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Abstract. In image-guided abdominal radiotherapy, accurate localiza-
tion of targets can minimize damage to crucial structure. Due to abdom-
inal movements caused by heartbeat and breathing, however, margins
would be added around target by surgeons to ensure target can be cov-
ered and treated, which would cause additional trauma. To alleviate
motion uncertainties and minimize trauma, we propose an accurate al-
gorithm based on a novel deep tracker and outliers rejection method for
anatomical landmark tracking in 3D liver ultrasound sequences. Firstly,
we couple normalized cross correlation filter (NCC) with fully convolu-
tional network (FCN) and reformulate NCC as a differentiable layer to
generate a novel and effective deep tracker. Meanwhile, we introduce the
channel attention mechanism to generate the effective features. Finally,
we derive a fast implementation form of NCC, which enables the algo-
rithm to track in real time. The organizers of the Challenge of Liver
Ultrasound Tracking (CLUST) evaluate the proposed algorithm, which
yields mean and 95%ile tracking error of 1.70 0.98 mm and 3.05 mm,
on 22 landmarks across 10 3DUS sequences. Comparison between our
and published algorithms shows our algorithm achieves state-of-the-art
performance. Moreover, it is proved by ablation study that the leading
tracking results significantly benefit from fast NCC and channel atten-
tion mechanism.

Keywords: Fast normalized cross correlation filter, Channel attention
module, Outliers rejection, Abdominal intervention therapy.

1 Introduction

In abdominal interventions, due to abdominal movement caused by heartbeat
and breathing, surgeons would spend more time locating targets and set margins
around target to ensure it could be covered and treated, which cause additional
trauma. Therefore, effective motion management in intervention is crucial for
minimizing the trauma. The approaches [9, 16] of motion mitigation are used
to reduce the speed of the target to reduce the difficulty of target localization.
However, these approaches may cause additional damage to health tissue and
increase the surgery time. Therefore, more and more surgeons pay attention to
the approaches of direct target localization.
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In order to reduce the risk of surgery, surgeons want to be able to observe the
movement of the target directly. Therefore, medical image-guided intervention
therapy has become the most common way of abdominal intervention therapy.
Compared with other types of medical images, such as computed tomography
(CT) and magnetic resonance imaging (MRI), ultrasound (US) is attractive as
its non-radiation and rich temporal resolution. Moreover, 3D US can show the
abundant structure information and real motion pattern in liver. Therefore, 3D
US is an ideal choice to guide surgeons in surgery. To locate the target tissue,
the 3D US-based approaches [1, 4, 10, 13, 14, 17] that track the landmark in
target tissue have been proposed. Most of these methods mainly focus on estab-
lishing the physical or physiological model of the target tissue, and then tracking
the target. Inevitably, this will increase the complexity of these approaches. In-
evitably, this will increase the complexity of these approaches and limit their
clinical application. Recently, the approach [6] based on deep network has been
proposed. However, how to increase the its robustness needs further discussion.

In this paper, a tracking algorithm based on deep tracker and outliers rejec-
tion method is proposed. Our main contributions are: first, we couple normalized
cross correlation filter (NCC) with fully convolutional network (FCN) to generate
a novel and effective deep tracker. Second, we introduce channel attention mech-
anism and train network end-to-end to generate more appropriate convolutional
features for NCC. Third, we reformulate the tradition NCC as fast NCC, which
enables the algorithm to track landmark in real time. Our algorithm achieves
the state-of-the-art performance on CLUST dataset [9] for landmark tracking in
3D US. Based on the above contributions and the performance of the proposed
network, proposed algorithm is potential to guide surgeons to accurate track
target and minimize trauma in 3D ultrasound-guided intervention therapy.

2 Related work

In order to alleviate the uncertainties from breathing, heartbeat, and drift of
patients, motion management approaches, such as respiratory gating technology
[10] and anesthesia [17] are utilized to decrease the movement speed of liver.
However, these approaches may cause additional damage to health tissue and
increase the surgery time.

