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Abstract

Molecular fingerprinting methods use hash functions to create fixed-length vector
representations of molecules. However, hash collisions cause distinct substructures
to be represented with the same feature, leading to overestimates in molecular
similarity calculations. We investigate whether using exact fingerprints improves
accuracy compared to standard compressed fingerprints in molecular property
prediction and Bayesian optimization where the underlying predictive model is a
Gaussian process. We find that using exact fingerprints yields a small yet consistent
improvement in predictive accuracy on five molecular property prediction bench-
marks from the DOCKSTRING dataset. However, these gains did not translate to
significant improvements in Bayesian optimization performance.

1 Introduction

Molecular fingerprints are vector representations that encode chemical structure information [Yang
et al,[2022]. Despite substantial advances in Al, neural network representations of molecules have not
been shown to robustly outperform fingerprints on molecular property prediction tasks, particularly
given limited training data [Green et al.,[2023| |[Praski et al.l 2025]].

Ideally, each dimension in a molecular fingerprint should represent a unique substructure in a molecule.
For example, in Extended Connectivity Fingerprints (ECFPs) [Rogers and Hahn) 2010]11_-] each
dimension represents a circular substructure up to a given radius. However, due to the combinatorially
large number of possible substructures, such fingerprints would be extremely high dimensional.
Common practice is to instead use a fixed-length vector, usually of dimension 1024 or 2048, using
hash functions to map substructure to a dimension. When there are more structures present than
the length of this vector, it will inevitably result in collisions, where a single dimension is used to
represent multiple distinct substructures. An example of this is given in Figure

Intuitively, one would expect the effect of such collisions to be problematic, since it prevents machine
learning algorithms from distinguishing between substructures whose effects may be different.
In this paper we investigate this hypothesis quantitatively using Gaussian process (GP) models.
Because GPs are kernel methods which typically use the similarity between fingerprints as input,
the effect of hash collisions can be isolated without introducing confounding factors like a changed
number of parameters. Our results in §4] show that eliminating collisions results in a small but
consistent improvement on regression metrics, but has a negligible effect on Bayesian optimization
(BO) performance. Given GPs’ natural applicability to lab-in-the-loop active learning tasks [Moss
and Griffiths} 2020, |Griffiths et al., 2023, we believe these results provide important guidance to
practitioners.

!Alternatively known as Morgan fingerprints. Arguably, this is the most popular type of fingerprint.
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Figure 1: Example of collisions. (Left) Two structurally different molecules (SMILES strings are
CC(=0)0C1=CC=CC=C1C(=0)0and CC(C)CC1=CC=C(C=C1)C(C)C(=0)0) with highlighted circular
substructures of radius 2. (Middle) Highlighted substructures and their corresponding Morgan
identifiers, as well as the resulting hash values after taking modulo 32 (corresponding to the fingerprint
size). (Right) Fingerprint vector where both distinct substructures map to the same element given by
the hash key, demonstrating how different substructures can map to the same dimension.

2 Background

2.1 Gaussian processes

GPs are a commonly used class of probabilistic models which assume that the data follows a
joint multivariate Gaussian distribution. The mean of the distribution is given by a mean function
u X — R, and the covariance is given by a positive-definite kernel function & : X x X — R,
where X’ denotes some input space. A detailed treatment of GPs can be found in several textbooks
[Rasmussen and Williams), |2006| |Garnett, 2023]]. GPs have become popular for molecular property
prediction due to their efficacy in low-data regimes [Green et al.| 2023| Moss and Griffiths| [2020,
Griffiths et al., |2023]]. A common choice of kernel function for molecular fingerprints is the Tanimoto
kernel, which computes the Tanimoto similarity between two molecules, defined as
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where x, x" are molecular fingerprint vectors. The full covariance function then takes the form

k(x, %) = a® Franimow (%, X) + 07, 6(x, %) | ©)

where a? and o2 are the amplitude and noise variance hyperparameters respectively, and J(x, x’) is
the Kronecker delta.

