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Abstract
Human alignment in large language models
(LLMs) is an active area of research. A recent
groundbreaking work, direct preference optimiza-
tion (DPO), has greatly simplified the process
from past work in reinforcement learning from
human feedback (RLHF) by bypassing the reward
learning stage in RLHF. DPO, after training, pro-
vides an implicit reward model. In this work,
we make a novel observation that this implicit
reward model can by itself be used in a bootstrap-
ping fashion to further align the LLM. Our ap-
proach is to use the rewards from a current LLM
model to construct a preference dataset, which
is then used in subsequent DPO rounds. We in-
corporate refinements that debias the length of
the responses and improve the quality of the pref-
erence dataset to further improve our approach.
Our approach, named self-alignment with DPO
ImpliCit rEwards (DICE), shows great improve-
ments in alignment and achieves superior perfor-
mance than Gemini Pro on AlpacaEval 2, reach-
ing 27.55% length-controlled win rate against
GPT-4 Turbo, but with only 8B parameters and
no external feedback. Our code is available at
https://github.com/sail-sg/dice.

1. Introduction
Direct preference optimization (DPO) (Rafailov et al.,
2024b) presents a compelling alternative to reinforcement
learning from human feedback (RLHF) in large language
models (LLMs). By circumventing the complexity of learn-
ing a reward model from given human preferences, DPO
is simpler to implement and train compared to the RLHF
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approaches. Importantly, DPO, once trained, implicitly
specifies a reward model. Mathematically, the reward for a
response y to the prompt x can be expressed in terms of the
optimal policy π⋆ and the reference policy πref:

r̂(x,y) = β log
π⋆(y|x)
πref(y|x)

+ β logZ(x),

for parameter β and normalizing constant Z. Further, an
implicit reward r(x,y) = β[log π⋆(y|x)− log πref(y|x)] is
defined in DPO where the normalizing constant term can
be ignored as it will be canceled out in the DPO objective,
which only involves the difference of the rewards for the
same prompt. In this work, we explore whether the above
readily available implicit reward model after DPO training
provides an opportunity to further improve the language
model.

This paper answers the research question in the affirma-
tive, by using the above implicit rewards in a bootstrapping
fashion to further improve the LLM alignment with human
preferences. Specifically, our approach follows the iterative
DPO framework (Tran et al., 2023), where the implicit re-
wards are provided as the preference signals, as illustrated
in Figure 1. We start with a model that has been through one
round of DPO using human preference data. We then use
the implicit rewards induced by itself to rank outputs from
the current LLM, thereby, yielding a new preference dataset
cheaply. We run DPO again with this newly generated pref-
erence dataset to obtain an updated LLM and then repeat
the process. However, the above approach still needs further
refinement to address practical issues. One is the known
issue of length exploitation (Park et al., 2024) where LLMs
generate long responses when the same content could be
provided more succinctly. Another issue is that the implicit
reward model is an approximate proxy for human prefer-
ences, hence relying on it strongly can result in corruption
of the initial knowledge inbuilt into the LLM.

We address the length exploitation issue by length-
regularized reward shaping, which discourages long
responses from being preferred. To fix the overreliance
on the implicit reward we use insights from continual
learning (Rolnick et al., 2019) and replay high quality
human preference data that was used in the first round of
DPO (this round was before we start our bootstrapping).
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Figure 1: (Left) Iterative DPO (Tran et al., 2023) with various preference signals: under the iterative DPO framework, the
policy model is iteratively trained on a newly generated preference dataset. This dataset can be constructed using various
preference signals. A common source is a scalar reward model (RM) (Ouyang et al., 2022), denoted as rϕ. Alternatively, the
dataset can be created by prompting a LLM to judge the responses. This LLM can either be an external model πϕ or the policy
model itself from the previous iteration πθ(t−1) . In this context, x and y are processed through a LLM-as-a-judge template
g(·, ·) (Yuan et al., 2024). We propose utilizing the length-regularized (LR) implicit rewards introduced in Section 4.2,
where πθ(t−1) and π

(t−1)
ref represent the policy model and reference model from the previous DPO iteration, respectively.

Our experiment excludes approaches requiring external models, such as rϕ and πϕ, as they are beyond this work’s scope.
(Right) Our method, which leverages implicit rewards, further improves DPO-tuned models by a large margin, resulting in
superior performance compared to the prompting counterpart.

Our method, named self-alignment with DPO ImpliCit
rEwards (DICE), significantly improves LLM alignment
quality with different base models. On AlpacaEval 2, we
achieve 8.02% length-controlled win rate improvement
with the Zephyr-based model and 9.35% improvement with
the Llama3-based model. Our best model outperforms
Gemini Pro, but with only 8B parameters and does not
require any in-house data or external reward model.