3D ultrasound-guided tracking of anatomical landmarks draws more and
more attention [10], as it has large potential for reducing complication rates
and minimizing surgical trauma [14]. Over the last decade, several approaches
that utilize 3DUS for the anatomical landmark tracking have been proposed. A
preoperative modeling approach [4] first employs 3D US to model the respiratory
movement of the abdomen. However, this approach does not achieve intraopera-
tive liver motion tracking. Further an intraoperative localization approach [17],
which achieves a high landmark location accuracy has been proposed. Never-
theless, due to its high complexity, its clinical application is limited. In order
to reduce the complexity, a morphological and geometrical constraints based
outliers rejection method [1] has been proposed. Additionally, a dense motion
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estimation and mechanical model simulation approach [13] achieves impressive
tracking performance. While it can effectively simulate the real liver motion pat-
tern, parameter tuning limits its application. Moreover, this approach depends
on initial anatomical contours, which is potentially increase extra burden on
surgeon when employing them into clinical application.

Recently, deep learning based approaches has shown potential for fast and
robust US landmarks tracking. SSPMNet [6] couples the Siamese network with
fully connection network to track 3D US landmarks, while it adds the spatial
pyramid pooling (SPP) [7] after Siamese network. This approach uses block-
matching based tracking strategy to locate the position of landmarks in 3D US,
which makes its tracking speed unsatisfactory.

3 Method

3.1 Network Architecture

Fig. 1. The normalized cross correlation network in training process. The cube in target
and the cube in search frame denote target and search block respectively. The red dots
are manual annotation landmarks. The ConvNet means convolutional network.

As depicted in Fig.1, we couple the NCC with FCN and train it end-to-end
to generate an effective deep tracker. Firstly, the FCN network is utilized to
learn a feature representation of 3D US. Meanwhile, we introduced the channel
attention module to generate the more effective convolutional features. Secondly,
to alleviate the influence of ultrasonic gain variation, we introduce the NCC to
calculate the 3D similarity map. Finally, as the loss function is optimized, the
3D similarity map is closer to the label. The FCN consists of three convolution
layers. After each convolutional layer, batch normalization (BN) and rectified
Linear Units (ReLU) are used.
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3.2 Normalized Cross Correlation Layer

The Foundation of NCC. NCC is a classical method for stereo vision match-
ing. The operation process of NCC is similar to the cross correlation. Compared
with cross correlation, NCC is robust to ultrasonic noise and gain variation. Let
T l, F l represent the l-th channel of transformation of target block t ∈ Rw×h×d

and search block f ∈ RW×H×D. Let F l
xyz ∈ Rw×h×d denotes the block, whose

size is same as the size of target block, and center coordinate is (x, y, z) in search
block. Therefore, single channel NCC can be represented by Eq. (1).

Rl
xyz =

∑
ijv

[
F l
xyz(i, j, v)− F l

xyz

] [
T l(i, j, v)− T̄ l

]√∑
ijv

[
F l
xyz(i, j, v)− F l

xyz

]2∑
ijv

[
T l(i, j, v)− T l

]2
=

1

N

∑
i,j,v

(
F l
xyz(i, j, v)− µF

)
√
σF

(
T l(i, j, v)− µT

)
√
σT

(1)

where, Rl
xyz refers to the similarity score or response value on position (x,y,z) of

l-th similarity map.¯denotes the average value, and N = w×h×d. Multi-channel
NCC can be calculated by Eq. (2), where βl is calculated by the CAM:

R =
∑

βlRl (2)

Loss Function and Back-propagation. To better train the proposed net-
work, we minimize the hingeloss:

l(ω) =
∑

max(0, 1−R · y) + ρ‖ω‖2 (3)

where, y is the label, whose calculation method is similar to that of Siame-
seFC [3], but the value of negative example is set to -1. In order to make convolu-
tional features more appropriate for NCC, we reformulate the traditional NCC
as a differentiable layer and then train the network end-to-end. In fact, both
the calculation process of NCC and that of correlation can be regarded as that
of block matching [5] with different similarity calculation methods. Therefore,
when the target blocks slide to different positions on search block, the calculation
process of similarity is independent and same. Therefore, the back-propagation
of NCC is independent after each sliding. The back-propagation form of upper
branch in Fig. 1 can be written as Eq.4 [15]:

∂NCC
(
T l, F l

xyz

)
∂T l(i, j, v)

=
1

NσT

(
F l
xyz(i, j, v)− µF

σF

−
NCC

(
T l, F l

xyz

) (
T l(i, j, v)− µT

)
σT

(4)

Additionally, the back-propagation of lower branch in Fig. 1 is:
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∂NCC
(
T l, F l

xyz

)
∂F l

uv(i, j, v)
=

1

NσF

((
T l(i, j, v)− µT

)
σT

−
NCC

(
T l, F l

xyz

)
F l
uv(i, j, v)− µF

σF

(5)

With Eq. (4) and Eq. (5), the back-propagation can be performed from NCC
to FCN and then network can be trained end-to-end.

