
Published as a conference paper at ICLR 2021

IS LABEL SMOOTHING TRULY INCOMPATIBLE WITH
KNOWLEDGE DISTILLATION: AN EMPIRICAL STUDY

Zhiqiang Shen
CMU

Zechun Liu
CMU & HKUST

Dejia Xu
Peking University

Zitian Chen
UMass Amherst

Kwang-Ting Cheng
HKUST

Marios Savvides
CMU

ABSTRACT

This work aims to empirically clarify a recently discovered perspective that label
smoothing is incompatible with knowledge distillation (Müller et al., 2019). We
begin by introducing the motivation behind on how this incompatibility is raised,
i.e., label smoothing erases relative information between teacher logits. We provide
a novel connection on how label smoothing affects distributions of semantically
similar and dissimilar classes. Then we propose a metric to quantitatively measure
the degree of erased information in sample’s representation. After that, we study
its one-sidedness and imperfection of the incompatibility view through massive
analyses, visualizations and comprehensive experiments on Image Classification,
Binary Networks, and Neural Machine Translation. Finally, we broadly discuss
several circumstances wherein label smoothing will indeed lose its effectiveness.1

1 INTRODUCTION

Label smoothing (Szegedy et al., 2016) and knowledge distillation (Hinton et al., 2015) are two
commonly recognized techniques in training deep neural networks and have been applied in many
state-of-the-art models, such as language translation (Vaswani et al., 2017; Tan et al., 2019; Zhou
et al., 2020), image classification (Xie et al., 2019; He et al., 2019) and speech recognition (Chiu
et al., 2018; Pereyra et al., 2017; Chorowski & Jaitly, 2017). Recently a large body of studies is
focusing on exploring the underlying relationships between these two methods, for instance, Müller et
al. (Müller et al., 2019) discovered that label smoothing could improve calibration implicitly but will
hurt the effectiveness of knowledge distillation. Yuan et al. (Yuan et al., 2019) considered knowledge
distillation as a dynamical form of label smoothing as it delivered a regularization effect in training.
The recent study (Lukasik et al., 2020) further noticed label smoothing could help mitigate label noise,
they showed that when distilling models from noisy data, the teacher with label smoothing is helpful.
Despite the massive and intensive researches, how to use label smoothing as well as knowledge
distillation in practice is still unclear, divergent, and under-explored. Moreover, it is hard to answer
when and why label smoothing works well or not under a variety of discrepant circumstances.
View of incompatibility between label smoothing and knowledge distillation. Recently, Müller
et al. proposed a new standpoint that teachers trained with label smoothing distill inferior student
compared to teachers trained with hard labels, even label smoothing improves teacher’s accuracy,
as the authors found that label smoothing tends to “erase” information contained intra-class across
individual examples, which indicates that the relative information between logits will be erased to
some extent when the teacher is trained with label smoothing. This rising idea is becoming more and
more dominant and has been quoted by a large number of recent literatures (Arani et al., 2019; Tang
et al., 2020; Mghabbar & Ratnamogan, 2020; Shen et al., 2020; Khosla et al., 2020).
However, this seems reasonable observation basically has many inconsistencies in practice when
adopting knowledge distillation with smoothing trained teachers. Thus, we would like to challenge
whether this perspective is entirely correct? To make label smoothing and knowledge distillation
less mysterious, in this paper, we first systematically introduce the mechanism and correlation

1Project page: http://zhiqiangshen.com/projects/LS_and_KD/index.html.
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Figure 1: Illustrations of the effects of label smoothing on penultimate layer output. The figure is
plotted on ImageNet with ResNet-50 following (Müller et al., 2019), we also choose two semantically
similar classes (toy poodle and miniature poodle, in green and yellow) and one semantically different
class (tench, in purple). ¬ is the discovery observed by Müller et al. that label smoothing will enforce
each example to be equidistant to its template, i.e., erasing the relative information between logits.
D1 and D2 are the degree of measuring “how much a tench is similar to poodle”.  is our new
finding in this paper that “erasing” effect enabled by label smoothing actually promotes to enlarge
relative information on those semantically similar classes, i.e., making them have less overlap on
representations. Dc is the distance between the semantically similar “toy poodle” cluster and the
“miniature poodle” cluster. More details can be referred to Sec. 3.

