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Abstract. Efficient and effective medical image segmentation supports
faster and better decision-making of medical experts. In this work, we
propose data-aware fine-tuning (DAFT), a method for enabling efficient
and effective inference with foundation models, and apply it to medical
image segmentation tasks. Following concepts from meta-learning for al-
gorithm selection and dynamic selection, DAFT aims to fine-tune several
versions of a foundation model on subsets of all available data instead
of fine-tuning just one larger model. Then, at inference time, we select
which fine-tuned model to use for the prediction depending on the dis-
tribution of the input data. DAFT enables us to create more efficient
and effective models for each subset than when creating one model for
all data. In our implementation of DAFT for the "Segment Anything In
Medical Images On Laptop" competition as part of the CVPR24 Work-
shop on "Foundation Models for Medical Vision", we use the EfficientViT
architecture, knowledge distillation, and OpenVINO runtime to further
improve the inference. Additionally, we optimized the efficiency of our
method through a flood of improvements, including an optimized infer-
ence runtime, caching, optimizing the docker deployment container, and
better inference code. DAFT improved the average dice similarity coef-
ficient from 78.64% to 83.29% and the normalized surface distance from
80.58% to 85.59% compared to the baseline on the test data. Our final
submission secured first place on the post-challenge leaderboard. Finally,
and more importantly, we improved the average inference speed over the
baseline by a factor of 6.5 (14.69 to 2.25 seconds) on the test set.
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1 Introduction

Medical experts in various medical applications have to spot and detect patterns
in medical images from computer tomography (CT), Microscopy, and X-ray on
a daily basis. Clinical applications that rely on image segmentation to detect
regions of interest in medical images enable experts to make faster and better
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decisions. Such clinical applications can be powered by state-of-the-art image
segmentation foundation models like SAM [16] or MedSAM [20].

The problem with foundation models for image segmentation is that they
often are large, expensive models, e.g., MedSAM has more than 93 Million pa-
rameters and requires more than 10GB RAM when run on CPU. Furthermore,
trends like the ever-increasing size of foundation models, as seen in the field of
large language models3, will likely make new image segmentation models only
more expensive to use in real-world inference in a clinical application. Yet, crit-
ically, medical images are always sensitive patient data. Such images are not
easily shared with others and often cannot leave the hospital’s network or even
leave an expert’s laptop.

Therefore, it is crucial for the viability and usability of clinical applications
to enable image segmentation models that are resource-efficient and effective in
supporting the decisions of experts. Our goal is to enable even the most resource-
constrained experts to benefit from image segmentation models.

Our goal perfectly aligns with the challenge Segment Anything In Medical
Images On Laptop, organized by Jun Ma, Yuyin Zhou, Bo Wang, Feifei Li,
and Sumin Kim as a part of the CVPR24 Workshop on Foundation Models
for Medical Vision. In this manuscript, we, the automlfreiburg Team from
the University of Freiburg, present data-aware fine-tuning (DAFT), our proposed
method to enable efficient and effective inference with foundation models applied
to medical image segmentation tasks to solve the challenge.

DAFT aims to fine-tune several versions of a foundation model on subsets
of all available fine-tuning data to produce models that need to understand
and remember less while also being more effective for their specific subset’s
distribution. Then, at inference time, we select which fine-tuned model to use
for the prediction depending on the distribution of the input data. DAFT follows
traditional concepts from meta-learning algorithm selection [26,19,3,17,28] and
dynamic selection [9,4,6], which we adapted to the age of foundation models.

The rest of this manuscript is structured as follows: the remainder of this
section introduces the challenge’s background, the approach we used, and re-
lated work. In Section 2, we present our method in more detail, describing our
fine-tuning pipeline and how we improved the runtime speed of our approach.
Section 3 contains the implementation details and our protocol for evaluating
submissions. Our results are demonstrated in section 4. Finally, we present our
improvements for the post-challenge "performance booster" in section5 before
concluding our manuscript.

1.1 Competition Background

The Segment Anything In Medical Images On Laptop competition challenges
participants to create a universal promptable medical image segmentation pre-
dictor, that is deployable on a laptop. Hereby, deployable on a laptop means

3 https://ai.meta.com/blog/meta-llama-3/

https://ai.meta.com/blog/meta-llama-3/
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that we do not have access to a GPU and only 8GB of RAM and a CPU with
6 cores.

The desired universal promptable medical image segmentation predictor must
be able to produce predictions for a wide variety of medical imaging modalities,
including 3D modalities, such as Computer Tomography (CT), Magnetic Reso-
nance Tomography (MR), Positron Emission Tomography (PET), 2D greyscale
images like Ultrasonic (US), X-Ray, Optical Coherence Tomography (OCT),
Mammography and 2D RGB images like Dermoscopy, Endoscopy, Fundus and
Microscopy. The prompts are boxes (2D or 3D) surrounding the area of the
to-be-segmented area of the image.

The universal predictor, deployed in a Docker [22] container, is evaluated
based on the average of the rank of three metrics: the Dice Similarity Coefficient
(DSC), Normalized Surface Distance (NSD), and running time.

The organizers provided a preprocessed dataset we could use for training.
Furthermore, they shared a list of additional datasets and a list of pretrained
models that we were allowed to use. Both lists were extended and curated by
the community up until one month before the submission deadline. Moreover,
the challenge was hosted on Codabench [31] with a validation leaderboard with
up to 6 submissions per day. The organizers also supported up to six docker
submissions on the validation data in total.