To summarize, our main contributions are as follows:

• We propose to utilize the implicit reward model readily
available in a DPO-ed LLM. The implicit reward model
enables us to evaluate the responses generated by the
current policy and construct a preference dataset for
future rounds of DPO without any external feedback;

• We propose to apply two techniques together with our
above proposed approach, length-regularized reward
shaping and experience replay;

• Empirical results show that our approach DICE enables
significant improvement in alignment with different
base models, and our best bootstrapped model achieves
better performance than Gemini Pro but with only 8B
parameters.

2. Related Work
Self-Improving Fine-Tuning. Many efforts have been
made to investigate ways of fine-tuning language models
without a large amount of human annotation (Huang et al.,
2022; Li et al., 2023a; Sun et al., 2023; 2024; Yuan et al.,
2024). Starting from an SFT model, Sun et al. (2023) collect
the preference labels by prompting the SFT model itself to
choose the preferred response given a principle and train a
principle-driven reward model with these preference labels.
Afterwards, they optimize the policy by PPO with their re-
ward model. Yuan et al. (2024) construct the preference
dataset by their own supervised fine-tuned model trained on
instruction following data and evaluation fine-tuning data,
followed by DPO training on the preference dataset. Our
work differs from this line of work in the motivations and
assumptions. This line of work aims to align a language
model with a small amount of seed data by eliciting the
internal knowledge that is learned during the pretraining
phase of LLMs. In contrast, our goal is to further improve
a DPO-ed model in a bootstrapping manner by utilizing its
implicit rewards.

On-Policy Sampling in Preference Tuning. DPO and its
variants are popular due to their simplicity in training and
implementation. However, research indicates that the offline
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nature of these direct alignment from preference (DAP) algo-
rithms often prevents them from learning a good policy (Guo
et al., 2024). Guo et al. (2024) have shown that the offline
DPO will quickly overfit the preference dataset, while it
performs much better and is more stable if online feedback
can be provided to their on-policy samples1. Tajwar et al.
(2024) systematically discussed the properties of different
preference fine-tuning approaches and the role of on-policy
sampling. Their actionable takeaways for practitioners tell
on-policy sampling generally improves performance and
efficiency. If not being able to perform the pure on-policy
sampling, using the data that is closer to on-policy sam-
ples also helps as it can be seen in iterative DPO (Tran
et al., 2023) and self-rewarding language models (Yuan
et al., 2024). Similarly, our approach enables us to train
the policy model with the preference data which is closer
to on-policy samples than the offline dataset without any
external reward models. We hypothesize this is one of the
main gain sources of our approach.

DPO Implicit Rewards. Rafailov et al. (2024a) recently
study DPO from a token-level MDP perspective, and re-
veal that DPO-ed models implicitly parameterize token-
wise dense reward functions. They therefore conduct beam
search using the implicit rewards to improve the inference
quality. Our work is inspired by this observation but focuses
on utilizing the DPO-ed model’s implicit rewards to boot-
strap itself for self-alignment. Another independent work
to ours (Zhong et al., 2024) pretrains a DPO model to serve
as a standalone dense reward generator for PPO training,
instead of further improving the DPO model.

3. Preliminaries
We provide a brief review of the standard RLHF (Ouyang
et al., 2022) and DPO algorithms (Rafailov et al., 2024b).
Through the review, we demonstrate the implicit reward
model induced by DPO, which will be used in our work.

In preference tuning, the preference data typically takes
the form of pairwise preferences. Each prompt x is paired
with two possible responses, y1 and y2. The human annota-
tor (Christiano et al., 2017) or AI annotator (Lee et al., 2023)
provides the preference feedback o(y1 ≻ y2|x) ∈ {0, 1},
indicating whether y1 is preferred over y2. The preferred
response is denoted as yw, while the other is denoted as yl.
A common assumption is that the ground-truth human pref-
erences follow the Bradley-Terry model (Bradley & Terry,
1952). Based on this assumption, we can train a parameter-

1On-policy samples: the data collected while following the
current policy that is being optimized.

ized reward model rϕ(x,y) using maximum likelihood:

LR (rϕ,D) =
− E(x,yw,yl)∼D [log σ (rϕ (x,yw)− rϕ (x,yl))] ,

(1)

where σ is the logistic function.

3.1. Reinforcement Learning from Human Feedback

The standard RLHF algorithm treats the LLM as a policy
and optimizes the policy using the reward model rϕ. The
optimization objective is represented by the following equa-
tion:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x,y)]

− β · DKL [πθ(y|x)∥πref(y|x)] ,
(2)

where πref(y|x) denotes a reference distribution, and β is
a hyper-parameter. This objective balances the maximiza-
tion of the reward rϕ(x,y) and divergence from the fixed
reference distribution. The divergence term, given by the
KL divergence (i.e., DKL [πθ(y|x)∥πref(y|x)]) acts as a reg-
ularizer to prevent the policy πθ from drifting too far away
from the initial distribution πref(y|x). This objective is then
optimized using a general-purpose RL algorithm, such as
PPO (Schulman et al., 2017).