2.2 Bayesian optimization

BO is a sequential optimization method for expensive black-box functions [Garnett, [2023]]. BO uses
a probabilistic surrogate model (commonly a GP) to approximate the unknown objective function
from observed data. At each iteration, an acquisition function balances exploration of uncertain
regions with exploitation of promising areas to select the next point(s) to evaluate. In molecular
optimization, this corresponds to selecting molecules for expensive experimental evaluation (e.g.,
synthesis and testing). The acquired data is used to retrain the surrogate model, yielding a more



accurate approximation of the objective function. This process is then repeated until some stopping
criterion is met (e.g., budget exhausted or satisfactory molecules found).

BO heavily relies on accurate predictions of the objective function by the surrogate model. However,
as we established, when using a GP surrogate model, the performance can suffer as a result of
overestimates of the similarities between molecules. This paper investigates whether exact fingerprints
improve GP accuracy and whether this has a substantial effect on BO performance.

3 Methods

3.1 Fingerprint representations

We evaluated three different strategies for encoding molecular fingerprints. Exact fingerprints, as
previously mentioned, preserve all unique substructures without compression, resulting in variable-
length representations depending on the number of unique substructures present in the molecule.
In contrast, compressed fingerprints use fixed-length vectors with RDKit’s default hash function,
causing collisions when the number of unique substructures exceeds the vector dimension. Finally,
we used the Sort&Slice method as proposed by Dablander et al.| [2024], which selects the most
frequently occurring substructures from a reference dataset rather than using hash-based folding.
This eliminates collisions for the most common substructures, reducing the number of hash collisions
overall.

For all three approaches, we used count-based ECFPs with radius 2. Count fingerprints store the
frequency of each substructure, as opposed to binary fingerprints which only indicate the pres-
ence/absence of each substructure. Our rationale for this was to include as much information as
possible in the compressed fingerprints, in order to not give exact fingerprints an artificial advan-
tage. For the Sort&Slice method, we calibrated the substructure selection using the ZINC250k
dataset. Thus, all three fingerprint methods compute the same underlying substructure identifiers,
with differences arising solely from how these are encoded into vectors.

3.2 Gaussian process implementation

Standard GP libraries typically require fixed-dimensional input vectors, making them incompatible
with exact fingerprints that have variable dimensions. To address this, we developed a custom
GP implementation that works directly with RDKit fingerprint objects by computing Tanimoto
similarities using the Tanimoto kernel and storing only the resulting kernel matrices. This approach
enables fair comparison between exact and fixed-length fingerprints using identical GP methodology
with performance differences attributable solely to the fingerprint representation and resulting kernel
evaluations.

3.3 Experiment design

Datasets and tasks. We evaluated our methods on five protein-ligand docking targets from the
DOCKSTRING regression benchmark [Garcia-Ortegon et al.| [2022]. DOCKSTRING provides a
dataset of over 260,000 diverse molecules each docked against 58 protein targets, resulting in over 15
million docking scores. The five targets in the regression benchmark span different protein families
and difficulty levels: PARP1 (enzyme, easy), F2 (protease, easy-medium), KIT (kinase, medium),
ESR2 (nuclear receptor, hard), and PGR (nuclear receptor, hard). We use the predefined cluster-based
train/test split to prevent data leakage from structurally similar molecules.

Molecular property prediction. To assess the effects of hash collisions in molecular fingerprints
on property prediction, we evaluated GP regression performance on the aforementioned tasks for
each fingerprint type. For the fixed-length fingerprint vectors (compressed and Sort&Slice), we tested
the following fingerprint dimensions: 512, 1024, 2048, and 4096. Although the full training set
contains approximately 220,000 molecules, we trained on a subset of 10,000 randomly sampled
molecules due to the computational expense of GP training, following the same methodology outlined
in Garcia-Ortegén et al.| [2022]). We evaluated predictions using R2, mean squared error (MSE), and
mean absolute error (MAE) on the predefined test set consisting of approximately 38,000 molecules.
Each experiment was run under two settings of the GP hyperparameters: fixed and optimized (details



on hyperparameter settings can be found in Appendix [B]). Results were averaged across 10 random
trials for each setting.