When submitting to Codabench, participants would upload the predictions
of their model and receive the average DSC and NSD for each modality. The
organizers would execute Docker submissions in the evaluation environment, and
participants received the predictions and runtime for each data point as well as
any error messages.

1.2 Our Approach

We implemented DAFT for this challenge by following a training protocol of 1)
knowledge distillation, 2) general fine-tuning, and 3) data-aware fine-tuning for
11 subsets of the data.

In detail, we defined 11 subsets by separating the data based on the origin of
the image, like CT or MR. Then for each subset, we 1) created an EfficientViT [5]
backbone for our foundation model by knowledge-distilling and using pre-trained
weights; 2) fine-tuned the model on all available data; and 3) fine-tuned only on
the training data of the respective subset. Then, at inference, we associated the
input image with one of our 11 subsets and selected the respective fine-tuned
foundation model for segmenting the input image.

Besides DAFT, we implemented a flood of improvements for inference effi-
ciency: using EfficientViT as a faster neural network architecture, an optimized
inference runtime based on OpenVINO, caching, optimizing the docker deploy-
ment container, and enhancing the inference code.

On the test data, we show that DAFT improved the average across all modal-
ities for the dice similarity coefficient from 78.64% to 83.29% and for the nor-
malized surface distance from 80.58% to 85.59% compared to the baseline. Our
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performance booster submission secured first place on the post-challenge leader-
board. Finally, and more importantly, we improved the average inference speed
over the baseline by a factor of 6.5 (14.69 to 2.25 seconds) on the test set.

1.3 Related Work

In general, fine-tuning [29,27,13,8] has become more important in recent years
due to the prevalence of large and expensive foundation models that need to be
adjusted for specific applications at hand. Specifically, fine-tuning has shown to
be extremely powerful for medical image segmentation tasks. MedSAM [20] is
a segmentation foundation model for medical images created by the organizers
of the competition. It was created by fine-tuning the segment anything model
(SAM) [16] on over 1 Million medical images. The creators of MedSAM also
released LiteMedSAM4, a lightweight version of MedSAM that was used as a
baseline in the competition.

At the same time, there has been research into making segmentation foun-
dation models faster. One area of research in this regard focuses on finding more
efficient architectures, e.g. EfficientViT-SAM [33] or MobileSAM [32] for SAM.
Speeding up inference of a model can also be achieved by using a runtime that is
better optimized for deployment on certain hardware, e.g. OpenVINO [10,1,34]
or the ONNXRuntime [7].

Besides fine-tuning, knowledge distillation [11] enables a model that is being
trained to leverage knowledge gained by other models that have been trained
before. LiteMedSAM was created by distilling the vision transformer in MedSAM
to a TinyViT [30] and performing additional fine-tuning afterward.

Furthermore, DAFT is highly related to meta-learning for algorithm selection
[26,19,3,17,28] and dynamic selection [9,4,6]. In the former, a meta-model is
learned to select one algorithm from a fixed set of potential algorithms to solve
a problem. For example, a specific SAT solver is selected to solve a specific SAT
instance. This motivated our approach in that we treat different subsets of the
data as different problems that certain foundation models might solve better
than others. In dynamic selection, a meta-model selects which model is used to
obtain predictions per data point of a machine learning task. This specifically
motivated our inference setup. So far, to the best of our knowledge, no one
applied the concepts of dynamic selection or meta-learning algorithm selection
to fine-tuning.

A mixture of experts (MoE) model [23,21] is the closest related work for
DAFT with foundation models [15]. But MoE models differ fundamentally as the
selection, i.e., routing, happens during the inference and training but not before,
as we propose with DAFT.

4 https://github.com/bowang-lab/MedSAM/tree/0c044e9b4a6da58775cb4eb4b483aba3f2df5a45

https://github.com/bowang-lab/MedSAM/tree/0c044e9b4a6da58775cb4eb4b483aba3f2df5a45
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2 Method: Data-Aware Fine-Tuning

The concept of data-aware fine-tuning (DAFT) is to select differently fine-tuned
foundation models for different foundation modalities.

Foundation modalities are subsets of the data that differ in their distribution
for the application of a foundation model. Generally, foundation modalities can
be understood as different clusters of data points in the data for which a foun-
dation model would be used. In other words, a collection of data points that are
sufficiently similar based on their intrinsic characteristics. For this challenge and
the application of medical images, we chose the origins of medical images, e.g.,
CT or MR, as our foundation modalities.

To then decide which fine-tuned foundation model to select given a new input
image, we created a meta-model. The meta-model predicts which foundation
modality the input image belongs to, which in turn decides which fine-tuned
foundation model we select to segment the image. Due to our choice of foundation
modalities, the meta-model was extremely simple in this challenge, as detailed
in the following subsection. Figure 1 provides a general overview of our method.

2.1 Data Subset Selection for Data-Aware Fine-Tuning

For this challenge and the application of medical images, we chose the origins of
medical images, e.g., CT or MR, as our 11 foundation modalities. This choice is
based on our hypothesis that fine-tuning a foundation model that, for example,
focuses only on learning Dermoscopy data might perform better on Dermoscopy
data than a model that was trained on both CT and Dermoscopy data. Likewise,
we hypothesize that the model fine-tuned only on a subset of the data can be
made more efficient at inference as it also only requires a subset of the capacity,
enabling us, in principle, to use smaller models or prune fine-tuned models more
aggressively.