3.2. Direct Preference Optimization

DPO (Rafailov et al., 2024b) starts with the same objec-
tive as Section 3.1. However, DPO derives an analytical
closed-form relation between the reward and the resulting
optimal policy. This relation can be used to reparameter-
ize the ground truth reward in terms of the corresponding
optimal policy. This reparameterized formulation can be
substituted back into the reward optimization objective in
Section 3, enabling direct training of the optimal model on
the feedback data using the following objective:

LDPO (πθ;πref) =

−E(x,yw,yl)∼D
[
log σ

(
β log

πθ (yw|x)
πref (yw|x)

−β log
πθ (yl|x)
πref (yl|x)

)]
.

(3)

In this context, the parameter β is the same as in Section 3.1,
balancing the expected reward and divergence from the ini-
tial model. The DPO objective is particularly advantageous
as it facilitates the recovery of the optimal model through a
standard classification loss, without the need for on-policy
sampling or extensive hyper-parameter tuning. Observe
that Section 3.2 resembles the reward modeling objective in
Section 3 under the parameterization

r(x,y) = β log
πθ(y|x)
πref(y|x)

. (4)
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This reward function is commonly referred to as an “im-
plicit reward” (Rafailov et al., 2024a; Zhong et al., 2024).
Theorem 1 in Rafailov et al. (2024b) demonstrates that this
parameterization of a reward model is indeed valid without
loss of generality. If we substitute this form of rθ(x,y)
into the RL objective in Section 3.1, we can derive the opti-
mal solution in a closed form, which is πθ. Consequently,
once DPO optimization is completed, we obtain an “implicit
reward model” as defined by Eq. (4).

4. Bootstrapping with DPO Implicit Rewards
DPO is an attractive alternative to RLHF as it largely sim-
plifies the implementation and training process of language
model alignment. However, recent evidences (Guo et al.,
2024; Tran et al., 2023) have shown that continuing DPO
training on a fixed offline dataset results in inferior policy,
while the policy can be further improved if one can collect
new responses generated by the updated policy and pro-
vide preference labels to perform another round of DPO
training. This can be understood as being closer to the
on-policy sampling, which is generally preferred in prefer-
ence fine-tuning (Tajwar et al., 2024; Tang et al., 2024). In
Section 4.1, we first outline the iterative DPO training frame-
work adopted in this work, and provide a theoretical analysis
similar to Xie et al. (2024) to show that learning with on-
policy samples can be more effective than utilizing an offline
dataset. Next, in Section 4.2, we introduce the proposed
Length-Regularized Implicit Rewards, which augment the
vanilla implicit rewards with a length-regularized reward
shaping, to judge the on-policy sampled responses for con-
structing the preference dataset. Notably, by fine-tuning a
DPO-ed LM on the constructed dataset, we essentially align
it without relying on any external preference feedback (e.g.,
RLHF or RLAIF), hence in a bootstrapping fashion. Fur-
thermore, to mitigate the potential catastrophic forgetting
in the continual fine-tuning, we propose experience replay
(Section 4.3) that mixes the generated data with the offline
data for better performance. We refer to our method as it-
erative self-alignment (bootstrapping) with DPO ImpliCit
rEwards (DICE).

4.1. Iterative DPO with On-policy Sampling

We employ the iterative DPO preference tuning framework,
where we start from a base language model (a base policy)
πθ(0) that is DPO-tuned from an initial reference model π(0)

ref ,
commonly an SFT model. In each round t ∈ {1, 2, . . . },
we sample K on-policy responses from the latest policy
πθ(t−1)(· | x) given a prompt x. We then label the response
with the highest and the lowest implicit rewards as winning
and losing responses respectively, thus constructing a new
preference dataset Dt. We further fine-tune the policy with
DPO’s objective (Section 3.2) to obtain the updated policy

πθ(t) with reference model π(t)
ref = πθ(t−1) . This process is

repeated to iteratively improve the language model.

To investigate the effect of on-policy sampling, we make
a generalized notation for the sampling policy at the t-
th round as π(t), and compare the on-policy sampling
(π(t) = πθ(t−1)) with sampling from an offline dataset
(π(t) = πµ). For a prompt x, we denote its optimal re-
sponse as y⋆ and suboptimal ones as S = {y−

i }. We also
denote its preferences sampled from π(t) as (y(t)

w ,y
(t)
l ). By

Section 3.2 and the definition of the logistic function, we can
rewrite the DPO loss at round t for the sample (x,y(t)

w ,y
(t)
l )

as:

L(t)
DPO(πθ(t) ;π

(t)
ref) =

− log
πθ(t)

(
y
(t)
w | x

)β

πθ(t)

(
y
(t)
w | x

)β

+ πθ(t)

