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ABSTRACT

We study inductive bias in transformers in the infinitely over-parameterized kernel
limit and argue transformers tend to be biased towards more permutation symmet-
ric functions in sequence space. We show that the representation theory of the
symmetric group can be used to give quantitative analytical predictions when the
dataset is symmetric to permutations between tokens. We present a simplified
transformer block and solve the model at the limit, including accurate predictions
for the learning curves and network outputs. We show that in common setups,
one can derive tight bounds in the form of a scaling law for the learnability as a
function of the context length. Finally, we argue WikiText dataset, does indeed
possess a degree of permutation symmetry.

1 INTRODUCTION

Transformers show state-of-the-art performance on a wide variety of tasks (Wolf et al., 2020; Doso-
vitskiy et al., 2021; Chen et al., 2020; Brown et al., 2020) with seemingly ever-improving perfor-
mance (Kaplan et al., 2020; Henighan et al., 2020). The past year has brought forth larger and more
capable models than ever before (Jiang et al., 2024; OpenAI, 2023; GeminiTeam, 2023), yet our
understanding of them falls behind (Goyal & Bengio, 2022; Wen et al., 2023)

Recent works have advanced us in understanding specific aspects and behaviors like
grokking (Nanda et al., 2023; Rubin et al., 2023; Liu et al., 2022b;a), in-context learning (Von Os-
wald et al., 2023; Olsson et al., 2022), and out-of-distribution (OOD) generalization (Nam et al.,
2022; Canatar et al., 2021a). However, a unified view of the inductive bias of transformers is still
lacking. It has been claimed that understanding and designing networks with better inductive bias
is a necessary step toward AI (Goyal & Bengio, 2022); this can also make them safer and more
suitable for deployment in high-risk situations (see for example Bommasani et al. (2021)).

We approach the challenge from the infinitely over-parameterized kernel limit, where the neural
network (NN) becomes more analytically tractable but still shares many qualitative and quantitative
similarities with finite NNs used in real life (Lee et al., 2020; Jacot et al., 2018). We rely on the
established NNGP (Neal, 1996; Lee et al., 2020; Naveh et al., 2021) and NTK (Jacot et al., 2018)
correspondences between infinitely wide transformer NN and kernel methods (Hron et al., 2020),
and understand their inductive bias through the eigenvalue decomposition of the kernel (Canatar
et al., 2021b; Cohen et al., 2021; Simon et al., 2023). We characterize the inductive bias by learn-
ability i.e. specifying how many samples will be required to learn a target function. We show that
when the dataset possesses a permutation symmetry, learnability is closely tied to the irreducible
representations (irreps) of the symmetric group. Namely, the more symmetric the function to per-
mutations, as quantified below, the more learnable it is. Finally, we argue natural language (NL)
does have some permutation symmetry, based on an analysis of WikiText-2 Merity et al. (2016).

Our main contributions are:
• We give explicit analytical predictions for the outputs and generalization performance of

a NN with linear attention at the kernel limit, in distribution and OOD. We show how
irreducible representations of the symmetric group can be built and used for to predict
learnability in this case.

1



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

• We extend our results to a transformer block with standard softmax attention. We show
experimentally the learnability bounds found based on the dimension of the relevant irre-
ducible representations are tight.

• We analyze WikiText-2 and show evidence for permutation symmetry in its principal com-
ponents, suggesting that the toolbox presented can be of use on natural language datasets.

2 MODEL

We study a transformer-like NN (Vaswani et al., 2017) with one transformer block, for simplicity,
we do not include residual connections or layer normalization, although these can be added. The NN
is made of an embedding layer with added learned positional encoding (PE), one multi-head self-
attention layer (MHA) with a non-linearity Φ (commonly chosen to be softmax), a one hidden layer
MLP with non-linearity ϕ (commonly chosen to be ReLU) and a final linear readout layer. The input
to the NN is made out of L + 1 tokens x⃗s indexed by an upper sequence index s = 1, 2, ..., L + 1
with each token having an internal (vocabulary or embedding) dimension indexed by a lower index
i. We group these with a greek letter sample index µ = 1, 2, ..., N into a rank 3 tensor Xs

i,µ, where
we drop the sample index µ when we discuss only a single sample. One-hot encoding is used for
the tokens, such that [x⃗s]i = δi,v where v = 1, ..., Nvoc is the token represented by x⃗s. For detailed
model description see appendix D.

We use a mixture of hidden Markov models (HMMs) (Baum & Petrie, 1966) as a dataset. The
mixture of HMMs is chosen for its balance between aspects of language, like long-range de-
pendencies and sensitivity to (elementary) context (Xie et al., 2021), and analytical traceability.
The HMMs have a vocabulary of size Nvoc = 2 and dhidden = 2 hidden states, where the
emission probabilities that define the HMM p, q are themselves drawn from uniform distributions
p ∼ U(pa, pa+w), q ∼ U(qa, qa+w). The transition probabilities are constant across all samples,
with probability 1 to switch a hidden state at each state. For a complementary introduction to HMMs
and a detailed description of the dataset used see appendix E.

As a primer for the discussion to follow, we point out that the probability distribution defined by an
HMM is invariant to permutation of tokens outputted under the same hidden state. We re-examine
this point in section 4 and present evidence for an approximate permutation symmetry in the princi-
pal components of WikiText.

3 THEORY

Here, we derive a bound on the sample complexity of a target function, its learnability, as a function
of the context length and the decomposition of the target to irreps of the symmetric group.

Infinitely wide NNs admit kernel limits, where Bayesian inference is described by the regression
with the NNGP kernel (Lee et al., 2018) and learning with gradient flow is described by regression
with the NTK (Jacot et al., 2018). For transformers, the existence of such limits was established
in Hron et al. (2020), when the key’s dimension (dk) and the number of heads (Nh) go to infinity
dk, Nh → ∞. We denote the kernel (NTK or NNGP) by k(x, y). The kernel view allows us to
study the inductive bias through the continuum limit (Canatar et al., 2021b; Cohen & Welling, 2016;
Simon et al., 2023), where the kernel admits an eigenfunction decomposition and symmetries are
explicitly manifested. In the continuum setting, predictions can be made using the kernel regression
formula on the eigenbasis of the kernel operator (K̂)

f̂(X∗) =

∞∑
i=1

λi

λi + δ/N
giφi(X∗);

K̂φi(X) = EY∼ptrain
[k(X,Y )φi(Y )] = λφi(X)

gi = ⟨g(x), φi(x)⟩x = Ex∼pdata
[g(x)φi(x)]

, (1)

where δ is the ridge or the effective ridge parameter (Canatar et al., 2021b; Cohen et al., 2021); φi’s
are the eigenfunctions; λi’s are the corresponding eigenvalues and gi is the projection of g(x) on φi

given by the inner product defined above. We can give equation 1 an intuitive interpretation: The
architecture and dataset dictates the learnability. All eigenfunctions corresponding to λ = 0 will
not be expressible by the NN, while eigenfunctions corresponding to λ ̸= 0 will require N ∼ σ2/λ
samples to be learned. Accordingly, predicting the learning curves of the network is reduced to
solving the eigenvalue problem for the kernel operator corresponding to the network and finding the
projections of the target on the eigenbasis.
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For the NN described in Sec.2, the fact that the network never explicitly acts in sequence space (that
is, the weights do not carry a sequence index) and the PE is drawn i.i.d guarantees a permutation
symmetry between all the token but the last one.

3.1 SYMMETRY AND REPRESENTATION THEORY dimR = 1

ΩR = 2
dimR = 2

ΩR = 3

dimR = 3
ΩR = 1

dimR = 6
ΩR = 1

[ ]g

Figure 1: (Illustration of diagonaliza-
tion using symmetries) The figure il-
lustrates the direct sum (block) struc-
ture described in Prop. 1. Each color-
shaded block represents an irrep, and
each solid color represents a multiplicity
block within the irrep. All elements out-
side the multiplicity blocks vanish, both
between different irreps and within an ir-
rep. The symmetry actions g ∈ G can
mix multiplicity blocks as indicated by
the arrows. Since all multiplicity blocks
inside an irrep are linked by the symme-
try actions they are all degenerate.

We start with an intuitive understanding of the role of
symmetries and give a precise formulation later in this
section. A fuller introduction and examples are given in
Appendix B. For a simple example where our use of rep-
resentation theory amounts to a simple discrete Fourier
transform, and introduction to permutation symmetry in
appendix A.