We shortly investigated subdividing X-ray images into X-ray upper extremity,
lower extremity, etc. but stopped due to time constraints. Likewise, we consid-
ered creating more general foundation modalities by splitting images by {3D
modalities, 2D greyscale, 2D RGB}, {3D, 2D}, or {RGB, not RGB}. For the
sake of simplicity, we stick with our original choice and leave it to future work
to further subdivide these foundation modalities for medical images. Still, we
would like to highlight that more general foundation modalities are likely useful
to avoid overfitting.

For data modalities with less obvious human-perceivable differences in the
data, like with foundation models for tabular data [12] and time series [2], we
suggest using unsupervised learning to cluster the data into foundation modali-
ties, or compute meta-features of the data and cluster these meta-features.

Given a set of foundation modalities, we require a foundation model selector
to determine when to use which fine-tuned foundation model for an image. To
this end, during the initial phase of the challenge, we created a selector for med-
ical images by training a tabular meta-model to predict the foundation modality
of an input image. We also considered training an image classifier to predict the
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Fig. 1. Overview of our implementation of DAFT for medical image segmentation.
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modality but decided that the increase in runtime would be too expensive. To
create a meta-dataset for training the selector, we computed meta-features (like
entropy, number of boxes, or percentage of black pixels) of all data points in the
training data and stored their foundation modalities (like CT or MR) as target
labels. We decided to create two meta-models since the meta-features for 2D and
3D data points can be different. Our model selector checked whether we have a
2D or 3D data point at hand and used the corresponding meta-model afterward.
We used a scikit-learn MLPClassifier5 for both meta-models and achieved an
accuracy score of 64% on 2D and 88% on 3D when training on the dataset pro-
vided by the organizers and evaluating on the official validation set. This shows
that we are able to differentiate the foundation modalities reasonably well with
our straightforward meta-features and meta-models.

While the selector was working as intended, we realized that our choice of
foundation modalities would always be known in a realistic use case for the med-
ical domain. In real-world settings where medical image segmentation is used,
we would know the modality within our software, as the different modalities
are clearly separable medical applications (and software products). With this in
mind, we instead opted to select the foundation model based on the file name of
the image during inference. The file name of all images in the challenge used a
naming convention that indicated their origin (e.g., 3D images start with 3DBox_
and 2D images start with 2DBox_ followed by the modality and case number:
3DBox_PET_0001). We confirmed with the organizers that this approach is al-
lowed and in the spirit of the competition before focusing on it as our final
meta-model to predict the foundation modality.

The final implementation of our meta-model is a tree of if-else cases based
on parsing the file name and mapping a leaf in the tree to a foundation model
fine-tuned on a subset of the data. As the naming conventions were not always
consistent and since we believed that there might be unknown naming conven-
tions at test time, we devised several additional naming checks and a general
fallback case. The fallback case would use the provided LiteMedSAM baseline
model to segment an image.

2.2 Fine-Tuning Based on Data-Aware Subsets

To obtain a fine-tuned foundation model for each of the foundation modalities,
we set up a fine-tuning pipeline including model distillation [25,11], re-using
weights of pre-trained models, general fine-tuning and data-aware fine-tuning.

In detail, our fine-tuning pipeline was a three-step process. The first two steps
were done once, and the last step was executed for each of the 11 foundation
modalities. The pipeline is visualized in Figure 2 and consisted of the following
steps:

5 https://scikit-learn.org/stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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1. Knowledge Distillation: Distill the TinyViT [30] image encoder of LiteMed-
SAM6 to EfficientViT [5] and copy the weights of the prompt encoder/mask
decoder.

2. General Fine-Tuning: Fine-tune the initial foundation model from the
previous step on the entire dataset of images provided by the organizers.
This step makes up for errors or forgetting during knowledge distillation
and provides us with a pre-trained-like model.

3. Data-Aware Fine-Tuning: Further fine-tune the foundation model from
general fine-tuning on a subset of the dataset based on the origin of the
image.

We initialized EfficientViT-SAM [33] with its pretrained weights7 and lever-
aged the training done for LiteMedSAM by distilling the image encoder of
LiteMedSAM to the image encoder of EfficientViT-SAM. Since the architecture
of the prompt encoder and mask decoder were the same in both architectures,
we were able to copy the corresponding weights after knowledge distillation. We
used EfficientViT since we found it to be faster at inference speed than TinyViT.
All available data was used for the distillation step. We also considered using
MedSAM as a teacher network but decided that the distillation process would
take too long.

We added the general fine-tuning, the second step in our pipeline, because we
used the EfficientViT-SAM architecture as a backbone. Since the EfficientViT-
SAM was not pre-trained on medical images, we first need to guarantee that
our distilled model achieves similar general performance on medical images to
LiteMedSAM. Thus, we also fine-tuned (or, depending on your perspective, re-
trained) the distilled model on the entire dataset. For general and data-aware
fine-tuning runs, we froze the prompt encoder and only updated the image en-
coder and mask decoder. Data-aware fine-tuning directly after distillation would
likely perform worse as the foundation model might not be properly adjusted to
the general distribution of medical images.

During steps one and two, we only trained on a single random slice of each
3D data point in an epoch. This reduced the training time significantly and
also ensured that modalities with deep 3D data points that contained many
slices did not dominate the training. In the last step, we trained on all slices
of 3D data points if the corresponding subset consisted of 3D data only. Thus,
DAFT also enabled us to have a more efficient fine-tuning pipeline, especially
reducing the time required to obtain production-ready foundation models for
the foundation modalities with 2D images or only a small number of data points
in their respective subset.