between these two techniques. We then present a novel connection of label smoothing to the idea of
“erasing” relative information. We expose the truth that factually the negative effects of erasing relative
information only happen on the semantically different classes. Intuitively, those classes are easy to
classify as they have obvious discrepancies. Therefore, the negative effects during distillation are fairly
moderate. On those semantically similar classes, interestingly, we observe that erasing phenomenon
can enforce two clusters being away from each other and actually enlarge the central distance
of clusters between classes, which means it makes the two categories easier for classifying, as shown
in Fig. 1. These classes in traditional training procedure are difficult to distinguish, so generally, the
benefits of using label smoothing on teachers outweigh the disadvantages when training in knowledge
distillation. Our observation in this paper supplements and consummates prior Müller et al.’s discovery
essentially, demonstrates that label smoothing is compatible with knowledge distillation through
explaining the erasing logits information on similar classes. We further shed light on understanding
the behavior and effects when label smoothing and knowledge distillation are applied simultaneously,
making their connection more interpretable, practical and clearer for usage.
How to prove that their discovery is not judgmatic? We clarify such widely accepted idea through
the following exploratory experiments, and exhaustively evaluate our proposed hypothesis: (i) Stan-
dard ImageNet-1K (Deng et al., 2009), fine-grained CUB200-2011 (Wah et al., 2011b) and noisy
iMaterialist product recognition; (ii) Binary neural networks (BNNs) (Rastegari et al., 2016); (iii)
Neural machine translation (NMT) (Vaswani et al., 2017). Intriguingly, we observe that if the teacher
is trained with label smoothing, the absolute values of converged distilling loss on training set are
much larger than that the teacher is trained with hard labels, whereas, as we will discuss in detail later
in Fig. 5 and 6, the accuracy on validation set is still better than that without label smoothing. We ex-
plain this seemingly contradictory phenomenon through visualizing the teachers’ output probabilities
with and without label smoothing, it suggests that the suppression of label smoothing for knowledge
distillation only happens on training phase as the distributions from teachers with label smoothing is
more flattening, the generalization ability of networks on validation set is still learned during opti-
mization. That is to say, the dynamical soft labels generated by teacher networks can prevent learning
process from overfitting to the training data, meanwhile, improving the generalization on the unseen
test data. Therefore, we consider this erasing relative information function within class from label
smoothing as a merit to distinguish semantically similar classes for knowledge distillation, rather than
a drawback. Moreover, we also propose a stability metric to evaluate the degree of erased information
by label smoothing, we found the proposed metric is highly aligned with model’s accuracy and can
be regarded as a supplement or alternateness to identify good teachers for knowledge distillation.
Finally, we discuss several intriguing properties of label smoothing we observed on the long-tailed
category distribution and rapidly-increased #class scenarios, as provided in Sec. 7.
More specifically, this paper aims to address the following questions:
• Does label smoothing in teacher networks suppress the effectiveness of knowledge distillation?
Our answer is No. Label smoothing will not impair the predictive performance of students. Instead,
we observe that a smoothing trained teacher can protect the student from overfitting on the training
set, which means that with smoothing trained teachers in knowledge distillation, the training loss is
always higher than that without smoothing, but the validation accuracy is still similar or even better.
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Figure 2: Knowledge distillation (KD) and label smoothing (LS) overview. Both the KD and LS adopt
softened distributions for learning the target networks. The KD differs from LS in the generation of
these distributions and the objectives for optimization. KD chooses to utilize a pre-trained teacher to
produce the supervision dynamically, while LS uses a constant uniform distribution for training. In
the figure, the black lines are the forward pass and the red lines are the gradient propagation direction.

• What will actually determine the performance of a student in knowledge distillation? From our
empirical study, we observe if the student architecture is settled, the dominating factor in knowledge
distillation is the quality of supervision, i.e., the performance of a teacher network. A higher-accuracy
teacher is particularly successful in distilling a better student, regardless it is trained with or without
label smoothing. This observation is partially against the conclusion in (Müller et al., 2019) which
stated “a teacher with better accuracy is not necessary to distill a better student”.
• When will the label smoothing indeed lose its effectiveness for learning deep neural networks?
Long-tailed class distribution and increased number of classes are two scenarios we observed wherein
label smoothing will lose or impair its effectiveness. We empirically verify the findings on iNaturalist
2019 (Van Horn et al., 2018), Place-LT (Liu et al., 2019) and curated ImageNet (Liu et al., 2019).

2 BACKGROUND

In this section, we first introduce the background of label smoothing and knowledge distillation
through a mathematical description. Given a dataset D = (X,Y ) over a set of classes K, X is the
input data and Y is the corresponding one-hot label with each sample’s label y ∈ {0, 1}K , where the
element yc is 1 for the ground-truth class and 0 for others. Label smoothing replaces one-hot hard
label vector y with a mixture of weighted y and a uniform distribution:

yc =

{
1− α if c = label,
α/(K − 1) otherwise. (1)

where α is a small constant coefficient for flattening the one-hot labels. Usually, label smoothing is
adopted when the loss function is cross-entropy, and the network uses softmax function to the last
layer’s logits z to compute the output probabilities p, so the gradient of each training sample with

respect to z will be:∇H(p,y) = p−y =
K∑
c=1

(Softmax(zc)− yc), whereH(p,y) = −
K∑
c=1

yclogpc

is the cross-entropy loss and zc is c-th logit in z. Effects of label smoothing on loss

Figure 3: Correction effects of label smoothing
on logistic loss with different α. Black dotted
line presents the standard logistic loss and other
colored lines are imposed label smoothing.

To further understand the effects of label smooth-
ing on loss function, Fig. 3 illustrates correction
effects of smoothing on the binary cross-entropy
loss (K = 2). We can observe that the standard lo-
gistic loss (α = 0) vanishes for large and confident
positive predictions, and becomes linear for large
negative predictions. Label smoothing will penalize
confident predictions and involve a finite positive
minimum as it aims to minimize the average per-
class. Generally, larger α values will produce larger
loss values rebounding at positive predictions. This
is also the underlying reason that smoothed loss can
flatten the predictions of a network.
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In knowledge distillation, we usually pre-train the teacher model Tw on the dataset in advance. The
student model Sw is trained over the same set of data, but utilizes labels generated by Tw. More
specifically, we can regard this process as learning Sw on a new labeled dataset D̃ = (X, Tw(X)).
Once the teacher network is trained, its parameters will be frozen in the whole distillation.

The student network Sw is trained by minimizing the similarity between its output and two parts: the
hard one-hot labels and the soft labels generated by the teacher network. Letting pTwc (X) = Tw(X)[c],
pSwc (X) = Sw(X)[c] be the probabilities assigned to class c in the teacher model Tw and student
model Sw. The distillation loss can be formulated as λH(pSw ,y) + (1 − λ)H(pSw/T ,pTw/T )
where T is the temperature scaling factor and λ is the trade-off coefficient to balance the two terms.

3 THE “ERASE INFORMATION” EFFECT BY LABEL SMOOTHING

This section aims to explain the erasing information effect more thoroughly. We start by reproducing
the visualization of penultimate layer’s activations using the same procedure from (Müller et al.,
2019). We adopt ResNet-50 trained with hard and smoothed labels on ImageNet. As shown in Fig. 1,
we obtain similar distributions as (Müller et al., 2019). Since examples in training set are the ones
used for distillation, we mainly analyze the visualization from the training data. The core finding
in (Müller et al., 2019) is that if a teacher is trained with hard labels, representations of examples
are distributed in broad clusters, which means that different examples from the same class can
have different similarities (D1 and D2) to other classes. For a teacher trained with label smoothing,
they observed the opposite behavior. Label smoothing encourages examples to lie in tight equally
separated clusters, so each example of one class has very similar proximities (D1 is closer to D2) to
examples of the other classes. Our re-visualization also supports this discovery. The authors derive
the conclusion that a teacher with better accuracy is not necessarily to distill a better student. This
seems reasonable as the broad clusters can enable different examples from the same class to provide
different similarities to other classes, which contains more information for knowledge distillation.