Symmetries can greatly simplify the eigenvalue prob-
lems like equation 1 above. We say an operator like
K̂ is symmetric under the action of a group G if

∀g ∈ G, k(x⃗g, y⃗g) = k(x⃗, y⃗) & pdata(x⃗g) = pdata(x⃗),
(2)

where x⃗g is the result of acting with a symmetry action g
on x⃗, e.g. rotating x⃗ or permuting the entries of x⃗. Such
an action is formalized through a representation of the
group, we give a precise definition in Prop. 1 . A sym-
metry, as described in equation 2, means we are allowed
to act with a symmetry action g ∈ G but our model
will stay invariant to this action. In the context of the
eigenvalue problem in equation 1, such an action can be
viewed as mixing different eigenfunctions φi(x) (say by
rotating the inputs x, such that the outputs φi(x⃗g) over-
laps with φj(x) for i ̸= j) without changing the eigen-
values. This scenario implies, that all the eigenvalues of
the mixed eigenfunctions must be identical, i.e. degen-
erate. Moreover, all eigenfunctions must be members of
such degenerate blocks. See Fig 1.

If we study precisely how a symmetry group mixes the functions, we can identify the above-
mentioned blocks in the space of expressible functions. The blocks would be a property of the
symmetry group itself and would hold for any kernel satisfying equation 2. Formally, the blocks
correspond to the irreps of the group over the space of expressible functions (see Prop. 1). These
can be understood as the minimal spaces of functions that mix with one another. The functions in
those spaces cannot be ”untangled” under the symmetry, hence the name irreducible.

Proposition 1. Recalling results from Tung (1985); Fulton & Harris (2004). Given linear transfor-
mations {Tg|g ∈ G} which constitute a representation of G (∀g1, g2 ∈ G, Tg1g2 = Tg1Tg2 ) and a
model symmetric under the action of a group G, i.e. satisfying equation 2 with xg = Tgx. It holds
that: The kernel operator can be decomposed into a direct sum, where each summand corresponds
to an irrep of G (shaded blocks in Fig.1). For an irrep R that appears ΩR times in K̂ (said to have a
multiplicity ΩR), each such block consists of ΩR different eigenvalues, each with m-fold degeneracy,
equal to the dimension of the irrep (dimR). As a corollary, each irrep of multiplicity 1 gives exact
eigenvectors of the kernel. For an irrep of multiplicity ΩR, finding the spaces of the irrep allows
one to diagonalize in the ΩR ×ΩR (multiplicity) space for each irrep individually; these spaces are
guaranteed not to mix different irreps under the kernel.

Going back to a more intuitive level, multiplicity means different sets of functions mix in the same
way, but not between themselves. To separate these sets into eigenspaces the eigenvalue problem in
the ΩR×ΩR multiplicity space needs to be solved in other means, but we are guaranteed we need to
solve it in only one such multiplicity block, as all blocks are guaranteed to be degenerate (one solid
color square of each color in Fig 1).

Degeneracy not only allows us to simplify the problem but also to give an asymptotic upper bound
on the eigenvalues. Mercer’s theorem König (1986) guarantees K̂ has a finite trace, which can be
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thought of as a fixed budget. Since all the eigenvalues are positive, they must share this fixed budget;
leading to Prop. 2.
Proposition 2. Under the same conditions as Prop 1 and given the kernel is normalized, the trace
is given by Ex∼pdata

[k(x, x)] ≃ 1. An eigenvalue λ belonging to a space corresponding to an irrep
R, is bound from above, λ = O(dim−1

R ) where dimR is the dimension of R.

Focusing back on our model, We can now state symmetry formally as symmetry under the action of
the symmetric group in L symbols SL i.e. k(Ts X,TsL Y ) = k(X,Y ) where Ts is a representation
of any element s ∈ SL that acts naturally on the sequence index 1. Following Prop. 1,2 and the
symmetry manifested in the model, we are interested in the irreps of the symmetric group.

Irreps of the symmetric group SL are uniquely labeled by partitions of L to integers, written as or-
dered sets from the largest part to the smallest, such that the sum of the parts is L. To decompose
the space of expressible functions we use the extensive literature on the representations of the sym-
metric group; a less formal introduction is given in Appendix B, and a formal treatment is given in
Appendix C.

Since the input is one-hot encoded, every target function will be a multilinear polynomial in the
input tokens; that is, fixing all other variables we will remain with a linear function of xa

i for some
particular a, i. This fact can be seen by considering each variable xa

i can only take on values {0, 1} so
(xa

i )
n = xa

i for 0 < n ∈ Z. We thus wish to consider the decomposition of multilinear polynomials
to irreps of the symmetric group.
Theorem 3.1. The space of homogeneous multilinear polynomials in n variables of degree d can be
fully decomposed into min{d+1, n−d+1} unique irreps of Sn labeled by the partitions (n−k, k)
for 0 ≤ k ≤ d, n− d.

See proof in appendix C. We can therefore expand any analytic function into polynomials and de-
compose them into the irreps of the symmetric group.

The dimension of the k’th irrep (dimk) of the form (L− k, k) is dimk = L!

k!
(L−k+1)!
L−2k+1

∼ Lk. We can

now quantitatively define a measure for symmetry to permutations: the more symmetric a function
is, the less it may mix with other functions, and the smaller the dimension of the irreps it belongs to
(smaller k). We thus see that the sample complexity of a function in the representation (L− k, k) is
asymptotically bounded from below by N ≃ λ−1

(L−k,k)σ
2 = Ω(Lk). We therefore see that the more

symmetric a function is to permutations (smaller k) the more learnable it is.

4 EXPERIMENTAL RESULTS

In this section, our theory is compared to numerical experiments. We start by comparing our predic-
tions for the example of linear activation functions (Φ(x) = x/L, ϕ(x) = x) with exact Bayesian
inference using the NNGP. We predict the performance OOD and show good agreement with exper-
iments. We then present the NNGP kernel’s spectrum of an NN with standard softmax attention and
show that the scaling law bounds derived on the eigenvalues are tight. Lastly, we analyze WikiText-2
and show that at leading order correlations the dataset does indeed appear to be permutation sym-
metric to a good approximation.

On the left of Fig. 2 the predictions for the loss as a function of N and L are presented, together with
exact Bayesian inference, showing good agreement both on train (p ∼ U(0.4, 0.4 + 10−1.5), q ∼
U(0.5, 0.5+10−1.5)) and test (p, q ∼ U(0, 1)) distribution loss. Detailed analytical calculations for
this case are given in appendix F.

In the center panel of Fig.2 we see the spectrum of the kernel, for a NN with Φ = softmax and
ϕ(x) = x. The eigenvalues in the trivial irrep scale as L0 and the eigenvalues in the standard irrep
scale as L−1, meaning, they take the maximum scaling possible based on the degeneracy of the
irrep.

Finally, we present some evidence suggesting NL does possess an approximate permutation sym-
metry, at least up to linear correlations. We examine the (first order) correlations in WikiText-2 at
the basis of the cyclic permutation irreps (for experimental details see appendix G)

1We note this is a symmetry of the prior distribution and this is all that is required for our theory. The
posterior distribution need not have this symmetry, as is often the case with learned positional encoding.
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Figure 2: Left: (theory vs. experiment) Loss as a function of L (in blue) and N (in red) for a
NN with linear attention. We find good agreement between our theoretical predictions (calculated
for the train and test distributions) and exact Bayesian inference with the NNGP kernel, equivalent
to inference with an infinitely wide NN. Stars indicate the experimental MSE loss calculated on
the test dataset, where the majority of samples are OOD w.r.t to training dataset. Center: (kernel
eigenvalues scaling law) The spectrum of the empirical NNGP kernel of a NN with softmax at-
tention as a function of the context length (L). The scaling with L is bound tightly by the scaling
deduced from the dimension of the corresponding irrep of the symmetric group. The light dashed
lines serve only as a guide to the eye for the scaling law; they are not predictions for specific values.
Right: (evidence for permutation symmetry in WikiText) The triangle shows the cosine similar-
ity between the linear features of WikiText Ckk and Ck′k′

for the k’s indicated on the boundary.
We see all sampled k ̸= 0 are similar to one another but different from k = 0 as predicted by the
irrep decomposition. The Empirical CDF plot shows the CDF for the eigenvalues of those sampled
matrices. Different k’s for k ̸= 0 are almost identical. k = 0 has a distinct distribution.

Ckk′

ij := EX∼WikiText−2

[
Xa

i V
akXb

jV
bk′
]
; V ak := exp

(
i
2π

L
ak

)
,
a = 1, ..., L

k = 0, ..., L− 1
. (3)

If permutation symmetry were to hold, we would expect all Ckk correlation matrices with k ̸= 0 to
be interchangeable, as they are all part of the standard irrep. We quantify this quality by the cosine
similarity and by their spectrum. As shown in Fig. 2 right, there is indeed a large similarity in the
standard irrep. This similarity does not exist with the trivial irrep (k = 0). The spectrum of the
different correlation matrices inside the standard irrep is almost identical as well, as indicated by the
eigenvalue CDF in the same figure. This similarity, again, does not exist between the two irreps (i.e.
k = 0, k ̸= 0).

5 DISCUSSION

In this work, we analyzed a family of transformer-like models and showed that their inductive bias
can be understood using the representation theory of the symmetric group when the dataset possesses
permutation symmetry. In this setting, we derived a scaling law for the number of data samples
required to learn a target as a function of the context length.