(
y
(t)
l | x

)β

Rβ

,
(5)

where R = π
(t)
ref(y

(t)
w | x)/π(t)

ref(y
(t)
l | x) is a constant. Ob-

serve that Section 4.1 can be minimized to zero by just
minimizing πθ(t)(y

(t)
l |x) to be zero, without minimizing

the likelihood of other suboptimal responses πθ(t)(y−|x)
for y− ̸= y

(t)
l . After t rounds of optimization, we are inter-

ested in the probability of outputting the optimal response:

πθ(t)(y⋆ | x) = 1−
∑

y−
i ∈S

πθ(t)(y−
i | x). (6)

Eq. (6) allows us to reveal the deficiency of training on a
fixed offline dataset. If there exists a suboptimal response
y− ∈ S that lies in the high likelihood region of πθ(t) , say
πθ(t)(y− | x) ≥ p for some p ∈ [0, 1] that is close to 1, and
y− is never sampled from π(t) = πµ thus not optimized as
y
(t)
l during all t rounds, we have:

πθ(t)(y⋆ | x) ≤ 1− πθ(t)(y− | x) ≤ 1− p. (7)

Since πµ is zero except points that appear in Doffline, it is
highly likely to find such a y− not being sampled from πµ

(hence never optimized) and therefore πθ(t)(y⋆ | x) can be
very low with a large p.

On the other hand, conducting on-policy sampling can
alleviate the “never-sampled” issue and promote conver-
gence to the optimal policy. This is because whenever
πθ(t−1)(y−

i | x) is high, it is likely to sample y−
i from

π(t) = πθ(t−1) and thus it can be optimized such that
πθ(t)

(
y
(t)
l = y−

i | x
)
≈ 0. In this way, the subtrahend

of Eq. (6) is decreased per round, hence we can gradually
improve the language model policy towards the optimal
policy.
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Figure 2: Distribution of the length difference between the
winning and losing examples (|yw|−|yl|). (Top) Distribu-
tion of the first round on-policy generated dataset. With
LR reward shaping defined by Eq. (8), the length bias is
mitigated and the length difference becomes more evenly
distributed. The average length difference decreases from
1031 to −21 by setting α=0.023. (Bottom) Distribution
of the high quality UltraFeedback preference dataset (Cui
et al., 2023) is almost unbiased.

4.2. Length-Regularized Implicit Rewards

It is a known issue in the literature that preference tuning
may introduce length bias (or length exploitation) (Park
et al., 2024) , which is likely caused by the fact that the pref-
erence labels collected from human annotators favor more
verbose responses. This problem is further compounded by
the iterative self-alignment scheme such as the one in Yuan
et al. (2024), because the generated responses that are long
and preferred will be reinforced in the next round of DPO,
leading the language model to generate increasingly longer
responses.

Inevitably, the vanilla DPO implicit rewards as in Eq. (4)
would also exhibit length bias when generating preference
dataset. In Figure 2, we show the distribution of the differ-
ence in string length of the winning and losing responses.
We can see from the top figure that vanilla implicit rewards
yield a skewed distribution (in green), with an average length
difference 1031. In stark contrast, the length difference of
a high quality preference dataset is almost normally dis-
tributed (as in the bottom figure). This observation moti-
vates us to debias the distribution induced by vanilla implicit
rewards so as to mitigate the length exploitation. We resort
to reward shaping (Sutton & Barto, 2018) for this purpose.
In particular, we introduce a length-regularized (LR) reward
shaping term in the implicit reward that penalizes the length
of the response to obtain the shaped reward:

rLR(x,y;α) = β log
πθ(y | x)
πref(y | x)

− α |y| , (8)

where α controls the penalty strength and |y| is the string

length of the response. Based on the shaped rewards, we
can construct many versions of the preference dataset D(α),
following the principle that the response with the higest
rLR(x,yi;α) is labeled as yw and the one with the lowest
reward is labeled as yl. To find the most suitable α such
that D(α) is (approximately) unbiased, we optimize α with
the objective to minimize the average absolute difference in
response length:

α⋆ = argmin
α

E(yw,yl)∼D(α)

(∣∣∣|yw|−|yl|
∣∣∣) . (9)

We can employ any black-box optimizer to solve this non-
differentiable objective function. In this work we find a
simple random search suffices, and its solution effectively
transforms the dataset into a more evenly distributed one
(shown in the orange curve in the top of Figure 2). We will
output D(α⋆) for the next round of DPO training. Details
of the optimization can be found in Appendix B.

Importantly, despite the resemblance of Eq. (8) to Park
et al. (2024) where they incorporate the token length as a
regularizer in the training objective, our reward shaping is
conducted during the dataset construction stage, thereby
avoiding the need for expensive hyper-parameter tuning.