Fast Implementation Form of NCC. According to [5], the µT and σT of
the target block only need to be calculated once. However, the µE and σF of
search block at each position must be calculated, which are very time-consuming
operation. In fact, they involve a lot of repeated calculations. By simplifying
NCC, therefore, the calculation of NCC can be accelerated. Let T ′ = T l − T̄ l.
For the numerator of Eq. 1, we can get the following formula:

NCCnum =
∑

F l
xyz(i, j, v)T ′(i, j, v)− F l

xyz

∑
T ′(i, j, v) (6)

Note that T ′ is zero-mean, hence, the second part of Eq. (6) can be removed.
For denominator of Eq. (1), the problematic quantities are those in the expres-

sion
∑

ijv

[
F l
xyz(s)(i, j, v)− F l

xyz

]2
, which can be expanded easily by binomial

theorem. Furthermore, note that:

∑
ijv

(F l
xyz)2 = N

 1

N

∑
ijv

F l
xyz(i, j, v)

2

(7)

By the expansion of
∑

ijv

[
F l
xyz(s)(i, j, v)− F l

xyz

]2
and Eq. (7), the denom-

inator of Eq. (1) can be simplified as :

NCCden =


∑

ijv

(
F l
xyz(i, j, v)

)2 − 1

N

∑
ijv

F l
xyz(i, j, v)

2
 (T ′)

2


0.5

(8)

Therefore, we can implement the fast NCC by utilizing four correlation:

FNCC
(
T l, F l

)
=

T ′ ? F l√
(F l)

2
? U − (F l ? U)

2
/N

√
(T ′)

2
? U

(9)

Where, ? is the correlation operator. U is the 3D matrix whose size is same
as that of target block and whose elements are all 1. In fact, the above corre-
lation can be converted into Hadamard product in frequency domain, and the
calculation speed would be faster. However, due to the boundary effect, we just
implement FNCC on the original domain.
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3.3 Channel Attention Module

Different convolutional feature channels often correspond to different types of
visual pattern [16]. In other words, the contributions of different convolution
feature channels to the final result are different. Therefore, we introduce the
channel attention module (CAM) to select the more significant convolutional
feature. To keep the adaptation ability of the network to the different input size
and target appearance variation, we utilize SPP to squeeze the convolutional
features and employ a learn-based module to weight the features of different
channels. [6] proves that the hierarchical features extracted by SPP at different
scales are helpful to improve the accuracy of target localization in US. Addition-
ally, note that Softmax is used as the final activation function, whose benefit is
that the sum of weights of different channel features is 1. And then the output
of NCC layer can be fixed between -1 and + 1.

3.4 Online Tracking and Outliers Rejection

To improve the robustness of tracking algorithm, an outliers rejection approach
that can capture the motion pattern of local tissue to correct the displacement
of the target. First, we sample several blocks around the target, which are called
context blocks and have the same size as target block. In the search frame,
our sampling strategy is the same as that of the training process. Second, by
feeding the blocks to the proposed network, the most similar central coordinates
of target block and context blocks in search frame can be obtained. In this way,
we can use the movement information of the surrounding tissue to compensate
the displacement of the target. However, ultrasound suffers from low signal-to-
noise ratio and low spatial resolution [14], which may lead to inaccurate tracking
results.