Pre-Processing, Post-Processing, and Loss Function For pre-processing,
we resized and padded images to a size of (256, 256) and normalized the in-
tensities. In all three steps of our pipeline, we augmented images by flipping
6 https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
7 Specifically, we used: https://huggingface.co/han-cai/efficientvit-sam/
resolve/main/l0.pt

https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
https://huggingface.co/han-cai/efficientvit-sam/resolve/main/l0.pt
https://huggingface.co/han-cai/efficientvit-sam/resolve/main/l0.pt
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Fig. 2. Overview of our fine-tuning pipeline.
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them horizontally with a probability of 50% and vertically with a probability of
50%. Following the organizer’s baseline, we also randomly increased the size of
the prompt’s bounding boxes in all directions by up to five pixels. Additionally,
for inference, we post-process our prediction by resizing the logits predicted by
our model to the original size of the image using bilinear interpolation with a
threshold of 0 afterward. Our loss function depended on the step of our pipeline.
During knowledge distillation, we minimized the mean squared error between the
embeddings predicted by both image encoders. For general fine-tuning and data-
aware fine-tuning, we optimized the unweighted sum of the binary cross-entropy
loss, dice loss, and intersection over union loss.

2.3 Inference Optimization for CPU

We optimized the runtime of our model through a flood of improvements, includ-
ing using a faster neural network architecture, an optimized inference runtime,
caching, optimizing the docker deployment container, and inference code. All
our improvements were specifically for CPU or would apply to CPU and GPU.

Architecture We used EfficientViT instead of TinyViT as an image encoder,
which made computing image embeddings faster, which is particularly important
for 3D images, where we need to compute an image embedding for multiple slices.

Optimized Inference Runtime We replaced PyTorch [24,14] by using the Open-
VINO8 runtime, which made inference faster and also reduced the latency of
loading the execution environment before inference. OpenVINO achieves the
latter by reducing the number of imports and import dependencies used at in-
ference, avoiding loading the entire PyTorch library, which takes a considerable
amount of time. Specifically, this allows us to avoid loading dependencies re-
quired only for training. For this challenge, we noticed that reducing loading the
execution environment before inference is very important because the docker
container will be run once per data point. Hence, if we manage to speed up the
latency to the first inference, we save time on every single data point.

Caching Moreover, we used OpenVINO Model Caching9 to speed up loading
our models. This increases the runtime the first time a model is loaded since the
cache needs to be created, but all subsequent runs using the same model will be
faster since it will be loaded from the system’s cache.

Optimized Docker Container We optimized the docker container by reducing
its size and the number of layers to increase the efficiency of running com-
mands with the docker container. In detail, we used python:3.11-slim instead
of pytorch/pytorch:latest as a parent image to avoid loading code irrelevant
8 https://github.com/openvinotoolkit/openvino
9 https://docs.openvino.ai/2024/openvino-workflow/running-inference/
optimize-inference/optimizing-latency/model-caching-overview.html

https://github.com/openvinotoolkit/openvino
https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference/optimizing-latency/model-caching-overview.html
https://docs.openvino.ai/2024/openvino-workflow/running-inference/optimize-inference/optimizing-latency/model-caching-overview.html
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for inference. Using newer Python versions, especially 3.1110, increases the speed
of Python itself. Besides, using a more lightweight version of Python, we opted
for the headless version of OpenCV11 to reduce the number of default packages
installed. To further reduce the image size, we specifically removed caching for
apt and pip while building the image. Finally, we combined multiple RUN com-
mands and further made sure with docker-squash12, to get a container that only
consisted of a single layer.

The training checkpoints used in the docker image were also converted to
more optimized deployment artifacts beforehand. In detail, we converted training
checkpoints of all fine-tuned foundation models to ONNX13 and only then to
OpenVINO artifacts.

Optimized Inference Code Last but not least, we improved the inference code
that was originally provided by the organizers. In this challenge, if given a 3D
image, the code first sliced it into multiple 2D images before segmenting each
2D image individually. Then, it would segment each 2D image for each input
prompt box individually going from the midpoint of the z-dimensions outward
in both directions. Thereby, it would use predictions of a prior 2D image as
the prompt box for the next 2D image. As a result, the original pipeline would
re-compute the image embedding for every 2D image and every prompt box. If
two or more provided prompt boxes span across the same sliced 2D images (the
same z-dimension of the 3D image), these shared slices would be re-computed
for each such prompt box. To optimize this when predicting for 3D images, we
avoid redundant computation by caching the image embeddings computed for
each sliced 2D image. Thus, we guarantee to compute the image embedding at
most once per sliced 2D image across all prompt boxes, i.e., segmentation tasks.

Additionally, we adjusted the original training pipeline for loading 2D or 3D
images to work directly on .npz files14. Without this adjustment, we would need
to convert 2D images to .npy files and extract and store the sliced 2D images
as .npy files from the original 3D image .npz files.

3 Experimental Setup

We follow the experimental design provided by the organizers to obtain results.
Additionally, we explain the process behind our development protocol and any
remaining implementation details in the following.

10 https://docs.python.org/3/whatsnew/3.11.html#whatsnew311-faster-cpython
11 https://github.com/opencv/opencv-python
12 https://github.com/goldmann/docker-squash/tree/

fec66e1659e0137d72ea7df57c38a6e36c0fba0b
13 https://github.com/onnx/onnx
14 https://numpy.org/devdocs/reference/generated/numpy.lib.format.html

https://docs.python.org/3/whatsnew/3.11.html#whatsnew311-faster-cpython
https://github.com/opencv/opencv-python
https://github.com/goldmann/docker-squash/tree/fec66e1659e0137d72ea7df57c38a6e36c0fba0b
https://github.com/goldmann/docker-squash/tree/fec66e1659e0137d72ea7df57c38a6e36c0fba0b
https://github.com/onnx/onnx
https://numpy.org/devdocs/reference/generated/numpy.lib.format.html
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3.1 Model Development Evaluation Protocol

For all training runs during development, we restricted ourselves to the dataset
prepared by the competition organizers and did not include any other external
public datasets. Thus, we also did not include any of the allowed public datasets
gathered by the community during the competition’s initial phase.

