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ABSTRACT

Cooperation failures, in which self-interested agents converge to collectively
worst-case outcomes, are a common failure mode of Multi-Agent Reinforcement
Learning (MARL) methods. Methods such as Model-Free Opponent Shaping (M-
FOS) and The Good Shepherd address this issue by shaping their co-player’s
learning into mutual cooperation. However, these methods fail to capture im-
portant co-player learning dynamics or do not scale to co-players parameterised
by deep neural networks. To address these issues, we propose Context and His-
tory Aware Other-Shaping (CHAOS). A CHAOS agent is a meta-learner param-
eterised by a recurrent neural network that learns to shape its co-player over mul-
tiple trials. CHAOS considers both the context (inter-episode information), and
history (intra-episode information) to shape co-players successfully. CHAOS also
successfully scales to shaping co-players parameterised by deep neural networks.
In a set of experiments, we show that CHAOS achieves state-of-the-art shaping in
matrix games. We provide extensive ablations, motivating the importance of both
context and history. CHAOS also successfully shapes on a complex grid-world-
based game, demonstrating CHAOS’s scalability empirically. Finally, we provide
empirical evidence that, counterintuitively, the widely-used Coin Game environ-
ment does not require history to learn shaping because states are often indicative
of past actions. This suggests that the Coin Game is, in contrast to common un-
derstanding, unsuitable for investigating shaping in high-dimensional, multi-step
environments.

1 INTRODUCTION

Multi-agent learning has shown great success in strictly competitive (Silver et al., 2016) and fully co-
operative settings (Foerster et al., 2019; Rashid et al., 2018). In competitive games, agents can learn
competent Nash equilibrium strategies by iteratively best-responding to suitable mixtures of past
opponents. Similarly, best-responding to rational co-players leads to the desirable equilibria in co-
operative games (assuming joint training). In contrast, Nash equilibria often coincide with globally
worst welfare outcomes in general-sum games, rendering the aforementioned learning paradigms
ineffective. For example, in the iterated prisoner’s dilemma (IPD) (Axelrod & Hamilton, 1981;
Harper et al., 2017), naive best-response dynamics converge on unconditional mutual defection (Fo-
erster et al., 2018).

These methods ignore a crucial factor: when multiple learning agents interact in a shared environ-
ment, the actions of one agent influence the environment and, often, the reward of other agents,
which in turn influences their learning dynamics. For example, a car merging into the middle lane
in heavy traffic makes it unattractive for fellow collision-averse motorists to move to the middle lane
at the same time. Our paper investigates methods which allow agents to exploit this interconnection
between their actions and the learning outcome of other agents, and leverage it to their advantage.
Such “shaping” methods explicitly account for other agent’s learning and have achieved promising
results, e.g. discovering the famous tit-for-tat strategy in the IPD (Foerster et al., 2018; Letcher et al.,
2019b; Willi et al., 2022; Balaguer et al., 2022; Lu et al., 2022). However, early shaping methods
are myopic (only shape the next learning step of the co-player), require white-box access to the
co-player’s parameters and require higher-order derivatives. To overcome these shortcomings, both
Model-Free Opponent Shaping (Lu et al., 2022, M-FOS) and The Good Shepherd (Balaguer et al.,
2022, GS) frame shaping as a meta reinforcement learning problem. In these approaches, the meta-
agent learns to shape others by observing full training runs of the co-players in each meta-training
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episode before updating its policy. M-FOS and GS showed promising empirical success. However,
both methods have shortcomings: M-FOS’s meta-agent outputs a policy parameterisation for the
inner-agent (similar to HyperNetworks (Ha et al., 2017)). This limits M-FOS to games where the
policies can be represented compactly, such as in infinitely-iterated matrix games. While M-FOS
does report results in a higher-dimensional game (in which the policies are represented by neural
networks), it uses a hierarchical architecture to do so. GS does not output whole parameterisations
but instead keeps its policy fixed during the entire duration of a trial, preventing it from using the
training context to shape the co-player adaptively.

To address both issues, we propose Context and History Aware Other-Shaping1 (CHAOS). In
CHAOS, the meta-agent and the inner agent it controls are parameterised by a single recurrent
neural network (RNN). A CHAOS agent meta-learns by retaining its hidden state throughout an
entire meta-episode, similar to RL2 (Duan et al., 2016) in single-agent RL. This hidden state enables
CHAOS agents to react to two components of the co-player’s learning: The context - inter-episode
learning and the history - intra-episode behaviour. In shaping problems, history captures the co-
player’s current policies whilst context captures the co-player’s learning rules. Together these two
enable CHAOS to dynamically shape agents. Combining the meta-agent and the inner agent into
one recurrent meta-learner avoids outputting policy parameterisations, unlike M-FOS.