4.3. Experience Replay

Though DICE enables us to learn from the response of the
current policy, we know that the implicit reward model
from the DPO training is not a perfect proxy for human
preferences. Solely relying on the implicit reward model
may result in forgetting the knowledge inbuilt in the initial
policy at the first DPO stage. Inspired by the technique of
experience replay (Rolnick et al., 2019) in continual learning
for preventing catastrophic forgetting and making a good
balance between old and new data, we propose to use a
mixture of the generated data and the offline preference
dataset. While offline preference data is considered to be
high-quality, it is off-policy samples; the generated data is
closer to the on-policy samples, but the imperfect implicit
reward model may introduce noise in labeling the preference.
Combining the two can make for a good balance.

Our complete algorithm is summarized in Algorithm 1.
During each iteration t, we generate K responses
y1,y2, . . . ,yK from the policy πθ(t−1) for each prompt x
(Line 3). The preference dataset D(α) is constructed based
on the LR rewards rLR, where the response with the highest
LR reward is labeled yw and the one with the lowest reward
is labeled yl. In this process, πθ(t−1) serves as the target
policy, and π

(t−1)
ref serves as the reference policy. At Line 4,

we construct the debiased dataset D(α⋆) by minimizing the
average absolute difference in response length, referring
to Eq. (9). Subsequently, a mixed dataset Dt is created by
sampling γ proportion of data from Doffline and (1 − γ)

5
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Algorithm 1 Bootstrapping with DPO Implicit Rewards (DICE)

1: Input: prompt set X extracted from Doffline, initial DPO-tuned policy πθ(0) , initial reference policy π
(0)
ref , number of

generated samples K, regularization weight β, experience replay weight γ ∈ (0, 1)
2: for t = 1, 2, . . . do
3: Generate responses by sampling x ∼ X and y1:K ∼ πθ(t−1) ;
4: Create preference dataset D(α⋆) by optimizing Eq. (9);

// D(α) is constructed based on LR rewards rLR(x,yk;α), k ∈ [K];
// Evaluate rLR(x,yk;α) given πθ(t−1) and π

(t−1)
ref as the target policy and reference policy

5: Create the mixed dataset via experience replay Dt = {(xi,yi
w,y

i
l)}i∈[N ];

// Sample (x,yw,yl) ∼ pDt
, pDt

= (1− γ)pD(α⋆) + γpDoffline

6: Optimize πθ according to DPO loss, Section 3.2:

θ(t) ←− argmin
θ
−E(x,yw,yl)∼Dt

[
log σ

(
β log

πθ (yw|x)
πθ(t−1) (yw|x)

− β log
πθ (yl|x)

πθ(t−1) (yl|x)

)]
;

7: Assign π
(t)
ref ←− πθ(t−1) ;

8: end for

proportion of data from D(α⋆) (Line 5). DPO training is
then conducted on Dt using πθ(t−1) as both the initial policy
and the reference policy, resulting in the updated policy
πθ(t) (Line 6). Finally, at Line 7, we set πθ(t−1) as the new
reference policy π

(t)
ref .

5. Experiments
This section empirically investigates DICE. Our findings
highlight several key points: (1) DICE significantly im-
proves the model performance on the widely used leader-
board AlpacaEval 2.0 (Li et al., 2023b), increasing length-
controlled win rate by up to 9.35%; (2) our best model
bootstrapped from a 8B base model (Llama-3-8B-DPO)
achieves a better performance than Gemini Pro without any
extra human annotations (or external reward model) other
than the preference dataset that is used in the initial DPO
training of base model; (3) the two proposed techniques in
Sections 4.2 and 4.3 are shown to be critical for DICE.

5.1. Experiment Setup

Base Models and Datasets. In this paper, we adopt
Llama-3-8B-DPO2 and zephyr-7B-beta3 as our
base models. Both models are trained following the pipeline
of Zephyr (Tunstall et al., 2023). Llama-3-8B-DPO is
trained based on meta-llama/Meta-Llama-3-8B4, developed
by Meng et al. (2024). zephyr-7B-beta is fine-tuned

2https://huggingface.co/princeton-nlp/
Llama-3-Base-8B-SFT-DPO

3https://huggingface.co/HuggingFaceH4/
zephyr-7b-beta

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B

based on mistralai/Mistral-7B-v0.15. We adopt UltraFeed-
back preference dataset (Cui et al., 2023) and randomly
sample a subset of around 10k preference pairs as the offline
dataset Doffline. Our experiment aims to show how much
the language model can improve from a DPO-ed model and
a subset of the preference dataset that was used to conduct
the initial DPO training.

Response Generation and Dataset Construction. At the
beginning of each round, we first sample responses from
the current policy, with temperature T = 0.9, p = 1.0 for
the Llama3 setting and T = 0.7, p = 0.9 for the Zephyr
setting. We sample with different random seeds to get K =
16 diverse responses for each prompt. We then reward
each prompt-response pair by the implicit reward model
(Eq. (4)) and incorporate length-regularized reward shaping
(Eq. (8)) to get the debiased dataset D(α⋆) with the optimal
regularization strength α⋆. The final dataset is a mixture of
D(α⋆) and Doffline.