Bayesian optimization. We also investigated the effect of hash collisions in BO. Our hypothesis was
that even small differences in predictive accuracy would compound, yielding significant differences
in BO outcomes over many iterations. To test this, we simulated BO on the same five DOCKSTRING
targets using a GP surrogate model with fixed hyperparameters. We used the complete dataset
(combining training and test sets) as the candidate pool, randomly selected 1,000 molecules from
the bottom 80% of the dataset as the initial training set, and ran optimization with a budget of 1,000
iterations using expected improvement (EI) as the acquisition function. The same three fingerprint
configurations previously discussed were compared, using fingerprint dimensions of 1024 and 2048
for the fixed-length fingerprints. We evaluated performance using area under the curve (AUC) of the
best observed value over time, and averaged our results across 5 random trials of each experiment
setting.

4 Results

4.1 Molecular property prediction

Exact fingerprints consistently outperformed compressed fingerprints across all DOCKSTRING
targets under both hyperparameter settings. Table[I|shows results with optimized hyperparameters,
where exact fingerprints universally outperformed the best-scoring compressed configurations, with
improvements in R? scores ranging from 0.006 (F2) to 0.017 (KIT). Against Sort&Slice finger-
prints, exact fingerprints showed mixed performance: outperforming on two targets (ESR2, KIT),
matching performance on two targets (F2, PARP1), and being outperformed on one target (PGR),
where Sort&Slice achieved an R? score of 0.480 vs. 0.470. Notably, PGR was both the hardest
task (with the lowest overall R? scores) and the only target where Sort&Slice outperformed exact
fingerprints, achieving its best performance at the smallest dimension tested (512) rather than the
typical 4096. These same patterns were observed across all evaluation metrics (MSE and MAE)
and were particularly pronounced under fixed hyperparameter settings, where exact fingerprints
outperformed all alternatives on every target. Complete results are provided in Appendix [C|

To assess statistical significance, we performed one-way ANOVA followed by Tukey’s HSD post
hoc test with type I error rate @ = 0.05, comparing exact fingerprints against each alternative.
Exact fingerprints showed statistically significant performance improvements against compressed
fingerprints across all targets, fingerprint sizes, and hyperparameter settings. For Sort&Slice, the
performance differences observed were statistically significant on ESR2, KIT, and PGR, while
differences on F2 and PARP1 were not significant.

Figure 2] demonstrates the monotonic relationship between fingerprint dimension and predictive
performance for the ESR2 and KIT targets. Fixed-length fingerprints show consistent improvements
in R? score as dimension increases from 512 to 4096, approaching exact fingerprint performance.
This scaling pattern was observed for both compressed and Sort&Slice fingerprints across nearly all
targets and hyperparameter settings, with the sole exception of Sort&Slice on PGR with optimized
hyperparameters. These observations are consistent with the hypothesis that mitigating errors in

Table 1: GP Regression Performance with Optimized Hyperparameters. Values show mean R? scores
41 standard deviation across 10 random train/test splits. For compressed and Sort&Slice fingerprints,
numbers in parentheses indicate the best-performing fingerprint dimension among those tested (512,
1024, 2048, and 4096). Bold indicates best performance for each target. An asterisk * indicates
statistically significant difference from exact fingerprint based on Tukey’s HSD test (o = 0.05).

Target Exact Compressed Sort&Slice
ESR2 0.553 +0.003  *0.54 £ 0.003 (4096)  *0.545 = 0.004 (4096)
F2 0.848 +0.002  *0.842 £ 0.002 (4096)  0.848 £ 0.002 (4096)

KIT 0.745 +=0.002 *0.728 £0.002 @096y  *0.739 = 0.003 (4096)
PARPI 0.882 +0.001 *0.876 4= 0.001 4096y  0.882 4= 0.001 (4096)
PGR 0.470 +0.004 *0.457 & 0.004 40%6)  *0.480 £ 0.003 (512)
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Figure 2: R? scores for GP regression with optimized hyperparameters as a function of fingerprint
dimension on ESR2 (left) and KIT (right) targets. Exact fingerprints (purple) consistently outperform
compressed fingerprints (orange) and Sort&Slice method (green). Dark lines indicate mean and
shaded regions indicate +1 standard deviation across 10 random train/test splits. Note that the
dimension of exact fingerprints is not changing, but the performance is included as a horizontal line
for reference.