Critically, the above results depend on a permutation symmetric dataset while some settings do have
this exact symmetry2, natural language does not seem to have it prima facie. We have shown that,
in fact, first-order correlations in WikiText-2 seem to largely manifest this symmetry. This means
that when learning linear targets or up to O(L) samples, such models will be bound by the scaling
laws discussed above. One such linear function (in the context tokens) that is relevant to NLP is the
copying heads discussed in Olsson et al. (2022), while induction heads would be second order in the
context tokens. This fact motivates examining the corrections in NL to second order, as a concrete
mechanism for in-context learning can already appear there; we leave this for future work.

Lastly, while our work accounts for the implicit inductive bias of the architecture, it does not address
other sources of inductive bias, like finite learning rate (Lewkowycz et al., 2020; Beugnot et al.,
2022; Mohtashami et al., 2023) and finite size corrections to the kernel limit. As recent works have
shown (Seroussi et al., 2023; Pacelli et al., 2023), the kernel limit is used as a starting point for
more advanced methods that study finite size corrections and capture important phenomena like
representation learning. Studying such corrections is left to future work.

2For example the settings in in Power et al. (2022) and common setting in which in context learning has
been studied (Von Oswald et al., 2023; Garg et al., 2022; Ahuja et al., 2023)
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Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El
Sayed. Mixtral of Experts, January 2024. URL http://arxiv.org/abs/2401.04088.
arXiv:2401.04088 [cs].

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
Models, January 2020. URL http://arxiv.org/abs/2001.08361. arXiv:2001.08361
[cs, stat].

7

https://proceedings.mlr.press/v119/chen20s.html
https://proceedings.mlr.press/v119/chen20s.html
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023034
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023034
http://arxiv.org/abs/1602.07576
http://arxiv.org/abs/2010.11929
http://link.springer.com/10.1007/978-1-4612-0979-9
http://link.springer.com/10.1007/978-1-4612-0979-9
https://openreview.net/forum?id=flNZJ2eOet
http://arxiv.org/abs/2312.11805
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2021.0068
https://royalsocietypublishing.org/doi/full/10.1098/rspa.2021.0068
http://arxiv.org/abs/2010.14701
http://arxiv.org/abs/2006.10540
http://arxiv.org/abs/2006.10540
https://proceedings.neurips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2001.08361


Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Hermann König. Eigenvalue Distribution of Compact Operators, volume 16 of Operator The-
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A INTRODUCTION TO KEY CONCEPTS IN REPRESENTATION THEORY FOR
EIGENVALUE PROBLEMS

Symmetries can greatly simplify the above eigenvalue problem. Let G be a symmetry group, we say
the eigenvalue problem possesses this symmetry provided

∀g ∈ G, k(Tg x, Tg y) = k(x, y) (A.1)
pdata(Tg x) = pdata(x)

where the linear transformations (Tg) are some faithful representation of G (i.e. TgTg′ = Tgg′ and
TgTg′ = Id iff gg′ is the identity element of G).

As a concrete example and to make contact with the terminology in the main text, consider the
case where x ∈ R2 which we express in polar coordinates x = (rx cos(θx), rx sin(θx)), and
p(x) effectively discretizes θ and fixes r (i.e. p(x) = δ(rx − 1)N−1

∑N
j=1 δ(θx − 2πj/N)). Let

K(x, y) = ||x − y||, G = ZN given by the rotation of x in units of 2π/N , and Tg’s given by the
corresponding 2× 2 rotation matrices on x.

Next we utilize G to find the spectrum of K w.r.t. p(x). To this end, we consider the space on which
K̂ acts— the vector space of functions of x (f(x)) with the distance induced by p(x). This space
is N dimensional and spanned by [f(x1), ..., f(xN )] ≡ f⃗ . The linear action of Tg on x induces a
linear action on function space (equivalently on f⃗ ) via T̂g · f(x) = f(Tgx). Symmetry under G, as
defined above, implies that T̂g’s all commute with K̂. Consequently eigenspaces of K̂ are invariant
under all T̂g’s.

The above guides us to look for the minimal vector spaces which are invariant under all T̂g’s. These
are known as irreducible representations (irreps). The group ZN is known to have N distinct irre-
ducible representations of dimension 1 labelled by k ∈ {2π/N, 4π/N, ..., 2π}. The corresponding
invariant spaces are simply the discrete Fourier mode vectors v⃗k = [e2πik/N , e4πik/N , ..., 1]. It can
be checked that all T̂g’s leave each of these spaces/vectors invariant. This implies K̂ is diagonal
on the v⃗k basis. Allowing more complicated radial dependence, say by taking p(x) with δ(r − 1)

replaced by 1
2 [δ(r − 1) + δ(r − 2)], the resulting blocks of K̂ associated with each irrep would be

2 × 2. Equivalently stated each block would contain the irrep at multiplicity 2. Furthermore, for
non-abelian G (e.g. augmenting ZN with reflections), irreps of dimension larger than 1 generally
appear.

B A GENTLE INTRODUCTION TO THE USE OF SYMMETRY IN KERNEL
LEARNING AND THE SYMMETRIC GROUP

Spectral properties of kernels with respect to the data measure, provide a detailed description of the
implicit bias of infinitely wide neural networks. However, diagonalizing a generic kernel operator
on a generic measure is challenging. For fully connected networks and rotation symmetric datasets,
this difficulty is largely lifted. In fact for uniform data on the hypersphere closed-form expressions
for the spectrum and eigenfunctions exist (Cohen et al., 2021; Canatar et al., 2021b), the latter being
hyperspherical harmonics. These results follow directly from studying the representation theory of
the orthogonal group acting on multivariate polynomials.

For transformer models like the ones introduced above, the analog task is to find representations
of the symmetric group acting on multivariate polynomials. Below we provide several concrete
examples of such representations, flesh out their implications on spectral bias, and provide a road
map for deriving higher representations.

As a starting point consider a kernel K(x, y) where x, y ∈ Rd and some generic dataset measure
p(x). Let Sd denote the symmetric group (the group of all possible permutations) on 1, 2, ..., d
where an element σ ∈ Sd acts on x as [σx]i = xσ(i) (i.e. the natural action). Assuming K(x, y) =
K(σx, σy) and p(x) = p(σx) we wish to solve the following eigenvalue problem∫

dyp(y)K(x, y)φλ(y) = λφλ(x) (B.1)
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to simplify the problem, let us assume that k(x, y) contains powers of x and y only up to some
finite degree q. In that case, any φλ(x) with non-zero λ must be at most a q’th order multivariate
polynomial.

To proceed with finding the spectrum and eigenfunctions, we first address the question of what are
the irreducible representations of the symmetric group acting on finite degree polynomials. Irre-
ducible representations (irreps) of the symmetric group are labelled by partitions of d which we
denote by (d1, d2, ..., dk) such that d1 ≥ d2 ≥ ... ≥ dk and

∑
k dk = d. These partitions are

in one-to-one correspondence with Young Diagrams wherein one simply draws a row of boxes of
length d1, followed by a left aligned row of boxes of length d2 etc...

Conveniently, there is a direct way of constructing an irrep from its Young diagram (see Fulton &
Harris (2004)). As shown in theorem 3.1, particularly relevant here are Young diagrams of the form
(n − k, k). Considering those, the first step is finding all standard Young Tableaux associated with
the Young diagram. Standard Young Tableaux are assignments of integers between 1..d, with no
repetitions, to the boxes of the Young Diagram such that all columns and rows are of increasing
order. For instance, for the case (d− 2, 2) and d = 6 these would be

1 3 5 6

2 4

1 3 4 6

2 5

1 3 4 5

2 6

1 2 5 6

3 4

1 2 4 6

3 5
(B.2)

1 2 4 5

3 6

1 2 3 6

4 5

1 2 3 5

4 6

1 2 3 4

5 6

An important observation here, true for any (d− k, k), is that the lower row completely determines
the upper one. Indeed the upper row must consist of all integers besides those in the lower row,
arranged in strictly increasing order. We may thus denote such tableaux by their set of lower row
integers i1, i2, .., ik (although some combinations may be disallowed). We next associated a mono-
mial of the form xi1xi2 ...xik with each such standard Young Tableaux3 4. To proceed with the
construction we further consider the group of column permutations C ⊂ Sd wherein we only allow
switching of pairs along columns. We then construct the following polynomial element from the
monomial

M1(x)i1..ik =
∑
σ∈C

sign(σ)xσi1 ..xσik (B.3)

it then follows (see appendix C) that these k’th degree polynomials span the irreps (d−k, k), where
the action of Sd amounts to its natural action on the indices x. Notably this basis is typically not an
orthonormal one. Furthermore, the same representation may appear with any power of xi, namely
M (m) =

∑
σ∈C sign(σ)xm

σi1
..xm

σik
, m ∈ N, however for discrete measures some of these may

collapse onto one another or to the trivial representation. For instance if xi ∈ {+1,−1},M (2m) is
just a constant and M (2m+1) = M (1).