We show that CHAOS discovers a ZD-extortion-like strategy in the finitely-iterated prisoner’s
dilemma (a more challenging setting than the infinitely-iterated PD where the environment is
non-differentiable and where policies cannot be represented compactly). Moreover, we show that
CHAOS matches or outperforms GS and M-FOS in iterated matrix games. CHAOS also matches
state-of-the-art shaping against memory-based agents in the Coin Game, a grid-based environment
where policies are represented by deep neural networks.

To summarise our contributions

• We introduce CHAOS, a shaping method capturing both learning context and history, suit-
able for high-dimensional games.

• We formalise the concept of history and context for shaping and analyse their respective
roles empirically.

• We demonstrate state-of-the-art performance on a set of iterated matrix games.
• We identify a fundamental problem in the widely-used Coin Game.

2 RELATED WORK

Opponent Shaping Many methods exist that explicitly account for their opponent’s learning. Just
like CHAOS, these approaches recognise that the actions of any one agent influence their co-players
policy and seek to use this mechanism to their advantage (Foerster et al., 2018; Letcher et al., 2019a;
Kim et al., 2021a; Willi et al., 2022). However, in contrast to CHAOS, these approaches require
privileged information to shape their opponents. Finally, these models are myopic since anticipating
many steps is intractable. (Balaguer et al., 2022, GS) and (Lu et al., 2022, M-FOS) solve the afore-
mentioned issues by framing opponent shaping as a meta reinforcement learning problem, which
CHAOS inherits and builds upon. The specific differences to M-FOS and GS will be the subject of
Section 4.

Opponent Modelling Similarly to our work, opponent modelling tries to disentangle some aspects
of other agents’ policies from the environment (Mealing & Shapiro, 2017; Raileanu et al., 2018;
Tacchetti et al., 2018). In contrast to our work, these approaches do not consider agents as learners.
Furthermore, they do not observe agents at different stages of learning and thus, whilst modelling as
non-stationary, do not observe learning dynamics (Synnaeve & Bessière, 2011). Finally, (Balaguer
et al., 2022, GS), and (Lu et al., 2022, M-FOS) do not explicitly model any aspect of the opponent.

Multi-Agent Meta-Learning Multi-agent meta-learning approaches have also shown success in
mixed-games with other learners (Al-Shedivat et al., 2018; Kim et al., 2021b; Wu et al., 2021).
Similar to CHAOS, they take inspiration from meta reinforcement learning - their approach is to

1“Other” breaks with the line of seminal work on opponent shaping, but highlights the general-sum aspect
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Figure 1: Example meta-learning interaction. CHAOS θ (blue) resets its hidden state h at the
beginning of a trial, updates its hidden state after each environment interaction, then updates its
parameters at the end of a trial. The opponent ϕ (orange) resets its parameters at the beginning
of a trial, then updates its parameters at the end of each episode. Optionally, if the opponent uses
memory, its hidden state h is reset at the beginning of a trial and updated after each environment
interaction.

learn the optimal initial parameterisation for the shaper (Finn et al., 2017). In contrast, CHAOS
uses an approach similar to RL2, which trains an RNN-based agent to implement efficient learning
for its next task. Furthermore, CHAOS is optimised using evolutionary strategies, allowing it to
consider much longer time horizons than policy-gradient metods (Schulman et al., 2017).

3 BACKGROUND

Partially Observable Stochastic Game (POSG) A POSG is given by the tuple M = ⟨n,A,O, S,
T , I,R, γ⟩, where A, O, and S denote the action, observation, and state space, respectively. These
parameters can be distinct at every time step and also incorporated into the transition function T :
S × A → ∆S, where A ≡ An is the joint action of all agents. Each agent draws individual
observations according to the observation function I : S ×N → O and obtains a reward according
to their reward function T : S × A × N → R where N = {1, . . . , n}. POSGs can represent
general-sum games. The single player case, I = {1}, of POSGs are Partially Observable Markov
Decision Processes (POMDPs).

RL2 CHAOS takes an RL2-like approach to meta-learning. RL2 is a single-agent meta-
reinforcement learning method where both meta-agent and inner agent are parameterised by a recur-
rent neural network (ϕ, h), where ϕ are the network parameters and h the hidden state. RL2 samples
MDPs from a distribution ρP : P → R+ and interacts with each sample MDP for a number of
episodes E, called a trial. Importantly, the RL2 agent retains its hidden state h across all episodes
in a trial and resets only when it faces a new trial. The objective is to maximise the expected total
discounted reward over a trial t instead of a single episode

Eϕt

[
L∑

l=0

γlr (sl, al)

]

where L = K ∗ E and K is the episode length. The RL2 agent is thus encouraged to use all the
information captured in its hidden state h. RL2 agents have been shown to scale to high-dimensional
problem settings.