Training Details. All experiments are conducted on 8
Nvidia A100 GPUs. For DICE, we trained two rounds
in total. In each round, we train the model for 300 steps on a
preference dataset with 9.6k preference pairs (either a solely
generated dataset, or a mixture of the generated dataset and
the offline preference dataset). The global training batch
size is set to 32 and the learning rate is 5e-7 with a constant
schedule and a warm-up of 50 steps. We hypertune β for
each method and report their best performance. For our
approach, we additionally hypertune the experience replay
ratio γ.

Baselines. We evaluate the following baseline methods that
are applicable to the setting of this paper:

5https://huggingface.co/mistralai/
Mistral-7B-v0.1
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Table 1: AlpacaEval 2.0 evaluation of various models (detailed in Baselines in Section 5.1) in terms of both normal win
rates (WR) and length-controlled win rates (LC) in percentage (%).

Method zephyr-7B-beta Llama-3-8B-DPO

LC WR Avg. Len. LC WR Avg. Len.

Base 12.69 10.71 1444 18.20∗ 15.50∗ -

Offline DPO Iter 1 13.40 11.10 1544 20.22 18.33 1750
Offline DPO Iter 2 4.96 5.47 2178 21.04 19.21 1761

Offline DPO (w/ new ref) Iter 1 13.40 11.10 1544 22.29 19.96 1775
Offline DPO (w/ new ref) Iter 2 4.58 5.27 2296 22.50 20.18 1737

LLM-as-a-Judge Iter 1 17.81 15.36 2572 20.30 21.31 2029
LLM-as-a-Judge Iter 2 14.14 17.89 2916 21.80 22.42 2051

DICE Iter 1 19.03 17.67 1848 25.08 25.77 2201
DICE Iter 2 20.71 20.16 1879 27.55 30.99 2427
* We note that the results of Llama-3-8B-DPO base are obtained from Meng et al. (2024).

• Offline DPO: continue conducting DPO training with
the offline preference dataset.

• Offline DPO w/ new ref: similar to offline DPO but we
assign the current policy as the new reference model,
while we use a fixed reference model in Offline DPO.
This corresponds to γ = 1.

• DPO with prompted rewards: similar to Self-rewarding
LM (Yuan et al., 2024), where they prompt the LLM
itself as a preference judge to construct new preference
pairs and iteratively fine-tune the LLM with the DPO
algorithm. In their case, the judge capability is learned
by supervised fine-tuning on an evaluation fine-tuning
dataset. We exploit our base model to perform LLM-as-
a-Judge directly as it can follow the judge instructions
well. In the experiment, we call it LLM-as-a-Judge.
The LLM-as-a-Judge prompt template can be found in
Appendix A.

Evaluation. We evaluate our method by AlpacaEval 2.0 (Li
et al., 2023b). AlpacaEval 2.0 is an LLM-based automatic
evaluation benchmark. It employs AlpacaFarm (Dubois
et al., 2023) as its prompts set composed of general hu-
man instructions. The model responses and the reference
responses generated by GPT-4-Turbo are fed into a GPT-4-
Turbo-based annotator to be judged. We follow the standard
approach and report both the win rate (WR) and the Length-
Controlled win rate (LC) (Dubois et al., 2024) over the
reference responses.

5.2. Main Results

DICE Effectively Improves a DPO-ed Model. With only
a DPO-ed model and a preference dataset that was used to
train this model, one can choose to further improve the cur-
rent policy via Offline DPO, or construct a new preference

dataset via LLM-as-a-Judge. In Table 1, we compare the
performance of the model fine-tuned by DICE in two rounds
with the base model and other baselines. It shows all meth-
ods can improve the LC win rate on AlpacaEval 2.0 over
the base model while DICE leads to the most significant en-
hancement in both Zephyr and Llama3 settings, increasing
by 8.02% and 9.35% respectively. We found that the LLM-
as-a-Judge leads to good performance in the Zephyr setting
while it has minor improvement in the Llama3 setting. We
hypothesize this may be caused by the coarse rewards which
are not able to provide effective preference signals when
responses are of high quality (the prompt template requires
LLM judge to provide a discrete score from 0 to 5, referring
to Appendix A). We note that training on a fixed offline
dataset for multiple rounds leads to even worse performance
than the base model, possibly due to the increased data
staleness and overfitting.

Compare with the models on the leaderboard. Compared

Table 2: AlpacaEval 2.0 leaderboard results.