One notable example of a (d−k, k) representation is the standard representation (d−1, 1) equivalent
to the natural action on

Span{xi − x0}di=1 (B.4)

this representation is also equivalent to considering the discrete Fourier modes

φk(x) =
∑
j

ei2πkj/dxj k ∈ {1, 2, ..., d− 1} (B.5)

but omitting φk=0(x) (the trivial representation). The different k numbers, via e2πik/d, can also be
understood as one-dimensional-irreps of the cyclic group (Zn ⊂ S).

Another relevant irrep is the trivial one, corresponding to symmetric (multivariate) polynomials.
These are spanned by the Schur polynomials which are again in one-to-one correspondence with

3Similar to the construction of Specht modules from Young tabloids(Fulton & Harris, 2004).
4In the next appendix, where we prove theorem 3.1 we take a different approach for the construction of the

irreps of the Symmetric group. Here we effectively directly associate monomials with Young Tabloids, while
in the next appendix, we use the Young symmetrizers as projectors to irrep spaces without the need for such a
less formal, yet more intuitive, association between tabloids and monomials.
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Young Diagrams, via however a different association than the one above. Up to an order of, say
order 3, these are spanned by 1,

∑
i xi,

∑
i=j xixj ,

∑
i ̸=j xixj ,

∑
i=j=k xixjxk,

∑
i̸=j=k xixjxk,∑

i ̸=j ̸=k xixjxk.

Another low dimensional representation is the sign representation of the symmetric group, associ-
ated with alternating polynomials (polynomials which are anti-symmetric with respect to exchanging
any two variables). All such polynomials are of degree higher than that of the Vandermonde polyno-
mial (π1≤i<j≤d,n−d(xi−xj)), thus having a degree higher than n−1+n−2+...+0 = n(n−1)/2.
Due to their high order they would not appear for any q < d. We conjecture that these would be
exponentially suppressed in d for any NNGP or NTK kernel.

The above irreps and their associations with polynomials, facilitate the construction of low order
polynomial representations. For instance, let us assume that xi ∈ {+1,−1} and consider all pos-
sible polynomials up to second order. These are spanned by three trivial representations (i.e. (d)
partition/Young-Diagram)

1,

d∑
i=1

xi,
∑

1≤i<j≤d,n−d

xixj (B.6)

two d− 1 dimension standard representations ((d− 1, 1))

φk(x) k ∈ {1..d− 1} (B.7)(
d∑

i=1

xi

)
φk(x) k ∈ {1..d− 1}

and one (d− 1)(d− 2)/2− 1 dimension ((d− 2, 2)) representation spanned by

φij(x) = xixj − x0xj − xixb + x0xb b = min[{k}dk=1\{i, j}], 1 < i < j ̸= 3 (B.8)

Given a measure (p(x)) which respects the symmetry, any two polynomials associated with distinct
representation would be orthogonal. However, their normalization and the orthogonality relations
within the same representations would vary based on the measure.

Turning to the spectrum, it then follows from standard representation theory arguments that a kernel
with q = 2 has 6 generally distinct eigenvalues. Three generally-non-degenerate eigenvalues are
associated with linear combinations of the 3 trivial representations. Two, generally distinct sets,
of d − 1-degenerate eigenvalues associated with the two linear combinations of the two standard
representations. Last, one (d− 1)(d− 2)/2− 1 degenerate eigenvalue associated with the (d− 2, 2)
representations.

Finally, we note that the eigenfunctions associated with the two standard representations can mix in
a limited manner. Following the assignment of k numbers (or equivalently eigenvalues with respect
to the subgroup of S consisting of cyclic permutations of the indices), each basis element we used is
also an irrep of the cyclic group. Hence two different values of k cannot be mixed. In addition, other
elements in the permutation group are capable of shifting between these k values, hence the linear
combinations are constant as a function of k. As the eigenfunctions associated with one of the d−1-
degenerate eigenvalue can be written as aφk+b(

∑
i xi)φk where a, b are k independent coefficients.

The corresponding eigenfunction associated with the other d − 1-degenerate eigenvalues is simply
the orthogonal one.

C DECOMPOSITION OF MULTILINEAR POLYNOMIALS TO IRREPS OF THE
SYMMETRIC GROUP

Definition 1 (Partition). A partition of n is an ordered set of positive integers λ = (λ1, λ2, ..., λm)
such that {λi}mi=1 ⊂ N,

∑m
i=1 λi = n and λ1 ≥ λ2 ≥ ... ≥ λm ≥ 1.

Theorem 1. Irreps of the symmetric group of n symbols Sn are uniquely labeled by partitions of
n (Fulton & Harris, 2004)
Definition 2 (Young Diagram). A Young diagram Θλ of a partition λ of n is a diagram where one
draws a row of λi boxes for each element in lambda starting with λ1, with each subsequent element

13
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below it. For example given the partition λ = (3, 2, 1) the Young diagram is

Θλ = (C.1)

Definition 3 (Young Tableau). A Young Tableau Θp
λ associated with a Young diagram Θλ with n

boxes is a filling where each box is filled with an integer1, ..., n with no repetitions (definition vary,
here we follow (Sagan, 2001)). For example some of the Young Tableaux associated with the Young
diagram from the previous example are:

ΘC
λ =

1 2 3

4 5

6

, Θa
λ =

2 5 3

6 1

5

, Θb
λ =

1 4 5

2 6

3

(C.2)

Definition 4 (Standard Young Tableau). A standard Young tableau is a Young tableau where the
rows and columns increase to the right and to the bottom respectively (Again definitions vary, here
we follow (Sagan, 2001)). For example, Θb

λ and ΘC
λ in equation C.2 are standard Young tableaux

but Θa
λ is not.

Definition 5 (Canonical Young Tableau). A canonical Young tableau ΘC
λ is a standard Young

tableau where the numbers 1, ..., λ1 appear in the first row, the numbers λ1 + 1, ..., λ2 appear is
the second row and so on. For example, the ΘC

λ in equation C.2 is the canonical Young tableau.

Definition 6 (Rows and columns subgroups). Given a Young tableau Θp
λ of partition λ and assign-

ment p, we define the rows subgroup Rp
λ which leave invariant the (unordered) sets of numbers

appearing in the same row of Θp
λ. Similarly, we define columns subgroup Cp

λ which leave invariant
the (unordered) sets of numbers appearing in the same column of Θp

λ.

Definition 7 (Permutation action on the multilinear polynomials). Let T be linear representations of
the the symmetric group Sn on the multilinear polynomials, such that the permutation acts naturally
on the variables indices. E.g. let σ ∈ Sn be a permutation, and let P (x1, ..., xn) = x1x2 be a
multilinear polynomial, then T (s)P = xσ(1)xσ(2).

Define the groups of row and column actions on the multilinear polynomials

Rp
λ = {T (σ)|σ ∈ Rp

λ} , Cp
λ = {T (σ)|σ ∈ Cp

λ} (C.3)

Definition 8 (Row symmetrizer, column anti-symmetrizer and young symmetrizer). Define the row
symmetrizer, column anti-symmetrizer and Young symmetrizer linear operators:

R̂p
λ =

∑
r∈Rp

λ

r (C.4)

Ĉp
λ =

∑
c∈Cp

λ

sign(c)c (C.5)

Ŷ p
λ = Ĉp

λR̂
p
λ (C.6)

Theorem 2. Young symmetrizers associtated with standard Young tableaux are projectors to irrep
spaces of the symmetric group (Fulton & Harris, 2004)

Lemma 1. If there exists a transposition t∗ ∈ Cp
λ that leaves a monomial M unchanged, M van-

ishes under the action of the column anti-symmetrizer -

∃t∗ ∈ Cp
λ s.t. t∗M = M → Ĉp

λM = 0.

Proof. Let Θp
λ be a standard Young tableau of a partition λ. Let Ĉp

λ be the column anti-symmetrizer
associated with Θp

λ. Let M(x1, x2, ..., xn) be a multilinear monomial in the variables x1, x2, ..., xn.
Let t∗ ∈ Cp

λ be a transposition such that t∗M = M . A transposition is an involution, that means, it is

14
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a bijection from the group to itself and t∗t∗ = e, where e is the identity element. Right multiplication
with t∗ maps any element ci ∈ Cp

λ from the column group to cj = cit
∗ such that

sign(ci)ciM = sign(cit
∗t∗)cit

∗t∗M = sign(cjt
∗)cjt

∗M = −sign(cj)cjM. (C.7)

We have constructed a unique pairing between each ci ∈ Cp
λ and cj ∈ Cp

λ such that ci ̸= cj and
sign(ci)ciM = −sign(cj)cjM that is

∀ci ∈ Cp
λ ∃!cj ∈ Cp

λ s.t. ci ̸= cj ∧ sign(ci)ciM = −sign(cj)cjM.