Good Shepherd GS formalises shaping as a meta-learning problem over a sequence of trials of
length T . Each trial contains E episodes. In each trial, GS shapes a new co-player in a POSG M,
where (ϕi,ϕ−i) correspond to GS’ and the co-players’ parameters, respectively. During a trial t, GS
uses a fixed policy ϕt

i. At the end of each inner episode, the co-players update their parameters with
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(a) (b) (c)

(d) (e) (f)

Figure 2: Training results in the finite IPD over 5 seeds for CHAOS. The upper row displays the
(a) fitness, (b) conditional probability of cooperation, and (c) state visitation. The state visitations
for DC reach 80% after 2000 generations of training, indicating that CHAOS has learned to extort
its opponent. The lower row is evaluation results over a single trial composed of 100 inner episodes
over 20 seeds, where (d) shows the reward, (e) CHAOS’s conditional probability of cooperation,
and (f) state visitation.

respect to the episodic return Je
−i =

∑K
k=0 r

k
−i(ϕ

t
iϕ

e
−i), where K is the length of an episode. For

example, if the co-players were Naive Learners, the update looks as follows:

ϕe+1
−i = ϕe

−i + α∇ϕ−
e iJ

e
(
ϕi
t,ϕ

−i
e

)
,

where α is the learning rate. GS optimises the meta-return J̄ =
∑E

e Je
i (summed over all episodes)

at the end of a trial using Evolutionary Strategies. The policy is parameterised by a feed-forward
network, thus lacking both history and context memory. GS, thus, cannot adapt to changing learn-
ing dynamics of the co-player. We show this to be detrmin our results (see Section 6) that this is
detrimental in some games.

Model-Free Opponent Shaping M-FOS frames opponent shaping as a meta reinforcement task.
More specifically, the meta-task is formulated as a POMDP ⟨S,A,Ω,O,P,R, γ̄⟩ over an under-
lying general-sum game, represented by a POSG M. In the POMDP, the meta-state S spans the
policies of every player in the underlying POSG: s̄e =

(
ϕi
e−1,ϕ

−i
e−1

)
∈ S . The meta-action space

A consists of the policy parameterisation of the underlying inner agent playing the game for the
meta-agent. At each meta-episode, conditioned on both agent’s policies, M-FOS outputs parameters
of the next inner-agents (similar to a HyperNetwork (Ha et al., 2017)), i.e., āe = ϕi

e ∼ πθ (· | ōe),
where θ is the parameters of the M-FOS agent. The meta-reward is the return of the inner agent
over one inner episode, r̄e =

∑K
k=0 r

i
k

(
ϕi
e,ϕ

−i
e

)
. This Hypernetwork-like approach is M-FOS’

main shortcoming - it is difficult to scale to complex inner-agent policy parameterisations. To scale
to complex inner-agent policy parameterisations that are used in the Coin Game environment, they
use a hierarchical architecture in which the meta-agent instead outputs a conditioning vector for the
inner agent that contains context information. M-FOS is optimised using Evolution Strategies (Sal-
imans et al., 2017) for the iterated matrix games and uses PPO (Schulman et al., 2017) for the Coin
Game environment.

Evolution Strategies (ES) CHAOS uses Evolution Strategies (Salimans et al., 2017, ES) to opti-
mise the meta-agent. ES is a model-free optimisation method. Let F : Rd → R be some function
we want to optimise over. Instead of optimising the objective directly, ES blurs F (x) with Gaussian
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noise
Eϵ∼N(0,Id)[F (x+ σϵ)] ,

where σ is a hyper-parameter controlling how much Gaussian noise is added. This allows using the
following simple gradient estimator:

∇xEϵ∼N(0,Id)[F (x+ σϵ)] = Eϵ∼N(0,Id)

[ ϵ
σ
F (x+ σϵ)

]
,

allowing the optimization of non-differentiable functions using gradient descent methods. ES by-
passes the credit assignment problem by directly optimizing in the parameter space of the model
instead of the policy space and is thus suitable for long-time horizon problems (Salimans et al.,
2017).