During development, we evaluated the accuracy of our approach by submit-
ting its predictions to the validation leaderboard, treating the leaderboard as
our validation data to obtain validation performance. Like in traditional hyper-
parameter optimization, our evaluation might have overfitted to the validation
data as a result of re-using a fixed validation set over the course of the challenge.

To evaluate the runtime during development in a realistic setting, we used the
organizer’s evaluation script15 with our docker container on a basic DigitalOcean
droplet with 4 vCPUs with 8GB RAM16; simulating deployment on a laptop.

3.2 Implementation details

Our development code is available on the finalsubmission branch of our GitHub
repository17. The rest of this section details the used environment settings and
training protocols, concluding with the results of our training protocol: an overview
of the final set of data-aware fine-tuned foundation models.

Environment Settings The training environment and requirements are pre-
sented in Table 1. We used this specific environment since it was available on
our compute cluster, the JUWELS Hardware Booster18, which we used for train-
ing. Table 2 details the environment we used to create the final model artifacts
for deployment in the docker image; we executed this conversion locally on a
consumer-grade personal computer. Finally, Table 3 details the requirements
used as part of our docker image.

Training Protocols We followed the workflow presented in Figure 1 and de-
scribed in Section 2.2. Within each step, we optimized for training performance
as described in Section 2.2. Finally, we selected the best-fine-tuned model per
foundation modality by optimizing for validation performance across all steps
of our pipeline. As a result, if general fine-tuning does not improve over knowl-
edge distillation, we stick to the model from knowledge distillation. Likewise, if
data-aware fine-tuning does not improve over general fine-tuning, we stick to the
model from general fine-tuning.

The details of our training protocols are shown in the following tables: Table
4 presents the protocol for knowledge distillation; Table 5 presents the protocol
15 https://github.com/bowang-lab/MedSAM/blob/0c044e9b4a6da58775cb4eb4b483aba3f2df5a45/

CVPR24_time_eval.py
16 https://www.digitalocean.com/pricing/droplets#basic-droplets
17 https://github.com/automl/CVPR24-MedSAM-on-Laptop/tree/finalsubmission
18 https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels

https://github.com/bowang-lab/MedSAM/blob/0c044e9b4a6da58775cb4eb4b483aba3f2df5a45/CVPR24_time_eval.py
https://github.com/bowang-lab/MedSAM/blob/0c044e9b4a6da58775cb4eb4b483aba3f2df5a45/CVPR24_time_eval.py
https://www.digitalocean.com/pricing/droplets#basic-droplets
https://github.com/automl/CVPR24-MedSAM-on-Laptop/tree/finalsubmission
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
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Table 1. Training Environment and Requirements

System Rocky Linux release 8.9 (Green Obsidian)
CPU AMD EPYC Rome 7402 CPU, 2× 24 cores, 2,7 GHz
RAM 100GB of 512 GB DDR4, 3200 MHz
GPU (number and type) Four NVIDIA A100 40G
CUDA version 12.0
Programming language Python 3.11.3
Deep learning framework torch 2.1.2
Specific dependencies monai 1.3.2, numpy 1.25.1, opencv-python 4.10.0.84

Branch of efficientvitA
ALink to specific branch

Table 2. Model Conversion Environment

Python Version 3.10.13
Specific dependencies numpy 1.24.1, openvino 2024.0.0,

torch 2.2.0, onnxruntime 1.17.1
efficientvitA

ALink to specific branch

Table 3. Docker Image Requirements

Parent image python:3.11-slim
Specific dependencies numpy 1.26.4, openvino 2024.0.0,

opencv-python-headless 4.9.0.80

https://github.com/mit-han-lab/efficientvit/tree/94d81573620a95582018d282aac7cc025a2210f4
https://github.com/mit-han-lab/efficientvit/tree/94d81573620a95582018d282aac7cc025a2210f4
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used for general fine-tuning and data-aware fine-tuning (DAFT), we used the same
protocol and only changed the input data for DAFT; and finally Table 6 presents
the results of our DAFT-based training protocol.

In detail, Table 6 shows how we obtained the final fine-tuned foundation
model per foundation modality and the respective number of training epochs. For
all but X-ray, Ultrasonic, Dermoscopy, and Endoscopy, DAFT improved validation
performance. For Endoscopy, not even general fine-tuning improved validation
performance in the first place. Likewise, we noticed that if we use only MR or
PET data, we start to overfit for MR and PET, respectively. Hence, we used a
larger subset of data, merging several foundation modalities for DAFT in these two
cases. We note that CT, MR, and PET are similar in the images they produce and
their application, which motivated merging these specific foundation modalities.
Furthermore, we found that none of the models we trained were able to beat
LiteMedSAM, the baseline, on ultrasonic data. Thus, we decided to use the
LiteMedSAM version provided by the organizers for ultrasonic data instead of
our fine-tuned EfficientViT-SAM models.

Furthermore, for X-ray, we trained knowledge distillation and general fine-
tuning only on 80% of all data for only 20 epochs and 46 epochs, respectively,
due to using an older version of our code for training. We did not use the l0-
checkpoint of EfficientViT-SAM during knowledge distillation of Microscopy for
the same reason.