That means the terms in the sum cancel in pairs Ĉp
λM =

∑
c∈Cp

λ
sign(c)cM = 0. ■

Lemma 2. All multilinear monomials in n variables, vanish when acted upon with a column anti-
symmetrizer that corresponds to a Young tableau with more than 2 rows

Proof. Let M(x1, x2, ..., xn) be a multilinear monomial in the variables x1, x2, ..., xn. Let Θp
λ

be a standard Young tableau of a partition λ that has more than 2 rows. The first column in Θp
λ

gives raise to at least 3 transpositions (ab), (bc), (ac). Since each variable must either appear in
M(x1, x2, ..., xn) to a single power or zeroth power, out of the 3 variables xa, xb, xc at least two
must appear to the same power. Because the product of our variables is not ordered, at least one
of the 3 transpositions leaves M(x1, x2, ..., xn) unchanged. Applying lemma 1, M(x1, x2, ..., xn)
must vanish under the action. ■

Lemma 3. All multilinear monomials of degree d in n variables, vanish when acted upon with a
column anti-symmetrizer associated with a partition (n− k, k) for k > min{d, n− d}.

Proof. for k > {d, n− d} there exists a column transposition (ab) ∈ Cp
λ where both xa, xb appear

in the monomial to zeroth power, therefore the transposition (ab) leaves it unchanged. Applying
lemma 1, the monomial must vanish under the action. ■

Remark. The multilinear monomial can be thought of as picking specific boxes in the Young tableau,
one can then permute inside the rows, writing down the numbers that appear in the chosen boxes
as the indices in the monomial. Finally one can act with the column permutations, while adding
their signs, on the monomials found by the rows actions. Summing up all terms gives the result of
acting with the Young symmetrizer on the monomial. The necessary conditions above for Ĉp

λM ̸= 0
translate to being able to pick d boxes such that at most one box is picked in every column, and no
column has more than one box unpicked in it.
Lemma 4. There exists a multilinear monomial of degree d in n variables, that does not vanish
when acted upon with a Young symmetrizer associated with a partition (n − k, k) for every k such
that 0 ≤ k ≤ d, n− d.

Proof. Let M =
∏d

i=1 xi be a multilinear monomial of degree d in n variables. Let ΘC
(n−k,k) be

the canonical Young tableau associated with the partition (n− k, k) for 0 ≤ k ≤ d, n− d,

ΘC
(n−k,k) =

1 2 . . . k . . . n−k

n−k+1 n−k+2 . . . n

. (C.8)

We now verify Ŷ C
(n−k,k)M ̸= 0:

The row symmetrizer sums positive elements, therefore the sum cannot vanish

P = R̂C
(n−k,k)M =

∑
r∈RC

(n−k,k)

rM ̸= 0. (C.9)

Since {xi}ni=1 are independent variables all elements in the sum above are linearly independent (up
to identical elements). We may conclude it is sufficient to show a single element doesn’t vanish
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to prove ĈC
(n−k,k)P doesn’t vanish, since ĈC

(n−k,k) includes the trivial element. In particular, we
will show that for r = e the summand rM = M does not vanish under the action of the column
symmetrizer.

The column symmetrizer ĈC
(n−k,k) is a sum of closed, independent, column transpositions and their

products. All non-trivial transpositions, when acting on M specifically, create linearly independent
elements, therefore the sum of such transpositions acting on M cannot vanish.

We may conclude ĈC
(n−k,k)P includes at least one non vanishing term (that is M ) and therefore

Ŷ C
(n−k,k)M ̸= 0. ■

Definition 9 (Hook Length). The hook length hλ(i, j) of a box, where i (j) denotes the row (col-
umn) of the box in the Young diagram Θλ, is the number of boxes to the right of the i, j’th box in
the i’th row, plus the number of boxes below the box in the j’th column plus one.
Lemma 5. The dimension of an irrep associated with a partition (n− k, k) is dimλ = n!

k!
(n−k+1)!
n−2k+1

.

Proof. using the hook length formula (Fulton & Harris, 2004)

dimλ =
n!∏

i,j∈λ hλ(i, j)
.

The product in the denominator equals∏
i,j∈λ

hλ(i, j) = (n− 2k)!︸ ︷︷ ︸
upper row with nothing below

k!︸︷︷︸
lower row

(n− k + 1)!

(n− 2k + 1)!︸ ︷︷ ︸
upper row with boxes below

= k!
(n− k + 1)!

n− 2k + 1
=

(
n+ 1

k

)
(n+ 1)!

n− 2k + 1
.

(C.10)

Resulting in

dimλ =
n!

k! (n−k+1)!
n−2k+1

∼ nk.

■

Theorem 3.1. The space of homogeneous multilinear polynomials in n variables of degree d can be
fully decomposed into min{d+1, n−d+1} unique irreps of Sn labeled by the partitions (n−k, k)
for 0 ≤ k ≤ d, n− d.

Proof. Let Θp
λ be a standard Young tableau of a partition λ. Let R̂p

λ, Ĉ
p
λ, Ŷ

p
λ be the row symmetrizer,

column anti-symmetrizer and Young symmetrizer (respectively) of the Θp
λ.

Let {Md
n} be the set of all multilinear monomials in n variables of degree d.

{Md
n} is a basis for the space of multilinear polynomials in n variables of degree d. That means

Span{Md
n} is the space of multilinear polynomials in n variables of degree d.

Span{Md
n} is closed under the action of R̂p

λ. Therefore, if ∀M ∈ {Md
n}, Ĉ

p
λM = 0, then ∀P ∈

Span{Md
n}, Ŷ

p
λ P = 0.

Using lemmas 2,3 we see that all P ∈ Span{Md
n} vanish under the action of the Young symmetriz-

ers associated with a Young diagram with more than 2 rows or more than min{d, n − d} boxes on
the second row.

Based on lemma 4 and theorem 2 each of the irreps (n − k, k) 0 ≤ k ≤ d, n − d appears at least
once in the decomposition of Span{Md

n} into irreps of the symmetric group.

Span{Md
n} is

(
n
d

)
dimensional.

Summing the dimension of the irreps (lemma 5)
min{d,n−d}∑

k=0

n!

k! (n−k+1)!
n−2k+1

=

(
n

d

)
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Since the sum of dimensions of irreps equals the dimension of the space each irrep appears only
once. ■

D MODEL DETAILS

D.1 NEURAL NETWORK ARCHITECTURE

We study a transformer-like NN with one transformer block, for simplicity, we do not include resid-
ual connections or layer normalization, although these can be added. The NN is made of an em-
bedding layer with added learned positional encoding (PE) p⃗, one multi-head self-attention layer
(MHA), an MLP with one hidden layer and a final linear readout layer.

The input to the NN is made out of L + 1 tokens x⃗s indexed by an upper sequence index s =
1, 2, ..., L+ 1 with each token having an internal (vocabulary or embedding) dimension indexed by
a lower index i. We group these with a Greek letter sample index µ = 1, 2, ..., N into a rank 3 tensor
Xs

i,µ, where we drop the sample index µ when we discuss only a single sample. One-hot encoding
is used for the tokens, such that [x⃗s]i = δi,v where v = 1, ..., Nvoc is the token represented by x⃗s.
Denoting the input by xa

i and the output of l’th layer by z
(l),a
i the resulting NN is

z
(1),a
i = W emb

ij xa
j + pai

z
(2),a
i,h = Φ

(
Qa

j,hK
b
j,h√

dk

)
V b
i,h = Φ

(
WQ

lm,hz
(1),a
m WK

ln,hz
(1),b
n√

dk

)
WV

ij,hz
(1),b
j (no h summation)

z
(3),a
i = WO

ij,hz
(2),a
j,h

z
(4),a
i = ϕ

(
W

(4)
ij z

(3),a
j + b

(4)
i

)
z
(5),a
i = W

(5)
ij z

(4),a
j + b

(5)
i

fa
i (X) = z

(6),a
i = W d−emb

ij z
(5),a
j

(D.1)
using Einstein’s summation convention, with Φ and ϕ being some activation functions5. The NN
parameters

W emb ∈ Rdmodel×Nvoc , p⃗ a ∈ Rdmodel

WQ,WK ,WV ∈ Rdk×dmodel , WO ∈ Rdmodel×dk×Nheads

W (4) ∈ Rdff×dmodel , b⃗(4) ∈ Rdff , b⃗(5) ∈ Rdmodel

W (5) ∈ Rdmodel×dff , W d−emb ∈ RNvoc×dmodel

(D.2)

are all learned. For the MHA we use Nheads heads and the same dimension dk = dv =
dmodel/Nheads for keys, queries, and values. Lastly, for the hidden layer z(4) we use dimension
dff which is of the same order of magnitude as the model dimension dff ∼ dmodel. Notably,
consecutive affine transformations can be combined together without loss of generality, but they are
kept in this way to align with standard notation6.