4 METHOD

Algorithm 1: General CHAOS
1: Initialise Shaper parameters θ.
2: while true do
3: for n ∈ {1, . . . , N} do
4: Sample shaper parameters θm from ES
5: Initialise co-player parameters ϕ0.
6: for t = 0 to T do
7: Reset Environment
8: Gather trajectories τt given θn, ϕt

9: Update ϕt+1 according to respective
learning algorithm

10: end for
11: Calculate fitness Fn for trial
12: end for
13: Update ϕ with ES(F)
14: end while

We assume a set of POSGs M and a distribu-
tion we can sample from ρM . We also assume
a set of initial learners ϕ0 and a corresponding
distribution ρϕ, as shaping acknowledges other
learners within the environment, in contrast to
RL2. Just like in GS, we define a inner episode
to be a finite sequence of interactions within a
fixed POSG and fixed initial learner, and a trial
to be a sequence of inner episodes.

Figure 1 illustrates the interaction between
agents and the environment. At the start of
a trial, co-players ϕ−i ρϕ and a new game
(POSG) ρM are drawn. The shaping agents’
policy ϕi and hidden state h are initialised.
During an episode of length K, upon receiv-
ing a state, agents take their respective actions,
aki . At each time step in the episode, the in-
ternal state of the shaping agent is updated:
hk+1 = f(hk). On receiving actions, the POSG returns rewards rki , new observations oik+1 and
a done flag d, indicating if an episode has ended.

When a inner episode terminates, the learner takes a gradient update maximising total episode return,
Je
−i =

∑K
k=0 r

k
−i(ϕ

t
iϕ

e
−i). The updated learner ϕe+1

−i and the shaper’s hidden state hK are passed
to the next episode. This process is repeated over E episodes in a trial. When a trial terminates, the
shaper’s policy is updated, maximising total trial reward, J̄ =

∑E
e Je

i , via an evolutionary strategy.

We use Evolution Strategies (Salimans et al., 2017) to maximise the expected fitness across a pop-
ulation. At the start of each generation, a population of CHAOS agents of size M and N Naive
Learners (NL) are initialised. During a generation, the population plays against copies of the Naive
Learner in parallel for a series of E inner episodes. At the end of an inner episode, each copy of
the Naive Learner performs a gradient update. At the end of the trial, CHAOS performs a gradient
update in the direction of the maximum expected fitness, and the next generation begins.

5 EXPERIMENTS

5.1 ENVIRONMENTS

Iterated Prisoner’s Dilemma The prisoner’s dilemma is a well-known and widely studied
general-sum game illustrating that two rational agents may not cooperate even if it is globally op-
timal. The players choose to either cooperate (C) or defect (D) and receive a payoff according to
Table 3. In the iterated prisoner’s dilemma (IPD), the agents repeatedly play the prisoner’s dilemma
and can observe the previous decisions.

Past research has used the infinitely IPD in their experiments (Foerster et al., 2018; Letcher et al.,
2019b; Willi et al., 2022; Lu et al., 2022; Balaguer et al., 2022). In the infinite version, players submit
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Table 1: Converged Reward in the (a) IPD and (b) IMP

(a)

PPO
CHAOS (-0.13 ± 0.02, -2.84 ± 0.05)
M-FOS (-0.60 ± 0.14, -2.34 ± 0.14)
GS (-0.97 ± 0.03, -1.26 ± 0.10)
PPO (-2.00 ± 0.00, -2.00 ± 0.00)

(b)

PPO
CHAOS (0.86 ± 0.02, -0.86 ± 0.02)
M-FOS (0.83 ± 0.09, -0.83 ± 0.09)
GS (-0.01 ± 0.01, 0.01 ± 0.01)
PPO (0.00 ± 0.00, 0.00 ± 0.00)

(a) (b) (c)

(d) (e) (f)

Figure 3: Training results in the IMP over 5 seeds for CHAOS. (a) Fitness (b) Empirical probability
of Cooperative action conditioned by state and (c) state visitation. Evaluation results over a single
trial composed of 100 inner episodes over 20 seeds. (d) Average Reward (per step) (e) CHAOS’s
probability of cooperation conditioned on state and (f) state visitation.

a policy represented by five parameters, where each parameter is the probability of cooperation after
each state given a one-step history (CC,CD,DC,DD, start). Press & Dyson (2012) showed that
having access to the last state is sufficient for acting optimally. The infinite version is a differentiable
game Balduzzi et al. (2018) as the exact value function can be calculated directly from the policies,
thus accessing exact gradients is possible and optimization tractable. In our work, we consider the
finitely IPD (f-IPD), and we do not take advantage of exact value functions, resulting in a version
of the game that is more similar to current reinforcement learning environments. In the f-IPD, the
agents do not submit a full strategy but take an individual action (either C or D) at each timestep.