However, if refocusing on the two semantically similar classes, when label smoothing is applied, the
clusters are much tighter because label smoothing encourages each example is to be equidistant from
all other class’s templates, while, the tight cluster substantially promotes different class representations
to be separate, i.e., the distance of clusters Dc increases, which further indicates that different class
examples obtain more distinguishable features. This phenomenon is crucial as these difficult classes
are the key for boosting classification performance. Generally, it is not necessary to measure “how
much a poodle is a particularly similar to a tench” since we have enough evidence to classify them,
but it is critical to have information “how different is a toy poodle to a miniature poodle”.

Visualizations of teacher predictions. We further visualization the mean distribution of different
classes crossing examples, as shown in Fig. 4. We average all the probabilities after softmax layer
if the examples belong to the same category, and show the first 100 classes in ImageNet. Usually,
the probabilities have a major value (the bars in Fig. 4 (1)) that represents model’s prediction on
category and other small values (i.e., minor predictions in Fig. 4 (2)) indicate that the input image
is somewhat similar to those other categories, some discussions about minor predictions are given
in Appendix F. Our purpose of this visualization is to make certain of what label smoothing really
calibrates in a network and shed light on how it affects the network predictions. We can observe in
this figure that a model trained with label smoothing will generate more softened distributions, but the
relations across different classes are still preserved. We conjecture the softened supervision is also the
reason why teachers with label smoothing produce larger training loss during knowledge distillation.
Consequently, label smoothing will both decrease the variance (verified by following stability metric)
and mean predictive values within a class, but will not impair the relations crossing different classes.

3.1 A SIMPLE METRIC FOR MEASURING THE DEGREE OF ERASED INFORMATION

Different from the visualization scheme (Müller et al., 2019) of finding an orthonormal basis of
the plane that only studies this problem qualitatively, we further address the “erasing” phenomenon
through a statistical metric that is simple yet effective, and can measure the degree of erasing
operation quantitatively. Our motivation behind it is straight-forward: If label smoothing erases
relative information within a class, the variance of intra-class probabilities will decrease accordingly,
thus we can use such variance to monitor the erasing degree, since this metric evaluates the fluctuation
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Figure 4: Probability distributions with/without label smoothing on ResNet-50. We show the first
100 categories in ImageNet. The red/green bars are distributions with/without label smoothing,
respectively. “Minor probability” denotes the small probabilities predicted by networks when the
outputs are used as supervisions in knowledge distillation.

of the representations, we can also call it the stability metric. The definition is as follows:

SStability = 1− 1

K

K∑
c=1

(
1

nc

nc∑
i=1

||pTw{i,c} − pTw{i,c}||
2) (2)

where i is the index of images and nc is the #image in class c. pTw{i,c} is the mean of pTw in class c.
This metric utilizes the probabilities of intra-class variance to measure the stability of a teacher’s
prediction. The results on various network architectures are shown in Sec. 5 and a PyTorch-like code
for calculating this metric is given in Appendix C.

Such metric has at least two advantages: 1) It can measure the degree of erased information quantita-
tively and further help discover more interesting phenomena, e.g., we observe that data augmentation
method like CutMix (Yun et al., 2019) together with longer training erases the relative information on
logits dramatically and can further be reinforced by label smoothing. 2) We found that the proposed
metric is highly aligned with model accuracy, thus such metric can be used as a complement for
accuracy to evaluate the quality of teacher’s supervision for knowledge distillation.

4 A CLOSE LOOK AT LABEL SMOOTHING AND KNOWLEDGE DISTILLATION

A few recent studies (Shen & Savvides, 2020; Shen et al., 2019) suggested supervised partH(pSw ,y)
(i.e. hard labels) is not necessary as soft prediction is adequate to provide crucial information for
students, meanwhile, removing supervised part can avoid involving incorrect labels caused by random
crop, multi-object circumstance or false annotations by humans. Thus, here we only consider the soft
partH(pSw/T ,pTw/T ) with the commonly used Kullback-Leibler divergence similarity.
KL-divergence measures the similarity of two probability distributions. We train the student network
Sθ by minimizing the KL-divergence between its output pSθc (X) and the soft labels pTθc (X) generated
by the teacher network. Following (Müller et al., 2019; Hinton et al., 2015) we set T =1 as the
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temperature constant and it is omitted for simplicity, thus our loss function will be:

DKL(Tw‖Sw) = Ex∼Tw
[
− log

Sw(X)

Tw(X)

]
= Ex∼Tw [− logSw(X)]−H(Tw(X))

(3)

Here, Ex∼Tw [− logSw(X)] is the cross-entropy between Sw and Tw (denoted H(pSw ,pTw)
)
. The

second termH(Tw(X)) = Ex∼Tw [− log pTw(x)] is the entropy of teacher Tw and is constant with
respect to Tw. We can remove it and simply minimize the loss as follows:

H(pSw ,pTw) = −
K∑
c=1

pTwc (X) logpSwc (X). (4)

We can observe that Eq. 4 is actually a standard cross-entropy loss. Then, we have:

Property 1. If not consider hard labels in knowledge distillation, distillation loss and cross-entropy
loss with label smoothing have the same optimizing objective, i.e., DKL(Tw‖Sw) =H(pSw ,pTw).
This property shows that label smoothing and knowledge distillation have the same optimization
objective, the sole difference between them is the mechanism of producing the soft labels. Therefore,
except for the neural machine translation, in this paper all of our knowledge distillation experiments
are conducted without the hard labels, which means our student solely relies on the softened distri-
bution from a teacher without the one-hot ground-truth. This may challenge the common practice
in knowledge distillation (Hinton et al., 2015; Romero et al., 2015) that adopted both hard and soft
labels with the cross-entropy loss for distillation, while our surprisingly good results and previous
studies (Shen & Savvides, 2020; Shen et al., 2019; Bagherinezhad et al., 2018) indicate that knowl-
edge distillation enabled by soft labels solely is not only an auxiliary regularization (Yuan et al.,
2019) but can be the dominating supervisions, which further inspires us to carefully revisit the role of
knowledge distillation and design better supervision/objective in training deep neural networks.