similarity calculations leads to improved regression performance in GPs. We provide further analysis
of hash collision rates and the resulting effects on similarity calculations in Appendix

4.2 Bayesian optimization

Despite the consistent improvements in GP regression accuracy, exact fingerprints yielded no sig-
nificant improvement in BO performance. Table 2]summarizes AUC scores across all five targets,
showing no clear advantage for any fingerprint configuration. In fact, exact fingerprints achieved the
best performance on only one target (ESR2), while compressed and Sort&Slice methods matched or
exceeded exact performance on the remaining targets.

Figure [3] shows representative BO trajectories for two DOCKSTRING targets, illustrating how
all fingerprint configurations follow similar optimization paths despite their different regression
accuracies. This disconnect suggests that the small improvements observed in predictive accuracy
do not necessarily translate to significant differences in the sequential decision-making process that
drives molecular optimization.

Table 2: Bayesian Optimization Performance (AUC scores). Values show mean +1 standard
deviation across 5 random trials. Bold indicates best performance for each target.

Compressed Sort&Slice
Target Exact 1024 2048 1024 2048
ESR2 0.973 +£0.004 0.965+0.015 0.952+£0.013 0.968 £0.013 0.972 £ 0.006
F2 0.986 +£0.004 0.989 +0.004 0.989 +0.004 0.983+0.005 0.988 £ 0.004
KIT 0.973 £0.007 0.973+0.01 0.971+£0.005 0.978 £0.005 0.981 + 0.005
PARP1 0.972+£0.004 0.970+£0.003 0.977£0.002 0.977 £0.002 0.978 + 0.006
PGR 0.860 £0.023 0.868 £0.035 0.856 £0.028 0.867 £0.021 0.873 + 0.023
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Figure 3: BO trajectories for two targets: ESR2 (top) and PGR (bottom). The first column shows the
score of the best molecule at each iteration, and the second column shows the average score of the top
10 acquired molecules at each iteration. For fixed-length fingerprint types, two fingerprint sizes are
shown: 1024 (dashed line) and 2048 (solid line). Dark lines indicate the median and shaded regions
indicate the 1st and 3rd quartiles over 5 random trials. The dashed horizontal lines in the left-hand
figures indicate the 99.9™ percentile and the best possible score for each target.

5 Discussion

Our results demonstrate that exact fingerprints consistently improve GP regression performance across
all DOCKSTRING targets, supporting our hypothesis that hash collisions lead to overestimated
molecular similarities and thus reduced predictive accuracy. The Sort&Slice method performs
comparably to exact fingerprints, suggesting that preserving the most informative substructures
may be an effective alternative to eliminating all hash collisions. Interestingly, these regression
improvements did not translate to enhanced Bayesian optimization performance, where all fingerprint
types achieved similar AUC scores. Future work could further investigate the relationship between BO
and predictive accuracy of the surrogate model. We note that, in addition to predictive performance,
accurate uncertainty estimates are also a key component of successful BO procedures.

Several limitations should be acknowledged. The Sort&Slice method performance may be overesti-
mated due to potential data leakage, as we calibrated this method using the ZINC250k dataset, which
was also the dataset used for training and evaluation. Additionally, the optimization landscapes may
not have been sufficiently challenging to reveal differences in BO between fingerprint types. For
example, for even the hardest target (PGR), all BO procedures found top 0.1% molecules within
several hundred iterations. In addition to addressing these, future work could investigate the effects
of hash collisions in other types of fingerprints or different kernel methods such as SVMs. While
preliminary results did show similar observations with different fingerprint types, a systematic analy-
sis might prove valuable. Despite these limitations, our work suggests that for property prediction



tasks, methods which reduce hash collisions in molecular fingerprints provide modest but consistent
improvements, while their benefits for BO remain unclear.
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A Hash collisions analysis

To quantify the prevalence of hash collisions in molecular fingerprints, we analyzed the frequency of
collisions in 10,000 pairs of molecules randomly sampled from the DOCKSTRING dataset, and the
resulting effect on Tanimoto similarity calculations.