Over repeated interactions, IPD produces a spectrum of interesting behaviours. In particular, two
cases are of interest in this work: 1) Cooperation, and 2) Zero-Determinant (ZD) Extortion strategies.
In Cooperation, agents are shaped sufficiently to CC and choose not defect, even though this would
increase short-term rewards. In ZD-Extortion (Press & Dyson, 2012), co-players cooperate while
allowing the shaper to enforce a linear relationship between their own payoff and that of the co-
player, thus inducing behaviours that are more favourable than mutual cooperation.

Iterated Matching Pennies The Iterated Matching Pennies (IMP) is an iterated matrix game like
the IPD. The players choose either heads (H) or tails (T), and receive a payoff according to the
choices of both players. In contrast to the IPD, which is a general-sum game, IMP is a zero-sum
game. The only equilibrium strategy for each one-memory agent is to play a random policy, resulting
in an expected joint payoff of (0,0). It is only with intra-episode memory that a shaper can observe
a co-player’s policy and begin shaping.

Coin Game The Coin Game (Lerer & Peysakhovich, 2017) is a multi-agent, wrap-around grid-
world environment that simulates social dilemmas (like the IPD) with high-dimensional states and
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(a) (b) (c) (d)

Figure 4: Illustration of (a) a state observed by both agents in the non-egocentric Coin Game and
(b)-(c) the same state observed by the blue and orange agent, respectively, in the egocentric Coin
Game. (d) Illustration of a special state where memory-less agents can infer conventions.

multi-step actions. Two players – blue and orange – move around a grid and pick up blue and orange
coloured coins. When a player picks up a coin of its own colour, the player receives a reward of
+1. When a player picks up a coin of the co-player’s colour, the player also receives a reward of
+1 and the co-player receives a reward of −2. If a coin gets picked up, a new coin of the same
colour appears in a random location on the grid. If both agents reach a coin simultaneously, then
both agents pick up that coin (the coin is duplicated). The episodes are of fixed length. When both
players pick up coins without regard to colour, the expected reward is 0. In contrast to the IPD,
the Coin Game requires learning from high-dimensional states, a task that current shaping methods
struggle to learn.

5.2 BASELINE COMPARISONS

We compare our method against three baselines: a Naive Learner, M-FOS and GS. A Naive Learner
(NL) does not account for the learning of the co-player. It updates at the end of each inner-episode
with learning rate α:

ϕi
t+1 = ϕi

t + α∇ϕi
t
Ri(ϕi

t, ϕ
−i
t ) (1)

In the IPD, our NL is parameterised as a tabular policy trained using PPO (Schulman et al., 2017).
In the Coin Game, the NL is parameterised by a recurrent neural network trained using PPO. The
specific implementation details are provided in Appendix B.

For M-FOS and GS, we optimise both methods using Evolution Strategies (Salimans et al., 2017),
in line with the original implementations (Lu et al., 2022; Balaguer et al., 2022). For M-FOS, we
use the hierarchical architecture used in its Coin Game results since we are using neural networks
for these environments instead of simple tabular policies. The implementation details for M-FOS
and GS are provided in Appendix B and Appendix C

In every game, CHAOS is parameterised as a recurrent neural network and is trained using Evolu-
tion Strategies (Salimans et al., 2017). We used the Jax library (Bradbury et al., 2018) with the Haiku
framework (Hennigan et al., 2020) to implement our neural networks. For the Evolution strategies,
we relied on the Evosax library (Lange, 2022). Our experiments were performed on NVIDIA A40
and V100 GPUs. Addditional implementation details and hyperparameters for each game are pro-
vided in Appendix C. Furthermore, the whole codebase will be released upon acceptance.

5.3 ABLATIONS

In order to evaluate CHAOS’ effectiveness we apply the following ablations.

The Hardstop Challenge - during a trial, after k episodes the co-player no longer takes learner
updates. In the situation where the co-player no longer updates, optimal behaviour would be to
exploit this fixed policy (effectively stop shaping). We choose k = 2 to be less than the number of
episodes required for a shaper to reach to ZD- Extortion-like policies. This challenge tests if shapers’
can 1) identifying the sudden change in an co-player’s learning dynamics 2) react and deploy a more
suitable exploitative policy. We evaluate CHAOS against GS, to compare context and context-less
shaping methods.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5: Training results of CHAOS vs. PPO RNN in the egocentric Coin Game. (a) Fitness,
(b) both agent’s frequency of picking up its own colour coin, (c) the number of coins picked up
per episode. Evaluation run of a single trial of 600 inner episodes. (d) Reward, (e) both agent’s
frequency of picking up its own color coin, (f) state visitation, and (g) the number of coins picked
up per episode.