As an instructive example, we will use a linearized MHA7 Φ(x) = 1
Lx and linear MLP ϕ(x) = x,

as this setting allows for closed-form analytical predictions at the kernel limit. Note that because
we remove the common softmax non-linearity we add a division by the length to make sure the
network’s output stays O(1) and does not scale with L.

D.2 TASK, LOSS FUNCTION, AND INITIALIZATION

The task is a pretraining task, namely, predicting the conditional probability distribution for the next
token given the context p(x⃗L+2|X). For simplicity, we limit the discussion to inference-time-like

5A common choice would be Φ = softmax acting on the b index and ϕ = ReLU
6Combining such affine transformations would also induce a different prior in finite-sized NNs as shown

in Li & Sompolinsky (2021).
7similar to the one suggested by Von Oswald et al. (2023) and Hron et al. (2020)
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output, i.e. when predicting the next token probability from a full context window of length L+ 1,
and looking only at the prediction for the unknown token, meaning we define f(X) := fL+1(X).

Mean square error (MSE) loss with weight decay is used. The weights are initialized according to
LeCun initialization, meaning the weights in each layer are i.i.d with w ∼ N (0, 1√

fan−in
), and the

biases are initialized to zero. For the convenience of the analytical calculations, we will initialize
the PE as Gaussian i.i.d entries pai ∼ N (0, 1/2) for a ̸= L + 1, for the last token we will initialize
the PE to zero pL+1

i = 0.

E DATASET AND HIDDEN MARKOV MODELS

We use a mixture of hidden Markov models (HMMs) Baum & Petrie (1966) as a dataset. The mix-
ture of HMMs is chosen for its balance between aspects of language, like long-range dependencies
and sensitivity to (elementary) context Xie et al. (2021), and analytical tractability. This setting also
yields a well-defined concept of distributional shift, as the NN can be trained on a fraction of the
mixture and tested on another.

A HMM is composed of two stochastic processes, hs and xs, where s is the time-step index. The
process hs is dubbed “hidden” while xs is the observed process. The hidden process is Markovian,
with dhidden different states. The observed process depends only on the hidden state at the same
time, where each of the possible Nvoc outputs is given a different probability under each hidden
state.

HMMs are conveniently described by stochastic emission and transition matrices. The i, j entry
of the transition matrix T ∈ Rdhidden×dhidden represent the transition probability from the j’th hid-
den state to the i’th. Similarly, the i, j entry of emission matrix O ∈ RNvoc×dhidden represent the
probability to emit the i’th output in the vocabulary when in the j’th hidden state.

Our dataset is a mixture of HMMs with Nvoc = 2 and dhidden = 2, where the emission probabilities
that define the HMM p, q are themselves drawn from uniform distributions p ∼ U(pa, pa+w), q ∼
U(qa, qa + w). The transition probabilities are constant and deterministic. The transition and emis-
sion probabilities for a HMM in the mixture are given in matrix form by

T =

[
0 1
1 0

]
; O =

[
p q

1− p 1− q

]
. (E.1)

Finally, the initial hidden state, h1, is a random variable with equal probability for each of the two
possible hidden states.

F LINEAR ACTIVATIONS EXAMPLE

In this example, we choose Φ(x) = 1
L+1x and linear MLP ϕ(x) = x, as previously noted in D.1 and

solve the eigenvalue problem presented in the previous section. Note the linear activation functions
Φ, ϕ do not imply a linear NN as the attention layer is inherently non-linear. While this example is
a minimal transformer like NN, our dataset already goes beyond the landscape of complete permu-
tation invariance and demonstrates how the tools presented above can be adapted to richer datasets
where the permutation invariance is partially broken.

F.1 EXPRESSIBILITY

First, we want to identify the space of functions spanned by φi with λi ̸= 0, the space of expressible
functions.

Claim 1. The space of functions expressible by the model stated in section 2 is spanned by the linear
functions of {xs

1}Ls=1 multiplied by linear functions of xL+1
1 , which is a 2L+ 2 dimensional space.

The kernel function corresponding to our NN is given by

k(X,Y ) =
1

8
x⃗L+1 · y⃗L+1 1

(L+ 1)2

L+1∑
a,b=1

(
x⃗a · y⃗ b + δa,b

)2
. (F.1)
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One-hot encoding not only implies multilinearity of the outputs, but also guarantees multilinearity
of the kernel in the inner product of two vectors (x⃗a · y⃗ b)n = (x⃗a · y⃗ b) for 0 < n ∈ Z. In this
example, it means only linear terms in the context window a, b = 1, ..., L are present.

We can further restrict the model’s expressibility in our case, by considering large context windows
L ≫ 1. In that case, we can approximate the kernel given in equation F.1 by summing only up
to L, and dropping sub-leading contributions in 1

L . We show these indeed give only sub-leading
corrections in appendix I. Finally, the kernel can be simplified to a scalar expression. Since our
particular model uses a vocabulary of size 2 the entries of a one-hot vector are completely determined
by one another xa

2 = 1− xa
1 , allowing us to write it using only the first entry

k(X,Y ) =
1

8

(
xL+1
1 yL+1

1 +
(
1− xL+1

1

) (
1− yL+1

1

))
︸ ︷︷ ︸

A

·


1

L2

L∑
a,b=1

(
xa
1y

b
1 + (1− xa

1)
(
1− yb1

))
+

1

L2

L∑
a=1

(xa
1y

a
1 + (1− xa

1) (1− ya1 )) +
1

L


︸ ︷︷ ︸

B

.
(F.2)

As can be seen in equation 1, the only X dependence in the l.h.s comes from the kernel k(X,Y ),
thus for the equality to hold for every X , the eigenfunction φi(X) of λi ̸= 0 must be in the space of
functions spanned by k(X, ·), i.e. it must be a linear combination of the functions {k(X,A)}A for
some values of A. For example, if k(X,Y ) is linear in X only linear functions will be expressible.
Based on this argument, we may conclude the space of expressible functions is spanned by linear
functions of {xa

1}La=1 multiplied by linear functions of xL+1
1 , which is a space of dimension 2L+2.

F.2 LEARNABILITY

Moving from expressibility to learnability requires knowledge of the full spectrum of the kernel.
While this problem is generally hard, we will use the tools developed above to simplify it.
Claim 2. For the model described above, the spectrum of the kernel operator is composed of four
leading eigenvalue λ0,∗, λ1,∗ ∼ 1 belonging to the trivial irrep, two sub leading eigenvalues λ2,∗ ∼
L−1 (again belonging to the trivial irrep) and four sets of size L/2 − 1 belonging to the standard
irrep. All the eigenvalues in each of the four sets are exactly degenerate λeven

k,∗ , λodd
k,∗ ∼ L−2, where

∗ = {a, b} and k = 1, ..., L/2−1. Furthermore, the exact eigenvectors corresponding to λeven
k,∗ , λodd

k,∗
are given in closed from by equation K.1.

Starting from the largest structure, notice the kernel is a product of two terms (A,B in equation F.2).
The A part is diagonalized in the basis

a(x⃗L+1) = xL+1
1 , b(x⃗L+1) = (1− xL+1

1 ), (F.3)

which leaves us with a large block structure; we should expect to find two copies of each eigenvector,
one belonging to the a block and one to the b block.

Moving on to the B term, as expected from the general argument presented in the previous section,
we find it is symmetric under the action of the permutation in the symmetric group SL on the set
of tokens in the context window {xs}Ls=1. The full SL symmetry is not, however, presented in the
probability distribution of our chosen dataset8, as tokens have different emission probabilities under
different hidden states. Nevertheless, a smaller symmetry is preserved, allowing permutations only
within the same hidden states. Since the transition between hidden states is deterministic, we find
that all odd (even) tokens belong to the same hidden state and can be permuted between themselves,
giving rise to the smaller symmetry group Sodd

L/2 × Seven
L/2 := S 9 as a symmetry of K̂.

8Therefore it is not a symmetry of the operator K̂.
9Assuming L is even for simplicity
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As discussed in the previous subsection, in our case only polynomials up to first degree can have
non-vanishing eigenvalues. First degree polynomials are decomposed to two irreps (see theorem
3.1), namely the trivial (L/2) and standard representation (L/2 − 1, 1). The trivial representation,
has dimension 1 with multiplicity 2 10, and the standard representation, has dimension L/2− 1 with
multiplicity 2 11. For zeroth degree polynomials (constants) only the trivial representation exists,
of multiplicity 1. Such a process can be done to an arbitrary polynomial degree as explained in
appendix B.

Turning to the space of the standard irrep, it can be further decomposed to one-dimensional irreps
of the cyclic subgroup known as the Fourier modes, thereby acquiring eigenvectors of B. Putting
these together with the eigenvectors of A a(x⃗L+1), b(x⃗L+1) we find 2(L − 2) eigenvectors of the
kernel (given explicitly in equation K.1).