5 EMPIRICAL STUDIES

Metric Evaluation. Our results of stability metric are shown in Table 1, the second and third columns
are results without label smoothing and the last two are with it. We study the metric crossing a variety
of different network architectures. The gaps of SStability using the same architecture measure the
degree of erasing relative information. We can observe that the variances (1-SStability) with label
smoothing always have lower values than models trained without label smoothing, this proves that
label smoothing will erase information and enforce intra-class representations of samples being
similar. Generally, the accuracy and stability have a positive correlation between them. But the
stability can even overcome some outliers, for example, Wide ResNet50 with label smoothing has
lower accuracy, but the stability is still consistent with the tendency of predictive quality. Moreover,
models trained with more epochs and augmentation techniques like CutMix (Yun et al., 2019) can
dramatically increase the stability, this means relative information will be erased significantly by more
augmentation together with longer training. We emphasize that this discovery cannot be observed by
the qualitative visualization method (Müller et al., 2019). A PyTorch-like code is in Appendix C.
Table 1: Accuracy and stability results with and without label smoothing on ImageNet-1K. Here
we show (1-SStability), which denotes the aggregated intra-class variance (the lower the better). Red
numbers are the quantitative values of the erased information by label smoothing.

Netowrks Acc. (%) w/o LS (1-SStability) w/o LS Acc. (%) w/ LS (1-SStability) w/ LS
ResNet-18 (He et al., 2016) 69.758/89.078 0.3359 69.774/89.122 0.3358 (-0.0001)
ResNet-50 (He et al., 2016) 75.888/92.642 0.3217 76.130/92.936 0.3106 (-0.0111)
ResNet-101 (He et al., 2016) 77.374/93.546 0.3185 77.726/93.830 0.3070 (-0.0115)
MobileNet v2 (Sandler et al., 2018) 71.878/90.286 0.3341 – –
DenseNet121 (Huang et al., 2017) 74.434/91.972 0.3243 – –
ResNeXt50 32×4d (Xie et al., 2017) 77.618/93.698 0.3229 77.774/93.642 0.3182 (-0.0047)
Wide ResNet50 (Zagoruyko & Komodakis, 2016) 78.468/94.086 0.3201 77.808/93.682 0.3155 (-0.0046)
ResNeXt101 32×8d (Xie et al., 2017) 79.312/94.526 0.3177 79.698/94.768 0.3116 (-0.0061)
ResNet50+Long 76.526/93.070 0.3222 77.106/93.340 0.3090 (-0.0132)
ResNet50+Long+CutMix (Yun et al., 2019) 76.874/93.500 0.2999 77.274/93.304 0.2890 (-0.0109)

Image Classification. We verify our perspective through investigating the effectiveness of knowledge
distillation with label smoothing on the image classification tasks. We conduct experiments on three

6



Published as a conference paper at ICLR 2021

Table 2: Image classification results on ImageNet-1K, CUB200-2011 and iMaterialist product recog-
nition (in Appendix D). The teacher networks with label smoothing are denoted by “4”. We report
average over 3 runs for all the teacher network training and student distillation.

ImageNet-1K (Standard):
Teacher w/ LS Acc. (Top1/Top5) Student Acc. (Top1/Top5)

ResNet-50
8 76.056 ± 0.119/92.791± 0.106

ResNet-18 71.425 ± 0.038/90.185± 0.075
ResNet-50 76.325 ± 0.068/92.984± 0.043
ResNet-18 71.816 ± 0.017/90.466± 0.074

4 76.128 ± 0.069/92.977± 0.030
ResNet-50 77.052 ± 0.030/93.376± 0.015

CUB200-2011 (Fine-grained):
Teacher w/ LS Acc. (Top1/Top5) Student Acc. (Top1/Top5)

ResNet-50
8 79.931 ± 0.037/94.370± 0.064

ResNet-18 77.116 ± 0.086/93.241± 0.108
ResNet-50 80.910 ± 0.033/94.738± 0.114
ResNet-18 78.382 ± 0.099/93.621± 0.120

4 81.497 ± 0.035/95.043± 0.112
ResNet-50 82.355 ± 0.050/95.440± 0.075

datasets: ImageNet-1K (Deng et al., 2009), CUB200-2011 (Wah et al., 2011a) and iMaterialist
product recognition challenge data (in Appendix D). We adopt ResNet-{50/101} as teacher networks
and ResNet-{18/50/101} as students, respectively. More experimental settings are in Appendix A.

Results. The visualizations of our distillation training and testing curves are shown in Fig. 5. A more
detailed comparison is listed in Tables 2 and 7. From the visualization we found two interesting
phenomena: On training set, the loss of teacher networks that trained with label smoothing is much
higher than that of without label smoothing. While on validation set the accuracy is comparable or
even slightly better (The boosts on CUB is greater than those on ImageNet-1K, as shown in Table 2).
We also provide the experiments of combining hard and soft labels in Appendix E, the results still
show the effectiveness of better teachers with label smoothing, which distill better students. To make
it clearer why this happens in distillation, we visualize the supervisions from teacher networks in
Fig. 4 and the discussion is shown there. It indicates that label smoothing flattens teacher’s predictions
which causes the enlarged training loss, while the student’s generalization ability is still preserved.

Acc: 77.237

Acc: 78.497

Acc: 80.933

Acc: 82.418

Acc: 81.261

Acc: 82.263

Acc: 81.572

Acc: 82.522

T: ResNet101 S: ResNet50

T: ResNet50 S: ResNet50 T: ResNet101 S: ResNet101

T: ResNet50 S: ResNet18

Figure 5: The training and testing curves of knowledge distillation on CUB200-2011 when teachers
are trained w/ and w/o label smoothing. The specific teacher and student architectures are given below
each subfigure, therein, T indicates the teacher architecture and S indicates the student.