The Only-History Challenge - we reset the hidden state of shapers between episodes, removing their
ability to use context to shape. In this challenge, shapers must infer co-player’s current policy by
only using the history. We evaluate the shaper within the IMP environment, over different episode
lengths, to limit the relative strength of history.

6 RESULTS

In this section we report and compare the results between CHAOS and our baselines on our envi-
ronments. Firstly we find that CHAOS shapes achieves state-of-the-art results in the IPD. On the
IMP game, CHAOS achieves state-of-the-art results, outperforming M-FOS, GS and other base-
lines. Next we demonstrate that CHAOS is scalable, as it achieves comparable shaping in the Coin
Game. Finally through a series of ablations we demonstrate the importance of context and history
for effective shaping.

Iterated Prisoner’s Dilemma In the IPD, CHAOS shapes its co-player more aggressively than
the baselines (see Table 1a), achieving an average return of -0.13 per episode. However, all shaping
baselines reach ZD-extortion-like policy. CHAOS switches policies during an co-player’s learning,
switching from cooperation to exploitation (see Figure 2). In Figure 2f, we display the state visitation
over one trial. It shows that a fully trained CHAOS agent pursues a tit-for-tat like-strategy to
encourage cooperation within the first 5 episodes before pursing an excessively exploitative policy.
At this point, the co-player is shaped, as is it unable to move to another equilibrium.

Iterated Matching Pennies In the IMP, CHAOS exploits its opponent to achieve a score of
(0.80,−0.80) (see Table 1b). As expected, GS cannot shape the opponent, achieving a score close to
the Nash Equilibrium. Without having any context, it is not possible to shape the opponent because
the opponent can also switch to a random strategy to at least achieve a score of 0. Thus dynamic-
shaping, is required to find exploitative strategies. We find that M-FOS another dynamic shaping
method is able to find exploitation too.

Coin Game We see that CHAOS outperforms M-FOS in Table 2. This provides evidence that
CHAOS is scalable to more complex co-players policies. Both GS and CHAOS demonstrate shap-
ing, as co-player picks up more of its own coin than the shaper (see Figure 5).
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Table 2: Head-to-head results in the egocentric Reward per episode and the standard deviation (over
5 seeds) for Coin Game.

PPO RNN
CHAOS (6.51± 0.46, 2.71± 0.11)
M-FOS (2.67± 0.52, 3.94± 0.15)
GS (6.72 ± 0.72, 2.39 ± 0.10)

We found GS produces comparable results to CHAOS. At first this is surprising, since GS is a
feedforward network and does not have access to the history. Therefore, in principle it should not
be able to retaliate against a defecting agents since it has no memory of their past actions. However,
close investigation of the problem setting shows that due to the specific environment dynamics, the
current state is often indicative of past actions. For example, when the two agents are on the same
square, in all likelihood one of the agents defected (see Figure 4d). Similarly, if the agents are
currently standing a on a coin of a given colour, this coin was picked up on the last time step. This
illustrates that Coin Game allows for simple shaping strategies that do not require context or history,
limiting its utility as a benchmark for investigating these aspects .

(a) (b) (c) (d) (e)

Figure 6: The Hardstop Challenge: Average reward for a single trial (a) CHAOS and (b) GS against
a naive learner in the IPD. Note that once co-player stops learning, CHAOS is able to dynamically
switch to much more exploitative behaviour (reward=-0.5) whereas GS’s policy remains fixed. The
Only-History Challenge: Training curves in the IMP with episode length = 2 for (c) CHAOS and
(d) CHAOS without memory. Note that in short time-spans, where history can not be used context
can enable shaping. Additionally (e) CHAOS without history in IMP with episode length = 100
shows with sufficient timespans, history can be used to shape.

Ablations CHAOS outperforms GS on the hardstop challenge. CHAOS demonstrates dynamic
shaping by switching strategies at t = 2 episodes, when the hardstop is triggered (see Fig. 6c). In
contrast, GS’s policy is fixed throughout a trial and thus can not exploit the hardstop. In the Only
History challenge, CHAOS (reset memory) learns to exploit its opponent either with context or,
with a long enough episode length, history (see Fig. 6).

7 CONCLUSION

In this paper, we introduce CHAOS, a shaping method capturing both learning context and history,
suitable for high-dimensional games. We formalise the concept of history and context for shaping
and analyse their respective roles empirically. We demonstrate state-of-the-art performance on a set
of iterated matrix games. We identify a fundamental problem in the widely-used Coin Game.