Table 4. Training Protocol for Knowledge Distillation

Pre-trained Model EfficientViT l0, LiteMedSAM
Batch size 7
Patch size 256×256×3
Total epochs 24
Optimizer AdamW (β = (0.9, 0.999), ϵ = 10−8)
Initial learning rate (lr) 5 · 10−5

Lr decay schedule ReduceLROnPlateau (mode = min,
factor = 0.9, patience = 5, cooldown = 5)

Training time 13.7 hours
Loss function mean squared error
Number of model parameters 30M

4 Results and Discussion

We first present the quantitative results in Section 4.1; next, the qualitative
results in Section 4.2; followed by the efficiency results in Section 4.3. The quan-
titative and efficiency results were obtained on the validation set provided by
the organizers. Finally we present the results on the final test set in Section 4.4.
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Table 5. Training Protocol for Fine-Tuning

Pre-trained Model Output Model from Knowledge Distillation
or General Fine-Tuning

Batch size 96
Patch size 256×256×3
Total epochs 24 (in edge cases 20, see Text and Table 6)
Optimizer AdamW (β = (0.9, 0.999), ϵ = 10−8)
Initial learning rate (lr) 5 · 10−5

Lr decay schedule ReduceLROnPlateau (mode = min,
factor = 0.9, patience = 5, cooldown = 5)

Training time 7.3 hours for general fine-tuning
Loss function cross-entropy loss + dice loss + inter. over union loss
Number of model parameters 34.8M

Table 6. Number of Epochs per Pipeline Step and Selected Data-Aware Subsets for
DAFT per Foundation Modality. To avoid overfitting, we combined several modalities
for MR and PET. For X-ray, Dermoscopy, and Endoscopy, we did not perform DAFT
as it did not increase the validation score. The table does not include the ultrasonic
foundation modality because we used the baseline LiteMedSAM model without DAFT
for ultrasonic data. Note that we were not able to train more epochs for CT, MR, and
PET due to time-constrained resources. These modalities are particularly expensive
during training.

Foundation Modality CT MR PET X-Ray Dermoscopy Endoscopy Fundus Microscopy OCT Mammography
Knowledge Distillation 24 24 24 20 24 24 24 20 24 24
General Fine-Tuning 24 24 24 46 24 0 24 20 24 24
Data-Aware Fine-Tuning 4 3 3 0 0 0 24 50 24 24
Used Data-Aware Subsets CT CT, CT, - - - Fundus Microscopy OCT Mammography

MR, MR,
PET PET
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4.1 Quantitative Results

We present the quantitative results on validation data for the baseline (i.e.,
LightMedSAM19), an ablation study, and our final submission based on DAFT.

Our ablation study consists of an EfficientViT-SAM model without DAFT, that
is, we created one general, large foundation model for all foundation modalities
by performing knowledge distillation for 24 epochs and general fine-tuning for 24
epochs on the whole dataset. For the ablation study, we used a PyTorch runtime.
The ablation study provides insights across our presented results into how well
our method would have been without DAFT.

Table 7 shows the results on validation data. DAFT improved the average dice
similarity coefficient from 82.6% to 88.07% and the normalized surface distance
from 81.61% to 89.16% compared to the baseline. Our EfficientViT+DAFT ap-
proach is specifically effective for Microscopy (65.39% to 87.14% NSD) and PET
(16.07% to 56.31% NSD). Our proposed method made no improvements for ul-
trasonic (US) data as we used the baseline model for this data (the observed
differences are noise). Yet, the ablation study shows that our EfficientViT model
performs much worse for this data, which explains why we failed to improve over
the baseline with DAFT for EfficientViT. For all other data modalities, we noticed
that our ablation study, EfficientViT backbone, improved over the baseline. And
DAFT further improves over our EfficientViT backbone.

Table 7. Quantitative Evaluation Results On Validation Data. The baseline is
LiteMedSAM, the ablation study a knowledge-distilled and fine-tuned version of Effi-
cientViT, and our proposed method uses DAFT in addition.

Target Baseline Ablation Study Proposed
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

CT 92.19 94.77 91.09 94.58 93.14 95.48
MR 89.13 92.66 86.98 91.28 88.21 91.73
PET 46.54 16.07 70.46 55.24 71.46 56.31
US 94.78 96.81 83.89 88.63 94.77 96.81
X-Ray 75.83 80.39 71.98 77.7 77.07 82.83
Dermoscopy 92.47 93.85 94.94 96.38 94.97 96.41
Endoscopy 96.04 98.11 95.24 97.94 96.60 98.61
Fundus 94.8 96.41 94.75 96.4 95.59 97.16
Microscopy 61.63 65.39 78.12 84.62 80.86 87.14
Average 82.6 81.61 85.27 86.98 88.07 89.16

4.2 Qualitative Results

Figure 3 contains examples of good segmentation results on Dermoscopy, En-
doscopy, and Fundus data. The corresponding DSC and NSD scores were 97.28%
19 https://github.com/bowang-lab/MedSAM/tree/2a5a0556cabee8a62c8c1ec7e7cd821909adcb0c

https://github.com/bowang-lab/MedSAM/tree/2a5a0556cabee8a62c8c1ec7e7cd821909adcb0c
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and 98.16% for Dermoscopy, 97.83% and 98.29% for Endoscopy, and 97.96% and
98.7% for Fundus. Figure 4 depicts two examples with bad segmentation results.
The Mammography example had a DSC of 81.37% and a NSD of 84.58%. The
whole 3D CT datapoint had scores of 76.77% and 91.63%. The bad segmentation
results show that our predictions are too large and convex, which our model did
not seem to expect for these data points.

