (Ours) 74.3 94.0 97.1 1.0 2.1

Table 9: Video-to-text retrieval performance on ActivityNet. Bold denotes the best performance. “–”
denotes that the result is unavailable.

Method R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CLIP-ViT-B/32
DRL (Wang et al., 2022) 42.2 74.0 86.2 2.0 –
DiffusionRet (Jin et al., 2023) 43.8 75.3 86.7 2.0 6.3
X-CLIP (Ma et al., 2022) 43.9 73.9 – – 7.6
UCOFIA (Wang et al., 2023) 46.3 76.5 86.3 2.0 6.7
CenterCLIP (Zhao et al., 2022) 44.5 75.7 86.2 2.0 6.5
TempMe (Shen et al., 2024) 45.3 74.7 86.2 – 6.4
MBDA (Ours) 47.4 78.8 89.3 2.0 5.1
CLIP-ViT-B/16
DRL (Wang et al., 2022) 45.7 76.5 87.8 2.0 –
X-CLIP (Ma et al., 2022) 46.4 75.9 – – 6.4
CenterCLIP (Zhao et al., 2022) 46.7 77.1 88.0 2.0 5.5
MBDA (Ours) 49.1 81.0 90.7 2.0 4.4
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Table 10: Comparison of results with and without post-processing techniques on three datasets.
† indicates the use of post-processing methods (Cheng et al., 2021; Bogolin et al., 2022).

Method R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
MSR-VTT

Ours (MBDA) 52.4 75.9 85.4 1.0 13.2
Ours† (MBDA) 55.3 78.2 87.7 1.0 10.3

DiDeMo
Ours (MBDA) 53.1 78.7 86.5 1.0 10.4
Ours† (MBDA) 57.9 82.1 88.0 1.0 9.3

ActivityNet
Ours (MBDA) 49.6 79.4 89.3 2.0 5.2
Ours† (MBDA) 57.9 83.9 92.0 1.0 4.3

A.5 QUANTITATIVE RESULTS

Similarity between video and text We calculate the average similarity between the decoupled
components and the text embeddings on multiple test sets (using the component that is more similar
to the text for each sample). As shown in the table 11, the average similarity scores are consistently
higher than those of the baseline. For example, on the MSR-VTT dataset, our method achieves an
average similarity of approximately 0.293, significantly outperforming the baseline score of 0.197.
These results demonstrate that our method successfully preserves key information relevant to the text,
while reducing redundant information.

Cases We first conducted a case study by running inference using the trained model on examples
from MSR-VTT. As table 12 shows, we identified examples with clearly dominant temporal or
spatial information and measured the similarity between each of the decoupled components and the
corresponding text embedding.

Similarity between decoupled components We compute the cosine similarity between the two
decoupled components, Vspatial and Vtemporal, on the test sets of several datasets, as shown in the
table 13. For example, on the MSR-VTT test set, the average cosine similarity is approximately
0.052. Furthermore, after projecting both components into the frequency domain using the Discrete
Fourier Transform (DFT), their average cosine similarity further drops to 0.0042. Both values are
close to zero, indicating that our decoupling is orthogonal not only in theory but also quantitatively.

Table 11: Cosine Similarity (Avg.) on Different Datasets

cosine similarity (Avg.)

MSR-VTT DiDeMo MSVD

ours 0.293 0.315 0.288
baseline 0.197 0.203 0.149

Table 12: Case Study: Similarity Scores for Temporal and Spatial Examples

Dominant Information Example Text Temporal Sim. Spatial Sim.

Temporal "a little girl does gymnastics" 0.364 0.257
"men are doing wrestling" 0.311 0.237

Spatial "cartoon show for kids" 0.175 0.373
"a man with a very red nose" 0.194 0.312
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Table 13: Cosine Similarity Between Decoupled Spatial and Temporal Components.

Dataset MSR-VTT DiDeMo MSVD
Cosine similarity 0.052 0.064 0.059
Cosine similarity (After DFT) 0.0042 0.0076 0.0093

Query: a woman is cooking food and a man is setting a table Query: a car goes racing down the road

MBDA

EMCL

MBDA

EMCL

Figure 5: Qualitative results of text-video retrieval on MSR-VTT. Given a text query, we present the
correct matched video returned by MBDA in the first row, and show the false result of EMCL (Jin
et al., 2022) in the second row. The word highlighted in red indicates the key content (about motion)
missed in the false result.

A.6 USE OF LLMS

We use LLMs to polish writing. Moreover, we use LLMs to generate textual data on four datasets for
experimental need, the detailed information is written in the implementation settings of Appendix
A.1.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Query: a trailer for a film with words over the top

MBDA

EMCL

Query: cartoon cars smiling talking and driving down a city road

MBDA

EMCL

Query: person is recording the brown horse which is having fun

MBDA

EMCL

Query: a man in a kitchen is preparing pancakes

MBDA

EMCL

Figure 6: Qualitative results of text-video retrieval on MSR-VTT. Given a text query, we present the
correct matched video returned by MBDA in the first row, and show the false result of EMCL (Jin
et al., 2022) in the second row. The word highlighted in red indicates the key content (about details)
missed in the false result.

20


	Introduction
	Related Works
	Method
	Preliminary
	Proposed Method: Modality-Balanced Decoupling Alignment

	Experiments
	Comparisons with State-of-the-art
	Ablation Study
	Does MBDA Effectively Decouple the Video Representation?

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Some Implementation Details
	Experiments on Video-to-Text Retrieval
	Experiment with Post-processing Techniques
	Qualitative Results
	Quantitative Results
	Use of LLMs