When multiple agents interact in a shared environment, the actions of each any one agent influence
the rewards and environment faced by others, and through their learning ultimately affect their be-
haviour. Shaping, i.e. constructing agents that can effectively leverage this interconnection, has
emerged as a sub-field in Mult-agent Reinforcement learning and has received considerable atten-
tion in recent years. CHAOS substantially expands the current capabilities of shaping agents by
allowing them to react to changes to the co-players’ learning dynamics as well as to predictable
patterns in their within-episode behaviour, thus resulting in significantly more effective shaping.
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A APPENDIX

A.1 EXPERIMENTAL PROTOCOL

We define an experimental protocol for producing the correct conditions for shaping
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(a) (b) (c)

Figure 7: Results of the experimental protocol verifying that PPO RNN learns to play the egocentric
Coin Game against (a) pre-trained PPO RNN (b) Good Greedy (c) Evil Greedy. Notice that the
agent learns to pick up roughly the same number of coins per episode as its competent opponents.

Experimental Protocol We verify that an agent can learn against three competent opponents. The
first agent is Good Greedy, picking up coins indiscriminately but prioritizing its own colour coin if it
is equidistant from two coins; the second agent is Evil Greedy, picking up coins indiscriminately but
prioritizing its opponent’s coin if it is equidistant from two coins; the third agent is the current agent
pre-trained to competency via self-play. After verifying that an agent learns competency against
these three opponents, we set the parameters of the trial to reflect the time and scale required for the
agent to become competent against a competent opponent.

Sanity We verify that PPO RNN can learn against competent opponents in the Coin Game in
Figure 7. PPO RNN learns to pick up the same number of coins as a pre-trained PPO RNN, Good
Greedy, and Evil Greedy. These hyperparameters are the same ones used during meta-learning.

Coin Game Adjustments In the Coin Game, agents struggle to learn (via reinforcement learning)
when trained against a pre-trained opponent. On inspection of trajectories, we found that competent
agents removed a sufficient amount of coins to restrict reinforcement learners ability to capture
signal from the game.

To address this, we show that adjusting the observations such that an agent receives to an egocentric
viewpoint (i.e. an agent always observes that it is in the centre of the grid) leads to competency
against a competent opponent. In this case, we measured competency as an agent’s ability to pick up
coins. Competentagents were those who picked up a similar number of coins to those trained against
a stationary agent. Throughout the rest of the paper, we refer to the original version of Coin Game
as non-egocentric Coin Game and the modified observation version as egocentric Coin Game. In
addition, we deviate from the original 5 by 5 version of Coin Game to a 3 by 3 version, following
the setting used in (Lu et al., 2022).

B MATRIX GAME HYPER-PARAMETERS

C D
C (-1,-1) (0, -3)
D (-3, 0) (-2, -2)

Table 3: Payoff matrix of IPD.

H T
H (1,-1) (-1, 1)
T (-1, 1) (1, 1)

Table 4: Payoff matrix of IMP.
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We present the hyper-parameters used for training in both the iterated prisoner’s dilemma and the
matching pennies game.

Hyperparameter Value
Number of Actor Hidden Layers 1
Number of Critic Hidden Layers 1
Torso GRU Size [25]
Length of Meta-Episode 100
Length of Inner Episode 100
Number of Generations 5000
Batch Size 100
Population Size 1000
OpenES sigma init 0.04
OpenES sigma decay 0.999
OpenES sigma limit 0.01
OpenES init min 0.0
OpenES init max 0.0
OpenES clip min -1e10
OpenES clip max 1e10
OpenES lrate init 0.01
OpenES lrate decay 0.9999
OpenES lrate limit 0.001
OpenES beta 1 0.99
OpenES beta 2 0.999
OpenES eps 1e-8

Table 5: Hyperparameters for CHAOS in Iterated Prisoner’s Dilemma

Hyperparameter Value
Number of Minibatches 4
Number of Epochs 2
Gamma 0.96
GAE Lambda 0.95
PPP clipping epsilon 0.2
Value Coefficient 0.5
Clip Value True
Max Gradient Norm 0.5
Entropy Coefficient Start 0.02
Entropy Coefficient Horizon 2000000
Entropy Coefficient End 0.001
Learning rate 1
ADAM epsilon 1e-5