Model LC WR

GPT-4 0613 30.18 15.76
Mistral Medium 28.61 21.86
Claude 2 28.15 17.19
DICE-Llama3 8B Iter 2 27.55 30.99
Snorkel (Mistral-PairRM-DPO) 26.39 30.22
Gemini Pro 24.38 18.18
Mixtral 8×7B v0.1 23.69 18.26
Llama 3 8B Instruct 22.92 22.57
GPT-3.5 Turbo 0613 22.35 14.10
Tulu 2+DPO 70B 21.24 15.98
DICE-Zephyr 7B Iter 2 20.71 20.16
GPT-3.5 Turbo 1106 19.30 9.18
Llama-3-8B-DPO 18.20 15.50
Vicuna 33B v1.3 17.58 12.71
zephyr-7B-beta 12.69 10.71
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Table 3: DPO rewards are compatible with other direct
preference optimization algorithms.

Method LC WR Avg. Len.

Offline DPO 13.40 11.10 1544
DICE-IPO 18.51 19.49 2729
DICE-KTO 14.88 12.16 1541
DICE-Hinge 15.92 15.57 1970
DICE-DPO 19.03 17.67 1848

Table 4: Effects of the Length Regularized Weight.

γ α LC WR Avg. Len.

0.0
0.000 13.32 15.37 2570
0.023 (α⋆) 18.88 19.31 2109
0.046 (2α⋆) 14.40 9.08 876

0.5
0.000 15.92 19.08 2600
0.023 (α⋆) 19.03 17.67 1848
0.046 (2α⋆) 14.91 10.80 1185

with the models on the public leaderboard shown in Table 2,
DICE-Llama3 8B performs better than the official instruct
version of Llama3 by a non-trivial margin, 4.63%. Regard-
ing the closed-source models, it achieves better performance
than Gemini Pro with only 8B parameters and does not re-
quire any in-house data or external reward model.

5.3. DICE Is Compatible with Other Direct Alignment
from Preference Algorithms

Though DICE works best with DPO as it makes the itera-
tive training possible (because the implicit reward model
for the next round can be naturally derived using the up-
dated policy), we would like to check if the dataset gener-
ated by DICE can also improve the base model with other
DAP algorithms. In the Zephyr setting, we tune the policy
model using DICE-generated dataset (at the first round) with
KTO (Ethayarajh et al., 2024), IPO (Azar et al., 2024), and
Hinge loss proposed in Zhao et al. (2023). The training
follows the protocol described in Section 5.1. The results
in Table 3 show that all DAP algorithms benefit from the
newly generated data by the current policy and DPO implicit
reward model with LR reward shaping, demonstrating LC
win rates higher than the offline DPO. Meanwhile, DICE
works best with DPO while IPO is the runner-up. It should
be noted that DICE-IPO has a serious length exploitation
issue even on the dataset where LR reward shaping has been
applied.

5.4. Ablation Study

In this section, we investigate the effects of LR reward
shaping and experience replay.

Effects of LR reward shaping. LR reward shaping (Eq. (8))

base iter 1 iter 2

5

10

15

20

12.69

13.4

17.87
16.9

18.88
20.71

LC Win Rate

γ

0.0

0.25

0.5

0.75

1.0

Figure 3: AlpacaEval 2.0 LC Win Rate across different ex-
perience replay ratio (γ) in the Zephyr setting. The highest
LC Win Rate is reported via text.

penalizes responses for being too verbose, and guides the
construction of a debiased dataset with the optimal penalty
strength α⋆ found by optimizing Eq. (9). To validate the ef-
fectiveness of the propose LR reward shaping as well as the
α-searching procedure, we run experiments in the Zephyr
setting with different mixture ratios (γ = 0 and γ = 0.5)
and ablate three design choices: (1) no LR reward shaping
(α = 0); (2) LR reward shaping with penalty strength found
by Eq. (9), i.e., α = α⋆ = 0.023; (3) LR reward shaping
with slightly larger penalty strength (α = 2α⋆). Results are
presented in Table 4. For all values of the γ, we observe
that α = 0.0 does lead to serious length exploitation. So,
even if the policy can get a high win rate, it will suffer in the
LC win rate due to the length exploitation issue (responses
with longer average length get a lower LC win rate), e.g.,
the low LC win rate with γ = 0.5, α = 0.0. In contrast, a
larger α seemingly mitigates the length exploitation issue
even better, but it may adversely affect the response quality.
Our proposed approach of finding α⋆ using the objective of
minimizing the absolute difference of response length does
provide the best performance.

Effects of experience replay. The experience replay results
in a new mixed dataset in which γ fraction of the data is from
the offline dataset and (1−γ) fraction of the data is from the
generated dataset. E.g., we use data only from the generated
dataset if γ = 0.0. We run experiments in the Zephyr setting
with γ ∈ {0.0, 0.25, 0.5, 0.75, 1.0} and conduct DICE in
total of two rounds. From the results shown in Figure 3, we
find γ = 0.5 provides the best performance. The results sat-
isfy our expectations. With only offline preference data, the
DPO optimizes the current policy with off-policy samples
that are further away from its distribution. With only its own
generated data, the model may keep reinforcing its current
“belief”, potentially leading to catastrophic forgetting. An

8
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intermediate value γ = 0.5 finds a good balance. Additional
results in the Llama3 setting can be found in Appendix C.