To reject outliers and improve the tracking performance, therefore, we intro-
duce a robust outliers rejection method. Though, due to respiration and heart-
beat, the movement of the liver is very intense, the displacement of different
parts of the same tissue in the liver is very close. Therefore, the distance be-
tween outliers and inliers varies greatly at different time or frame, while the
inliers preserve their geometric distances. Additionally, note that the higher the
tracking score, the more reliable the result is. Let P t be the set of central co-
ordinates of sampling blocks from target frame. Correspondingly, let P s denote
the set of tracking central coordinates in search frame. Ms ∈ Rm is the set of
the corresponding tracking scores. With the above prior knowledge, we construct
geometric model and score model [1]:

Guo = exp

(
− d

2
uo

2ϑ2G

)
, d2uo =

|‖P t
u − P t

o‖ − ‖P s
u − P s

o ‖|
‖P t

u − P t
o‖+ ‖P s

u − P s
o ‖

(10)

M = exp

(
−|1−Ms|2

2ϑ2M

)
(11)
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where G ∈ Rm×m is the adjacency matrix, whose elements represent the
distance variation corresponding pair of points at different time or frame. M
is the score vector. In order to combine the above models for robust outliers
rejection, the following objective function is proposed:

GSCM = XTKX, K = G+
γ

2

(
EMT +MET

)
(12)

where, X is the confidence, which states whether the tracking result is outlier
or not. X ∈ ∆, which is unit simplex, and defined as: ∆ =

{
X ∈ Rm

+ : ETX = 1
}

where, E = [1, 1 · · · 1]T Replicator equation is utilized to optimize the Eq. (12)
[11]. Replicator equation is:

Xtj(ti+ 1) = Xtj(ti)
(KX(ti))tj

X(ti)TKX(ti)
(13)

where, Xh is the tjth term of X. The detailed iterative update process is
same as [1]. In addition, in order to utilize the temporal information, we set up
the following time consistent model.

D′te =

{
Dte, Ms ≥ threshold
Dte−1, other

(14)

where, D′te/Dte is the displacement before/after correction of landmark in
current frame, and Dte−1 is the displacement after correction of the landmark
in the previous frame.

4 Experiments

4.1 CLUST Dataset

In this work, the CLUST 2015 challenge dataset [9] is used to train and evalu-
ate the proposed algorithm. The ground truth of landmark is established using
manual annotations by the radiologist. The summary of this data is shown in
Table 1. An example image is shown in Fig 2.

Table 1. Summary of CLUST dataset. Train and Test denote the training set and test
set of the CLUST dataset.

Source Objects(Train / Test) Volume Size Resolution (mm) Frame Rate (Hz)

EMC 6/8 192 × 246 × 117 1.14 × 0.59 × 1.19 6
ICR 1/1 480 × 120 × 120 0.31 × 0.51 × 0.67 24
SMT 9/13 227 × 227 × 229 0.70 × 0.70 × 0.70 8
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Fig. 2. An example image in CLUST dataset. The red dos is the tracking anatomical
landmark.

4.2 Implementation Details

In training process, the size of target block and search block are {17×17×17, 45×
45× 45}. With the prior knowledge of physiological movement [1], we augment
the data around three axes and rotating to -2,-1.5,-1,-0.5,0,0.5,1.25,1.5,2 degrees.
We apply Adam [8] with a learning rate of 0.001 and a batch size of 8 to train the
network. For SPP layer, the level of pyramid pooling is set to {1×1×1, 2×2×2}.
In tracking process, the size of search block is 91 × 91 × 91. Because the time
resolution and spatial resolution of different types of sequences are different,
we set different parameters for different type data. We set thresholds in time
consistent model of (EMC, ICR, SMT) as (0.5, 0.2, 0.6). Further, for ultrasound
sequences with spatial resolution greater than 1mm, the target block size is set
to 17 × 17 × 17, and for ultrasound sequences with spatial resolution less than
1mm, the target block size is set to 19× 19× 19. For outliers rejection method,
we set {γ, ϑG, ϑM} as {0.1, 0.1, 0.1}.

Besides, all experiments are conducted on a workstation with Intel Core i9-
9900X at 3.5GHz and NVIDIA RTX 2080 Ti 11GB GPU.