Binary Neural Networks (BNNs). We then examine the effectiveness of knowledge distillation on
Binary Neural Networks. BNN aims to learn a network that both weights and activations are discrete
values in {-1, +1}. In the forward pass, real-valued activations are binarized by the sign function:

Ab = Sign(Ar) =

{
−1 if Ar < 0,
+1 otherwise.

where Ar is the real-valued activation of the previous

layers, produced by the binary or real-valued convolution operations. Ab is the binarized activation.

The real-valued weights are binarized by: Wb =
||Wr||l1

n Sign(Wr) =

{
− ||Wr||l1

n if Wr < 0,

+
||Wr||l1

n otherwise.
where Wr is the real-valued weights that are stored as latent parameters to accumulate the small
gradients. Wb is the binarized weights. We update binary weights through multiplying the sign
of real-valued latent weights and the channel-wise absolute mean ( 1

n ||Wr||l1). Training BNNs is
challenging as the gradient of optimization is approximated and the capacity of models is also limited.

We perform experiments on ImageNet-1K and results are shown in Fig. 6. Withal, the teacher network
trained with one-hot labels (blue curve) is over-confident as the loss value is much smaller, which
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means that the teacher trained with label smoothing can prevent distillation process from being over-
confident on the training data, and obtain slightly better generalization and accuracy (63.108% vs.
63.002%) on the validation set. These results still support our conclusion on knowledge distillation.

Acc. (%) without LS: 63.002/84.234

Acc. (%) with LS: 63.108/84.362

Figure 6: Left is the averaged train/test loss curves in distillation, right is the testing error w/
best Top-1/5 accuracy. We use linear learning rate decay following other binary network training
protocol (Martinez et al., 2020; Liu et al., 2018). Our teacher networks are ResNet-50 with and without
label smoothing which have similar performance. The student is the state-of-the-art ReActNet (Liu
et al., 2020) with ResNet-18 backbone. We can observe that when the teacher is trained with label
smoothing, the distillation loss is much higher, but the accuracy of student is still better.

Figure 7: Illustrations of BLEU score curves for
teacher pre-training and student distillation. The
left figure is teachers’ pre-training with and with-
out label smoothing. The right one is the distilla-
tion process of students.

Neural Machine Translation (NMT). Finally,
we investigate our hypothesis of knowledge distil-
lation on the English-to-German translation task
using the Transformer architecture (Vaswani et al.,
2017). We utilize the distillation framework of
(Tan et al., 2019) on IWSLT dataset, and the pre-
training/distillation curves are shown in Fig. 7.
A consistent setting is imposed on all the two
comparison experiments, except the teacher is
trained with and without label smoothing. We
choose α = 0.1 for label smoothing as suggested
by (Vaswani et al., 2017; Szegedy et al., 2016;
Müller et al., 2019), we use Adam (Kingma & Ba, 2014) as the optimizer, lr with 0.0005, dropout
with drop rate as 0.3, weight-decay with 0 and max tokens with 4096, all of these hyper-parameters
are following the original settings of (Tan et al., 2019). Our results of Fig. 7 deliver two important
conclusions: First sub-illustration (left one) proves the statement of Vaswani et al. (Vaswani et al.,
2017) that label smoothing (α = 0.1) boosts the BLEU score of language model despite causing
worse perplexity if comparing to a model is trained with one-hot/hard labels. Second sub-illustration
(right one) implies that on the machine translation task, a stronger teacher (trained with label smooth-
ing) will still distill a higher BLEU student. That is to say, label smoothing may not suppress the
effectiveness of knowledge distillation in the NMT task.

6 WHAT IS A BETTER TEACHER IN KNOWLEDGE DISTILLATION?

ResNet-50 ResNeXt-101 32x48dNetwork Index

A
cc
.(
To
p-
1)

Figure 8: Left is the accuracy relationship between teachers and students, wherein, all teachers are
trained with label smoothing. Right is the accuracy of knowledge distillation by using strong teacher
to fine-tune the student, FixRes (Touvron et al., 2019) is adopted in both teacher and student networks.

Better Supervision is Crucial for Distillation. We further explore the effects of teacher’s accuracy
on the student through fixing the student structure and switching different teachers. We perform two
settings for this ablation study: using the same teacher structure with different training strategies and
different teacher architectures. All teacher models are re-trained with label smoothing. The results
are shown in Fig. 8 (Left) and Table 8, generally, teachers with higher accuracies can distill stronger
students, but they are not linear related and are limited to the capability of the student itself. To further
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support the argument that better teachers usually distill better students, we choose the state-of-the-art
FixRes model (Touvron et al., 2019) for both the teacher and student and perform our distillation
training via Eq. 4. The results are shown in Fig. 8 (Right) and our method is slightly better than the
baseline and FixRes. Note that the compared FixRes is already the state-of-the-art with ResNet and
ResNeXt architecture, so our result (under ResNet family) is a fairly competitive single-crop accuracy
to date on ImageNet-1K.

7 WHAT CIRCUMSTANCES INDEED WILL MAKE LS LESS EFFECTIVE?
Long-Tailed Distribution. We found the long-tailed datasets with imbalanced samples across classes
will indeed suppress the effectiveness of label smoothing (LS) and hurt model performance. The
results on long-tailed ImageNet-LT, Places365-LT and iNaturalist 2019 are shown in Table 3. Our
results on these three datasets empirically verify this observation and support this conclusion. Since LS
has weight shrinkage and regularisation effects (Lukasik et al., 2020), we have following conjecture:

Conjecture 1. Weight shrinkage effect (Regularisation) enabled by label smoothing is no longer
effective on the long-tailed recognition circumstance and will further impair the performance.

The weight shrinkage effect (label smoothing regularization) has been proven in (Lukasik et al., 2020)
(Theorem 1) on the linear models. As label smoothing will assign probabilities equally to all minor
classes (i.e., (1− α) · Ipos + α

L−1 · Jneg), this operation may be biased to many-shot classes in the
long-tailed scenario. We derive the conclusion empirically that label smoothing is inapplicable when
the class distribution is long-tailed.