Fig. 3. Examples of Good Segmentation Results: The first row contains a Dermoscopy
data point, the second row is an Endoscopy data point, and the last row is a Fundus
data point.
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Fig. 4. Examples of Bad Segmentation Results: The first row contains a Mammography
example, and the second row a slice of a CT example.

4.3 Inference Efficiency Results

Table 8 records the runtime of the baseline and our final submission for a list
of example data points from the validation set. We observe the biggest relative
improvements for 3D images. This likely follows from caching the computation of
the image embeddings and using EfficientViT instead of TinyViT as the back-
bone, since the image embedding is the most expensive part of the network
architecture.

We are also significantly faster on 2D data points. This is likely because
our code initializes faster since we replaced the heavy PyTorch library with
OpenVINO; this drastically reduced the latency to the first inference. This is
more important for 2D data points than for 3D data points, as the inference
time of the image encoder is the dominating factor for 3D data points. Our
results for ultrasonic (US) 2D data points, where we used the baseline model,
also show that our improvements do not only come from using EfficientViT but
from the flood of our improvements described in Section 2.3.
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For the presented ablation study w.r.t. inference efficiency, we ran our pro-
posed model but replaced OpenVINO with ONNXRuntime20. ONNXRuntime
is over two times slower on all 3D data points except 3DBox_MR_0121 and also
slightly slower on all 2D data points. This shows that OpenVINO with caching
dominates the ONNXRuntime for this application.

Table 8. Quantitative evaluation of segmentation efficiency in terms of running time
(s). We used our own evaluation on CPU, as described in Section 3.1, to obtain the
running time per method.

Case ID Size Num. Objects Baseline21 Ablation Study Proposed
3DBox_CT_0566 (287, 512, 512) 6 814.9 266.2 113.9
3DBox_CT_0888 (237, 512, 512) 6 219.8 89.6 38.2
3DBox_CT_0860 (246, 512, 512) 1 40.2 22.6 10.2
3DBox_MR_0621 (115, 400, 400) 6 389.0 96.6 45.5
3DBox_MR_0121 (64, 290, 320) 6 247.6 56.1 42.5
3DBox_MR_0179 (84, 512, 512) 1 38.3 24.2 11.1
3DBox_PET_0001 (264, 200, 200) 1 30.5 16.8 7.8
2DBox_US_0525 (256, 256, 3) 1 11.3 3.7 3.5
2DBox_X-Ray_0053 (320, 640, 3) 34 13.1 5.9 5.0
2DBox_Dermoscopy_0003 (3024, 4032, 3) 1 10.8 4.7 3.3
2DBox_Endoscopy_0086 (480, 560, 3) 1 11.0 4.0 2.7
2DBox_Fundus_0003 (2048, 2048, 3) 1 11.4 3.8 3.0
2DBox_Microscope_0008 (1536, 2040, 3) 19 13.1 5.3 4.1
2DBox_Microscope_0016 (1920, 2560, 3) 241 35.8 29.4 27.5
Average Runtime - - 134.8 44.9 22.7

4.4 Results on final testing set

Table 9 contains our results on the final testing set. The average DSC across
all modalities improved from 76.1% to 79.84% and the NSD from 78.63% to
82.35%. The runtime decreased significantly across all modalities. The average
runtime improved from 22.81 to 4.01, which demonstrates a speedup of factor
5.7. When looking at the specific modalities, we observe the biggest increases
in accuracy for CT and OCT. We can also observe significant improvements in
both DSC and NSD for MR, PET and Microscopy data. We see a significant
decrease in accuracy for X-Ray data. Our final submission achieved second place
on the testing leaderboard.

20 https://onnxruntime.ai/
21 We used the code at https://github.com/bowang-lab/MedSAM/tree/

2a5a0556cabee8a62c8c1ec7e7cd821909adcb0c and fixed a bug that caused
overlays to be saved no matter whether –save_overlay was present

https://onnxruntime.ai/
https://github.com/bowang-lab/MedSAM/tree/2a5a0556cabee8a62c8c1ec7e7cd821909adcb0c
https://github.com/bowang-lab/MedSAM/tree/2a5a0556cabee8a62c8c1ec7e7cd821909adcb0c
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Table 9. Quantitative Evaluation Results On final testing set. The baseline is LiteMed-
SAM, and our proposed method uses DAFT in addition.

Target Baseline Proposed
DSC(%) NSD(%) Runtime DSC(%) NSD (%) Runtime

CT 55.4 58.34 43.58 74.92 80.41 7.33
MR 64.83 62.84 18.75 73.5 69.22 3.58
PET 61.35 57.93 84.4 66.96 60.33 10.62
US 85.25 89.73 10.72 85.29 89.73 3.72
X-Ray 85.75 94.03 9.07 71.42 81.84 2.21
OCT 67.23 73.33 7.74 79.05 85.71 2.42
Endoscopy 94.41 96.95 6.8 94.08 96.68 1.91
Fundus 86.33 88.39 8.05 86.74 88.79 1.98
Microscopy 84.36 86.15 16.19 86.6 88.48 2.32
Average 76.1 78.63 22.81 79.84 82.35 4.01

4.5 Limitations and Future work

The biggest limitation of our final submission is the amount of training and val-
idation data we used in our model development protocol. The validation dataset
was missing Mammography and OCT data and only had a few data points for
certain modalities (e.g., ten for Fundus, or only three for 3D PET); since we used
the validation scores to pick our final set of models, we are likely overfitting to
the validation data. Likewise, we might overfit to our training data, as our train-
ing data was quite limited (e.g., Microscopy had only 1000 data points during
training). Furthermore, due to our focus on DAFT, we did not perform large-scale
re-training or fine-tuning runs across a collection of all publicly shared training
datasets, which would likely have resulted in further improvements.