Table 3: Pairwise collision statistics and Tanimoto similarity differences for compressed fingerprints.
Values are reported as the mean over 10,000 randomly sampled pairs of molecules. Overestimation is
measured as the difference between compressed and exact Tanimoto similarity.

512 1024 2048 4096

Pairwise collisions 4.87 2.43 1.41 0.48
Exact Tanimoto similarity 0.167 0.167 0.167 0.167
Compressed Tanimoto similarity 0.198  0.183 0.176 0.171
Overestimation 0.031 0.0152 0.008 0.004

Table [3] demonstrates the inverse relationship between fingerprint size and the number of hash
collisions between pairs of molecules. As the fingerprint size increases, the number of hash collisions
decreases, along with the overestimation in Tanimoto similarity. Figure []visualizes this systematic
overestimation, where molecule pairs with more collisions tend to lie further above the diagonal line
corresponding to equal similarity calculations.

B GP hyperparameter selection

We evaluated GP performance under two hyperparameter settings: fixed and optimized hyperparame-
ters.

Fixed hyperparameters. For the fixed hyperparameter setting, we used the following values across
all experiments:

* Amplitude: Set to the empirical variance of the training targets for each dataset

* Noise variance: Set to 0.01x amplitude

* Mean function: Constant mean set to the empirical mean of the training targets
These values represent commonly used heuristics in GP regression and ensure consistent comparison
across different fingerprint representations.
Optimized hyperparameters. For the optimized setting, we learned the hyperparameters by opti-
mizing the marginal log-likelihood under gradient descent. Our optimization procedure is outlined as
follows:
Initialization: Started with the same values used for fixed hyperparameters described above
Optimizer: Used Adam optimizer with learning rate 0.01
Objective: Maximized the marginal log-likelihood of the training data

Convergence criteria: Gradient norm below 10~2 or maximum 10,000 iterations reached

A S

Numerical stability: Applied lower bounds on noise variance (minimum 10~* x target
variance) to prevent numerical instability

The optimization was performed independently for each combination of fingerprint type, dataset,
and random trial, allowing each configuration to find its optimal hyperparameters. This approach
ensures that performance differences between fingerprint types are not confounded by suboptimal
hyperparameter choices.

For the BO experiments, we used only the fixed hyperparameter setting to maintain computational
efficiency during the sequential optimization process.
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Figure 4: Tanimoto similarity in compressed vs. exact fingerprints for 10,000 pairs of molecules.
Each point represents one pair, where the x-axis is the Tanimoto similarity computed between exact
fingerprints, and the y-axis is the Tanimoto similarity computed between compressed fingerprints.
The diagonal line corresponds to equal similarity calculations for the two fingerprints, and points
above this line indicate that compression results in overestimated similarity. Shade indicates the
number of hash collisions between each pair, with darker colors representing more collisions.



C Complete regression results

This section provides comprehensive regression results across all DOCKSTRING targets, fingerprint
dimensions, and hyperparameter settings. All values represent mean =+ 1 standard deviation across
10 random trials. Bold indicates the best performance for each target.

C.1 Optimized hyperparameters

Table 4: R? scores with optimized hyperparameters (1)