More #Class. This is another circumstance we found will impair the effectiveness of label smoothing.
The results are shown in Table 4 and Fig. 9, we average the gains of label smoothing across two
different network architectures and compare the boosts between curated ImageNet-100/500 and 1K.
Generally, more classes will reduce the improvement produced by label smoothing.
Table 3: Teacher results on the long-tailed ImageNet-LT, Places365-LT and iNaturalist 2019 val set.

ImageNet-LT Place-LT iNaturalist 2019
Teacher w/ LS Acc. (Top1/Top5) Acc. (Top1/Top3) Acc. (Top1/Top3)

ResNet-18 8 39.975/64.645 26.479/47.233 67.195/83.465
4 39.115/63.655 25.877/46.260 66.700/83.432

ResNet-34 8 41.150/66.205 27.329/48.753 70.165/86.304
4 40.965/65.850 26.863/48.110 69.406/86.073

ResNet-50 8 40.985/66.030 27.384/48.740 73.729/88.845
4 39.965/65.195 27.562/47.945 72.904/87.954

ResNet-101 8 –/– 28.096/50.164 74.389/88.416
4 –/– 27.466/48.781 73.597/88.779

Table 4: Teacher results on the curated ImageNet dataset when
increasing the number of classes.

ImageNet-100 ImageNet-500 ImageNet-1K
Teacher w/ LS Acc. (Top1/Top5) Acc. (Top1/Top5) Acc. (Top1/Top5)

ResNet-18 8 82.380/95.520 73.521/91.642 69.758/89.076
4 82.740/95.440 74.123/92.004 69.606/89.372

ResNet-101 8 82.000/94.340 81.712/95.080 77.374/93.546
4 83.400/95.300 82.020/95.300 77.836/93.662

Average (↑) ↑0.880/0.440 ↑0.455/0.291 ↑0.155/0.206
100 500 1K

#class

1.6

0.8

0

-0.8

Bo
os
t

Figure 9: Acc. downtrend.
8 CONCLUSION

We empirically demonstrated that label smoothing could both decrease the variance (i.e., erase relative
information between logits) and lower mean predictive values (i.e., make prediction less confident)
within a category, but it does not impair the relation distribution across different categories. Our
results on image classification, binary neural networks, and neural machine translation indicate that
label smoothing is compatible with knowledge distillation and this finding encourages more careful
to understand and utilize the relationships of label smoothing and knowledge distillation in practice.
We found through extensive experiments and analyses that the indeed circumstances label smoothing
will lose its effectiveness are long-tailed distribution and increased number of classes. Our study also
suggests that, to find a better teacher for knowledge distillation, accuracy of teacher network is one
factor, the stability of supervision from teacher network is also an alternative indicator.
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APPENDIX

In this appendix, we provide details omitted in the main text, including:

• Section A: A introduction of datasets and experimental settings (Sec. 5 “Empirical Studies” of the
main paper.)

• Section B: A discussion about what happens if teachers with label smoothing are inferior? (Sec. 6
“What Is a Better Teacher in Knowledge Distillation?” of the main paper.)

• Section C: A PyTorch-like code for calculating stability metric (Sec. 3.1 “A Simple Metric” of the
main paper.)

• Section D: (1) Table 7 is a detailed version of our Table 2 (Sec. 5 “Empirical Studies” of the main
paper.) (2) Table 8 is a detailed results for visualization of Fig. 8 (Sec. 6 “What Is a Better Teacher in
Knowledge Distillation?” of the main paper.)

• Section E: Results of knowledge distillation by adopting both hard and soft labels (Sec. 5 “Empirical
Studies” of the main paper.)

• Section F: Discussions of minor probabilities from teacher network. (Sec. 3 “The Erase Information
Effect by Label Smoothing” of the main paper.)

• Section G: Supplementary metric of inter-class variation. (Sec. 5 “Metric Evaluation” of the main
paper.)

A DATASETS AND EXPERIMENTAL SETTINGS

A.1 FOR TRAINING TEACHER AND KNOWLEDGE DISTILLATION MODELS TO VERIFY THE
COMPATIBILITY BETWEEN LABEL SMOOTHING AND KNOWLEDGE DISTILLATION

Standard ImageNet-1K Classification (Deng et al., 2009) ImageNet-1K contains ∼1.28 million
images in 1000 classes for training and 50K images for validation. For training teacher networks, we
follow the standard training protocol (He et al., 2016; Goyal et al., 2017), i.e., total training epoch
is 90, initial learning rate is 0.1 and decayed to 1/10 with every 30 epochs. For distillation, as the
supervision is a soft distribution and will dynamically change, we train with 200 epochs and the
learning rate is multiplied by 0.1 at 80 and 160 epochs. All models are trained from scratch.

Fine-grained Recognition on CUB200-2011 (Wah et al., 2011a) This dataset contains 200 bird
species and 11,788 images, and is a wildly-used fine-grained classification benchmark. Follow-
ing (Wah et al., 2011a), we use standard split with ∼30 samples of each breed for both training
and testing. As CUB200-2011 has limited training data, we fine-tune our model from the ImageNet
pre-trained parameters. Both teachers and students are trained with 200 epochs and the learning rate
is multiplied by 0.1 at 80 and 160 epochs.

Noisy Product Recognition (iMaterialist Challenge)2. The training data consists of 1,011,532
images from 2,019 categories. The validation data has 10,095 images (around 5 for each category).
The training data is collected from the Internet and contains some noise (∼30% of incorrect labels),
the validation data has been cleaned by human annotators. The training protocol is following CUB200-
2011. While, as the training images in this dataset is sufficiently enough, all our models are trained
from scratch.