An interesting area for further research is automatically determining the
subsets used for data-aware fine-tuning. We initially explored creating a meta-
dataset by computing the meta-features of our data points. Afterward, we could
compute clusters in the metadata and use the data points corresponding to a
cluster as a subset for DAFT. Likewise, exploring applications of DAFT in applica-
tion areas, such as tabular data, time series, or NLP, seems very promising.

5 Post-Challenge Performance Booster

Following the announcement of the competition results, the organizers invited
participants to retrain their models on an enlarged dataset and incorporate po-
tential improvements to try and beat their old submission. They also added data
to the validation and test set.

5.1 Changes

We incorporated early stopping into all three training steps to avoid overfitting.
The provided dataset was split into 80% for training and 20% for validation for
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each foundation modality. Then, we used a patience of 7 for early stopping and
selected the checkpoint with the lowest validation loss. Additionally, we decided
to use a shared model for all 3D modalities, including CT. In section 4.4 we saw
that LiteMedSAM ranked bad in accuracy on ultrasonic data in the final test set,
so we decided to also use the EfficientViT architecture and DAFT for ultrasonic
images. Details about the number of epochs trained are provided in Table 10
and Table 11. Lastly, we wrote the inference code in C++ instead of Python to
further improve inference speed. To this end we used the C++ implementation
of the winner of the competition, MedficientSAM [18], and modified it to work
with our approach. Our updated code is available on the main branch of our
GitHub repository22.

Table 10. Epochs and CO2eq (g) of Knowledge Distillation and General Fine Tuning.
CO2eq is based on 475g CO2/kWh.

Pipeline Step Total Epochs CO2eq Best Epoch
Knowledge Distillation 25 4050.97 17
General Fine-Tuning 25 2020.39 17

Table 11. Epochs and CO2eq (g) of the Data-Aware Fine Tuning step and Se-
lected Data-Aware Subsets for DAFT per Foundation Modality. CO2eq is based on
475g CO2/kWh.

Foundation Modality Total Epochs CO2eq Best Epoch Used Data-Aware Subsets
3D 13 26277.3 5 CT, MR, PET
X-Ray 17 580.96 9 X-Ray
Dermoscopy 11 126.96 3 Dermoscopy
Endoscopy 9 394.69 1 Endoscopy
Fundus 13 39.38 5 Fundus
Microscopy 25 52.71 17 Microscopy
OCT 15 28.44 7 OCT
Mammography 10 24.44 2 Mammography
US 13 30.91 5 US

5.2 Results

We compare the results of our booster submission to the LiteMedSAM baseline in
Table 12. We observe that our runtime improved accross all modalities, bringing
22 https://github.com/automl/CVPR24-MedSAM-on-Laptop

https://github.com/automl/CVPR24-MedSAM-on-Laptop
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the average down from 14.69 to 2.25, which equals a speedup of factor 6.5.
We improved the average DSC from 78.64% to 83.29% and the average NSD
from 80.58% to 85.59%. The biggest change in accuracy happened for the CT
modality, the DSC increased from 55.75% to 73.53% and the NSD from 58.48%
to 78.4%. Our performance booster submission achieved first place on the post-
challenge leaderboard.

Table 12. Quantitative Evaluation Results of our Booster Submission on final testing
set.

Target Baseline Booster Submission
DSC(%) NSD(%) Runtime DSC(%) NSD (%) Runtime

CT 55.75 58.48 38.78 73.53 78.4 5.59
MR 64.80 62.75 18.57 72.84 70.36 2.81
PET 76.94 66.98 14.90 78.75 69.38 2.4
US 85.24 89.73 8.96 89.32 93.34 1.6
X-Ray 85.51 94.40 9.95 83.94 93.87 2.08
OCT 73.31 80.20 8.39 81.64 88.75 1.32
Endoscopy 94.41 96.95 7.56 94.24 96.85 1.25
Fundus 87.47 89.58 8.77 86.36 88.53 1.38
Microscopy 84.36 86.15 16.34 89 90.84 1.84
Average 78.64 80.58 14.69 83.29 85.59 2.25

6 Conclusion

In this paper, we proposed data-aware fine-tuning (DAFT), a method for enabling
efficient and effective inference with foundation models, and apply it to medical
image segmentation tasks as part of the "Segment Anything In Medical Images
On Laptop" competition. Following concepts from meta-learning for algorithm
selection and dynamic selection, DAFT aims to fine-tune several versions of a
foundation model on subsets of all available data instead of fine-tuning just one
larger model. Then, at inference time, we select which fine-tuned model to use
for the prediction depending on the distribution of the input data. In our imple-
mentation of DAFT we use the EfficientViT architecture, knowledge distillation,
and OpenVINO runtime to further improve the efficiency and effectiveness of in-
ference.

In our experiments on the validation data provided by the competition, we
show that DAFT enables us to create more effective models for each subset than
when creating one model for all data. Moreover, we show that we can outperform
the baseline by a wide margin. Likewise, we detail the large improvement in
inference obtained by our implementation.

Our results show the potential of DAFT and optimizing foundation models for
inference. Both concepts enable us to deploy efficient and effective segmentation
foundation models on the laptops of medical experts.
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