Table 6: Hyperparameters for Tabular-PPO in Iterated Prisoner’s Dilemma
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Hyperparameter Value
Number of Actor Hidden Layers 2
Number of Critic Hidden Layers 2
Network Hidden Size [16, 16]
Length of Meta-Episode 100
Length of Inner Episode 100
Number of Generations 5000
Batch Size 100
Population Size 1000
OpenES sigma init 0.04
OpenES sigma decay 0.999
OpenES sigma limit 0.01
OpenES init min 0.0
OpenES init max 0.0
OpenES clip min -1e10
OpenES clip max 1e10
OpenES lrate init 0.01
OpenES lrate decay 0.9999
OpenES lrate limit 0.001
OpenES beta 1 0.99
OpenES beta 2 0.999
OpenES eps 1e-8

Table 7: Hyperparameters for GS in Iterated Prisoner’s Dilemma

Hyperparameter Value
Number of Actor Hidden Layers 1
Number of Critic Hidden Layers 1
Actor GRU Hidden Size 16
Critic GRU Hidden Size 16
Meta Agent Gru Hidden Size 16
Hidden Layer Size 16
Length of Meta-Episode 100
Length of Inner Episode 100
Number of Generations 5000
Batch Size 100
Population Size 1000
OpenES sigma init 0.04
OpenES sigma decay 0.999
OpenES sigma limit 0.01
OpenES init min 0.0
OpenES init max 0.0
OpenES clip min -1e10
OpenES clip max 1e10
OpenES lrate init 0.01
OpenES lrate decay 0.9999
OpenES lrate limit 0.001
OpenES beta 1 0.99
OpenES beta 2 0.999
OpenES eps 1e-8

Table 8: Hyperparameters for MFOS in Iterated Prisoner’s Dilemma
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C COIN GAME HYPERPARAMETERS

Hyperparameter Value
Number of Actor Hidden Layers 1
Number of Critic Hidden Layers 1
Torso Gru Size [16]
Length of Meta-Episode 600
Length of Inner Episode 16
Number of Generations 3000
Batch Size 100
Population Size 4000
OpenES sigma init 0.04
OpenES sigma decay 0.999
OpenES sigma limit 0.01
OpenES init min 0.0
OpenES init max 0.0
OpenES clip min -1e10
OpenES clip max 1e10
OpenES lrate init 0.01
OpenES lrate decay 0.9999
OpenES lrate limit 0.001
OpenES beta 1 0.99
OpenES beta 2 0.999
OpenES eps 1e-8

Table 9: Hyperparameters for EARL in Iterated Matching Pennies

Hyperparameter Value
Number of Minibatches 8
Number of Epochs 2
Gamma 0.96
GAE Lambda 0.95
PPO clipping epsilon 0.2
Value Coefficient 0.5
Clip Value True
Max Gradient Norm 0.5
Anneal Entropy False
Entropy Coefficient Start 0.02
Entropy Coefficient Horizon 2000000
Entropy Coefficient End 0.001
LR Scheduling False
Learning Rate 0.005
ADAM Epsilon 1e-5
With CNN False

Table 10: Hyperparameters for PPO Memory and Tabular in the Coin Game
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Hyperparameter Value
Number of Actor Hidden Layers 1
Number of Critic Hidden Layers 1
Hidden Size [16]
Length of Meta-Episode 600
Length of Inner Episode 16
Number of Generations 3000
Batch Size 100
Population Size 4000
OpenES sigma init 0.04
OpenES sigma decay 0.999
OpenES sigma limit 0.01
OpenES init min 0.0
OpenES init max 0.0
OpenES clip min -1e10
OpenES clip max 1e10
OpenES lrate init 0.01
OpenES lrate decay 0.9999
OpenES lrate limit 0.001
OpenES beta 1 0.99
OpenES beta 2 0.999
OpenES eps 1e-8

Table 11: Hyperparameters for GS in Coin Game

Hyperparameter Value
Number of Actor Hidden Layers 1
Number of Critic Hidden Layers 1
Actor GRU Hidden Size 16
Critic GRU Hidden Size 16
Meta Agent Gru Hidden Size 16
Hidden Layer Size 16
Length of Meta-Episode 100
Length of Inner Episode 100
Number of Generations 5000
Batch Size 100
Population Size 1000
OpenES sigma init 0.04
OpenES sigma decay 0.999
OpenES sigma limit 0.01
OpenES init min 0.0
OpenES init max 0.0
OpenES clip min -1e10
OpenES clip max 1e10
OpenES lrate init 0.01
OpenES lrate decay 0.9999
OpenES lrate limit 0.001
OpenES beta 1 0.99
OpenES beta 2 0.999
OpenES eps 1e-8

Table 12: Hyperparameters for MFOS in Coin Game
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