Compressed Sort&Slice
Target Exact
512 1024 2048 4096 512 1024 2048 4096
ESR2 | 0.553 4 0.003 | 0.515 4+ 0.003 0.525 = 0.003 0.532 £ 0.003 0.540 & 0.003 | 0.541 £ 0.003 0.543 4 0.003 0.543 4+ 0.004 0.545 4 0.004
F2 0.848 + 0.002 | 0.83 +0.002 0.834 £ 0.001 0.838 £ 0.002 0.842 £ 0.002 | 0.843 £ 0.002 0.845 £ 0.001 0.846 £ 0.001 0.848 =+ 0.002
KIT 0.745 + 0.002 | 0.687 £ 0.003 0.703 £ 0.002 0.715 4 0.002 0.728 4 0.002 | 0.716 & 0.003 0.728 &+ 0.003 0.734 = 0.003 0.739 + 0.003
PARP1 | 0.882 =+ 0.001 | 0.865 4= 0.001 0.869 4 0.001 0.872 4= 0.001 0.876 4 0.001 | 0.878 4= 0.001 0.879 4 0.001 0.881 &= 0.001 0.882 =+ 0.001
PGR 0.470 £ 0.004 | 0.444 £ 0.004 0.444 £+ 0.004 0.449 4 0.004 0.457 4 0.004 | 0.480 + 0.003 0.478 + 0.002 0.476 + 0.003 0.474 £ 0.003
Table 5: MSE with optimized hyperparameters ({)
Target Exact Compressed Sort&Slice
512 1024 2048 4096 512 1024 2048 4096
ESR2 | 0.348 £ 0.002 | 0.378 4= 0.002  0.37 £ 0.002  0.364 4 0.002 0.358 4 0.002 | 0.357 4= 0.002 0.356 4 0.003 0.355 4 0.003 0.354 + 0.003
F2 0.156 + 0.002 | 0.176 £ 0.002 0.171 £ 0.002 0.167 £ 0.002 0.163 £ 0.002 | 0.162 £ 0.002  0.16 £ 0.001  0.159 £ 0.001 0.157 £ 0.002
KIT 0.3 +0.003 | 0.369 £ 0.003 0.351 £ 0.002 0.336 £ 0.002 0.321 = 0.003 | 0.335 £ 0.003 0.321 £ 0.003 0.314 £ 0.003 0.307 =% 0.004
PARP1 | 0.185 £ 0.001 | 0.213 4 0.001  0.206 4= 0.001  0.201 4= 0.001  0.195 4= 0.001 | 0.192 4+ 0.001  0.19 £ 0.001  0.187 &= 0.001 0.186 % 0.001
PGR 0.494 + 0.003 | 0.519 £ 0.004 0.519 £ 0.003 0.514 £ 0.003 0.506 = 0.004 | 0.485 £ 0.003 0.487 £ 0.002 0.489 £ 0.003  0.49 + 0.003
Table 6: MAE with optimized hyperparameters (|)
Target Exact Compressed Sort&Slice
512 1024 2048 4096 512 1024 2048 4096
ESR2 | 0.449 + 0.002 | 0.469 £ 0.001 0.465 £ 0.001 0.461 £ 0.001 0.457 £ 0.002 | 0.456 £ 0.002 0.455 £ 0.002 0.455 £ 0.002 0.454 £ 0.002
F2 0.305 + 0.002 | 0.325 £ 0.002  0.32 & 0.001  0.316 £ 0.002 0.311 £ 0.002 | 0.311 £ 0.002 0.309 =% 0.001 0.308 £ 0.002 0.306 = 0.002
KIT 0.422 + 0.002 | 0.47 +0.002 0.458 £ 0.001 0.448 £ 0.001 0.437 £ 0.002 | 0.446 £ 0.002 0.437 £ 0.002 0.432 £+ 0.002 0.427 £ 0.002
PARPI | 0.326 £ 0.001 | 0.352 4= 0.001 0.346 4= 0.001 0.341 4= 0.001 0.335 4= 0.001 | 0.332 & 0.001  0.33 £ 0.001  0.328 4= 0.001 0.327 % 0.001
PGR 0.553 £ 0.002 | 0.568 £ 0.002 0.568 £ 0.002 0.565 £ 0.002 0.561 £ 0.002 | 0.545 £ 0.002 0.547 £ 0.002 0.549 £ 0.003 0.55 &+ 0.002
C.2 Fixed hyperparameters
Table 7: R? scores with fixed hyperparameters (1)
Target Exact Compressed Sort&Slice
512 1024 2048 4096 512 1024 2048 4096
ESR2 | 0.533 &+ 0.004 | 0.491 & 0.003 0498 & 0.004 0.5+ 0.003  0.507 + 0.004 | 0.49 +0.004 0.501 & 0.005 0.506 = 0.005 0.511 = 0.005
F2 0.832 + 0.003 | 0.815 £ 0.003 0.818 £ 0.003 0.821 £ 0.003 0.824 = 0.003 | 0.823 £ 0.003 0.826 £ 0.002 0.827 £ 0.002 0.828 = 0.003
KIT 0.732 + 0.003 | 0.675 £ 0.003 0.688 £ 0.002 0.699 £ 0.002 0.712 £ 0.002 | 0.695 £ 0.003  0.71 £ 0.003  0.719 £ 0.003 0.727 £ 0.003
PARP1 | 0.867 £ 0.002 | 0.852 4 0.001 0.855 = 0.001 0.857 £ 0.001  0.86 & 0.002 | 0.863 £ 0.001 0.865 £ 0.002 0.866 4 0.001 0.866 + 0.002
PGR 0.461 + 0.005 | 0.435 £ 0.005 0.434 £ 0.005 0.432 £ 0.005 0.439 £ 0.006 | 0.452 £ 0.005 0.456 £ 0.004 0.458 £ 0.004 0.459 =+ 0.005
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Table 8: MSE with fixed hyperparameters (J)