4.3 Results on CLUST Test Dataset

Euclidean distance is applied to evaluate tracking performance between the
tracked points and manual annotations. Error statistics are summarized by
mean, standard deviation (SD), and 95%ile error. Table. 2 shows that the track-
ing results of the proposed algorithm on CLUST test dataset. Further, the com-
parison between our and published algorithms is shown in Table 3. It shows that
our algorithm achieves an improvement in mean of 0.04 mm (approx-imately
2.30%) and 95%ile error 0.36 mm (approximately 10.56%). Additionally, the
tracking speed of the proposed algorithm is also improved. The average tracking
speed of the proposed algorithm is 5 frame per seconds (fps), which is close to
the imaging speed of 3D US. The processing speed of fast NCC is about 15 times
that of traditional NCC. These support that the proposed algorithm achieves
state-of-the-art performance and real-time tracking.
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Table 2. Tracking results of the proposed algorithm on CLUST test dataset in mil-
limeter

Landmark Objects Mean SD 95ile

EMC 8 1.97 0.90 3.60
ICR 1 1.85 0.49 2.53
SMT 13 1.67 0.99 2.96
Total 22 1.70 0.98 3.05

Table 3. Comparison between our and published algorithms in millimeter. # means
that no access to 20% of all data before computation of the tracking results. More
details please see https://clust.ethz.ch/results.html (the first anonymous on results of
3D point-landmark tracking)

Approach Tracked objects Mean SD 95ile

Royer et al. [13] 80% 1.74 0.92 3.65
Banerjee et al. [2] 80% 1.80 1.64 3.41

Our 100% 1.70 0.98 3.05

4.4 Ablation Study

In order to understand the benefits from different part of the proposed network,
in this part, we perform ablation study on CLUST training set ( 20% for training,
80% for testing). Table 4 shows the tracking performance with different similarity
calculation methods. Table 3 supports that the proposed algorithm significantly
benefits from fast NCC. Besides, when Euclidean distance and correlation are
used to calculate the similarity between target block and search block, there may
be cases of tracking failure, which is similar to the conclusion of [14]. Specifically,
we note that when L2 and Xcorr are used as similarity calculation methods, the
tracking moving curves in some cases may be the straight line, while the target
are moving.

Table 4. Tracking performance with different similarity calculation methods in mil-
limeter. − denotes that there are cases of tracking failure. SCM denotes the different
similarity calculation method.

SCM Mean SD 95ile

L2 - - -
Xcorr - - -
Cosine 2.98 1.87 5.88
NCC 1.84 0.95 3.23
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Table 5. Tracking performance with different Siamese network architecture in mil-
limeter.

Network Mean SD 95ile

0 Convlayer 3.26 2.62 9.20
1 Convlayer 1.86 0.97 3.25
2 Convlayer 1.86 0.96 3.24
3 Convlayer 1.84 0.95 3.23
4 Convlayer 1.87 0.97 3.26
5 Convlayer 1.95 1.04 3.49

without CAM 1.94 1.03 3.51

Table 4 shows that proposed algorithm can benefit from CNN features and
CAM. Note that the result, which does not use CNN feature is the tracking result
of [2] on CLUST training set. Compared with the other two jobs, we found that
we have made a greater improvement in the training set. This comparison is
shown in Table 6. In fact, this is because that tracking algorithm faces different
types of difficulty in training set and test set. In training set, some tissues undergo
large deformation, and in test set, some targets may go out of the field of view
(FOV). This shows that the algorithm can greatly reduce the influence of target
tissue deformation.

Table 6. Tracking performance with different similarity calculation methods on train-
ing set in millimeter.

Approach Mean SD 95ile

Royer et al [13] 2.16 0.93 3.28
Banerjee et al [2] 3.26 2.62 9.20

Our 1.84 0.95 3.23

5 Conclusion

In this paper, we propose an accurate and real-time tracking algorithm for
anatomical landmark tracking in 3D ultrasound-guided intervention. By cou-
pling the FCN and NCC and training it end-to-end, an effective tracker is gen-
erated after coding 3D ultrasound images. Meanwhile, channel attention module
is introduced to generate the more effective convolutional features. Then, fast
NCC and outliers rejection method are introduced into this work to improve
the computing speed and the robustness of the proposed algorithm. Finally,
compared to other published work, the algorithm achieves the state-of-the-art



450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#11
ECCV

#11

ECCV-20 submission ID 11 11

performance on CLUST dataset. Extensive ablation study proves that proposed
algorithm significantly benefits from fast NCC and convolutional features. In
conclusion, the proposed algorithm is potential to guide surgeons to accurately
locate target with less time and minimize trauma in 3D ultrasound-guided inter-
ventional therapy. Future, different feature fusion approaches and scale learning
are the potential choices to further improve the tracking performance.
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