The eigenvalues are all independent of k ∈ {1, 2, ...(L/2− 1)} since all the k modes belong to the
same irrep, and only differ by O(1) factor from one another based on the difference between odd
and even and the a, b subspaces

λodd
k,a , λ

even
k,a , λodd

k,b , λ
even
k,b ∝ 1

L2
(F.4)

full expressions are given in equation K.8.

Following the same procedure we find the trivial representation is spanned by

φ̃odd
0 (X) =

L/2∑
s=1

x2s−1
1 ; φ̃even

0 (X) =

L/2∑
s=1

x2s
1 ; φ̃c(X) = 1. (F.5)

By a Gram–Schmidt like-process, we find a good basis for the space of permutation invariant func-
tions φc,∗, φ

+
0,∗, φ

−
0,∗ with ∗ = {a, b}; the definitions are given in equation K.2. The diagonalization

in the multiplicity spaces of the trivial irrep can now be carried out numerically or analytically in
closed form as it can be written as two 3× 3 matrices.

Using symmetries and the partition to A,B we were able to reduce the eigenvalue problem to two12

3×3 spaces of the trivial representation, which are diagonalizable in closed form, and a diagonalized
2L − 4 dimensional space of the standard representation. We can repeat the same procedure for
polynomials of any order and decompose them to irreps (see appendix B for a discussion of the
method, and an example); thereby allowing us to expand the results to a wider class of NNs including
non-linear and deeper NNs.

F.3 LEARNABLE TARGET

So far, the whole process has been task-independent, the last component required to predict the
output of the NN is the projections of the target onto the eigenvectors, which depend on the target
function and the training distribution. Since the task requires estimating a parameter not accessible
to the network, the projections can never span the true target function, instead even as N → ∞
the network will learn a different function which we dub the learnable target given by

∑
i giφi(x).

We denote the projections by g−∗ , g
+
∗ , gc,∗, g

odd
k,∗ , g

even
k,∗ for φ−

0,∗, φ
+
0,∗, φc,∗, φ

odd
k,∗ , φ

even
k,∗ respectively,

where ∗ = {a, b}. This projections depend on the parameters of the training distribution pa, qa, w, L.
Keeping only leading orders of w, 1

L we find goddk,∗ , g
even
k,∗ vanish for all k, and gc,∗ are constants w.r.t

w,L while

g+∗ =
Lw2η+∗√

L2w2ρ+∗ + Lσ+
∗
, g−∗ =

Lw2η−∗ + ν−∗√
L2w4ρ−∗ + Lw2σ−

∗ + ξ−∗
, (F.6)

the definitions of η⋆∗ , ν⋆∗ , ρ⋆∗, σ⋆
∗ , ξ⋆∗ , where ∗ = {a, b} and ⋆ = {+,−}, are detailed in appendix K.

Gathering the results of this section, Given: (1) equation 1, together with the (2) learnable target
given in equation K.9, the (3) eigendecomposition given in equations K.1, K.8, and the (4) eigen-
decomposition of the two 3 × 3 spaces spanned by the basis in equation K.2. One can predict
accurately the output of the model described in section 2 with linear activation functions in the GP
limit. Additionally, One can make accurate predictions for the generalization loss, even under a
distributional shift.

10one for the even subspace and one for the odd subspace
11again broken down to L/2− 1 from the even and odd subspaces
12One for the a block and one form the b block
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G WIKITEXT-2 SYMMETRY EXPERIMENT DETAILS

Here we give some of the details about the WikiText-2 symmetry experiment. We started with
tokenizing and trimming: each sample was tokenized and trimmed to L = 101 tokens. We removed
any sample that was shorter than 101 tokens, leaving us with about 10, 000 samples.

If the dataset is permutation invariant, Ideally, one would now want to perform principal component
analysis (PCA) and find a set of generically Nvoc different states, each with degeneracy L − 1 for
k = 1, ..., L− 1 belonging to the standard irrep, and another set of generically non-degenerate Nvoc

different states, for k = 0 belonging to the trivial irrep. The PCA matrix would be

Cab
ij := EX∼WikiText−2

[
Xa

i X
b
j

]
, (G.1)

where a, i and b, j can be understood as some “flattened” super index of a (L ·Nvoc) × (L ·Nvoc)
dimensional matrix.

Moving on to Fourier space

C̃kk′

ij := EX∼WikiText−2

[
Xa

i V
akXb

jV
bk′
]
; (G.2)

V ak := exp

(
i
2π

L
ak

)
,
a = 1, ..., L

k = 0, ..., L− 1
. (G.3)

One would then expect to find a block diagonal matrix where C̃kk′

ij = 0 for k ̸= k′ and C̃kk
ij = C̃k′k′

ij

for k, k′ ∈ {1, ..., L− 1}.

However, since the number of samples N < L · Nvoc, Nvoc one cannot expect to find a block
diagonal structure. Both the ranks of the matrix C̃ and the block C̃k,k′

are determined by N , such
that rank C̃ = rank C̃k,k = N , so the off-block-diagonal elements must not vanish to make the
equality possible. A well-studied similar setting is that of the Wishart ensemble in random matrix
theory (Potters & Bouchaud, 2020; Akemann et al., 2015). Even with N < L · Nvoc we may still
expect C̃kk

ij = C̃k′k′

ij for k, k′ ∈ {1, ..., L − 1}, but we would have to consider the noise due to the
finite sampling.

To measure whether C̃kk
ij = C̃k′k′

ij for k, k′ ∈ {1, ..., L − 1} we present in the main text the cosine
similarity induced by the Frobenius inner product and compare the spectrum’s empirical cumulative
distribution function (ECDF).

In principle, in this method, one can look at correlations up to an arbitrary order, e.g. the third-order
correlator would be

Cabc
ijj := EX∼WikiText−2

[
Xa

i X
b
jX

c
k

]
. (G.4)

H OUT OF DISTRIBUTION PREDICTIONS UNDER EQUIVALENT KERNEL
APPROXIMATION

Under Equivalent Kernel (EK) approximation Sollich & Williams (2004); Cohen et al. (2021) MSE
loss can be computed by

EX∼p̂data
EΘ

[
(fΘ (X)− g (X))

2
]
= EX∼p̂data

EΘ

[
(fΘ (X)− g (X))

2
]
=

= EX∼p̂data

[
EΘ

[
f2
Θ (X)

]
− 2EΘ [fΘ (X)] g (X) + g2 (X)

]
≈

≈ EX∼p̂data

[
EΘ [fΘ (X)]

2 − 2EΘ [fΘ (X)] g (X) + g2 (X)
]
=

= EX∼p̂data

[∑
i

λi

λi + σ2/N
giφi (x)

]2
− 2

∑
i

λi

λi + σ2/N
giφi (x) g (X) + g2 (X)

 =

=
∑
i

(
λi

λi + σ2/N

)2

g2i − 2
∑
i

λi

λi + σ2/N
g2i + ⟨g, g⟩X∼p̂data

,

(H.1)
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Where the approximation on the second line is dropping the EK variance

EΘ [fΘ (X)]
2
= EΘ [fΘ (X)]

2
+Var [fΘ (X)] ≈ EΘ [fΘ (X)]

2
. (H.2)

One can in fact calculate this quantity easily within the GP framework but we found the approxima-
tion to be good enough as is and chose to drop it for simplicity.

Now if we wish to compute the loss under distributional shift all we have to do is take the expectation
value w.r.t. a new distribution

EX∼ptest
EΘ

[
(fΘ (X)− g (X))

2
]
≈

≈
∑
i

∑
j

λi

λi + σ2/N

µj

µj + σ2/N
gigj ⟨φi, φj⟩X∼ptest

− 2
∑
i

λi

λi + σ2/N
gi ⟨φi, g⟩X∼ptest

+ ⟨g, g⟩X∼ptest
.

(H.3)
Notably, the eigenfunctions that were orthonormal under the inner product induced by the training
distribution are no longer necessarily orthonormal under the test distribution.

I SUB-LEADING CORRECTIONS FROM xL+1

The terms left out during the approximation are

k(1) (X,Y ) =
1

8L2

(
xL+1yL+1 +

(
1− xL+1

) (
1− yL+1

))
· ...

...·

[
L∑

a=1

xL+1ya +

L∑
a=1

(
1− xL+1

)
(1− ya) +

L∑
a=1

xayL+1 +

L∑
a=1

(1− xa)
(
1− yL+1

)
+ ...

...+ 3xL+1yL+1 + 3
(
1− xL+1

) (
1− yL+1

)
+ 1
]

(I.1)
All the vectors φodd

k,a (X), φeven
k,a (X) , φodd

k,b (X), φeven
k,b (X) in the standard representation get no

corrections at all as their matrix elements with all basis vectors vanish.