6. Limitations and Future Work
Limitations. One of the primary limitations of our work
is the reliance on the DPO training prior to bootstrapping.
If the implicit reward model is not well-trained, it can lead
to a collapse of the training pipeline. This challenge is
not unique to our approach; the classic RLHF pipeline is
also struggling when its reward model is not well-trained.
Another limitation is the lack of continued improvement
over many iterations. Similar to other research, such as
the work by (Yuan et al., 2024), which enhances the policy
model without an external reward model, we did not ob-
serve continuous improvement in our model beyond three
iterations. This issue highlights an open question within this
field regarding the iterative enhancement of policy models.

Future Work. Future research could explore the rewarding
capabilities of models trained using other DPO variants,
such as KTO and IPO. Investigating whether these vari-
ants can offer general rewards similar to those provided by
DPO-ed policy would be valuable. Another promising di-
rection involves developing methods that enable continuous
improvement of the policy model over iterations without
degradation. Additionally, investigating a theoretical under-
standing of the policy learned through self-bootstrapping
could provide deeper insights into the mechanics of our
approach and facilitate further advancements.

7. Conclusion
In this paper, we introduce DICE, a novel approach that
leverages the implicit reward model from DPO to further
align LLMs with human preferences. Our method stands
out in the current landscape of LLM alignment research,
as it uses the implicit reward model to iteratively refine
the policy model. Empirical results demonstrate that DICE
surpasses the closed-source language models such as Gem-
ini Pro, despite utilizing a model with only 8B parameters.
This efficiency in parameter usage does not come at the cost
of additional human annotations or external reward mod-
els, underscoring the practicality and accessibility of our
approach.

Impact Statement
Due to its simplicity in implementation and its ability to
enhance the policy model effectively, our method has the
potential to be misused, for instance, in generating harmful
content. The ease of use and the capability to produce
stronger policy models might attract malicious actors who
seek to exploit these features for unethical purposes. It is

crucial to address these concerns by developing safeguards
and ethical guidelines to prevent misuse.
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A. Prompts Used by LLM-as-a-Judge

LLM-as-a-Judge Prompt Template

Review the user’s question and the corresponding response using the additive 5-point scoring
system described below. Points are accumulated based on the satisfaction of each criterion:

– Add 1 point if the response is relevant and provides some information related to the user’s
inquiry, even if it is incomplete or contains some irrelevant content.

– Add another point if the response addresses a substantial portion of the user’s question,
but does not completely resolve the query or provide a direct answer.

– Award a third point if the response answers the basic elements of the user’s question in a
useful way, regardless of whether it seems to have been written by an AI Assistant or if it
has elements typically found in blogs or search results.

– Grant a fourth point if the response is clearly written from an AI Assistant’s perspective,
addressing the user’s question directly and comprehensively, and is well-organized and
helpful, even if there is slight room for improvement in clarity, conciseness or focus.

– Bestow a fifth point for a response that is impeccably tailored to the user’s question
by an AI Assistant, without extraneous information, reflecting expert knowledge, and
demonstrating a high-quality, engaging, and insightful answer.

User: {instruction}
Response: {response}

After examining the user’s instruction and the response, provide brief step-by-step
justifications and conclude with a score between 0 to 5. You must follow the format below:

Evaluation: <evaluation>
Score: <score>

Figure 4: We follow the prompt template used by Yuan et al. (2024) to use LLMs to judge model responses and construct
paired dataset for further preference tuning.

B. Optimization for Length Regularized Reward Shaping
We solve the objective in Eq. (9) using a simple Bayesian optimization toolkit based on Gaussian process6. The objective
landscape with respect to α is depicted in Figure 5, where we compare the proposed implicit reward model with the
LLM-as-a-Judge reward model. With our length-reguarlized implicit rewards, the optimizer is able to find the optimal
solution quickly that debiases the length difference of the winning and losing responses. For LLM-as-a-Judge rewards, the
optimal solution is obtained with α = 0, hence we do not explicitly debias the dataset for all the experiments.

C. Extended Ablation Study
In the Llama3 setting, we also conduct a coarse sweeping for the experience ratio γ, and present the AlpacaEval 2.0 LC win
rate in Figure 6 for two self-alignment rounds. We observe similar trends to those in the Zephyr setting, which further justify
the effectiveness of the proposed experience replay: it helps to keep a balance between the more on-policy generated data
and the curated offline data. The best identified value of the mixture ratio is γ = 0.1.

6https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
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Figure 5: The objective landscape for (Left) our implicit reward model and (Right) the LLM-as-a-Judge reward model.
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Figure 6: AlpacaEval 2.0 LC Win Rate across different experience replay ratio (γ) in the Llama3 setting.

12