A.2 FOR TRAINING TEACHERS ONLY TO EXPLORE THE EFFECTIVENESS OF LABEL
SMOOTHING

Long-tailed iNaturalist 2019 (Van Horn et al., 2018). The iNaturalist Challenge 2019 dataset
contains 1,010 species, with a combined training and validation set of 268,243 images, wherein, the
validation set has a uniform distribution of three images in each category. While, the training set
is constructed with a long-tailed distribution of image numbers. We conduct experiments using the

2https://sites.google.com/view/fgvc6/competitions/imat-product-2019?
authuser=0.
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same training protocol as the CUB200-2011 dataset. we evaluate our results on validation set using
Top-1/Top-3 metrics. Also, this protocol is applied to the Place-LT dataset.

Place-LT (Liu et al., 2019). The training set of this dataset is constructed by a Pareto distribu-
tion (Reed, 2001) with a power value α = 6. It contains a total number of 184.5K images from 365
categories. There are 4,980∼5 images per class from the 365 classes of Places-365 dataset (Zhou
et al., 2017). 20 images per class are randomly selected from the original Places-365 training set as a
validation set. The training protocol is the same as iNaturalist 2019, we also evaluate our results on
validation set using Top-1/Top-3 metrics.

ImageNet-LT (Liu et al., 2019). The long-tailed ImageNet is constructed by sampling a subset from
the standard ImageNet (Deng et al., 2009) following the Pareto distribution with the power value
α = 6. The whole dataset contains 115.8K images from 1000 categories, with maximal 1280 images
and minimal 5 images per class. 20 training images per class are randomly selected from the origin
training set of ImageNet as a validation set. All our models are trained from scratch.

Curated ImageNet-100/500/1K. We construct this dataset by randomly selecting a subset of
100/500/1K categories in the standard ImageNet (Deng et al., 2009). We use this dataset to ex-
plore the impact of #class for label smoothing. We observe that label smoothing is more effective on
the dataset with fewer numbers of classes.

Table 5: Overview of six datasets used in our experiments. α indicates the Pareto distribution value.
Dataset #class Property Long-tailed α Head class size Tail class size #Training set #Testing set

ImageNet-1K 1000 Standard N/A N/A N/A 1,281,167 50,000
CUB200-2011 200 Fine-grained N/A N/A N/A 5,994 5,794
iMaterialist 2019 Noisy (∼30%) N/A N/A N/A ∼1M ∼10K

iNaturalist 2019 1010 Long-tailed N/A ∼250 ∼210 265,213 3,030
ImageNet-LT 1000 Long-tailed 6 389 611 115,846 20,000
Place-LT 365 Long-tailed 6 ∼100 ∼100 184,500 7,300

B WHAT HAPPENS IF TEACHERS WITH LABEL SMOOTHING ARE INFERIOR?

In the main paper, we discussed that the superior teachers (even trained with label smoothing) could
distill better students. Also, as we noted that long-tailed distribution will suppress the effectiveness
of label smoothing. In this section, we would like to explore what happens if we use these inferior
teachers for knowledge distillation? We conduct experiments on the long-tailed iNaturalist 2019 data
and show more evidence to prove our conclusion that the quality of supervision is more crucial for
knowledge distillation than the ways of training teachers (with or without label smoothing). The
results are shown in Table 6, it can be observed that if teachers with lower accuracies, the distilled
students will also have poorer performance, regardless of the teacher is trained with label smoothing
or not.

Table 6: Distillation results using inferior teachers on the long-tailed iNaturalist 2019 (Van Horn et al.,
2018) .

iNaturalist 2019 (Long-tailed)
Teacher w/ LS Acc. (Top1/Top3) Student Acc. (Top1/Top3)

ResNet-50
8 73.729/88.845 ResNet-18 67.756/84.521

ResNet-50 74.125/88.944

4 72.904/87.954 ResNet-18 67.228/84.587
ResNet-50 72.838/88.152

ResNet-101
8 74.389/88.416 ResNet-50 73.894/89.142

ResNet-101 74.488/89.109

4 73.597/88.779 ResNet-50 72.409/87.657
ResNet-101 73.234/88.647

C A PYTORCH-LIKE CODE FOR CALCULATING STABILITY METRIC

14



Published as a conference paper at ICLR 2021

Algorithm 1 PyTorch-like Code for Calculating Stability Metric.

# x, target: input images and the corresponding labels
# single_std: std value for each class
# N: batchsize (we use N=50 on ImageNet for ease of implementation as it has 50 val images

in each class)
# model_path: model path that you want to calculate stability

# load model
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint[’state_dict’]) # initialize
for (x, target) in loader: # load a minibatch x with N samples (we choose N=50 for ImageNet)

# make sure shuffle = False in dataloader

# compute output
output = model(x)

# compute softmax probabilities
softmax_p = nn.functional.softmax(output, dim=1)
predict = softmax_p[:, target[0]] # obtain target probability

# compute stability
single_std = predict.std(dim=0)
all_std += single_std # aggregate all std values from each class

return 1 - all_std/1000.0 # return computed stability

D TWO DETAILED TABLES OF RESULTS

Table 7: Image classification results on ImageNet-1K, CUB200-2011 and iMaterialist product recog-
nition. The teacher networks with label smoothing are denoted by “4”. We report average over 3
runs for ResNet-50 as the teacher network on both teacher training and knowledge distillation.

ImageNet-1K (Standard):
Teacher w/ LS Acc. (Top1/Top5) Student Acc. (Top1/Top5)

ResNet-50
8 76.056 ± 0.119/92.791± 0.106

ResNet-18 71.425 ± 0.038/90.185± 0.075

ResNet-50 76.325 ± 0.068/92.984± 0.043

ResNet-18 71.816 ± 0.017/90.466± 0.074
4 76.128 ± 0.069/92.977± 0.030

ResNet-50 77.052 ± 0.030/93.376± 0.015

ResNet-101
8 77.374/93.546

ResNet-50 77.428/93.712
ResNet-101 78.270/94.152
ResNet-50 77.624/93.862

4 77.836/93.662
ResNet-101 78.476/94.008

CUB200-2011 (Fine-grained):
Teacher w/ LS Acc. (Top1/Top5) Student Acc. (Top1/Top5)