Moving on to the two 3× 3 blocks of the trivial representation, φ+
0,a, φ

−
0,a (φ+

0,b, φ
−
0,b) can only have

non-vanishing matrix elements with the φc,a (φc,b). These terms are at most O
(

1
L3

)
; furthermore,

they are second-order corrections in the eigenvalue perturbation and are therefore sub-leading.

Last φc,a (φc,b) can get corrections to the diagonal term, but they will be at most O
(
1
L

)
while the

leading term is O (1).

J LARGE STRUCTURE DECOMPOSITION AND NON-LINEARITIES

One can write the kernel of the network when applying non-linearities in the form:

k(X,Y ) =
∑
α

kL+1
α (xL+1, yL+1)kLα({xs}Ls=1, {ys}Ls=1). (J.1)

for some
{
kL+1
α , kLα

}
α

. Since all kLα possess the permutation symmetry they will be diagonalized in
the same basis as the symmetry operator. Suppose φL

j

(
{xs}Ls=1

)
is a non-degenerate eigenfunction

of the symmetry operator, we have that K̂L
αφj = λL

α,jφj simplifying the kernel eigenvalue problem
to

K̂
(
φL+1
i φL

j

)
= λij

(
φL+1
i φL

j

)
, (J.2)

where {φL
j }nj=1 are known, forming blocks of size n. Note that this is not a simple tensor product

structure λij ̸= λL+1
i λL

j as xL+1 is not independent of {xs}Ls=1.
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K FULL EXPRESSIONS OF QUANTITIES IN THE MAIN TEXT

Here we provide the full expressions for some of the quantities defined in the main text. The eigen-
vectors of the kernel that belong to the standard irrep are given by


(
φodd
k,a (X)

φodd
k,b (X)

)
=

( xL+1

Zodd
k,a

1−xL+1

Zodd
k,b

) L/2∑
s=1

ei
πk
L/2

sx2s−1
1 ,

(
φeven
k,a (X)

φeven
k,b (X)

)
=

( xL+1

Zeven
k,a

1−xL+1

Zeven
k,b

) L/2∑
s=1

ei
πk
L/2

sx2s
1


L/2−1

k=1

.

(K.1)
The basis chosen for the trivial representation is

(
φc,a

φc,b

)
(X) =

( 1
Zc,a

1
Zc,b

)(
xL+1
1

1− xL+1
1

)
(
φ+
0,a

φ+
0,b

)
(X) =

( 1
Z+

0,a

1
Z+

0,b

)(
xL+1
1

1− xL+1
1

)
1

L

 L∑
s=1

xs −
( codda +cevena

2
coddb +cevenb

2

)
(
φ−
0,a

φ−
0,b

)
(X) =

( 1
Z−

0,a

1
Z−

0,b

)(
xL+1
1

1− xL+1
1

)
1

L

(αa

αb

)L/2∑
s=1

x2s−1 −
(
codda

coddb

) . . .

. . .−
(
βa

βb

)L/2∑
s=1

x2s −
(
cevena

cevenb

)

(K.2)

with

αa =
−24paqa(pa + qa − 2)(pa + qa)− 12w

(
pa

3 + pa
2(7qa − 2) + paqa(7qa − 8) + (qa − 2)qa

2
)
+ ...

48(pa + qa + w)

...+ 2w2
(
(L− 16)pa

2 + qa((L− 16)qa + 18) + pa(18− 44qa)
)
+ 2w3 + ...

48(pa + qa + w)

...+ ((L− 14)pa + (L− 14)qa + 6) + (L− 8)w4

48(pa + qa + w)
(K.3)

βa =
−36(pa + qa)

(
(pa − 1)pa

2 + (qa − 1)qa
2
)
− 18w

(
5pa

3 + pa
2(3qa − 4) + paqa(3qa − 4) + qa

2(5qa − 4)
)
+ ...

72(pa + qa + w)

...+ 6w2
(
pa((L− 12)qa + 10)− 15pa

2 + 5qa(2− 3qa)
)
+ 3w3((L− 18)pa + (L− 18)qa + 8) + (L− 18)w4

72(pa + qa + w)
(K.4)

αb =− −24(pa − 1)(qa − 1)(pa + qa − 2)(pa + qa) + ...

48(pa + qa + w − 2)

...− 12w
(
pa

3 + pa
2(7qa − 8) + pa(qa − 2)(7qa − 6) + (qa − 6)(qa − 2)qa − 4

)
+ ...

48(pa + qa + w − 2)

...+ 2w2
(
L((pa − 2)pa + (qa − 2)qa + 2)− 2

(
8pa

2 + pa(22qa − 29) + qa(8qa − 29) + 20
))

+ ...

48(pa + qa + w − 2)

...+ 2w3(L(pa + qa − 2)− 2(7pa + 7qa − 11)) + (L− 8)w4

48(pa + qa + w − 2)
(K.5)
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βb =
36(pa + qa − 2)

(
pa(pa − 1)2 + (qa − 1)2q

)
+ ...

72(pa + qa + w − 2)

...+ 18w
(
5pa

3 + pa
2(3qa − 14) + pa(qa(3qa − 8) + 12) + qa(qa(5qa − 14) + 12)− 4

)
+ ...

72(pa + qa + w − 2)

...+ 6w2
(
L(pa(−qa) + pa + qa − 1) + 15pa

2 + 4pa(3qa − 8) + qa(15qa − 32) + 22
)
+ ...

72(pa + qa + w − 2)

...− 3w3(L(pa + qa − 2)− 2(9pa + 9qa − 14))−
(
(L− 18)w4

)
72(pa + qa + w − 2)

(K.6)

codda =
3
(
pa

2 + qa
2
)
+ 3w(pa + qa) + 2w2

3(pa + qa + w)

cevena =
(2pa + w)(2qa + w)

2(pa + qa + w)

coddb =
3w(pa + qa − 1) + 3(pa − 1)pa + 3(qa − 1)qa + 2w2

3(pa + qa + w − 2)

cevenb =
2pa(2qa + w − 1) + 2qa(w − 1) + (w − 2)w

2(pa + qa + w − 2)

(K.7)

λodd
k,a =

1

8L2

[
2
(
(1− pa) p

2
a + (1− qa) q

2
a

)
+O(w)

]
,

λeven
k,a =

1

8L2
[2paqa (1− pa + 1− qa) +O(w)] ,

λodd
k,b =

1

8L2

[
2
(
pa (1− pa)

2 + qa (1− qa)
2
)
+O(w)

]
,

λeven
k,b =

1

8L2
[2 (1− pa) (1− qa) (pa + qa) +O(w)]

(K.8)

To leading order in 1
L , w, the spanning coefficients of the learnable target are given by

goddk,∗ = 0, gevenk,∗ = 0

g+∗ =
Lw2η+∗√

L2w2ρ+∗ + Lσ+
∗
, g−∗ =

Lw2η−∗ + ν−∗√
L2w4ρ−∗ + Lw2σ−

∗ + ξ−∗
,

gc,a =
paqa√
pa+qa

2

, gc,b =
qa + pa − 2paqa√
2 (1− pa + 1− qa)

;

(K.9)

with
η+0,a = 2

(
pa

2 + qa
2
)

ρ+0,a = 48(pa + qa)
3

σ+
0,a = −576(pa + qa)

3((pa − 1)pa + (qa − 1)qa)

(K.10)

η+0,b = 2(pa − 2)pa + 2(qa − 2)qa + 4

ρ+0,b = 2(pa − 2)pa + 2(qa − 2)qa + 4

σ+
0,b = 576(pa + qa − 2)3((pa − 1)pa + (qa − 1)qa)

(K.11)

η−0,a = −72paqa(pa − qa)
2(pa + qa)

ν−0,a = 864paqa(pa − qa)
2(pa + qa)((pa − 1)pa + (qa − 1)qa)

ρ−0,a = 10368paqa(pa − qa)
2(pa + qa)

3

σ−
0,a = −248832paqa(pa − qa)

2(pa + qa)
3((pa − 1)pa + (qa − 1)qa)

ξ−0,a = 1492992paqa(pa − qa)
2(pa + qa)

3((pa − 1)pa + (qa − 1)qa)
2

(K.12)
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η−0,a = −72(pa − 1)(qa − 1)(pa − qa)
2(pa + qa − 2)

ν−0,a = 864(pa − 1)(qa − 1)(pa − qa)
2(pa + qa − 2)((pa − 1)pa + (qa − 1)qa)

ρ−0,a = −10368(pa − 1)(qa − 1)(pa − qa)
2(pa + qa − 2)3

σ−
0,a = 248832(pa − 1)(qa − 1)(pa − qa)

2(pa + qa − 2)3((pa − 1)pa + (qa − 1)qa)

ξ−0,a = −1492992(pa − 1)(qa − 1)(pa − qa)
2(pa + qa − 2)3((pa − 1)pa + (qa − 1)qa)

2

(K.13)
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