Compressed Sort&Slice

Target
512 1024 2048 4096 512 1024 2048 4096

Exact ‘

ESR2 | 0.363 £ 0.003 | 0.397 4 0.003 0.391 4 0.003 0.389 4= 0.003 0.384 4 0.003 | 0.397 4= 0.003 0.389 4 0.004 0.385 4= 0.004 0.381 4 0.004
F2 0.174 £ 0.003 | 0.191 £ 0.003 0.188 £ 0.003 0.185 £ 0.003 0.182 £ 0.003 | 0.182 £ 0.003  0.18 £ 0.003  0.179 £ 0.003 0.177 £ 0.003
KIT 0.315 + 0.003 | 0.383 £ 0.004 0.367 £ 0.002 0.354 £ 0.002 0.339 £ 0.003 | 0.36 + 0.004 0.342 £ 0.004 0.331 £ 0.004 0.322 £ 0.004
PARPI | 0.21 £ 0.003 | 0.233 4= 0.002 0.228 4= 0.002 0.225 4= 0.002  0.22 4 0.003 | 0.215 & 0.002 0.213 £ 0.002 0.211 £ 0.002  0.21 % 0.002
PGR 0.503 + 0.004 | 0.527 £ 0.005 0.528 £ 0.005 0.529 £ 0.005 0.523 £ 0.005 | 0.511 £ 0.005 0.507 £ 0.004 0.505 £ 0.004 0.504 £ 0.004

Table 9: MAE with fixed hyperparameters (|)

Compressed Sort&Slice
512 1024 2048 4096 512 1024 2048 4096

Target

Exact ‘

ESR2 | 0.46 £ 0.002 | 0.481 4 0.002 0.478 4= 0.002 0.478 4= 0.002 0.474 4 0.002 | 0.482 &= 0.002 0.477 = 0.003 0.475 = 0.003 0.472 =+ 0.003
F2 0.319 £ 0.002 | 0.336 £ 0.002 0.333 £0.002 0.33 £0.002 0.327 £ 0.003 | 0.329 £ 0.002 0.327 £ 0.002 0.325 £ 0.002 0.324 =+ 0.002
KIT 0.432 £ 0.002 | 0.478 £ 0.002 0.468 £ 0.002  0.46 £ 0.001  0.449 £ 0.002 | 0.464 £ 0.002 0.451 4= 0.002 0.444 £ 0.002 0.438 4= 0.003
PARPI | 0.342 £ 0.002 | 0.366 4= 0.001  0.36 £ 0.001  0.357 4 0.001 0.352 4 0.002 | 0.351 = 0.001 0.349 & 0.001 0.347 = 0.001 0.346 = 0.001
PGR 0.556 £ 0.003 | 0.569 4 0.003  0.57 4 0.003  0.57 +0.003  0.567 =£ 0.003 | 0.556 £ 0.003 0.554 &= 0.002 0.554 &+ 0.002 0.554 + 0.003

D Code and reproducibility

The custom GP implementation can be found at https://github.com/AustinT/tanimoto-gp. All experi-
ments from the paper can be found at https://github.com/wvirany/molcollisions,
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