ResNet-50
8 79.931 ± 0.037/94.370± 0.064

ResNet-18 77.116 ± 0.086/93.241± 0.108

ResNet-50 80.910 ± 0.033/94.738± 0.114

ResNet-18 78.382 ± 0.099/93.621± 0.120
4 81.497 ± 0.035/95.043± 0.112

ResNet-50 82.355 ± 0.050/95.440± 0.075

ResNet-101
8 80.380/94.491

ResNet-50 81.261/94.905
ResNet-101 81.572/95.371
ResNet-50 82.263/95.320

4 82.332/94.970
ResNet-101 82.522/95.199

iMaterialist-2019 P (Noisy):
Teacher w/ LS Acc. (Top1/Top3) Student Acc. (Top1/Top3)

ResNet-50
8 66.241/91.015

ResNet-18 65.250/90.243
ResNet-50 67.420/92.155
ResNet-18 65.359/90.530

4 66.825/91.669
ResNet-50 67.528/92.551

ResNet-101
8 66.726/91.263

ResNet-50 67.905/92.481
ResNet-101 68.281/92.580
ResNet-50 67.925/92.789

4 67.370/91.877
ResNet-101 68.618/92.907

E RESULTS OF KNOWLEDGE DISTILLATION WITH HARD AND SOFT LABELS

Here we verify whether label smoothing is still effective when adopting hard labels in knowl-
edge distillation. As we mentioned above, the traditional distillation loss can be formulated as
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Table 8: ImageNet results on the same student structure with different teachers. “Long” indicates we
train with more budget (160 epochs), the default is 90. “R50 and R18” are ResNet-50/18, respectively.
Teacher (same arch) Acc. (Top-1) Student Acc. (Top-1) Teacher (different archs) Acc. (Top-1) Student Acc. (Top-1)
R50 76.056 R18 71.478 MobileNet V2 71.878 R18 70.054
R50+LS 76.212 R18 71.816 DenseNet-121 74.894 R18 70.922
R50+LS+Long 77.106 R18 72.024 Wide ResNet-50-2 77.808 R18 72.232
R50+LS+Long+CutMix 77.274 R18 72.172 ResNeXt-101-32x8d 79.698 R18 72.412

Table 9: Distillation results with different ratios of the combination with hard labels and soft labels.
The teacher network is ResNet-50 and the student is ResNet-18.

ImageNet
Ratio (hard label – soft label) w/ LS Acc. (Top1/Top5)

0.3 – 0.5
8 71.592/90.386
4 71.752/90.412

0.5 – 0.5
8 71.484/90.218
4 71.748/90.454

0.7 – 0.3
8 71.164/90.196
4 71.314/90.200

λH(pSw ,y) + (1 − λ)H(pSw/T ,pTw/T ). We use ResNet-50 as the teacher and ResNet-18 as
the student and conduct experiments with three different ratios of λ: 0.3, 0.5, 0.7. Our Top-1/5
results are given in Table 9. We can see the teacher networks with label smoothing still distills better
students than the teacher without label smoothing. Also, with a higher probability of hard labels, the
performance declines.

F MINOR PROBABILITIES IN TEACHER NETWORK

The visualization of minor probabilities is shown in Fig. 4 (2), we have two interesting observations
in it: 1) In the enlarged area of Fig. 4 (2), we can observe that several classes have values are close to
zero, this phenomenon means in ImageNet dataset, there are several categories that are very unique
to other classes and the model will barely predict other classes to them; 2) We can also observe more
“red” areas gather at the bottom of the bars. It reflects that the probabilities from the model trained
with label smoothing will be assigned to more classes with smaller values, this is also consistent with
what the label smoothing operation actually does.

G SUPPLEMENTARY METRICS OF INTER-CLASS/ENTIRE VARIATIONS

To better understand the behavior of erased information by label smoothing across different classes,
we also introduce the inter-class stability metric as follows:

S inter
Stability = 1− 1

K

K∑
c=1

(||pTw{c} − pTw{all}||
2) (5)

where K is the number of classes. pTw{all} is average of probability across the entire dataset. pTw{c}
is the mean of pTw in class c. S inter

Stability can be regarded as a supplement for our intra-class stability
metric to measure the inter-class stability. The average probability within each class pTw{c} is defined
as:

pTw{c} =
1

nc

nc∑
i=1

pTw{i,c} (6)

where i is the index of images and nc is the #image in class c. The average probability across entire
dataset pTw{all} is defined as:

pTw{all} =
1

N

N∑
i=1

pTw{i} (7)
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Table 10: Accuracy and inter-class stability results with and without label smoothing on ImageNet-1K.
Here we show (1-S inter

Stability), which denotes the aggregated inter-class variance (the lower the better).
Red numbers are the quantitative values of the erased information by label smoothing.

Netowrks Acc. (%) w/o LS (1-S inter
Stability) w/o LS Acc. (%) w/ LS (1-S inter

Stability) w/ LS
ResNet-18 (He et al., 2016) 69.758/89.078 0.1858 69.774/89.122 0.1724 (-0.0134)
ResNet-50 (He et al., 2016) 75.888/92.642 0.1733 76.130/92.936 0.1610 (-0.0123)
ResNet-101 (He et al., 2016) 77.374/93.546 0.1671 77.726/93.830 0.1646 (-0.0025)
MobileNet v2 (Sandler et al., 2018) 71.878/90.286 0.1797 – 0.1726 (-0.0071)
DenseNet121 (Huang et al., 2017) 74.434/91.972 0.1763 – 0.1666 (-0.0097)
ResNeXt50 32×4d (Xie et al., 2017) 77.618/93.698 0.1658 77.774/93.642 0.1729 (+0.0071)
Wide ResNet50 (Zagoruyko & Komodakis, 2016) 78.468/94.086 0.1602 77.808/93.682 0.1688 (+0.0086)
ResNeXt101 32×8d (Xie et al., 2017) 79.312/94.526 0.1596 79.698/94.768 0.1677 (+0.0081)

where N is the number of samples in the entire dataset. This metric utilizes the probabilities of
inter-class variance to measure the stability of a teacher’s prediction. The results on various network
architectures are shown in Table 10.
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